Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas

[Display omitted] •One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images we...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 398; p. 115118
Main Authors Guo, Long, Sun, Xiaoru, Fu, Peng, Shi, Tiezhu, Dang, Lina, Chen, Yiyun, Linderman, M., Zhang, Ganlin, Zhang, Yu, Jiang, Qinghu, Zhang, Haitao, Zeng, Chen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images were important for agricultural soil mapping. High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R2, and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle.
AbstractList [Display omitted] •One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images were important for agricultural soil mapping. High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R2, and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle.
High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R², and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle.
ArticleNumber 115118
Author Linderman, M.
Guo, Long
Dang, Lina
Zhang, Ganlin
Chen, Yiyun
Zhang, Yu
Jiang, Qinghu
Fu, Peng
Shi, Tiezhu
Zhang, Haitao
Zeng, Chen
Sun, Xiaoru
Author_xml – sequence: 1
  givenname: Long
  surname: Guo
  fullname: Guo, Long
  organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 2
  givenname: Xiaoru
  surname: Sun
  fullname: Sun, Xiaoru
  organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 3
  givenname: Peng
  surname: Fu
  fullname: Fu, Peng
  organization: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 4
  givenname: Tiezhu
  surname: Shi
  fullname: Shi, Tiezhu
  organization: Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of National Administration of Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services & College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
– sequence: 5
  givenname: Lina
  surname: Dang
  fullname: Dang, Lina
  organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 6
  givenname: Yiyun
  surname: Chen
  fullname: Chen, Yiyun
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 7
  givenname: M.
  surname: Linderman
  fullname: Linderman, M.
  organization: Geographical and Sustainability Sciences, The University of Iowa, Iowa City 52246, USA
– sequence: 8
  givenname: Ganlin
  surname: Zhang
  fullname: Zhang, Ganlin
  organization: Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
– sequence: 9
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: yuzhang@mail.hzau.edu.cn
  organization: College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 10
  givenname: Qinghu
  surname: Jiang
  fullname: Jiang, Qinghu
  email: jiang8687@163.com
  organization: Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430079, China
– sequence: 11
  givenname: Haitao
  surname: Zhang
  fullname: Zhang, Haitao
  email: zht@mail.hzau.edu.cn
  organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 12
  givenname: Chen
  surname: Zeng
  fullname: Zeng, Chen
  organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China
BookMark eNqFkMFu1DAQhi3USmxbXgH52Eu2djaOE6kHqgooUisu5Ww59iTM4tip7QXtE_Da9bLAoZeeRqP5v1-a74yc-OCBkPecrTnj7dV2PUGwEGe9rlnN15wLzrs3ZMU7WVdtLfoTsmIlWUnW8rfkLKVtWSWr2Yr8ftDLgn6iKaCjIU7ao6FGxyF4mnIwP-iwp9_3C8S0gMlRO6q9pRlnqBJEhETnncv4_xphDhloAp8OvTjrqWTQUxd-VREcwkj1FNEUavenLoJOF-R01C7Bu7_znHz79PHx9q66__r5y-3NfWU2jchVx9u-gcZCZ5pG8H6wjIuxa8o7ottIway2rNeSa9loZuU4sMEOo9Uw9KYexs05uTz2LjE87SBlNWMy4Jz2EHZJ1aK0Ss6kKNH2GDUxpBRhVEss38S94kwdzKut-mdeHcyro_kCXr8ADWadMfgiCN3r-IcjDsXDT4SokkHwBizG4ljZgK9VPAPdFqnf
CitedBy_id crossref_primary_10_3390_rs15205033
crossref_primary_10_1016_j_jenvman_2024_122623
crossref_primary_10_1109_TCSVT_2024_3480950
crossref_primary_10_1109_JSTARS_2024_3508817
crossref_primary_10_1016_j_geoderma_2024_116798
crossref_primary_10_1016_j_geoderma_2024_116874
crossref_primary_10_1016_j_catena_2023_107409
crossref_primary_10_1016_j_scitotenv_2021_150187
crossref_primary_10_1016_j_still_2024_106125
crossref_primary_10_1016_j_scitotenv_2022_154021
crossref_primary_10_1021_acs_analchem_3c05311
crossref_primary_10_1007_s11042_021_11729_8
crossref_primary_10_1016_j_jclepro_2022_134878
crossref_primary_10_1016_j_agsy_2022_103494
crossref_primary_10_1016_j_ecoinf_2023_102006
crossref_primary_10_55186_25880209_2024_8_6_11
crossref_primary_10_1016_j_still_2023_105716
crossref_primary_10_1007_s10651_024_00617_7
crossref_primary_10_1016_j_jhazmat_2024_136689
crossref_primary_10_1016_j_still_2023_105912
crossref_primary_10_1016_j_tplants_2024_10_003
crossref_primary_10_1007_s10661_023_12172_y
crossref_primary_10_1016_j_catena_2022_106603
crossref_primary_10_3390_rs16173297
crossref_primary_10_1016_j_catena_2023_107336
crossref_primary_10_1016_j_ecolind_2025_113303
crossref_primary_10_1016_j_catena_2023_106961
crossref_primary_10_1111_sum_12900
crossref_primary_10_1016_j_scitotenv_2022_153766
crossref_primary_10_3390_agronomy14051067
crossref_primary_10_3390_land13071028
crossref_primary_10_1016_j_eiar_2024_107498
crossref_primary_10_1016_j_still_2024_106010
crossref_primary_10_3390_rs14184624
crossref_primary_10_1016_j_geoderma_2023_116620
crossref_primary_10_1109_TGRS_2024_3461628
crossref_primary_10_1002_cpe_7611
crossref_primary_10_1364_PRJ_541560
crossref_primary_10_1016_j_catena_2021_105837
crossref_primary_10_1016_j_geoderma_2021_115653
crossref_primary_10_3390_agriculture15050567
crossref_primary_10_3390_rs17020333
crossref_primary_10_3390_rs14215571
crossref_primary_10_1109_JSTARS_2022_3192267
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_1007_s10661_025_13728_w
crossref_primary_10_1016_j_ecolind_2025_113215
crossref_primary_10_3390_rs16173168
crossref_primary_10_1016_j_catena_2022_106553
crossref_primary_10_3390_rs14205216
crossref_primary_10_3390_land12071344
crossref_primary_10_7717_peerj_17954
crossref_primary_10_3390_su13169462
crossref_primary_10_1016_j_geodrs_2023_e00702
crossref_primary_10_1016_j_agee_2024_108963
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1016_j_geomat_2025_100053
crossref_primary_10_1016_j_infrared_2024_105691
crossref_primary_10_1155_2023_4389885
crossref_primary_10_1016_j_infrared_2024_105298
crossref_primary_10_1016_j_jag_2024_104079
crossref_primary_10_1016_j_oregeorev_2022_105163
crossref_primary_10_3390_rs17040706
crossref_primary_10_1002_ldr_4287
crossref_primary_10_1016_j_scitotenv_2023_161421
crossref_primary_10_1016_j_catena_2025_108889
crossref_primary_10_1016_j_fcr_2025_109821
crossref_primary_10_1016_j_catena_2023_107392
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_1016_j_scitotenv_2023_166112
crossref_primary_10_3390_rs15040876
crossref_primary_10_3390_app131910666
crossref_primary_10_3390_rs15225294
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_3390_rs14030778
crossref_primary_10_1016_j_saa_2022_121696
crossref_primary_10_1016_j_still_2024_106357
crossref_primary_10_1016_j_oregeorev_2022_105092
crossref_primary_10_1515_geo_2022_0739
crossref_primary_10_1016_j_geoderma_2024_117031
crossref_primary_10_3389_fpls_2023_1131778
crossref_primary_10_1016_j_srs_2024_100118
crossref_primary_10_1016_j_ecoinf_2022_101883
crossref_primary_10_1117_1_JRS_19_014520
crossref_primary_10_5902_2179460X73974
crossref_primary_10_1080_01431161_2024_2443613
crossref_primary_10_3390_rs17050933
crossref_primary_10_1007_s44211_025_00746_4
crossref_primary_10_3390_rs13214439
crossref_primary_10_1016_j_geodrs_2024_e00766
crossref_primary_10_3390_land13030379
crossref_primary_10_3390_su15010469
crossref_primary_10_1016_j_catena_2024_108312
crossref_primary_10_5194_soil_9_21_2023
crossref_primary_10_1016_j_ecolind_2021_108291
Cites_doi 10.1016/j.apsoil.2013.11.013
10.1016/S0378-4290(03)00068-6
10.1016/j.agee.2015.07.010
10.1046/j.1365-3180.2000.00164.x
10.1016/j.still.2019.104529
10.1016/j.still.2019.104477
10.1016/j.neucom.2005.12.126
10.1071/WF16122
10.1016/j.trac.2010.05.006
10.1016/j.envpol.2005.11.005
10.1016/j.geoderma.2011.06.006
10.1016/j.rse.2017.05.041
10.1016/j.geoderma.2011.05.007
10.3390/rs10060888
10.1016/S0961-9534(02)00033-8
10.1016/j.ecolind.2013.12.015
10.2175/106143097X125281
10.1071/SR99042
10.1078/0176-1617-01176
10.1002/ldr.696
10.1016/j.still.2014.12.002
10.1007/s11119-009-9152-y
10.1016/j.geoderma.2014.09.019
10.3390/rs11141683
10.1080/17538947.2012.748848
10.1016/j.scitotenv.2013.01.083
10.1007/BF02860844
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1016/j.geoderma.2010.02.021
10.1016/j.agee.2015.02.001
10.1016/j.geoderma.2016.10.010
10.1016/j.geoderma.2018.05.035
10.1016/j.rse.2014.09.032
10.1016/j.rse.2019.01.006
10.1016/j.rse.2016.03.025
10.3390/rs11030349
10.1016/j.geoderma.2012.05.022
10.1117/12.974509
10.1016/S1002-0160(15)60078-9
10.1016/j.rse.2018.09.015
10.2136/sssaj2009.0158
10.1016/j.geoderma.2019.02.019
10.1016/j.geoderma.2015.11.014
10.1080/03650340.2015.1051472
10.2136/sssaj2001.652480x
10.1016/j.geoderma.2018.09.003
10.1021/es405361n
10.1038/s41598-017-15794-8
10.1016/j.scitotenv.2019.01.066
10.1038/nclimate3096
10.1080/10106049.2017.1381179
10.1016/j.geodrs.2018.e00195
10.1016/j.still.2020.104589
10.31857/S020596140002354-0
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115118
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115118
S0016706121001981
GeographicLocations Iowa
GeographicLocations_xml – name: Iowa
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-81694e4de8c44519bd015f84017583750dad09a71a74a0d7fb0bdbfdaeb9c2bf3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 18:12:37 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Fri Feb 23 02:43:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Airborne hyperspectral imaging
Digital soil mapping
Spatial distribution patterns
Time-series multispectral remote sensing images
Collaborative verification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-81694e4de8c44519bd015f84017583750dad09a71a74a0d7fb0bdbfdaeb9c2bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551971075
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551971075
crossref_primary_10_1016_j_geoderma_2021_115118
crossref_citationtrail_10_1016_j_geoderma_2021_115118
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Zhang, Shi, Chen, Jiang, Linderman (b0105) 2019; 337
Zhang, Long, Chen, Shi, Luo, Ju, Zhang, Wang (b0305) 2019; 11
Rodionova, N., 2018. Sentinel 1 Radar data correlation with ground measurements of soil moisture and temperature. Issledovanie Zemli iz kosmosa (4), 32–42.
Dalal, Chan (b0065) 2001; 39
Post, Peng, Emanuel, King, Dale, DeAngelis (b0220) 1990; 78
Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (b0035) 2016; 179
Qin, C.-Z., Zhu, A.X., Tao, P., Li, B.-L., Scholten, T., Behrens, T., Zhou, C.-H., 2011. An approach to computing topographic wetness index based on maximum downslope gradient, 12.
Shi, Liu, Wang, Chen, Fei, Wu (b0270) 2014; 48
Terhoevenurselmans (b0285) 1990; 56
Chang, Laird, Mausbach, Hurburgh (b0045) 2001; 65
Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7 (1), 15554–15554.
Chengzhi, Q.I.N., Lin, Y., AXing, Z.H.U., Baolin, L.I., Tao, P.E.I., Chenghu, Z., 2006. Computation method of topographic wetness index in low relief area. Prog. Geogr. 25 (6), 87–93.
Zhao, Rossiter, Li, Zhao, Liu, Zhang (b0310) 2014; 39
Garten (b0075) 2002; 23
Guo, Bai, Chen, Zhang, Hou, Zhu, Du (b0115) 2019; 11
Guo, Linderman, Shi, Chen, Duan, Zhang (b0100) 2018; 10
Mishra, Lal, Liu, Van Meirvenne (b0200) 2010; 74
Ju, Kou, Zhang, Christie (b0140) 2006; 143
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0120) 2016; 265
D’Hose, Cougnon, De Vliegher, Vandecasteele, Viaene, Cornelis, Van Bockstaele, Reheul (b0060) 2014; 75
Singh, Gupta (b0280) 1977; 43
Prasad, Deo, Li, Maraseni (b0235) 2018; 330
Falahatkar, Hosseini, Ayoubi, Salmanmahiny (b0070) 2016; 62
Burt, R., Staff, S., 2014. Kellogg Soil Survey Laboratory Methods Manual. Natural Resources Conservation Services. National Soil Survey Center, Lincoln, Nebraska.
Guo, Zhao, Zhang, Chen, Linderman, Zhang, Liu (b0110) 2017; 285
Sadeghi, Babaeian, Tuller, Jones (b0260) 2017; 198
Liebman, Davis (b0160) 2000; 40
Gholizadeh, Žižala, Saberioon, Borůvka (b0080) 2018; 218
Schleussner, Rogelj, Schaeffer, Lissner, Licker, Fischer, Knutti, Levermann, Frieler, Hare (b0265) 2016; 6
Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ.
Liu, Guo, Jiang, Zhang, Chen (b0175) 2015; 148
Martens (b0195) 1989
Pahlavan-Rad, Dahmardeh, Brungard (b0205) 2018; 15
Gomez, Drost, Roger (b0090) 2015; 156
Zhou, Shi, Wang (b0320) 2003; 58
Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., Jr., 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68–83.
Jobbágy, Jackson (b0135) 2000; 10
Hong, Chen, Chen, Linderman, Mouazen, Liu, Guo, Yu, Liu, Cheng, Liu (b0125) 2020; 199
Lal (b0150) 2006; 17
Liang, VandenBygaart, MacDonald, Cerkowniak, McConkey, Desjardins, Angers (b0155) 2020; 198
Cázares, Díaz, Ramírez, Contreras, Contreras, Duarte, García, Salazar (b0040) 2019; 37
Zhou, Zhu, Brüggemann, Wang, Zheng, Butterbach-Bahl (b0315) 2015; 212
Bhunia, G.S., Shit, P.K., Pourghasemi, H.R.J.G.I., 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. 1–24.
Brown, G., Hawkesworth, C., Wilson, C., Wilson, R., 1992. Understanding the Earth. CUP Archive.
Pouladi, Møller, Tabatabai, Greve (b0225) 2019; 342
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (b0010) 2010; 29
Peng, Chen, Weng, Ma, Ma, Li, Islam (b0210) 2019; 660
Powell, W.G., 2009. Identifying land use/land cover (LULC) using National Agriculture Imagery Program (NAIP) data as a hydrologic model input for local flood plain management.
Baker (b0005) 1997; 69
Wold, H.O., 1987. Theoretical empiricism: A general rationale for scientific model-building. Theories & Models. Paragon House, New York.
Yang, Liu, Zhang, Zhao, Li, Yang, Yang, Yang (b0300) 2016; 26
Qin, Zhu, Qiu, Lu, Li, Pei (b0240) 2012; 171-172
Guo, Fu, Shi, Chen, Zhang, Meng, Wang (b0095) 2020; 196
Peon, Fernandez, Recondo, Calleja (b0215) 2017; 26
Siegmann, B., Jarmer, T., Selige, T., Lilienthal, H., Richter, N., Hoefle, B., 2012. Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils. In: Neale, C.M.U., Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, And Hydrology Xiv. Proceedings of SPIE.
Liu, Ju, Zhang, Pan, Christie (b0170) 2003; 83
Kumar, Lal, Liu (b0145) 2012; 189
Gitelson (b0085) 2004; 161
Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (b0185) 2019; 82
Liu, Lv, Zhang, Bi (b0180) 2013; 450–451
Huang, Zhu, Siew (b0130) 2006; 70
Luan, Xiang, Liu, Luo, Gong, Zhu (b0190) 2010; 156
Rodriguez-Galiano, Chica-Rivas (b0255) 2014; 7
Liu, Geng, Zhu, Fraser, Waddell (b0165) 2012; 171-172
Vaudour, Gomez, Fouad, Lagacherie (b0290) 2019; 223
Hong (10.1016/j.geoderma.2021.115118_b0125) 2020; 199
Guo (10.1016/j.geoderma.2021.115118_b0105) 2019; 337
Guo (10.1016/j.geoderma.2021.115118_b0100) 2018; 10
Pahlavan-Rad (10.1016/j.geoderma.2021.115118_b0205) 2018; 15
Rodriguez-Galiano (10.1016/j.geoderma.2021.115118_b0255) 2014; 7
Castaldi (10.1016/j.geoderma.2021.115118_b0035) 2016; 179
Zhang (10.1016/j.geoderma.2021.115118_b0305) 2019; 11
Lal (10.1016/j.geoderma.2021.115118_b0150) 2006; 17
Peng (10.1016/j.geoderma.2021.115118_b0210) 2019; 660
Cázares (10.1016/j.geoderma.2021.115118_b0040) 2019; 37
Loiseau (10.1016/j.geoderma.2021.115118_b0185) 2019; 82
Shi (10.1016/j.geoderma.2021.115118_b0270) 2014; 48
Sadeghi (10.1016/j.geoderma.2021.115118_b0260) 2017; 198
Falahatkar (10.1016/j.geoderma.2021.115118_b0070) 2016; 62
Yang (10.1016/j.geoderma.2021.115118_b0300) 2016; 26
Guo (10.1016/j.geoderma.2021.115118_b0095) 2020; 196
Luan (10.1016/j.geoderma.2021.115118_b0190) 2010; 156
Dalal (10.1016/j.geoderma.2021.115118_b0065) 2001; 39
Liebman (10.1016/j.geoderma.2021.115118_b0160) 2000; 40
10.1016/j.geoderma.2021.115118_b0025
Huang (10.1016/j.geoderma.2021.115118_b0130) 2006; 70
Guo (10.1016/j.geoderma.2021.115118_b0110) 2017; 285
Post (10.1016/j.geoderma.2021.115118_b0220) 1990; 78
Mishra (10.1016/j.geoderma.2021.115118_b0200) 2010; 74
10.1016/j.geoderma.2021.115118_b0030
Prasad (10.1016/j.geoderma.2021.115118_b0235) 2018; 330
10.1016/j.geoderma.2021.115118_b0230
10.1016/j.geoderma.2021.115118_b0275
Heung (10.1016/j.geoderma.2021.115118_b0120) 2016; 265
Gomez (10.1016/j.geoderma.2021.115118_b0090) 2015; 156
Kumar (10.1016/j.geoderma.2021.115118_b0145) 2012; 189
D’Hose (10.1016/j.geoderma.2021.115118_b0060) 2014; 75
Jobbágy (10.1016/j.geoderma.2021.115118_b0135) 2000; 10
Liu (10.1016/j.geoderma.2021.115118_b0170) 2003; 83
Peon (10.1016/j.geoderma.2021.115118_b0215) 2017; 26
Qin (10.1016/j.geoderma.2021.115118_b0240) 2012; 171-172
Vaudour (10.1016/j.geoderma.2021.115118_b0290) 2019; 223
Liang (10.1016/j.geoderma.2021.115118_b0155) 2020; 198
Liu (10.1016/j.geoderma.2021.115118_b0175) 2015; 148
10.1016/j.geoderma.2021.115118_b0015
Liu (10.1016/j.geoderma.2021.115118_b0165) 2012; 171-172
Martens (10.1016/j.geoderma.2021.115118_b0195) 1989
Gholizadeh (10.1016/j.geoderma.2021.115118_b0080) 2018; 218
Baker (10.1016/j.geoderma.2021.115118_b0005) 1997; 69
10.1016/j.geoderma.2021.115118_b0020
Garten (10.1016/j.geoderma.2021.115118_b0075) 2002; 23
Pouladi (10.1016/j.geoderma.2021.115118_b0225) 2019; 342
Bellon-Maurel (10.1016/j.geoderma.2021.115118_b0010) 2010; 29
Liu (10.1016/j.geoderma.2021.115118_b0180) 2013; 450–451
Schleussner (10.1016/j.geoderma.2021.115118_b0265) 2016; 6
Terhoevenurselmans (10.1016/j.geoderma.2021.115118_b0285) 1990; 56
Zhao (10.1016/j.geoderma.2021.115118_b0310) 2014; 39
Zhou (10.1016/j.geoderma.2021.115118_b0315) 2015; 212
Chang (10.1016/j.geoderma.2021.115118_b0045) 2001; 65
Guo (10.1016/j.geoderma.2021.115118_b0115) 2019; 11
10.1016/j.geoderma.2021.115118_b0325
10.1016/j.geoderma.2021.115118_b0245
Zhou (10.1016/j.geoderma.2021.115118_b0320) 2003; 58
10.1016/j.geoderma.2021.115118_b0250
Singh (10.1016/j.geoderma.2021.115118_b0280) 1977; 43
10.1016/j.geoderma.2021.115118_b0295
10.1016/j.geoderma.2021.115118_b0050
10.1016/j.geoderma.2021.115118_b0055
Gitelson (10.1016/j.geoderma.2021.115118_b0085) 2004; 161
Ju (10.1016/j.geoderma.2021.115118_b0140) 2006; 143
References_xml – volume: 56
  start-page: 107
  year: 1990
  end-page: 114
  ident: b0285
  article-title: Sample selection based on the Kennard-Stone algorithm
  publication-title: Genet. Res.
– volume: 48
  start-page: 6264
  year: 2014
  end-page: 6272
  ident: b0270
  article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 136
  year: 1997
  end-page: 145
  ident: b0005
  article-title: Evaluation of estimation methods for organic carbon normalized sorption coefficients
  publication-title: Water Environ. Res.
– volume: 223
  start-page: 21
  year: 2019
  end-page: 33
  ident: b0290
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
– reference: Bhunia, G.S., Shit, P.K., Pourghasemi, H.R.J.G.I., 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. 1–24.
– volume: 10
  start-page: 27
  year: 2018
  end-page: 38
  ident: b0100
  article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling
  publication-title: Remote Sens.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0120
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– volume: 199
  start-page: 104589
  year: 2020
  ident: b0125
  article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: feature selection coupled with random forest
  publication-title: Soil Tillage Res.
– reference: Siegmann, B., Jarmer, T., Selige, T., Lilienthal, H., Richter, N., Hoefle, B., 2012. Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils. In: Neale, C.M.U., Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, And Hydrology Xiv. Proceedings of SPIE.
– volume: 143
  start-page: 117
  year: 2006
  end-page: 125
  ident: b0140
  article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain
  publication-title: Environ. Pollut.
– reference: Rodionova, N., 2018. Sentinel 1 Radar data correlation with ground measurements of soil moisture and temperature. Issledovanie Zemli iz kosmosa (4), 32–42.
– volume: 285
  start-page: 280
  year: 2017
  end-page: 292
  ident: b0110
  article-title: Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology
  publication-title: Geoderma
– volume: 11
  start-page: 1683
  year: 2019
  ident: b0305
  article-title: Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China
  publication-title: Remote Sens.
– volume: 198
  start-page: 52
  year: 2017
  end-page: 68
  ident: b0260
  article-title: The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0130
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 11
  year: 2019
  ident: b0115
  article-title: An improved approach for soil moisture estimation in gully fields of the loess plateau using Sentinel-1A radar images
  publication-title: Remote Sens.
– volume: 74
  start-page: 906
  year: 2010
  end-page: 914
  ident: b0200
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– volume: 189
  start-page: 627
  year: 2012
  end-page: 634
  ident: b0145
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
– volume: 17
  start-page: 197
  year: 2006
  end-page: 209
  ident: b0150
  article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands
  publication-title: Land Degrad. Dev.
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: b0045
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– reference: Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ.
– volume: 171-172
  start-page: 44
  year: 2012
  end-page: 52
  ident: b0165
  article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS
  publication-title: Geoderma
– reference: Burt, R., Staff, S., 2014. Kellogg Soil Survey Laboratory Methods Manual. Natural Resources Conservation Services. National Soil Survey Center, Lincoln, Nebraska.
– volume: 156
  start-page: 228
  year: 2010
  end-page: 236
  ident: b0190
  article-title: Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China
  publication-title: Geoderma
– volume: 43
  start-page: 449
  year: 1977
  end-page: 528
  ident: b0280
  article-title: Plant decomposition and soil respiration in terrestrial ecosystems
  publication-title: Bot. Rev.
– reference: Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7 (1), 15554–15554.
– volume: 78
  start-page: 310
  year: 1990
  end-page: 326
  ident: b0220
  article-title: The global carbon cycle
  publication-title: Am. Sci.
– volume: 7
  start-page: 492
  year: 2014
  end-page: 509
  ident: b0255
  article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models
  publication-title: Int. J. Digital Earth
– volume: 26
  start-page: 230
  year: 2017
  end-page: 239
  ident: b0215
  article-title: Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas
  publication-title: Int. J. Wildland Fire
– volume: 58
  start-page: 727
  year: 2003
  end-page: 734
  ident: b0320
  article-title: Impacts of climate change and human activities on soil carbon storage in China
  publication-title: Acta Geogr. Sin. Chin. Ed.
– reference: Powell, W.G., 2009. Identifying land use/land cover (LULC) using National Agriculture Imagery Program (NAIP) data as a hydrologic model input for local flood plain management.
– reference: Brown, G., Hawkesworth, C., Wilson, C., Wilson, R., 1992. Understanding the Earth. CUP Archive.
– volume: 330
  start-page: 136
  year: 2018
  end-page: 161
  ident: b0235
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
– volume: 83
  start-page: 111
  year: 2003
  end-page: 124
  ident: b0170
  article-title: Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain
  publication-title: Field Crops Res.
– volume: 218
  start-page: 89
  year: 2018
  end-page: 103
  ident: b0080
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 827
  year: 2016
  end-page: 835
  ident: b0265
  article-title: Science and policy characteristics of the Paris Agreement temperature goal
  publication-title: Nat. Clim. Change
– volume: 196
  start-page: 104477
  year: 2020
  ident: b0095
  article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images
  publication-title: Soil Tillage Res.
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: b0010
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
– volume: 156
  start-page: 58
  year: 2015
  end-page: 70
  ident: b0090
  article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: b0135
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
– volume: 15
  start-page: e00195
  year: 2018
  ident: b0205
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Regional
– year: 1989
  ident: b0195
  article-title: Multivariate Calibration
– volume: 40
  start-page: 27
  year: 2000
  end-page: 48
  ident: b0160
  article-title: Integration of soil, crop and weed management in low-external-input farming systems
  publication-title: Weed Res. Oxford
– volume: 82
  start-page: 101905
  year: 2019
  ident: b0185
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., Jr., 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68–83.
– volume: 198
  start-page: 104529
  year: 2020
  ident: b0155
  article-title: Revisiting no-till’s impact on soil organic carbon storage in Canada
  publication-title: Soil Tillage Res.
– volume: 148
  start-page: 46
  year: 2015
  end-page: 58
  ident: b0175
  article-title: Comparing geospatial techniques to predict SOC stocks
  publication-title: Soil Tillage Res.
– volume: 179
  start-page: 54
  year: 2016
  end-page: 65
  ident: b0035
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
– reference: Chengzhi, Q.I.N., Lin, Y., AXing, Z.H.U., Baolin, L.I., Tao, P.E.I., Chenghu, Z., 2006. Computation method of topographic wetness index in low relief area. Prog. Geogr. 25 (6), 87–93.
– volume: 450–451
  start-page: 108
  year: 2013
  end-page: 119
  ident: b0180
  article-title: Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 93
  year: 2002
  end-page: 102
  ident: b0075
  article-title: Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA
  publication-title: Biomass Bioenergy
– volume: 337
  start-page: 32
  year: 2019
  end-page: 41
  ident: b0105
  article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images
  publication-title: Geoderma
– volume: 75
  start-page: 189
  year: 2014
  end-page: 198
  ident: b0060
  article-title: The positive relationship between soil quality and crop production: a case study on the effect of farm compost application
  publication-title: Appl. Soil Ecol.
– volume: 161
  start-page: 165
  year: 2004
  end-page: 173
  ident: b0085
  article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
– volume: 39
  start-page: 120
  year: 2014
  end-page: 133
  ident: b0310
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Ind.
– volume: 212
  start-page: 297
  year: 2015
  end-page: 309
  ident: b0315
  article-title: Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: a 3-year field case study
  publication-title: Agric., Ecosyst. Environ.
– volume: 62
  start-page: 375
  year: 2016
  end-page: 393
  ident: b0070
  article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran
  publication-title: Arch. Agron. Soil Sci.
– volume: 171-172
  start-page: 64
  year: 2012
  end-page: 74
  ident: b0240
  article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information
  publication-title: Geoderma
– volume: 342
  start-page: 85
  year: 2019
  end-page: 92
  ident: b0225
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
– volume: 26
  start-page: 699
  year: 2016
  end-page: 708
  ident: b0300
  article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area
  publication-title: Pedosphere
– reference: Qin, C.-Z., Zhu, A.X., Tao, P., Li, B.-L., Scholten, T., Behrens, T., Zhou, C.-H., 2011. An approach to computing topographic wetness index based on maximum downslope gradient, 12.
– volume: 37
  start-page: 7
  year: 2019
  end-page: 14
  ident: b0040
  article-title: Soil fertility affects the growth, nutrition and yield of cotton cultivated in two irrigation systems and different nitrogen rates
  publication-title: J. Terra Latinoamericana
– volume: 39
  start-page: 435
  year: 2001
  end-page: 464
  ident: b0065
  article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt
  publication-title: Aust. J. Soil Res.
– volume: 660
  start-page: 776
  year: 2019
  end-page: 786
  ident: b0210
  article-title: Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review
  publication-title: Sci. Total Environ.
– reference: Wold, H.O., 1987. Theoretical empiricism: A general rationale for scientific model-building. Theories & Models. Paragon House, New York.
– volume: 75
  start-page: 189
  year: 2014
  ident: 10.1016/j.geoderma.2021.115118_b0060
  article-title: The positive relationship between soil quality and crop production: a case study on the effect of farm compost application
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.11.013
– volume: 83
  start-page: 111
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2021.115118_b0170
  article-title: Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(03)00068-6
– volume: 212
  start-page: 297
  year: 2015
  ident: 10.1016/j.geoderma.2021.115118_b0315
  article-title: Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: a 3-year field case study
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.07.010
– volume: 40
  start-page: 27
  issue: 1
  year: 2000
  ident: 10.1016/j.geoderma.2021.115118_b0160
  article-title: Integration of soil, crop and weed management in low-external-input farming systems
  publication-title: Weed Res. Oxford
  doi: 10.1046/j.1365-3180.2000.00164.x
– volume: 198
  start-page: 104529
  year: 2020
  ident: 10.1016/j.geoderma.2021.115118_b0155
  article-title: Revisiting no-till’s impact on soil organic carbon storage in Canada
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104529
– volume: 78
  start-page: 310
  issue: 4
  year: 1990
  ident: 10.1016/j.geoderma.2021.115118_b0220
  article-title: The global carbon cycle
  publication-title: Am. Sci.
– volume: 196
  start-page: 104477
  year: 2020
  ident: 10.1016/j.geoderma.2021.115118_b0095
  article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104477
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2021.115118_b0130
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 58
  start-page: 727
  issue: 5
  year: 2003
  ident: 10.1016/j.geoderma.2021.115118_b0320
  article-title: Impacts of climate change and human activities on soil carbon storage in China
  publication-title: Acta Geogr. Sin. Chin. Ed.
– volume: 26
  start-page: 230
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2021.115118_b0215
  article-title: Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF16122
– volume: 29
  start-page: 1073
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2021.115118_b0010
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 143
  start-page: 117
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2021.115118_b0140
  article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.11.005
– ident: 10.1016/j.geoderma.2021.115118_b0055
– volume: 171-172
  start-page: 64
  year: 2012
  ident: 10.1016/j.geoderma.2021.115118_b0240
  article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.06.006
– volume: 198
  start-page: 52
  year: 2017
  ident: 10.1016/j.geoderma.2021.115118_b0260
  article-title: The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.041
– volume: 171-172
  start-page: 44
  year: 2012
  ident: 10.1016/j.geoderma.2021.115118_b0165
  article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.05.007
– volume: 10
  start-page: 27
  issue: 6
  year: 2018
  ident: 10.1016/j.geoderma.2021.115118_b0100
  article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling
  publication-title: Remote Sens.
  doi: 10.3390/rs10060888
– volume: 56
  start-page: 107
  issue: 2–3
  year: 1990
  ident: 10.1016/j.geoderma.2021.115118_b0285
  article-title: Sample selection based on the Kennard-Stone algorithm
  publication-title: Genet. Res.
– volume: 23
  start-page: 93
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2021.115118_b0075
  article-title: Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(02)00033-8
– volume: 39
  start-page: 120
  year: 2014
  ident: 10.1016/j.geoderma.2021.115118_b0310
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2013.12.015
– volume: 69
  start-page: 136
  issue: 2
  year: 1997
  ident: 10.1016/j.geoderma.2021.115118_b0005
  article-title: Evaluation of estimation methods for organic carbon normalized sorption coefficients
  publication-title: Water Environ. Res.
  doi: 10.2175/106143097X125281
– ident: 10.1016/j.geoderma.2021.115118_b0020
– volume: 39
  start-page: 435
  issue: 3
  year: 2001
  ident: 10.1016/j.geoderma.2021.115118_b0065
  article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR99042
– volume: 161
  start-page: 165
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2021.115118_b0085
  article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01176
– volume: 17
  start-page: 197
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2021.115118_b0150
  article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.696
– volume: 148
  start-page: 46
  year: 2015
  ident: 10.1016/j.geoderma.2021.115118_b0175
  article-title: Comparing geospatial techniques to predict SOC stocks
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.12.002
– ident: 10.1016/j.geoderma.2021.115118_b0245
  doi: 10.1007/s11119-009-9152-y
– ident: 10.1016/j.geoderma.2021.115118_b0025
  doi: 10.1016/j.geoderma.2014.09.019
– volume: 11
  start-page: 1683
  issue: 14
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0305
  article-title: Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China
  publication-title: Remote Sens.
  doi: 10.3390/rs11141683
– volume: 7
  start-page: 492
  issue: 6
  year: 2014
  ident: 10.1016/j.geoderma.2021.115118_b0255
  article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2012.748848
– ident: 10.1016/j.geoderma.2021.115118_b0295
– volume: 450–451
  start-page: 108
  year: 2013
  ident: 10.1016/j.geoderma.2021.115118_b0180
  article-title: Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.01.083
– volume: 43
  start-page: 449
  issue: 4
  year: 1977
  ident: 10.1016/j.geoderma.2021.115118_b0280
  article-title: Plant decomposition and soil respiration in terrestrial ecosystems
  publication-title: Bot. Rev.
  doi: 10.1007/BF02860844
– volume: 10
  start-page: 423
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2021.115118_b0135
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 156
  start-page: 228
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2021.115118_b0190
  article-title: Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.02.021
– ident: 10.1016/j.geoderma.2021.115118_b0050
  doi: 10.1016/j.agee.2015.02.001
– volume: 285
  start-page: 280
  year: 2017
  ident: 10.1016/j.geoderma.2021.115118_b0110
  article-title: Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.010
– volume: 330
  start-page: 136
  year: 2018
  ident: 10.1016/j.geoderma.2021.115118_b0235
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– volume: 156
  start-page: 58
  year: 2015
  ident: 10.1016/j.geoderma.2021.115118_b0090
  article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.032
– volume: 223
  start-page: 21
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0290
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.006
– volume: 179
  start-page: 54
  year: 2016
  ident: 10.1016/j.geoderma.2021.115118_b0035
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0115
  article-title: An improved approach for soil moisture estimation in gully fields of the loess plateau using Sentinel-1A radar images
  publication-title: Remote Sens.
  doi: 10.3390/rs11030349
– volume: 189
  start-page: 627
  year: 2012
  ident: 10.1016/j.geoderma.2021.115118_b0145
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.022
– ident: 10.1016/j.geoderma.2021.115118_b0030
– ident: 10.1016/j.geoderma.2021.115118_b0275
  doi: 10.1117/12.974509
– volume: 26
  start-page: 699
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2021.115118_b0300
  article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60078-9
– volume: 218
  start-page: 89
  year: 2018
  ident: 10.1016/j.geoderma.2021.115118_b0080
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– year: 1989
  ident: 10.1016/j.geoderma.2021.115118_b0195
– volume: 74
  start-page: 906
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2021.115118_b0200
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0158
– volume: 342
  start-page: 85
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0225
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.019
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2021.115118_b0120
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 62
  start-page: 375
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2021.115118_b0070
  article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2015.1051472
– volume: 65
  start-page: 480
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2021.115118_b0045
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 337
  start-page: 32
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0105
  article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.003
– volume: 37
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0040
  article-title: Soil fertility affects the growth, nutrition and yield of cotton cultivated in two irrigation systems and different nitrogen rates
  publication-title: J. Terra Latinoamericana
– volume: 48
  start-page: 6264
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2021.115118_b0270
  article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405361n
– volume: 82
  start-page: 101905
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0185
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.geoderma.2021.115118_b0325
  doi: 10.1038/s41598-017-15794-8
– volume: 660
  start-page: 776
  year: 2019
  ident: 10.1016/j.geoderma.2021.115118_b0210
  article-title: Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.066
– volume: 6
  start-page: 827
  issue: 9
  year: 2016
  ident: 10.1016/j.geoderma.2021.115118_b0265
  article-title: Science and policy characteristics of the Paris Agreement temperature goal
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3096
– ident: 10.1016/j.geoderma.2021.115118_b0015
  doi: 10.1080/10106049.2017.1381179
– volume: 15
  start-page: e00195
  year: 2018
  ident: 10.1016/j.geoderma.2021.115118_b0205
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00195
– volume: 199
  start-page: 104589
  year: 2020
  ident: 10.1016/j.geoderma.2021.115118_b0125
  article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: feature selection coupled with random forest
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104589
– ident: 10.1016/j.geoderma.2021.115118_b0250
  doi: 10.31857/S020596140002354-0
– ident: 10.1016/j.geoderma.2021.115118_b0230
SSID ssj0017020
Score 2.6204326
Snippet [Display omitted] •One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were...
High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115118
SubjectTerms agricultural land
agricultural management
Airborne hyperspectral imaging
carbon cycle
carbon sinks
Collaborative verification
Digital soil mapping
global carbon budget
hyperspectral imagery
Iowa
irrigation
land use
Landsat
landscapes
least squares
model validation
prediction
soil density
soil formation
soil organic carbon
Spatial distribution patterns
spatial variation
tillage
time series analysis
Time-series multispectral remote sensing images
Title Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
URI https://dx.doi.org/10.1016/j.geoderma.2021.115118
https://www.proquest.com/docview/2551971075
Volume 398
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9FIOiNIiKBS5Uq_uxsRO4uMKgRYq9tSV9mb5FQjdJihZVHHhyt9mJo9VQUIcOObhUeSZzHyTfDNDyA-bOR47pZjLbMKEzQ2zCZLGPcBzmUsAsfhp4HKWTOfiYiEXI3Iy1MIgrbL3_Z1Pb711f2bc7-b4tiiwxpcnadR2wAKc0pZfC5Gilf98WNM8eBr1rRl5wvDu_6qEb0BHOHCs7T90zMF7INx-LUC9cNVt_DnbJls9cKST7tk-kVEod8jm5Krum2eEz-Tx0mC3hSvaVMWSdvOaHHWmtlVJAeS5P9Te02vIPLsCyxrkmdJTnC_P0BRDQ1uC4fpqHUCTgTbIcge5xV_wPg0tSrqs_rE6AH7NqVk_AopDjvsXMj87_X0yZf2gBeZiIVcs44kSQfiQOexXpqwHkJBD6gfYAhJYGXnjI2VSblJhIp_mNrLe5t4Eq9yxzeNdslFWZdgj1EQmeB5LCHJWOJXZAOHQhCgOQnHhsn0ih93Vru9CjsMwlnqgm93oQSsataI7reyT8XrdbdeH480ValCefmZRGoLFm2u_D9rW8LrhPxRThuqu0ZCBcQWoLJVf3yH_gHzEI-SdcHlINlb1XfgG4GZlj1rrPSIfJue_prMnRBn9Pg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFO05WEkOJqNN3YSHzhUQLWl3Z5aqTfjV9qUJamSrapeuPKD-IPMJM4KkFAPqNdEHlme8cw3yTczhLyxheOpU4q5wmZM2NIwmyFp3AM8l6UEEIufBuYH2exIfD6Wx2vk51gLg7TK6PsHn9576_hkEk9zcl5VWOPLszzpO2ABTil4ZFbuhatLyNu697sfQclvp9OdT4cfZiyOFmAuFXLJCp4pEYQPhcMOXcp6CIslJDsQTSFlk4k3PlEm5yYXJvF5aRPrbelNsMpNbZmC3FvktgB3gWMT3n1f8Up4nsRekDxjuL3fypLPwChwwlnf8GjKwV0hvv9XRPwrNvQBb-cBuR-RKt0eDuMhWQv1I3Jv-6SN3TrCY_JjbrC9wwntmmpBhwFRjjrT2qamgCrdV2qv6CmkukNFZwvyTO0pDrRnaPuhoz2jcfW2DWA6gXZIqwe51Tdwdx2tarpoLlkbADCX1Ky2gOKQVP-EHN3I8T8l63VTh2eEmsQEz1MJUdUKpwobIP6akKRBKC5csUHkeLraxbbnOH1joUd-25ketaJRK3rQygaZrNadD40_rl2hRuXpP0xYQ3S6du3rUdsa7jf-tDF1aC46DSkfVwADc7n5H_JfkTuzw_m-3t892Nsid_ENkl64fE7Wl-1FeAHIamlf9pZMyZebvjq_AIQ5OcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+soil+organic+carbon+stock+by+hyperspectral+and+time-series+multispectral+remote+sensing+images+in+low-relief+agricultural+areas&rft.jtitle=Geoderma&rft.au=Guo%2C+Long&rft.au=Sun%2C+Xiaoru&rft.au=Fu%2C+P.+%28Peng%29&rft.au=Shi%2C+Tiezhu&rft.date=2021-09-15&rft.issn=0016-7061&rft.volume=398+p.115118-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon