Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use
Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management...
Saved in:
Published in | Geoderma Vol. 299; pp. 13 - 24 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2017.03.021 |
Cover
Loading…
Abstract | Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations.
•Rubber-based agroforestry systems have a strong influence on soil aggregation.•The macroaggregates contained more organic carbon and nitrogen than the microaggregates.•Higher organic matter content helped soil aggregation and reduced soil C loss.•Rubber-based agroforestry systems improved the soil properties. |
---|---|
AbstractList | Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations. Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations. •Rubber-based agroforestry systems have a strong influence on soil aggregation.•The macroaggregates contained more organic carbon and nitrogen than the microaggregates.•Higher organic matter content helped soil aggregation and reduced soil C loss.•Rubber-based agroforestry systems improved the soil properties. |
Author | Wu, Junen Chen, Chunfeng Liu, Wenjie Jiang, Xiaojin |
Author_xml | – sequence: 1 givenname: Chunfeng surname: Chen fullname: Chen, Chunfeng organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China – sequence: 2 givenname: Wenjie surname: Liu fullname: Liu, Wenjie email: lwj@xtbg.org.cn organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China – sequence: 3 givenname: Xiaojin surname: Jiang fullname: Jiang, Xiaojin email: jiangxiaojinlinda@163.com organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China – sequence: 4 givenname: Junen surname: Wu fullname: Wu, Junen organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China |
BookMark | eNqFkU1P3DAQhq0KpC4ff6HysZcEf2SdbMWhCEFBQuICZ2vijCOvknjxZCvthd-Od7e9cOHkj3me0fj1GTuZ4oSM_ZCilEKaq3XZY-wwjVAqIetS6FIo-Y0tZFOrwqjl6oQtRCaLWhj5nZ0RrfOxFkos2Pud9-hm4tHztG1bTEULhB2HPkUfE9Kcdpx2NOOYoYlTDEMu9gl7mEO-gCnDRNEFmLN3qMfUwxQcd5DaOP3ij-NmCO7AE89d-bC3toQX7NTDQHj5bz1nr_d3L7cPxdPzn8fbm6fC6Wo5F3WHqmla75VADSuQvlpqJZw22jTaN2q1Mt2yznuoOnC1aNvMKATVAcjK6XP289h3k-LbNj_KjoEcDnkOjFuySghRKaNrk9HrI-pSJErorQvzYfQ5QRisFHYfu13b_7HbfexWaJtjz7r5pG9SGCHtvhZ_H0XMOfwNmCy5gJPDLqT8Q7aL4asWHzPkpgA |
CitedBy_id | crossref_primary_10_1016_j_catena_2018_08_038 crossref_primary_10_1186_s40793_024_00619_9 crossref_primary_10_1016_j_geoderma_2018_08_023 crossref_primary_10_1016_j_scitotenv_2017_10_156 crossref_primary_10_2136_vzj2017_05_0096 crossref_primary_10_1016_j_catena_2020_104785 crossref_primary_10_1128_spectrum_00290_22 crossref_primary_10_1002_ecs2_4736 crossref_primary_10_1111_een_12755 crossref_primary_10_3390_agronomy12122926 crossref_primary_10_1016_j_still_2020_104686 crossref_primary_10_1007_s10661_020_08563_0 crossref_primary_10_1007_s10457_019_00399_z crossref_primary_10_1007_s10457_023_00949_6 crossref_primary_10_3390_agronomy11081647 crossref_primary_10_1007_s42729_022_00947_0 crossref_primary_10_1038_s41598_019_40908_9 crossref_primary_10_1111_sum_12932 crossref_primary_10_3390_f14122374 crossref_primary_10_1111_1365_2664_13642 crossref_primary_10_1186_s13717_020_00269_y crossref_primary_10_1007_s11368_023_03553_4 crossref_primary_10_3390_agriculture15010014 crossref_primary_10_1002_saj2_20286 crossref_primary_10_3389_fenvs_2019_00073 crossref_primary_10_3390_agronomy14051015 crossref_primary_10_1016_j_jag_2020_102176 crossref_primary_10_7163_GPol_0195 crossref_primary_10_1016_j_teadva_2024_200119 crossref_primary_10_3390_su15065520 crossref_primary_10_47836_pjtas_45_1_09 crossref_primary_10_1007_s42729_024_01771_4 crossref_primary_10_1038_s41598_023_38421_1 crossref_primary_10_36783_18069657rbcs20220095 crossref_primary_10_1007_s10668_024_04958_y crossref_primary_10_1016_j_geoderma_2019_113952 crossref_primary_10_3390_f11010049 crossref_primary_10_1016_j_foreco_2020_117948 crossref_primary_10_1016_j_scitotenv_2022_159194 crossref_primary_10_3390_su17062361 crossref_primary_10_1590_2179_8087_031218 crossref_primary_10_1016_j_ecolind_2020_106491 crossref_primary_10_1016_j_scitotenv_2024_174935 crossref_primary_10_1016_j_scitotenv_2019_134917 crossref_primary_10_1016_j_agwat_2023_108353 crossref_primary_10_1038_s41598_018_35762_0 crossref_primary_10_3390_agriculture11040361 crossref_primary_10_1007_s10668_024_05472_x crossref_primary_10_3390_agronomy11122484 crossref_primary_10_1080_14728028_2020_1798818 crossref_primary_10_1016_j_geodrs_2023_e00647 crossref_primary_10_3390_f9090508 crossref_primary_10_1007_s11027_024_10166_w crossref_primary_10_1016_j_scitotenv_2019_135498 crossref_primary_10_3390_su15086910 crossref_primary_10_1016_j_catena_2018_07_032 crossref_primary_10_1016_j_ecolind_2018_10_028 crossref_primary_10_1016_j_still_2022_105475 crossref_primary_10_1002_clen_202200146 crossref_primary_10_1016_j_foreco_2020_118665 crossref_primary_10_1007_s44246_023_00056_2 crossref_primary_10_1016_j_geoderma_2020_114810 crossref_primary_10_1016_j_geoderma_2023_116712 crossref_primary_10_1016_j_scitotenv_2023_163187 crossref_primary_10_1016_j_catena_2019_03_015 crossref_primary_10_18393_ejss_492466 crossref_primary_10_3390_f15101827 crossref_primary_10_1016_j_still_2019_04_017 crossref_primary_10_3390_f16010120 crossref_primary_10_1016_j_rhisph_2021_100337 crossref_primary_10_1002_ldr_3646 crossref_primary_10_3390_soilsystems8020044 crossref_primary_10_1007_s00267_020_01302_8 crossref_primary_10_1007_s11104_019_04377_3 crossref_primary_10_1007_s10457_019_00377_5 crossref_primary_10_1007_s10457_020_00524_3 crossref_primary_10_1016_j_catena_2021_105321 crossref_primary_10_3389_ffgc_2023_1322660 crossref_primary_10_3390_f11111163 crossref_primary_10_2478_ffp_2024_0004 crossref_primary_10_3390_f16010013 crossref_primary_10_1016_j_eja_2021_126353 crossref_primary_10_1016_j_soilbio_2018_08_010 crossref_primary_10_1016_j_geoderma_2022_115880 crossref_primary_10_1016_j_still_2024_106069 crossref_primary_10_1016_j_geoderma_2020_114754 crossref_primary_10_1007_s11104_020_04754_3 crossref_primary_10_3390_agronomy12051106 crossref_primary_10_1016_j_agee_2017_11_032 crossref_primary_10_1016_j_geodrs_2019_e00218 crossref_primary_10_1016_j_scitotenv_2020_138042 crossref_primary_10_1016_j_scitotenv_2020_143114 crossref_primary_10_1007_s11104_022_05322_7 crossref_primary_10_1007_s42729_024_02076_2 crossref_primary_10_1016_j_agrformet_2021_108391 crossref_primary_10_1016_j_agee_2021_107349 crossref_primary_10_1016_j_jhazmat_2024_133794 crossref_primary_10_1016_j_jssas_2024_03_002 crossref_primary_10_1007_s10457_020_00554_x crossref_primary_10_1007_s00248_025_02506_3 crossref_primary_10_1016_j_agee_2020_106937 crossref_primary_10_4025_actasciagron_v46i1_63601 crossref_primary_10_1007_s42464_024_00256_4 crossref_primary_10_1016_j_scitotenv_2024_174340 crossref_primary_10_1016_j_gecco_2022_e02051 crossref_primary_10_1002_ldr_3068 crossref_primary_10_1016_j_jenvman_2021_112147 crossref_primary_10_1016_j_geoderma_2018_07_023 crossref_primary_10_1016_j_ecolind_2024_112725 crossref_primary_10_4236_abb_2024_158030 |
Cites_doi | 10.1002/jpln.200800030 10.1126/science.1173833 10.2136/sssaj1986.03615995005000030017x 10.1038/457246a 10.1016/j.agee.2003.12.009 10.1007/s10310-007-0047-3 10.1016/j.scitotenv.2007.11.016 10.1007/BF00118726 10.1007/s10457-009-9219-9 10.1007/s10457-009-9229-7 10.1890/07-2076.1 10.1111/j.1365-2389.1982.tb01755.x 10.2134/agronj1936.00021962002800050001x 10.1111/j.1365-2389.2006.00823.x 10.1017/S0014479711000421 10.2136/sssaj1994.03615995005800040023x 10.1126/science.214.4521.665 10.1016/j.ecolind.2012.08.023 10.2136/sssaj1978.03615995004200010008x 10.1007/s10310-005-0171-x 10.1007/s10531-006-9052-7 10.2136/sssaj1988.03615995005200050031x 10.1111/j.1351-0754.2004.0608.x 10.1111/j.1365-2389.1996.tb01843.x 10.1016/S0038-0717(00)00179-6 10.1016/S0167-1987(98)00117-2 10.1016/j.apsoil.2007.12.002 10.1016/0016-7061(93)90150-J 10.1007/s11104-015-2647-6 10.1016/S0960-8524(03)00005-1 10.1016/0038-0717(78)90080-9 10.1007/s00267-012-9942-2 10.2136/sssaj1992.03615995005600050046x 10.1016/j.still.2010.10.012 10.2136/sssaj2008.0011 10.1023/A:1004213929699 10.1126/science.325_564 10.1016/j.geoderma.2004.12.013 10.2136/sssaj1996.03615995006000030017x 10.1007/s00267-009-9420-7 10.1071/SR9900641 10.1007/s11104-009-9906-3 10.1016/j.soilbio.2010.12.002 10.1097/00010694-199208000-00004 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2017.03.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 24 |
ExternalDocumentID | 10_1016_j_geoderma_2017_03_021 S0016706117300769 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-7de288bff20e3a9a1f45320c363683f82996d57683a4dac70bba1f2ea2daa14c3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 01:37:33 EDT 2025 Tue Jul 01 04:04:43 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Aggregate stability Aggregate-associated carbon Agroforestry systems Erosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-7de288bff20e3a9a1f45320c363683f82996d57683a4dac70bba1f2ea2daa14c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000426376 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000426376 crossref_citationtrail_10_1016_j_geoderma_2017_03_021 crossref_primary_10_1016_j_geoderma_2017_03_021 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 2017-08-00 20170801 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gama-Rodrigues, Nair, Nair, Gama-Rodrigues, Baligar, Machado (bb0090) 2010; 45 Hassink, Bouwman, Zwart, Bloem, Brussaard (bb0110) 1993; 57 Rochester (bb0185) 2011; 112 Li, Aide, Ma, Liu, Cao (bb0130) 2007; 16 Oades (bb0155) 1984 Hassink (bb0105) 1997; 191 Jose (bb0125) 2009; 76 Viswanathan, Shivakoti (bb0210) 2008; 13 Ziegler, Fox, Xu (bb0255) 2009; 324 Jastrow, Miller, Boutton (bb0115) 1996; 60 Budelman (bb0030) 1990; 10 Chevallier, Blanchart, Albrecht, Feller (bb0055) 2004; 103 Frenkel, Goertzen, Rhoades (bb0085) 1978; 42 Palis, Okwach, Rose, Saffigna (bb0160) 1990; 28 Tisdall, Oades (bb0200) 1982; 33 Bruce, Langdale, West, Miller (bb0025) 1992; 56 Chivenge, Vanlauwe, Gentile, Six (bb0060) 2011; 43 Ramachandran Nair, Mohan Kumar, Nair (bb0175) 2009; 172 Yoder (bb0240) 1936; 28 Zhang, Fu, Fang, Zou (bb0250) 2007; 48 van Reeuwijk (bb0180) 2002 Adu, Oades (bb0005) 1978; 10 Balabane, Plante (bb0010) 2004; 55 Wick, Stahl, Ingram (bb0225) 2009; 73 Bissonnais (bb0015) 1996; 47 Gupta, Kukal, Bawa, Dhaliwal (bb0100) 2009; 76 Carr, Lockwood (bb0045) 2011; 47 Vogel, Wang, Huang (bb0220) 1995 Zeytin, Baran (bb0245) 2003; 88 Foster (bb0080) 1981; 214 Udawatta, Kremer, Adamson, Anderson (bb0205) 2008; 39 Xu, Grumbine, Beckschäfer (bb0235) 2014; 36 Gregorich, Greer, Anderson, Liang (bb0095) 1998; 47 Elliott (bb0070) 1986; 50 Pohl, Alig, Korner, Rixen (bb0165) 2009; 324 Six, Elliott, Paustian (bb0195) 2000; 32 Erktan, Cécillon, Graf, Roumet, Legout, Rey (bb0075) 2016; 398 Woods, Schuman (bb0230) 1988; 52 Cuenca, Aranguren, Herrera (bb0065) 1983; Vol. 71 Chaudhary, Bowker, O'Dell, Grace, Redman, Rillig, Johnson (bb0050) 2009; 19 Bissonnais, Blavet, Noni, Laurent, Asseline, Chenu (bb0020) 2007; 58 John, Yamashita, Ludwig, Flessa (bb0120) 2005; 128 Mann (bb0140) 2009; 325 Nath, Inoue, Myant (bb0145) 2005; 10 van Noordwijk, Tata, Xu, Dewi, Minang (bb0150) 2012 Li, Ma, Liu, Liu (bb0135) 2012; 50 Buyanovsky, Aslam, Wagner (bb0035) 1994; 58 Shainberg, Levy, Rengasamy, Frenkel (bb0190) 1992; 154 Callesen, Raulund-Rasmussen, Westman, Tau-Strand (bb0040) 2007; 12 Qiu (bb0170) 2009; 457 Vodnik, Grčman, Maček, Van Elteren, Kovačevič (bb0215) 2008; 392 Hassink (10.1016/j.geoderma.2017.03.021_bb0105) 1997; 191 Jose (10.1016/j.geoderma.2017.03.021_bb0125) 2009; 76 Vogel (10.1016/j.geoderma.2017.03.021_bb0220) 1995 Gupta (10.1016/j.geoderma.2017.03.021_bb0100) 2009; 76 Hassink (10.1016/j.geoderma.2017.03.021_bb0110) 1993; 57 Erktan (10.1016/j.geoderma.2017.03.021_bb0075) 2016; 398 van Noordwijk (10.1016/j.geoderma.2017.03.021_bb0150) 2012 Ramachandran Nair (10.1016/j.geoderma.2017.03.021_bb0175) 2009; 172 Elliott (10.1016/j.geoderma.2017.03.021_bb0070) 1986; 50 Shainberg (10.1016/j.geoderma.2017.03.021_bb0190) 1992; 154 van Reeuwijk (10.1016/j.geoderma.2017.03.021_bb0180) 2002 Udawatta (10.1016/j.geoderma.2017.03.021_bb0205) 2008; 39 Nath (10.1016/j.geoderma.2017.03.021_bb0145) 2005; 10 Pohl (10.1016/j.geoderma.2017.03.021_bb0165) 2009; 324 Zeytin (10.1016/j.geoderma.2017.03.021_bb0245) 2003; 88 Jastrow (10.1016/j.geoderma.2017.03.021_bb0115) 1996; 60 John (10.1016/j.geoderma.2017.03.021_bb0120) 2005; 128 Zhang (10.1016/j.geoderma.2017.03.021_bb0250) 2007; 48 Frenkel (10.1016/j.geoderma.2017.03.021_bb0085) 1978; 42 Oades (10.1016/j.geoderma.2017.03.021_bb0155) 1984 Mann (10.1016/j.geoderma.2017.03.021_bb0140) 2009; 325 Qiu (10.1016/j.geoderma.2017.03.021_bb0170) 2009; 457 Vodnik (10.1016/j.geoderma.2017.03.021_bb0215) 2008; 392 Tisdall (10.1016/j.geoderma.2017.03.021_bb0200) 1982; 33 Li (10.1016/j.geoderma.2017.03.021_bb0130) 2007; 16 Wick (10.1016/j.geoderma.2017.03.021_bb0225) 2009; 73 Adu (10.1016/j.geoderma.2017.03.021_bb0005) 1978; 10 Viswanathan (10.1016/j.geoderma.2017.03.021_bb0210) 2008; 13 Ziegler (10.1016/j.geoderma.2017.03.021_bb0255) 2009; 324 Woods (10.1016/j.geoderma.2017.03.021_bb0230) 1988; 52 Six (10.1016/j.geoderma.2017.03.021_bb0195) 2000; 32 Palis (10.1016/j.geoderma.2017.03.021_bb0160) 1990; 28 Buyanovsky (10.1016/j.geoderma.2017.03.021_bb0035) 1994; 58 Cuenca (10.1016/j.geoderma.2017.03.021_bb0065) 1983; Vol. 71 Chevallier (10.1016/j.geoderma.2017.03.021_bb0055) 2004; 103 Rochester (10.1016/j.geoderma.2017.03.021_bb0185) 2011; 112 Callesen (10.1016/j.geoderma.2017.03.021_bb0040) 2007; 12 Bissonnais (10.1016/j.geoderma.2017.03.021_bb0020) 2007; 58 Bissonnais (10.1016/j.geoderma.2017.03.021_bb0015) 1996; 47 Foster (10.1016/j.geoderma.2017.03.021_bb0080) 1981; 214 Chaudhary (10.1016/j.geoderma.2017.03.021_bb0050) 2009; 19 Xu (10.1016/j.geoderma.2017.03.021_bb0235) 2014; 36 Gregorich (10.1016/j.geoderma.2017.03.021_bb0095) 1998; 47 Gama-Rodrigues (10.1016/j.geoderma.2017.03.021_bb0090) 2010; 45 Chivenge (10.1016/j.geoderma.2017.03.021_bb0060) 2011; 43 Budelman (10.1016/j.geoderma.2017.03.021_bb0030) 1990; 10 Carr (10.1016/j.geoderma.2017.03.021_bb0045) 2011; 47 Li (10.1016/j.geoderma.2017.03.021_bb0135) 2012; 50 Balabane (10.1016/j.geoderma.2017.03.021_bb0010) 2004; 55 Yoder (10.1016/j.geoderma.2017.03.021_bb0240) 1936; 28 Bruce (10.1016/j.geoderma.2017.03.021_bb0025) 1992; 56 |
References_xml | – volume: 324 start-page: 1024 year: 2009 end-page: 1025 ident: bb0255 article-title: The rubber juggernaut publication-title: Science – volume: 57 start-page: 105 year: 1993 end-page: 128 ident: bb0110 article-title: Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils publication-title: Geoderma – volume: 13 start-page: 1 year: 2008 end-page: 14 ident: bb0210 article-title: Adoption of rubber-integrated farm-livelihood systems: contrasting empirical evidence from the Indian context publication-title: J. For. Res. – start-page: 69 year: 2012 end-page: 104 ident: bb0150 article-title: Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China publication-title: Agroforestry–The Future of Global Land Use – volume: 76 start-page: 27 year: 2009 end-page: 35 ident: bb0100 article-title: Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type publication-title: Agrofor. Syst. – volume: 42 start-page: 32 year: 1978 end-page: 39 ident: bb0085 article-title: Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity publication-title: Soil Sci. Soc. Am. J. – volume: 76 start-page: 1 year: 2009 end-page: 10 ident: bb0125 article-title: Agroforestry for ecosystem services and environmental benefits: an overview publication-title: Agrofor. Syst. – volume: 392 start-page: 130 year: 2008 end-page: 136 ident: bb0215 article-title: The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil publication-title: Sci. Total Environ. – volume: 103 start-page: 375 year: 2004 end-page: 387 ident: bb0055 article-title: The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies) publication-title: Agric. Ecosyst. Environ. – volume: 58 start-page: 1167 year: 1994 end-page: 1173 ident: bb0035 article-title: Carbon turnover in soil physical fractions publication-title: Soil Sci. Soc. Am. J. – volume: 10 start-page: 47 year: 1990 end-page: 59 ident: bb0030 article-title: Woody legumes as live support systems in yam cultivation publication-title: Agrofor. Syst. – volume: Vol. 71 start-page: 477 year: 1983 end-page: 486 ident: bb0065 article-title: Root growth and litter decomposition in a coffee plantation under shade trees publication-title: Developments in Plant and Soil Sciences – volume: 48 start-page: 201 year: 2007 ident: bb0250 article-title: Soil organic carbon in pure rubber and tea-rubber plantations in southwestern China publication-title: Trop. Ecol. – volume: 33 start-page: 141 year: 1982 end-page: 163 ident: bb0200 article-title: Organic matter and water-stable aggregates in soils publication-title: J. Soil Sci. – volume: 12 start-page: 681 year: 2007 end-page: 692 ident: bb0040 article-title: Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate change and soil texture publication-title: Boreal Environ. Res. – volume: 55 start-page: 415 year: 2004 end-page: 427 ident: bb0010 article-title: Aggregation and carbon storage in silty soil using physical fractionation techniques publication-title: Eur. J. Soil Sci. – volume: 398 start-page: 121 year: 2016 end-page: 137 ident: bb0075 article-title: Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics publication-title: Plant Soil – volume: 47 start-page: 653 year: 2011 end-page: 676 ident: bb0045 article-title: The water relations and irrigation requirements of cocoa ( publication-title: Exp. Agric. – volume: 191 start-page: 77 year: 1997 end-page: 87 ident: bb0105 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil – volume: 214 start-page: 665 year: 1981 end-page: 667 ident: bb0080 article-title: Polysaccharides in soil fabrics publication-title: Science – volume: 52 start-page: 1371 year: 1988 end-page: 1376 ident: bb0230 article-title: Cultivation and slope position effects on soil organic matter publication-title: Soil Sci. Soc. Am. J. – year: 2002 ident: bb0180 article-title: Procedures for Soil Analysis – volume: 39 start-page: 153 year: 2008 end-page: 160 ident: bb0205 article-title: Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice publication-title: Appl. Soil Ecol. – volume: 58 start-page: 188 year: 2007 end-page: 195 ident: bb0020 article-title: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables publication-title: Eur. J. Soil Sci. – volume: 457 start-page: 246 year: 2009 end-page: 247 ident: bb0170 article-title: Where the rubber meets the garden publication-title: Nature – volume: 43 start-page: 657 year: 2011 end-page: 666 ident: bb0060 article-title: Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation publication-title: Soil Biol. Biochem. – volume: 10 start-page: 109 year: 1978 end-page: 115 ident: bb0005 article-title: Physical factors influencing decomposition of organic materials in soil aggregates publication-title: Soil Biol. Biochem. – volume: 56 start-page: 1614 year: 1992 end-page: 1620 ident: bb0025 article-title: Soil surface modification by biomass inputs affecting rainfall infiltration publication-title: Soil Sci. Soc. Am. J. – volume: 88 start-page: 241 year: 2003 end-page: 244 ident: bb0245 article-title: Influences of composted hazelnut husk on some physical properties of soils publication-title: Bioresour. Technol. – volume: 28 start-page: 641 year: 1990 end-page: 658 ident: bb0160 article-title: Soil erosion processes and nutrient loss. II. The effect of surface contact cover and erosion processes on enrichment ratio and nitrogen loss in eroded sediment publication-title: Soil Res. – volume: 73 start-page: 1852 year: 2009 end-page: 1860 ident: bb0225 article-title: Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils publication-title: Soil Sci. Soc. Am. J. – volume: 47 start-page: 291 year: 1998 end-page: 302 ident: bb0095 article-title: Carbon distribution and losses: erosion and deposition effects publication-title: Soil Tillage Res. – year: 1995 ident: bb0220 article-title: People's Republic of China: Reference Soil (Lotosal) of Tropical Southern Yunnan Province – volume: 325 start-page: 564 year: 2009 end-page: 566 ident: bb0140 article-title: Addicted to rubber publication-title: Science – volume: 10 start-page: 443 year: 2005 end-page: 452 ident: bb0145 article-title: Small-scale agroforestry for upland community development: a case study from Chittagong Hill Tracts, Bangladesh publication-title: J. For. Res. – volume: 32 start-page: 2099 year: 2000 end-page: 2103 ident: bb0195 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – volume: 154 start-page: 113 year: 1992 end-page: 119 ident: bb0190 article-title: Aggregate stability and seal formation as affected by drops' impact energy and soil amendments publication-title: Soil Sci. – volume: 47 start-page: 425 year: 1996 end-page: 437 ident: bb0015 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. – volume: 45 start-page: 274 year: 2010 end-page: 283 ident: bb0090 article-title: Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil publication-title: Environ. Manag. – volume: 172 start-page: 10 year: 2009 end-page: 23 ident: bb0175 article-title: Agroforestry as a strategy for carbon sequestration publication-title: J. Plant Nutr. Soil Sci. – volume: 50 start-page: 627 year: 1986 end-page: 633 ident: bb0070 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils publication-title: Soil Sci. Soc. Am. J. – volume: 16 start-page: 1731 year: 2007 end-page: 1745 ident: bb0130 article-title: Demand for rubber is causing the loss of high diversity rain forest in SW China publication-title: Biodivers. Conserv. – volume: 112 start-page: 1 year: 2011 end-page: 7 ident: bb0185 article-title: Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production publication-title: Soil Tillage Res. – start-page: 319 year: 1984 end-page: 337 ident: bb0155 article-title: Soil organic matter and structural stability: mechanisms and implications for management publication-title: Biological Processes and Soil Fertility – volume: 28 start-page: 337 year: 1936 end-page: 351 ident: bb0240 article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses publication-title: Agron. J. – volume: 60 start-page: 801 year: 1996 end-page: 807 ident: bb0115 article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance publication-title: Soil Sci. Soc. Am. J. – volume: 19 start-page: 110 year: 2009 end-page: 122 ident: bb0050 article-title: Untangling the biological contributions to soil stability in semiarid shrublands publication-title: Ecol. Appl. – volume: 128 start-page: 63 year: 2005 end-page: 79 ident: bb0120 article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use publication-title: Geoderma – volume: 324 start-page: 91 year: 2009 end-page: 102 ident: bb0165 article-title: Higher plant diversity enhances soil stability in disturbed alpine ecosystems publication-title: Plant Soil – volume: 50 start-page: 837 year: 2012 end-page: 848 ident: bb0135 article-title: Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China publication-title: Environ. Manag. – volume: 36 start-page: 749 year: 2014 end-page: 756 ident: bb0235 article-title: Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region publication-title: Ecol. Indic. – volume: 172 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0175 article-title: Agroforestry as a strategy for carbon sequestration publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200800030 – volume: 324 start-page: 1024 issue: 5930 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0255 article-title: The rubber juggernaut publication-title: Science doi: 10.1126/science.1173833 – volume: 50 start-page: 627 issue: 3 year: 1986 ident: 10.1016/j.geoderma.2017.03.021_bb0070 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000030017x – volume: 457 start-page: 246 issue: 7227 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0170 article-title: Where the rubber meets the garden publication-title: Nature doi: 10.1038/457246a – volume: 103 start-page: 375 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2017.03.021_bb0055 article-title: The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies) publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2003.12.009 – volume: 13 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2017.03.021_bb0210 article-title: Adoption of rubber-integrated farm-livelihood systems: contrasting empirical evidence from the Indian context publication-title: J. For. Res. doi: 10.1007/s10310-007-0047-3 – volume: 392 start-page: 130 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2017.03.021_bb0215 article-title: The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.11.016 – volume: 10 start-page: 47 issue: 1 year: 1990 ident: 10.1016/j.geoderma.2017.03.021_bb0030 article-title: Woody legumes as live support systems in yam cultivation publication-title: Agrofor. Syst. doi: 10.1007/BF00118726 – volume: 48 start-page: 201 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2017.03.021_bb0250 article-title: Soil organic carbon in pure rubber and tea-rubber plantations in southwestern China publication-title: Trop. Ecol. – volume: 76 start-page: 27 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0100 article-title: Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type publication-title: Agrofor. Syst. doi: 10.1007/s10457-009-9219-9 – volume: 76 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0125 article-title: Agroforestry for ecosystem services and environmental benefits: an overview publication-title: Agrofor. Syst. doi: 10.1007/s10457-009-9229-7 – volume: 19 start-page: 110 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0050 article-title: Untangling the biological contributions to soil stability in semiarid shrublands publication-title: Ecol. Appl. doi: 10.1890/07-2076.1 – start-page: 69 year: 2012 ident: 10.1016/j.geoderma.2017.03.021_bb0150 article-title: Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China – volume: 33 start-page: 141 issue: 2 year: 1982 ident: 10.1016/j.geoderma.2017.03.021_bb0200 article-title: Organic matter and water-stable aggregates in soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1982.tb01755.x – volume: 28 start-page: 337 issue: 5 year: 1936 ident: 10.1016/j.geoderma.2017.03.021_bb0240 article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses publication-title: Agron. J. doi: 10.2134/agronj1936.00021962002800050001x – volume: 58 start-page: 188 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2017.03.021_bb0020 article-title: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00823.x – volume: 47 start-page: 653 issue: 04 year: 2011 ident: 10.1016/j.geoderma.2017.03.021_bb0045 article-title: The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review publication-title: Exp. Agric. doi: 10.1017/S0014479711000421 – volume: 58 start-page: 1167 issue: 4 year: 1994 ident: 10.1016/j.geoderma.2017.03.021_bb0035 article-title: Carbon turnover in soil physical fractions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800040023x – volume: 214 start-page: 665 issue: 4521 year: 1981 ident: 10.1016/j.geoderma.2017.03.021_bb0080 article-title: Polysaccharides in soil fabrics publication-title: Science doi: 10.1126/science.214.4521.665 – volume: 36 start-page: 749 year: 2014 ident: 10.1016/j.geoderma.2017.03.021_bb0235 article-title: Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2012.08.023 – volume: 42 start-page: 32 issue: 1 year: 1978 ident: 10.1016/j.geoderma.2017.03.021_bb0085 article-title: Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1978.03615995004200010008x – volume: 10 start-page: 443 issue: 6 year: 2005 ident: 10.1016/j.geoderma.2017.03.021_bb0145 article-title: Small-scale agroforestry for upland community development: a case study from Chittagong Hill Tracts, Bangladesh publication-title: J. For. Res. doi: 10.1007/s10310-005-0171-x – volume: 16 start-page: 1731 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2017.03.021_bb0130 article-title: Demand for rubber is causing the loss of high diversity rain forest in SW China publication-title: Biodivers. Conserv. doi: 10.1007/s10531-006-9052-7 – volume: 52 start-page: 1371 issue: 5 year: 1988 ident: 10.1016/j.geoderma.2017.03.021_bb0230 article-title: Cultivation and slope position effects on soil organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200050031x – volume: 55 start-page: 415 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2017.03.021_bb0010 article-title: Aggregation and carbon storage in silty soil using physical fractionation techniques publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1351-0754.2004.0608.x – volume: 47 start-page: 425 issue: 4 year: 1996 ident: 10.1016/j.geoderma.2017.03.021_bb0015 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01843.x – volume: 32 start-page: 2099 issue: 14 year: 2000 ident: 10.1016/j.geoderma.2017.03.021_bb0195 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 – start-page: 319 year: 1984 ident: 10.1016/j.geoderma.2017.03.021_bb0155 article-title: Soil organic matter and structural stability: mechanisms and implications for management – volume: 47 start-page: 291 issue: 3 year: 1998 ident: 10.1016/j.geoderma.2017.03.021_bb0095 article-title: Carbon distribution and losses: erosion and deposition effects publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(98)00117-2 – volume: 39 start-page: 153 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2017.03.021_bb0205 article-title: Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2007.12.002 – volume: 57 start-page: 105 issue: 1 year: 1993 ident: 10.1016/j.geoderma.2017.03.021_bb0110 article-title: Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils publication-title: Geoderma doi: 10.1016/0016-7061(93)90150-J – volume: 398 start-page: 121 issue: 1–2 year: 2016 ident: 10.1016/j.geoderma.2017.03.021_bb0075 article-title: Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics publication-title: Plant Soil doi: 10.1007/s11104-015-2647-6 – volume: 12 start-page: 681 year: 2007 ident: 10.1016/j.geoderma.2017.03.021_bb0040 article-title: Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate change and soil texture publication-title: Boreal Environ. Res. – year: 1995 ident: 10.1016/j.geoderma.2017.03.021_bb0220 – volume: 88 start-page: 241 issue: 3 year: 2003 ident: 10.1016/j.geoderma.2017.03.021_bb0245 article-title: Influences of composted hazelnut husk on some physical properties of soils publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(03)00005-1 – volume: 10 start-page: 109 issue: 2 year: 1978 ident: 10.1016/j.geoderma.2017.03.021_bb0005 article-title: Physical factors influencing decomposition of organic materials in soil aggregates publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(78)90080-9 – volume: 50 start-page: 837 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2017.03.021_bb0135 article-title: Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China publication-title: Environ. Manag. doi: 10.1007/s00267-012-9942-2 – volume: 56 start-page: 1614 issue: 5 year: 1992 ident: 10.1016/j.geoderma.2017.03.021_bb0025 article-title: Soil surface modification by biomass inputs affecting rainfall infiltration publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600050046x – volume: 112 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2017.03.021_bb0185 article-title: Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production publication-title: Soil Tillage Res. doi: 10.1016/j.still.2010.10.012 – volume: Vol. 71 start-page: 477 year: 1983 ident: 10.1016/j.geoderma.2017.03.021_bb0065 article-title: Root growth and litter decomposition in a coffee plantation under shade trees – volume: 73 start-page: 1852 issue: 6 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0225 article-title: Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0011 – volume: 191 start-page: 77 issue: 1 year: 1997 ident: 10.1016/j.geoderma.2017.03.021_bb0105 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 325 start-page: 564 issue: 5940 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0140 article-title: Addicted to rubber publication-title: Science doi: 10.1126/science.325_564 – volume: 128 start-page: 63 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2017.03.021_bb0120 article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.013 – volume: 60 start-page: 801 issue: 3 year: 1996 ident: 10.1016/j.geoderma.2017.03.021_bb0115 article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000030017x – volume: 45 start-page: 274 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2017.03.021_bb0090 article-title: Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil publication-title: Environ. Manag. doi: 10.1007/s00267-009-9420-7 – volume: 28 start-page: 641 issue: 4 year: 1990 ident: 10.1016/j.geoderma.2017.03.021_bb0160 article-title: Soil erosion processes and nutrient loss. II. The effect of surface contact cover and erosion processes on enrichment ratio and nitrogen loss in eroded sediment publication-title: Soil Res. doi: 10.1071/SR9900641 – volume: 324 start-page: 91 issue: 1–2 year: 2009 ident: 10.1016/j.geoderma.2017.03.021_bb0165 article-title: Higher plant diversity enhances soil stability in disturbed alpine ecosystems publication-title: Plant Soil doi: 10.1007/s11104-009-9906-3 – volume: 43 start-page: 657 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2017.03.021_bb0060 article-title: Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.12.002 – volume: 154 start-page: 113 issue: 2 year: 1992 ident: 10.1016/j.geoderma.2017.03.021_bb0190 article-title: Aggregate stability and seal formation as affected by drops' impact energy and soil amendments publication-title: Soil Sci. doi: 10.1097/00010694-199208000-00004 – year: 2002 ident: 10.1016/j.geoderma.2017.03.021_bb0180 |
SSID | ssj0017020 |
Score | 2.5396225 |
Snippet | Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Aggregate stability Aggregate-associated carbon agroforestry Agroforestry systems China environmental quality Erosion farmers forests Hevea brasiliensis intercropping land use landscapes local government nitrogen nitrogen content plantations root systems rubber sieving soil aggregates soil aggregation soil erosion soil organic carbon Soil organic matter trees |
Title | Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.03.021 https://www.proquest.com/docview/2000426376 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7EvehBdn2grg694DVOOt1JJ94GWZlxwZOCt6afw4gkkpk5ePG3W5V0RAXxsMekq5rQX6eqH1VfEXLGnU91JlwiHB7dsNwn2uMZfOUq68GBhT7a4qaY3onr-_x-g1wOuTAYVhltf2_TO2sd34zjaI6fFgvM8WWFBHfEkHJdFpjEJ4TEWX7-8hbmwWQaqRlZkaD0uyzhB8AIC451_ENMdmSnGfvKQX0y1Z3_ufpJduLCkU76b_tFNny9S7Yn8zaSZ_g98tJTES9pE2i7Nsa3CTopR_UcrG2DVTjaZ9pzN4NQTZfN4hEaYcs97wCiugbhCBjode193SdLrW5NU1_Q2bsYdAq9UoyNpOul3yd3V39vL6dJrK-QWC7yVSKdz8rShJClnutKsyCwTITlBS9KHkrwVIXD_QjXwmkrU2NAJvM6c1ozYfkB2ayb2h8SGoJ1VY63fKUVTGpjcgfiJjBps2DkEcmHQVU2ko9jDYxHNUSZPagBDIVgqJQrAOOIjN_0nnr6jW81qgEz9WEiKfAR3-r-GUBW8Jfh1YmufbNeYrFO3GyCNT7-j_5_ky186uMHT8jmql37U1jTrMyom7Qj8mMy-ze9eQV6Svpr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4oJaHWqDUSFyjjeMkTritKqpdWvbUSr1Zfq62qpIqu3vgwm9nJnGqgoR64BrPWFE-Z8aP8fcBfBHOpzrLXZI72rrhhU-0pz342tXWYwILQ7XFspxf599vips9OBvvwlBZZYz9Q0zvo3V8Mo1fc3q_XtMdX15KTEecKNdlWT-DfWKnKiawP1tczJcPhwkyjeyMvEzI4dFF4VuEiTTHegoiLnu-04z_K0f9Fa37FHR-AK_i3JHNhtc7hD3fvIaXs1UX-TP8G_g1sBFvWBtYtzPGdwnlKcf0CgNuS0Ic3U820DejUcM27foOG3HVveoxYrpB44gZ-vXtg_STZVZ3pm2-ssWjMnSGvTIqj2S7jX8L1-ffrs7mSZRYSKzIi20inc-qyoSQpV7oWvOQk1KEFaUoKxEqTFaloyWJ0LnTVqbGoE3mdea05rkV72DStI0_AhaCdXVBB32VzbnUxhQOzU3g0mbByGMoxo-qbOQfJxmMOzUWmt2qEQxFYKhUKATjGKYPfvcDA8eTHvWImfpjLClME0_6fh5BVvij0emJbny725BeJ603MSC__4_-T-H5_OrHpbpcLC8-wAtqGcoJP8Jk2-38CU5xtuZTHMK_AQJk_Rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+rubber-based+agroforestry+systems+on+soil+aggregation+and+associated+soil+organic+carbon%3A+Implications+for+land+use&rft.jtitle=Geoderma&rft.au=Chen%2C+Chunfeng&rft.au=Liu%2C+Wenjie&rft.au=Jiang%2C+Xiaojin&rft.au=Wu%2C+Junen&rft.date=2017-08-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=299&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.geoderma.2017.03.021&rft.externalDocID=S0016706117300769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |