Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
[Display omitted] •One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images we...
Saved in:
Published in | Geoderma Vol. 398; p. 115118 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images were important for agricultural soil mapping.
High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R2, and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle. |
---|---|
AbstractList | [Display omitted]
•One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were used for soil mapping.•The semivariogram and percentage errors were used for collaborative verification.•The time series multispectral images were important for agricultural soil mapping.
High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R2, and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle. High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial heterogeneity of farmland SOC is not only influence by the environmental factors of soil formation but also the management practices of tillage, fertilization, and irrigation. However, the traditional modeling covariates of digital soil mapping, such as terrain factors, land use types and climate factors have weak spatial variations in low-relief agricultural areas, and they cannot reflect the large spatial variation of SOC. Thus the time-series multispectral remote sensing images will be used for mapping soil properties in low relief regions in this study, meanwhile a new collaborative verification strategy was put forward to evaluate the spatial distribution characteristics of soil maps. The current study was performed in a nearly flat agricultural region southeast of Iowa (with an area of approximately 385.45 ha), where 195 surface soil samples (0–15 cm) were collected. A hyperspectral image (Headwall-Hyperspec, 380–1700 nm) and the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 were used to construct the prediction models of SOC stock and its relevant soil properties of SOC and soil bulk density (SBD) through partial least square regression (PLSR) and extreme learning machine (ELM) models. The collected soil samples and evaluation indexes of root mean square error (RMSE), R², and ratio of performance to interquartile range (RPIQ) were used to evaluate the model performance. Results are as follows: (1) hyperspectral images were successfully used to predict the SOC stock, SOC, and SBD through PLSR and ELM, while ELM (RPIQ = 2.03, 1.97, 1.64) outperformed PLSR (RPIQ = 1.83, 1.97, 1.53); (2) the time-series multispectral remote sensing images of Sentinel 2 and Landsat 8 can reflect the spatial distribution characteristics of the SOC stock, SOC and SBD by PLSR and ELM, but the combination of Sentinel 2 images and ELM obtained the best prediction results (RPIQ = 1.45, 1.25, 1.26); and (3) the differences of the soil maps predicted by the hyperspectral image and time-series multispectral remote sensing images were small, and the largest percentage errors nearly appeared on the edges of the farmland patches owing to mixed pixels. This study further confirmed the good prediction abilities of the time-series multispectral remote sensing images in low relief farmland regions. Lastly, this mapping strategy can provide additional valuable information for agricultural management and carbon cycle. |
ArticleNumber | 115118 |
Author | Linderman, M. Guo, Long Dang, Lina Zhang, Ganlin Chen, Yiyun Zhang, Yu Jiang, Qinghu Fu, Peng Shi, Tiezhu Zhang, Haitao Zeng, Chen Sun, Xiaoru |
Author_xml | – sequence: 1 givenname: Long surname: Guo fullname: Guo, Long organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China – sequence: 2 givenname: Xiaoru surname: Sun fullname: Sun, Xiaoru organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China – sequence: 3 givenname: Peng surname: Fu fullname: Fu, Peng organization: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 4 givenname: Tiezhu surname: Shi fullname: Shi, Tiezhu organization: Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of National Administration of Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services & College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China – sequence: 5 givenname: Lina surname: Dang fullname: Dang, Lina organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China – sequence: 6 givenname: Yiyun surname: Chen fullname: Chen, Yiyun organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China – sequence: 7 givenname: M. surname: Linderman fullname: Linderman, M. organization: Geographical and Sustainability Sciences, The University of Iowa, Iowa City 52246, USA – sequence: 8 givenname: Ganlin surname: Zhang fullname: Zhang, Ganlin organization: Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China – sequence: 9 givenname: Yu surname: Zhang fullname: Zhang, Yu email: yuzhang@mail.hzau.edu.cn organization: College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China – sequence: 10 givenname: Qinghu surname: Jiang fullname: Jiang, Qinghu email: jiang8687@163.com organization: Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430079, China – sequence: 11 givenname: Haitao surname: Zhang fullname: Zhang, Haitao email: zht@mail.hzau.edu.cn organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China – sequence: 12 givenname: Chen surname: Zeng fullname: Zeng, Chen organization: College of Resources and Environment & The Research Center of Territorial Spatial Governance and Green Development, Huazhong Agricultural University, Wuhan 430070, China |
BookMark | eNqFkMFu1DAQhi3USmxbXgH52Eu2djaOE6kHqgooUisu5Ww59iTM4tip7QXtE_Da9bLAoZeeRqP5v1-a74yc-OCBkPecrTnj7dV2PUGwEGe9rlnN15wLzrs3ZMU7WVdtLfoTsmIlWUnW8rfkLKVtWSWr2Yr8ftDLgn6iKaCjIU7ao6FGxyF4mnIwP-iwp9_3C8S0gMlRO6q9pRlnqBJEhETnncv4_xphDhloAp8OvTjrqWTQUxd-VREcwkj1FNEUavenLoJOF-R01C7Bu7_znHz79PHx9q66__r5y-3NfWU2jchVx9u-gcZCZ5pG8H6wjIuxa8o7ottIway2rNeSa9loZuU4sMEOo9Uw9KYexs05uTz2LjE87SBlNWMy4Jz2EHZJ1aK0Ss6kKNH2GDUxpBRhVEss38S94kwdzKut-mdeHcyro_kCXr8ADWadMfgiCN3r-IcjDsXDT4SokkHwBizG4ljZgK9VPAPdFqnf |
CitedBy_id | crossref_primary_10_3390_rs15205033 crossref_primary_10_1016_j_jenvman_2024_122623 crossref_primary_10_1109_TCSVT_2024_3480950 crossref_primary_10_1109_JSTARS_2024_3508817 crossref_primary_10_1016_j_geoderma_2024_116798 crossref_primary_10_1016_j_geoderma_2024_116874 crossref_primary_10_1016_j_catena_2023_107409 crossref_primary_10_1016_j_scitotenv_2021_150187 crossref_primary_10_1016_j_still_2024_106125 crossref_primary_10_1016_j_scitotenv_2022_154021 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1007_s11042_021_11729_8 crossref_primary_10_1016_j_jclepro_2022_134878 crossref_primary_10_1016_j_agsy_2022_103494 crossref_primary_10_1016_j_ecoinf_2023_102006 crossref_primary_10_55186_25880209_2024_8_6_11 crossref_primary_10_1016_j_still_2023_105716 crossref_primary_10_1007_s10651_024_00617_7 crossref_primary_10_1016_j_jhazmat_2024_136689 crossref_primary_10_1016_j_still_2023_105912 crossref_primary_10_1016_j_tplants_2024_10_003 crossref_primary_10_1007_s10661_023_12172_y crossref_primary_10_1016_j_catena_2022_106603 crossref_primary_10_3390_rs16173297 crossref_primary_10_1016_j_catena_2023_107336 crossref_primary_10_1016_j_ecolind_2025_113303 crossref_primary_10_1016_j_catena_2023_106961 crossref_primary_10_1111_sum_12900 crossref_primary_10_1016_j_scitotenv_2022_153766 crossref_primary_10_3390_agronomy14051067 crossref_primary_10_3390_land13071028 crossref_primary_10_1016_j_eiar_2024_107498 crossref_primary_10_1016_j_still_2024_106010 crossref_primary_10_3390_rs14184624 crossref_primary_10_1016_j_geoderma_2023_116620 crossref_primary_10_1109_TGRS_2024_3461628 crossref_primary_10_1002_cpe_7611 crossref_primary_10_1364_PRJ_541560 crossref_primary_10_1016_j_catena_2021_105837 crossref_primary_10_1016_j_geoderma_2021_115653 crossref_primary_10_3390_agriculture15050567 crossref_primary_10_3390_rs17020333 crossref_primary_10_3390_rs14215571 crossref_primary_10_1109_JSTARS_2022_3192267 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_1007_s10661_025_13728_w crossref_primary_10_1016_j_ecolind_2025_113215 crossref_primary_10_3390_rs16173168 crossref_primary_10_1016_j_catena_2022_106553 crossref_primary_10_3390_rs14205216 crossref_primary_10_3390_land12071344 crossref_primary_10_7717_peerj_17954 crossref_primary_10_3390_su13169462 crossref_primary_10_1016_j_geodrs_2023_e00702 crossref_primary_10_1016_j_agee_2024_108963 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1016_j_geomat_2025_100053 crossref_primary_10_1016_j_infrared_2024_105691 crossref_primary_10_1155_2023_4389885 crossref_primary_10_1016_j_infrared_2024_105298 crossref_primary_10_1016_j_jag_2024_104079 crossref_primary_10_1016_j_oregeorev_2022_105163 crossref_primary_10_3390_rs17040706 crossref_primary_10_1002_ldr_4287 crossref_primary_10_1016_j_scitotenv_2023_161421 crossref_primary_10_1016_j_catena_2025_108889 crossref_primary_10_1016_j_fcr_2025_109821 crossref_primary_10_1016_j_catena_2023_107392 crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_1016_j_scitotenv_2023_166112 crossref_primary_10_3390_rs15040876 crossref_primary_10_3390_app131910666 crossref_primary_10_3390_rs15225294 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_3390_rs14030778 crossref_primary_10_1016_j_saa_2022_121696 crossref_primary_10_1016_j_still_2024_106357 crossref_primary_10_1016_j_oregeorev_2022_105092 crossref_primary_10_1515_geo_2022_0739 crossref_primary_10_1016_j_geoderma_2024_117031 crossref_primary_10_3389_fpls_2023_1131778 crossref_primary_10_1016_j_srs_2024_100118 crossref_primary_10_1016_j_ecoinf_2022_101883 crossref_primary_10_1117_1_JRS_19_014520 crossref_primary_10_5902_2179460X73974 crossref_primary_10_1080_01431161_2024_2443613 crossref_primary_10_3390_rs17050933 crossref_primary_10_1007_s44211_025_00746_4 crossref_primary_10_3390_rs13214439 crossref_primary_10_1016_j_geodrs_2024_e00766 crossref_primary_10_3390_land13030379 crossref_primary_10_3390_su15010469 crossref_primary_10_1016_j_catena_2024_108312 crossref_primary_10_5194_soil_9_21_2023 crossref_primary_10_1016_j_ecolind_2021_108291 |
Cites_doi | 10.1016/j.apsoil.2013.11.013 10.1016/S0378-4290(03)00068-6 10.1016/j.agee.2015.07.010 10.1046/j.1365-3180.2000.00164.x 10.1016/j.still.2019.104529 10.1016/j.still.2019.104477 10.1016/j.neucom.2005.12.126 10.1071/WF16122 10.1016/j.trac.2010.05.006 10.1016/j.envpol.2005.11.005 10.1016/j.geoderma.2011.06.006 10.1016/j.rse.2017.05.041 10.1016/j.geoderma.2011.05.007 10.3390/rs10060888 10.1016/S0961-9534(02)00033-8 10.1016/j.ecolind.2013.12.015 10.2175/106143097X125281 10.1071/SR99042 10.1078/0176-1617-01176 10.1002/ldr.696 10.1016/j.still.2014.12.002 10.1007/s11119-009-9152-y 10.1016/j.geoderma.2014.09.019 10.3390/rs11141683 10.1080/17538947.2012.748848 10.1016/j.scitotenv.2013.01.083 10.1007/BF02860844 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1016/j.geoderma.2010.02.021 10.1016/j.agee.2015.02.001 10.1016/j.geoderma.2016.10.010 10.1016/j.geoderma.2018.05.035 10.1016/j.rse.2014.09.032 10.1016/j.rse.2019.01.006 10.1016/j.rse.2016.03.025 10.3390/rs11030349 10.1016/j.geoderma.2012.05.022 10.1117/12.974509 10.1016/S1002-0160(15)60078-9 10.1016/j.rse.2018.09.015 10.2136/sssaj2009.0158 10.1016/j.geoderma.2019.02.019 10.1016/j.geoderma.2015.11.014 10.1080/03650340.2015.1051472 10.2136/sssaj2001.652480x 10.1016/j.geoderma.2018.09.003 10.1021/es405361n 10.1038/s41598-017-15794-8 10.1016/j.scitotenv.2019.01.066 10.1038/nclimate3096 10.1080/10106049.2017.1381179 10.1016/j.geodrs.2018.e00195 10.1016/j.still.2020.104589 10.31857/S020596140002354-0 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115118 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115118 S0016706121001981 |
GeographicLocations | Iowa |
GeographicLocations_xml | – name: Iowa |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-81694e4de8c44519bd015f84017583750dad09a71a74a0d7fb0bdbfdaeb9c2bf3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 18:12:37 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Fri Feb 23 02:43:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Airborne hyperspectral imaging Digital soil mapping Spatial distribution patterns Time-series multispectral remote sensing images Collaborative verification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-81694e4de8c44519bd015f84017583750dad09a71a74a0d7fb0bdbfdaeb9c2bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551971075 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551971075 crossref_primary_10_1016_j_geoderma_2021_115118 crossref_citationtrail_10_1016_j_geoderma_2021_115118 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guo, Zhang, Shi, Chen, Jiang, Linderman (b0105) 2019; 337 Zhang, Long, Chen, Shi, Luo, Ju, Zhang, Wang (b0305) 2019; 11 Rodionova, N., 2018. Sentinel 1 Radar data correlation with ground measurements of soil moisture and temperature. Issledovanie Zemli iz kosmosa (4), 32–42. Dalal, Chan (b0065) 2001; 39 Post, Peng, Emanuel, King, Dale, DeAngelis (b0220) 1990; 78 Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (b0035) 2016; 179 Qin, C.-Z., Zhu, A.X., Tao, P., Li, B.-L., Scholten, T., Behrens, T., Zhou, C.-H., 2011. An approach to computing topographic wetness index based on maximum downslope gradient, 12. Shi, Liu, Wang, Chen, Fei, Wu (b0270) 2014; 48 Terhoevenurselmans (b0285) 1990; 56 Chang, Laird, Mausbach, Hurburgh (b0045) 2001; 65 Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7 (1), 15554–15554. Chengzhi, Q.I.N., Lin, Y., AXing, Z.H.U., Baolin, L.I., Tao, P.E.I., Chenghu, Z., 2006. Computation method of topographic wetness index in low relief area. Prog. Geogr. 25 (6), 87–93. Zhao, Rossiter, Li, Zhao, Liu, Zhang (b0310) 2014; 39 Garten (b0075) 2002; 23 Guo, Bai, Chen, Zhang, Hou, Zhu, Du (b0115) 2019; 11 Guo, Linderman, Shi, Chen, Duan, Zhang (b0100) 2018; 10 Mishra, Lal, Liu, Van Meirvenne (b0200) 2010; 74 Ju, Kou, Zhang, Christie (b0140) 2006; 143 Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0120) 2016; 265 D’Hose, Cougnon, De Vliegher, Vandecasteele, Viaene, Cornelis, Van Bockstaele, Reheul (b0060) 2014; 75 Singh, Gupta (b0280) 1977; 43 Prasad, Deo, Li, Maraseni (b0235) 2018; 330 Falahatkar, Hosseini, Ayoubi, Salmanmahiny (b0070) 2016; 62 Burt, R., Staff, S., 2014. Kellogg Soil Survey Laboratory Methods Manual. Natural Resources Conservation Services. National Soil Survey Center, Lincoln, Nebraska. Guo, Zhao, Zhang, Chen, Linderman, Zhang, Liu (b0110) 2017; 285 Sadeghi, Babaeian, Tuller, Jones (b0260) 2017; 198 Liebman, Davis (b0160) 2000; 40 Gholizadeh, Žižala, Saberioon, Borůvka (b0080) 2018; 218 Schleussner, Rogelj, Schaeffer, Lissner, Licker, Fischer, Knutti, Levermann, Frieler, Hare (b0265) 2016; 6 Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. Liu, Guo, Jiang, Zhang, Chen (b0175) 2015; 148 Martens (b0195) 1989 Pahlavan-Rad, Dahmardeh, Brungard (b0205) 2018; 15 Gomez, Drost, Roger (b0090) 2015; 156 Zhou, Shi, Wang (b0320) 2003; 58 Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., Jr., 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68–83. Jobbágy, Jackson (b0135) 2000; 10 Hong, Chen, Chen, Linderman, Mouazen, Liu, Guo, Yu, Liu, Cheng, Liu (b0125) 2020; 199 Lal (b0150) 2006; 17 Liang, VandenBygaart, MacDonald, Cerkowniak, McConkey, Desjardins, Angers (b0155) 2020; 198 Cázares, Díaz, Ramírez, Contreras, Contreras, Duarte, García, Salazar (b0040) 2019; 37 Zhou, Zhu, Brüggemann, Wang, Zheng, Butterbach-Bahl (b0315) 2015; 212 Bhunia, G.S., Shit, P.K., Pourghasemi, H.R.J.G.I., 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. 1–24. Brown, G., Hawkesworth, C., Wilson, C., Wilson, R., 1992. Understanding the Earth. CUP Archive. Pouladi, Møller, Tabatabai, Greve (b0225) 2019; 342 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (b0010) 2010; 29 Peng, Chen, Weng, Ma, Ma, Li, Islam (b0210) 2019; 660 Powell, W.G., 2009. Identifying land use/land cover (LULC) using National Agriculture Imagery Program (NAIP) data as a hydrologic model input for local flood plain management. Baker (b0005) 1997; 69 Wold, H.O., 1987. Theoretical empiricism: A general rationale for scientific model-building. Theories & Models. Paragon House, New York. Yang, Liu, Zhang, Zhao, Li, Yang, Yang, Yang (b0300) 2016; 26 Qin, Zhu, Qiu, Lu, Li, Pei (b0240) 2012; 171-172 Guo, Fu, Shi, Chen, Zhang, Meng, Wang (b0095) 2020; 196 Peon, Fernandez, Recondo, Calleja (b0215) 2017; 26 Siegmann, B., Jarmer, T., Selige, T., Lilienthal, H., Richter, N., Hoefle, B., 2012. Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils. In: Neale, C.M.U., Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, And Hydrology Xiv. Proceedings of SPIE. Liu, Ju, Zhang, Pan, Christie (b0170) 2003; 83 Kumar, Lal, Liu (b0145) 2012; 189 Gitelson (b0085) 2004; 161 Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (b0185) 2019; 82 Liu, Lv, Zhang, Bi (b0180) 2013; 450–451 Huang, Zhu, Siew (b0130) 2006; 70 Luan, Xiang, Liu, Luo, Gong, Zhu (b0190) 2010; 156 Rodriguez-Galiano, Chica-Rivas (b0255) 2014; 7 Liu, Geng, Zhu, Fraser, Waddell (b0165) 2012; 171-172 Vaudour, Gomez, Fouad, Lagacherie (b0290) 2019; 223 Hong (10.1016/j.geoderma.2021.115118_b0125) 2020; 199 Guo (10.1016/j.geoderma.2021.115118_b0105) 2019; 337 Guo (10.1016/j.geoderma.2021.115118_b0100) 2018; 10 Pahlavan-Rad (10.1016/j.geoderma.2021.115118_b0205) 2018; 15 Rodriguez-Galiano (10.1016/j.geoderma.2021.115118_b0255) 2014; 7 Castaldi (10.1016/j.geoderma.2021.115118_b0035) 2016; 179 Zhang (10.1016/j.geoderma.2021.115118_b0305) 2019; 11 Lal (10.1016/j.geoderma.2021.115118_b0150) 2006; 17 Peng (10.1016/j.geoderma.2021.115118_b0210) 2019; 660 Cázares (10.1016/j.geoderma.2021.115118_b0040) 2019; 37 Loiseau (10.1016/j.geoderma.2021.115118_b0185) 2019; 82 Shi (10.1016/j.geoderma.2021.115118_b0270) 2014; 48 Sadeghi (10.1016/j.geoderma.2021.115118_b0260) 2017; 198 Falahatkar (10.1016/j.geoderma.2021.115118_b0070) 2016; 62 Yang (10.1016/j.geoderma.2021.115118_b0300) 2016; 26 Guo (10.1016/j.geoderma.2021.115118_b0095) 2020; 196 Luan (10.1016/j.geoderma.2021.115118_b0190) 2010; 156 Dalal (10.1016/j.geoderma.2021.115118_b0065) 2001; 39 Liebman (10.1016/j.geoderma.2021.115118_b0160) 2000; 40 10.1016/j.geoderma.2021.115118_b0025 Huang (10.1016/j.geoderma.2021.115118_b0130) 2006; 70 Guo (10.1016/j.geoderma.2021.115118_b0110) 2017; 285 Post (10.1016/j.geoderma.2021.115118_b0220) 1990; 78 Mishra (10.1016/j.geoderma.2021.115118_b0200) 2010; 74 10.1016/j.geoderma.2021.115118_b0030 Prasad (10.1016/j.geoderma.2021.115118_b0235) 2018; 330 10.1016/j.geoderma.2021.115118_b0230 10.1016/j.geoderma.2021.115118_b0275 Heung (10.1016/j.geoderma.2021.115118_b0120) 2016; 265 Gomez (10.1016/j.geoderma.2021.115118_b0090) 2015; 156 Kumar (10.1016/j.geoderma.2021.115118_b0145) 2012; 189 D’Hose (10.1016/j.geoderma.2021.115118_b0060) 2014; 75 Jobbágy (10.1016/j.geoderma.2021.115118_b0135) 2000; 10 Liu (10.1016/j.geoderma.2021.115118_b0170) 2003; 83 Peon (10.1016/j.geoderma.2021.115118_b0215) 2017; 26 Qin (10.1016/j.geoderma.2021.115118_b0240) 2012; 171-172 Vaudour (10.1016/j.geoderma.2021.115118_b0290) 2019; 223 Liang (10.1016/j.geoderma.2021.115118_b0155) 2020; 198 Liu (10.1016/j.geoderma.2021.115118_b0175) 2015; 148 10.1016/j.geoderma.2021.115118_b0015 Liu (10.1016/j.geoderma.2021.115118_b0165) 2012; 171-172 Martens (10.1016/j.geoderma.2021.115118_b0195) 1989 Gholizadeh (10.1016/j.geoderma.2021.115118_b0080) 2018; 218 Baker (10.1016/j.geoderma.2021.115118_b0005) 1997; 69 10.1016/j.geoderma.2021.115118_b0020 Garten (10.1016/j.geoderma.2021.115118_b0075) 2002; 23 Pouladi (10.1016/j.geoderma.2021.115118_b0225) 2019; 342 Bellon-Maurel (10.1016/j.geoderma.2021.115118_b0010) 2010; 29 Liu (10.1016/j.geoderma.2021.115118_b0180) 2013; 450–451 Schleussner (10.1016/j.geoderma.2021.115118_b0265) 2016; 6 Terhoevenurselmans (10.1016/j.geoderma.2021.115118_b0285) 1990; 56 Zhao (10.1016/j.geoderma.2021.115118_b0310) 2014; 39 Zhou (10.1016/j.geoderma.2021.115118_b0315) 2015; 212 Chang (10.1016/j.geoderma.2021.115118_b0045) 2001; 65 Guo (10.1016/j.geoderma.2021.115118_b0115) 2019; 11 10.1016/j.geoderma.2021.115118_b0325 10.1016/j.geoderma.2021.115118_b0245 Zhou (10.1016/j.geoderma.2021.115118_b0320) 2003; 58 10.1016/j.geoderma.2021.115118_b0250 Singh (10.1016/j.geoderma.2021.115118_b0280) 1977; 43 10.1016/j.geoderma.2021.115118_b0295 10.1016/j.geoderma.2021.115118_b0050 10.1016/j.geoderma.2021.115118_b0055 Gitelson (10.1016/j.geoderma.2021.115118_b0085) 2004; 161 Ju (10.1016/j.geoderma.2021.115118_b0140) 2006; 143 |
References_xml | – volume: 56 start-page: 107 year: 1990 end-page: 114 ident: b0285 article-title: Sample selection based on the Kennard-Stone algorithm publication-title: Genet. Res. – volume: 48 start-page: 6264 year: 2014 end-page: 6272 ident: b0270 article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants publication-title: Environ. Sci. Technol. – volume: 69 start-page: 136 year: 1997 end-page: 145 ident: b0005 article-title: Evaluation of estimation methods for organic carbon normalized sorption coefficients publication-title: Water Environ. Res. – volume: 223 start-page: 21 year: 2019 end-page: 33 ident: b0290 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. – reference: Bhunia, G.S., Shit, P.K., Pourghasemi, H.R.J.G.I., 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. 1–24. – volume: 10 start-page: 27 year: 2018 end-page: 38 ident: b0100 article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling publication-title: Remote Sens. – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: b0120 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – volume: 199 start-page: 104589 year: 2020 ident: b0125 article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: feature selection coupled with random forest publication-title: Soil Tillage Res. – reference: Siegmann, B., Jarmer, T., Selige, T., Lilienthal, H., Richter, N., Hoefle, B., 2012. Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils. In: Neale, C.M.U., Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, And Hydrology Xiv. Proceedings of SPIE. – volume: 143 start-page: 117 year: 2006 end-page: 125 ident: b0140 article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain publication-title: Environ. Pollut. – reference: Rodionova, N., 2018. Sentinel 1 Radar data correlation with ground measurements of soil moisture and temperature. Issledovanie Zemli iz kosmosa (4), 32–42. – volume: 285 start-page: 280 year: 2017 end-page: 292 ident: b0110 article-title: Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology publication-title: Geoderma – volume: 11 start-page: 1683 year: 2019 ident: b0305 article-title: Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China publication-title: Remote Sens. – volume: 198 start-page: 52 year: 2017 end-page: 68 ident: b0260 article-title: The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations publication-title: Remote Sens. Environ. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0130 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 11 year: 2019 ident: b0115 article-title: An improved approach for soil moisture estimation in gully fields of the loess plateau using Sentinel-1A radar images publication-title: Remote Sens. – volume: 74 start-page: 906 year: 2010 end-page: 914 ident: b0200 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. – volume: 189 start-page: 627 year: 2012 end-page: 634 ident: b0145 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma – volume: 17 start-page: 197 year: 2006 end-page: 209 ident: b0150 article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands publication-title: Land Degrad. Dev. – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: b0045 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. – reference: Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. – volume: 171-172 start-page: 44 year: 2012 end-page: 52 ident: b0165 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma – reference: Burt, R., Staff, S., 2014. Kellogg Soil Survey Laboratory Methods Manual. Natural Resources Conservation Services. National Soil Survey Center, Lincoln, Nebraska. – volume: 156 start-page: 228 year: 2010 end-page: 236 ident: b0190 article-title: Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China publication-title: Geoderma – volume: 43 start-page: 449 year: 1977 end-page: 528 ident: b0280 article-title: Plant decomposition and soil respiration in terrestrial ecosystems publication-title: Bot. Rev. – reference: Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7 (1), 15554–15554. – volume: 78 start-page: 310 year: 1990 end-page: 326 ident: b0220 article-title: The global carbon cycle publication-title: Am. Sci. – volume: 7 start-page: 492 year: 2014 end-page: 509 ident: b0255 article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models publication-title: Int. J. Digital Earth – volume: 26 start-page: 230 year: 2017 end-page: 239 ident: b0215 article-title: Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas publication-title: Int. J. Wildland Fire – volume: 58 start-page: 727 year: 2003 end-page: 734 ident: b0320 article-title: Impacts of climate change and human activities on soil carbon storage in China publication-title: Acta Geogr. Sin. Chin. Ed. – reference: Powell, W.G., 2009. Identifying land use/land cover (LULC) using National Agriculture Imagery Program (NAIP) data as a hydrologic model input for local flood plain management. – reference: Brown, G., Hawkesworth, C., Wilson, C., Wilson, R., 1992. Understanding the Earth. CUP Archive. – volume: 330 start-page: 136 year: 2018 end-page: 161 ident: b0235 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma – volume: 83 start-page: 111 year: 2003 end-page: 124 ident: b0170 article-title: Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain publication-title: Field Crops Res. – volume: 218 start-page: 89 year: 2018 end-page: 103 ident: b0080 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. – volume: 6 start-page: 827 year: 2016 end-page: 835 ident: b0265 article-title: Science and policy characteristics of the Paris Agreement temperature goal publication-title: Nat. Clim. Change – volume: 196 start-page: 104477 year: 2020 ident: b0095 article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images publication-title: Soil Tillage Res. – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: b0010 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. – volume: 156 start-page: 58 year: 2015 end-page: 70 ident: b0090 article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data publication-title: Remote Sens. Environ. – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: b0135 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. – volume: 15 start-page: e00195 year: 2018 ident: b0205 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Regional – year: 1989 ident: b0195 article-title: Multivariate Calibration – volume: 40 start-page: 27 year: 2000 end-page: 48 ident: b0160 article-title: Integration of soil, crop and weed management in low-external-input farming systems publication-title: Weed Res. Oxford – volume: 82 start-page: 101905 year: 2019 ident: b0185 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., Jr., 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68–83. – volume: 198 start-page: 104529 year: 2020 ident: b0155 article-title: Revisiting no-till’s impact on soil organic carbon storage in Canada publication-title: Soil Tillage Res. – volume: 148 start-page: 46 year: 2015 end-page: 58 ident: b0175 article-title: Comparing geospatial techniques to predict SOC stocks publication-title: Soil Tillage Res. – volume: 179 start-page: 54 year: 2016 end-page: 65 ident: b0035 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. – reference: Chengzhi, Q.I.N., Lin, Y., AXing, Z.H.U., Baolin, L.I., Tao, P.E.I., Chenghu, Z., 2006. Computation method of topographic wetness index in low relief area. Prog. Geogr. 25 (6), 87–93. – volume: 450–451 start-page: 108 year: 2013 end-page: 119 ident: b0180 article-title: Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China publication-title: Sci. Total Environ. – volume: 23 start-page: 93 year: 2002 end-page: 102 ident: b0075 article-title: Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA publication-title: Biomass Bioenergy – volume: 337 start-page: 32 year: 2019 end-page: 41 ident: b0105 article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images publication-title: Geoderma – volume: 75 start-page: 189 year: 2014 end-page: 198 ident: b0060 article-title: The positive relationship between soil quality and crop production: a case study on the effect of farm compost application publication-title: Appl. Soil Ecol. – volume: 161 start-page: 165 year: 2004 end-page: 173 ident: b0085 article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. – volume: 39 start-page: 120 year: 2014 end-page: 133 ident: b0310 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Ind. – volume: 212 start-page: 297 year: 2015 end-page: 309 ident: b0315 article-title: Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: a 3-year field case study publication-title: Agric., Ecosyst. Environ. – volume: 62 start-page: 375 year: 2016 end-page: 393 ident: b0070 article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran publication-title: Arch. Agron. Soil Sci. – volume: 171-172 start-page: 64 year: 2012 end-page: 74 ident: b0240 article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information publication-title: Geoderma – volume: 342 start-page: 85 year: 2019 end-page: 92 ident: b0225 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma – volume: 26 start-page: 699 year: 2016 end-page: 708 ident: b0300 article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area publication-title: Pedosphere – reference: Qin, C.-Z., Zhu, A.X., Tao, P., Li, B.-L., Scholten, T., Behrens, T., Zhou, C.-H., 2011. An approach to computing topographic wetness index based on maximum downslope gradient, 12. – volume: 37 start-page: 7 year: 2019 end-page: 14 ident: b0040 article-title: Soil fertility affects the growth, nutrition and yield of cotton cultivated in two irrigation systems and different nitrogen rates publication-title: J. Terra Latinoamericana – volume: 39 start-page: 435 year: 2001 end-page: 464 ident: b0065 article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt publication-title: Aust. J. Soil Res. – volume: 660 start-page: 776 year: 2019 end-page: 786 ident: b0210 article-title: Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review publication-title: Sci. Total Environ. – reference: Wold, H.O., 1987. Theoretical empiricism: A general rationale for scientific model-building. Theories & Models. Paragon House, New York. – volume: 75 start-page: 189 year: 2014 ident: 10.1016/j.geoderma.2021.115118_b0060 article-title: The positive relationship between soil quality and crop production: a case study on the effect of farm compost application publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.11.013 – volume: 83 start-page: 111 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2021.115118_b0170 article-title: Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain publication-title: Field Crops Res. doi: 10.1016/S0378-4290(03)00068-6 – volume: 212 start-page: 297 year: 2015 ident: 10.1016/j.geoderma.2021.115118_b0315 article-title: Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: a 3-year field case study publication-title: Agric., Ecosyst. Environ. doi: 10.1016/j.agee.2015.07.010 – volume: 40 start-page: 27 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2021.115118_b0160 article-title: Integration of soil, crop and weed management in low-external-input farming systems publication-title: Weed Res. Oxford doi: 10.1046/j.1365-3180.2000.00164.x – volume: 198 start-page: 104529 year: 2020 ident: 10.1016/j.geoderma.2021.115118_b0155 article-title: Revisiting no-till’s impact on soil organic carbon storage in Canada publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104529 – volume: 78 start-page: 310 issue: 4 year: 1990 ident: 10.1016/j.geoderma.2021.115118_b0220 article-title: The global carbon cycle publication-title: Am. Sci. – volume: 196 start-page: 104477 year: 2020 ident: 10.1016/j.geoderma.2021.115118_b0095 article-title: Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104477 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2021.115118_b0130 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 58 start-page: 727 issue: 5 year: 2003 ident: 10.1016/j.geoderma.2021.115118_b0320 article-title: Impacts of climate change and human activities on soil carbon storage in China publication-title: Acta Geogr. Sin. Chin. Ed. – volume: 26 start-page: 230 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2021.115118_b0215 article-title: Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas publication-title: Int. J. Wildland Fire doi: 10.1071/WF16122 – volume: 29 start-page: 1073 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2021.115118_b0010 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 143 start-page: 117 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2021.115118_b0140 article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.11.005 – ident: 10.1016/j.geoderma.2021.115118_b0055 – volume: 171-172 start-page: 64 year: 2012 ident: 10.1016/j.geoderma.2021.115118_b0240 article-title: Mapping soil organic matter in small low-relief catchments using fuzzy slope position information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.006 – volume: 198 start-page: 52 year: 2017 ident: 10.1016/j.geoderma.2021.115118_b0260 article-title: The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.041 – volume: 171-172 start-page: 44 year: 2012 ident: 10.1016/j.geoderma.2021.115118_b0165 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.007 – volume: 10 start-page: 27 issue: 6 year: 2018 ident: 10.1016/j.geoderma.2021.115118_b0100 article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling publication-title: Remote Sens. doi: 10.3390/rs10060888 – volume: 56 start-page: 107 issue: 2–3 year: 1990 ident: 10.1016/j.geoderma.2021.115118_b0285 article-title: Sample selection based on the Kennard-Stone algorithm publication-title: Genet. Res. – volume: 23 start-page: 93 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2021.115118_b0075 article-title: Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00033-8 – volume: 39 start-page: 120 year: 2014 ident: 10.1016/j.geoderma.2021.115118_b0310 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2013.12.015 – volume: 69 start-page: 136 issue: 2 year: 1997 ident: 10.1016/j.geoderma.2021.115118_b0005 article-title: Evaluation of estimation methods for organic carbon normalized sorption coefficients publication-title: Water Environ. Res. doi: 10.2175/106143097X125281 – ident: 10.1016/j.geoderma.2021.115118_b0020 – volume: 39 start-page: 435 issue: 3 year: 2001 ident: 10.1016/j.geoderma.2021.115118_b0065 article-title: Soil organic matter in rainfed cropping systems of the Australian cereal belt publication-title: Aust. J. Soil Res. doi: 10.1071/SR99042 – volume: 161 start-page: 165 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2021.115118_b0085 article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01176 – volume: 17 start-page: 197 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2021.115118_b0150 article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands publication-title: Land Degrad. Dev. doi: 10.1002/ldr.696 – volume: 148 start-page: 46 year: 2015 ident: 10.1016/j.geoderma.2021.115118_b0175 article-title: Comparing geospatial techniques to predict SOC stocks publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.12.002 – ident: 10.1016/j.geoderma.2021.115118_b0245 doi: 10.1007/s11119-009-9152-y – ident: 10.1016/j.geoderma.2021.115118_b0025 doi: 10.1016/j.geoderma.2014.09.019 – volume: 11 start-page: 1683 issue: 14 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0305 article-title: Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China publication-title: Remote Sens. doi: 10.3390/rs11141683 – volume: 7 start-page: 492 issue: 6 year: 2014 ident: 10.1016/j.geoderma.2021.115118_b0255 article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2012.748848 – ident: 10.1016/j.geoderma.2021.115118_b0295 – volume: 450–451 start-page: 108 year: 2013 ident: 10.1016/j.geoderma.2021.115118_b0180 article-title: Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.083 – volume: 43 start-page: 449 issue: 4 year: 1977 ident: 10.1016/j.geoderma.2021.115118_b0280 article-title: Plant decomposition and soil respiration in terrestrial ecosystems publication-title: Bot. Rev. doi: 10.1007/BF02860844 – volume: 10 start-page: 423 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2021.115118_b0135 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 156 start-page: 228 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2021.115118_b0190 article-title: Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China publication-title: Geoderma doi: 10.1016/j.geoderma.2010.02.021 – ident: 10.1016/j.geoderma.2021.115118_b0050 doi: 10.1016/j.agee.2015.02.001 – volume: 285 start-page: 280 year: 2017 ident: 10.1016/j.geoderma.2021.115118_b0110 article-title: Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.010 – volume: 330 start-page: 136 year: 2018 ident: 10.1016/j.geoderma.2021.115118_b0235 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.035 – volume: 156 start-page: 58 year: 2015 ident: 10.1016/j.geoderma.2021.115118_b0090 article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.032 – volume: 223 start-page: 21 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0290 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.006 – volume: 179 start-page: 54 year: 2016 ident: 10.1016/j.geoderma.2021.115118_b0035 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.025 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0115 article-title: An improved approach for soil moisture estimation in gully fields of the loess plateau using Sentinel-1A radar images publication-title: Remote Sens. doi: 10.3390/rs11030349 – volume: 189 start-page: 627 year: 2012 ident: 10.1016/j.geoderma.2021.115118_b0145 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.022 – ident: 10.1016/j.geoderma.2021.115118_b0030 – ident: 10.1016/j.geoderma.2021.115118_b0275 doi: 10.1117/12.974509 – volume: 26 start-page: 699 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2021.115118_b0300 article-title: Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60078-9 – volume: 218 start-page: 89 year: 2018 ident: 10.1016/j.geoderma.2021.115118_b0080 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – year: 1989 ident: 10.1016/j.geoderma.2021.115118_b0195 – volume: 74 start-page: 906 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2021.115118_b0200 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0158 – volume: 342 start-page: 85 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0225 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2021.115118_b0120 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 62 start-page: 375 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2021.115118_b0070 article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2015.1051472 – volume: 65 start-page: 480 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2021.115118_b0045 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – volume: 337 start-page: 32 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0105 article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.003 – volume: 37 start-page: 7 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0040 article-title: Soil fertility affects the growth, nutrition and yield of cotton cultivated in two irrigation systems and different nitrogen rates publication-title: J. Terra Latinoamericana – volume: 48 start-page: 6264 issue: 11 year: 2014 ident: 10.1016/j.geoderma.2021.115118_b0270 article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants publication-title: Environ. Sci. Technol. doi: 10.1021/es405361n – volume: 82 start-page: 101905 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0185 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.geoderma.2021.115118_b0325 doi: 10.1038/s41598-017-15794-8 – volume: 660 start-page: 776 year: 2019 ident: 10.1016/j.geoderma.2021.115118_b0210 article-title: Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.066 – volume: 6 start-page: 827 issue: 9 year: 2016 ident: 10.1016/j.geoderma.2021.115118_b0265 article-title: Science and policy characteristics of the Paris Agreement temperature goal publication-title: Nat. Clim. Change doi: 10.1038/nclimate3096 – ident: 10.1016/j.geoderma.2021.115118_b0015 doi: 10.1080/10106049.2017.1381179 – volume: 15 start-page: e00195 year: 2018 ident: 10.1016/j.geoderma.2021.115118_b0205 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00195 – volume: 199 start-page: 104589 year: 2020 ident: 10.1016/j.geoderma.2021.115118_b0125 article-title: Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: feature selection coupled with random forest publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104589 – ident: 10.1016/j.geoderma.2021.115118_b0250 doi: 10.31857/S020596140002354-0 – ident: 10.1016/j.geoderma.2021.115118_b0230 |
SSID | ssj0017020 |
Score | 2.6204326 |
Snippet | [Display omitted]
•One new collaborative verification strategy was used for verifying soil map.•The hyperspectral and time series multispectral images were... High-precision digital soil organic carbon (SOC) stocks mapping is very important for agricultural production management and global carbon cycle. The spatial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115118 |
SubjectTerms | agricultural land agricultural management Airborne hyperspectral imaging carbon cycle carbon sinks Collaborative verification Digital soil mapping global carbon budget hyperspectral imagery Iowa irrigation land use Landsat landscapes least squares model validation prediction soil density soil formation soil organic carbon Spatial distribution patterns spatial variation tillage time series analysis Time-series multispectral remote sensing images |
Title | Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115118 https://www.proquest.com/docview/2551971075 |
Volume | 398 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9FIOiNIiKBS5Uq_uxsRO4uMKgRYq9tSV9mb5FQjdJihZVHHhyt9mJo9VQUIcOObhUeSZzHyTfDNDyA-bOR47pZjLbMKEzQ2zCZLGPcBzmUsAsfhp4HKWTOfiYiEXI3Iy1MIgrbL3_Z1Pb711f2bc7-b4tiiwxpcnadR2wAKc0pZfC5Gilf98WNM8eBr1rRl5wvDu_6qEb0BHOHCs7T90zMF7INx-LUC9cNVt_DnbJls9cKST7tk-kVEod8jm5Krum2eEz-Tx0mC3hSvaVMWSdvOaHHWmtlVJAeS5P9Te02vIPLsCyxrkmdJTnC_P0BRDQ1uC4fpqHUCTgTbIcge5xV_wPg0tSrqs_rE6AH7NqVk_AopDjvsXMj87_X0yZf2gBeZiIVcs44kSQfiQOexXpqwHkJBD6gfYAhJYGXnjI2VSblJhIp_mNrLe5t4Eq9yxzeNdslFWZdgj1EQmeB5LCHJWOJXZAOHQhCgOQnHhsn0ih93Vru9CjsMwlnqgm93oQSsataI7reyT8XrdbdeH480ValCefmZRGoLFm2u_D9rW8LrhPxRThuqu0ZCBcQWoLJVf3yH_gHzEI-SdcHlINlb1XfgG4GZlj1rrPSIfJue_prMnRBn9Pg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFO05WEkOJqNN3YSHzhUQLWl3Z5aqTfjV9qUJamSrapeuPKD-IPMJM4KkFAPqNdEHlme8cw3yTczhLyxheOpU4q5wmZM2NIwmyFp3AM8l6UEEIufBuYH2exIfD6Wx2vk51gLg7TK6PsHn9576_hkEk9zcl5VWOPLszzpO2ABTil4ZFbuhatLyNu697sfQclvp9OdT4cfZiyOFmAuFXLJCp4pEYQPhcMOXcp6CIslJDsQTSFlk4k3PlEm5yYXJvF5aRPrbelNsMpNbZmC3FvktgB3gWMT3n1f8Up4nsRekDxjuL3fypLPwChwwlnf8GjKwV0hvv9XRPwrNvQBb-cBuR-RKt0eDuMhWQv1I3Jv-6SN3TrCY_JjbrC9wwntmmpBhwFRjjrT2qamgCrdV2qv6CmkukNFZwvyTO0pDrRnaPuhoz2jcfW2DWA6gXZIqwe51Tdwdx2tarpoLlkbADCX1Ky2gOKQVP-EHN3I8T8l63VTh2eEmsQEz1MJUdUKpwobIP6akKRBKC5csUHkeLraxbbnOH1joUd-25ketaJRK3rQygaZrNadD40_rl2hRuXpP0xYQ3S6du3rUdsa7jf-tDF1aC46DSkfVwADc7n5H_JfkTuzw_m-3t892Nsid_ENkl64fE7Wl-1FeAHIamlf9pZMyZebvjq_AIQ5OcM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+soil+organic+carbon+stock+by+hyperspectral+and+time-series+multispectral+remote+sensing+images+in+low-relief+agricultural+areas&rft.jtitle=Geoderma&rft.au=Guo%2C+Long&rft.au=Sun%2C+Xiaoru&rft.au=Fu%2C+P.+%28Peng%29&rft.au=Shi%2C+Tiezhu&rft.date=2021-09-15&rft.issn=0016-7061&rft.volume=398+p.115118-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |