Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use

Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 299; pp. 13 - 24
Main Authors Chen, Chunfeng, Liu, Wenjie, Jiang, Xiaojin, Wu, Junen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2017.03.021

Cover

Loading…
Abstract Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations. •Rubber-based agroforestry systems have a strong influence on soil aggregation.•The macroaggregates contained more organic carbon and nitrogen than the microaggregates.•Higher organic matter content helped soil aggregation and reduced soil C loss.•Rubber-based agroforestry systems improved the soil properties.
AbstractList Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations.
Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber monoculture, but few reports have examined soil aggregate stability in such systems. The objective of this study was to examine the management and landscape effects on water stable soil aggregates, soil aggregate-associated carbon, nitrogen content and soil carbon, and nitrogen accumulation in Xishuangbanna, southwestern China. Treatments were rubber monoculture (Rm) and four rubber-based agroforestry systems: H. brasiliensis–C. arabica (CAAs), H. brasiliensis–T. cacao (TCAs), H. brasiliensis–F. macrophylla (FMAs) and H. brasiliensis–D. cochinchinensis (DCAs). The results showed that, with the exception of CAAs, the rubber-based agroforestry treatments significantly increased total soil organic carbon (SOC) and N contents and enhanced the formation of macroaggregates compared to the rubber monoculture treatment. SOC and N contents in all water-stable aggregate fractions were significantly higher in rubber-based agroforestry systems (except CAAs) compared to rubber monoculture. The macroaggregate fractions contained more organic carbon and nitrogen than the microaggregate fractions. The proportions of C and N loss from slaking and sieving were shown to have significantly negative correlations with the mean weight diameter and the SOC and N concentrations in bulk soil. The results suggest that soil surface cover with constant leaf litter fall and extensive root systems in the rubber-based agroforestry systems increased soil organic carbon and nitrogen, helped improve soil aggregation, reduced soil erosion, decreased carbon and nitrogen loss, and ultimately improved the carbon and nitrogen accumulation rates. Given that the soil physical-chemical properties improvement and the patterns of the intercropping system played key roles in managing artificial forests, we recommend that local governments and farmers should prefer T. cacao, F. macrophylla and D. cochinchinensis and not C. arabica as the alternative interplanted tree species within rubber plantations. •Rubber-based agroforestry systems have a strong influence on soil aggregation.•The macroaggregates contained more organic carbon and nitrogen than the microaggregates.•Higher organic matter content helped soil aggregation and reduced soil C loss.•Rubber-based agroforestry systems improved the soil properties.
Author Wu, Junen
Chen, Chunfeng
Liu, Wenjie
Jiang, Xiaojin
Author_xml – sequence: 1
  givenname: Chunfeng
  surname: Chen
  fullname: Chen, Chunfeng
  organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
– sequence: 2
  givenname: Wenjie
  surname: Liu
  fullname: Liu, Wenjie
  email: lwj@xtbg.org.cn
  organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
– sequence: 3
  givenname: Xiaojin
  surname: Jiang
  fullname: Jiang, Xiaojin
  email: jiangxiaojinlinda@163.com
  organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
– sequence: 4
  givenname: Junen
  surname: Wu
  fullname: Wu, Junen
  organization: Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
BookMark eNqFkU1P3DAQhq0KpC4ff6HysZcEf2SdbMWhCEFBQuICZ2vijCOvknjxZCvthd-Od7e9cOHkj3me0fj1GTuZ4oSM_ZCilEKaq3XZY-wwjVAqIetS6FIo-Y0tZFOrwqjl6oQtRCaLWhj5nZ0RrfOxFkos2Pud9-hm4tHztG1bTEULhB2HPkUfE9Kcdpx2NOOYoYlTDEMu9gl7mEO-gCnDRNEFmLN3qMfUwxQcd5DaOP3ij-NmCO7AE89d-bC3toQX7NTDQHj5bz1nr_d3L7cPxdPzn8fbm6fC6Wo5F3WHqmla75VADSuQvlpqJZw22jTaN2q1Mt2yznuoOnC1aNvMKATVAcjK6XP289h3k-LbNj_KjoEcDnkOjFuySghRKaNrk9HrI-pSJErorQvzYfQ5QRisFHYfu13b_7HbfexWaJtjz7r5pG9SGCHtvhZ_H0XMOfwNmCy5gJPDLqT8Q7aL4asWHzPkpgA
CitedBy_id crossref_primary_10_1016_j_catena_2018_08_038
crossref_primary_10_1186_s40793_024_00619_9
crossref_primary_10_1016_j_geoderma_2018_08_023
crossref_primary_10_1016_j_scitotenv_2017_10_156
crossref_primary_10_2136_vzj2017_05_0096
crossref_primary_10_1016_j_catena_2020_104785
crossref_primary_10_1128_spectrum_00290_22
crossref_primary_10_1002_ecs2_4736
crossref_primary_10_1111_een_12755
crossref_primary_10_3390_agronomy12122926
crossref_primary_10_1016_j_still_2020_104686
crossref_primary_10_1007_s10661_020_08563_0
crossref_primary_10_1007_s10457_019_00399_z
crossref_primary_10_1007_s10457_023_00949_6
crossref_primary_10_3390_agronomy11081647
crossref_primary_10_1007_s42729_022_00947_0
crossref_primary_10_1038_s41598_019_40908_9
crossref_primary_10_1111_sum_12932
crossref_primary_10_3390_f14122374
crossref_primary_10_1111_1365_2664_13642
crossref_primary_10_1186_s13717_020_00269_y
crossref_primary_10_1007_s11368_023_03553_4
crossref_primary_10_3390_agriculture15010014
crossref_primary_10_1002_saj2_20286
crossref_primary_10_3389_fenvs_2019_00073
crossref_primary_10_3390_agronomy14051015
crossref_primary_10_1016_j_jag_2020_102176
crossref_primary_10_7163_GPol_0195
crossref_primary_10_1016_j_teadva_2024_200119
crossref_primary_10_3390_su15065520
crossref_primary_10_47836_pjtas_45_1_09
crossref_primary_10_1007_s42729_024_01771_4
crossref_primary_10_1038_s41598_023_38421_1
crossref_primary_10_36783_18069657rbcs20220095
crossref_primary_10_1007_s10668_024_04958_y
crossref_primary_10_1016_j_geoderma_2019_113952
crossref_primary_10_3390_f11010049
crossref_primary_10_1016_j_foreco_2020_117948
crossref_primary_10_1016_j_scitotenv_2022_159194
crossref_primary_10_3390_su17062361
crossref_primary_10_1590_2179_8087_031218
crossref_primary_10_1016_j_ecolind_2020_106491
crossref_primary_10_1016_j_scitotenv_2024_174935
crossref_primary_10_1016_j_scitotenv_2019_134917
crossref_primary_10_1016_j_agwat_2023_108353
crossref_primary_10_1038_s41598_018_35762_0
crossref_primary_10_3390_agriculture11040361
crossref_primary_10_1007_s10668_024_05472_x
crossref_primary_10_3390_agronomy11122484
crossref_primary_10_1080_14728028_2020_1798818
crossref_primary_10_1016_j_geodrs_2023_e00647
crossref_primary_10_3390_f9090508
crossref_primary_10_1007_s11027_024_10166_w
crossref_primary_10_1016_j_scitotenv_2019_135498
crossref_primary_10_3390_su15086910
crossref_primary_10_1016_j_catena_2018_07_032
crossref_primary_10_1016_j_ecolind_2018_10_028
crossref_primary_10_1016_j_still_2022_105475
crossref_primary_10_1002_clen_202200146
crossref_primary_10_1016_j_foreco_2020_118665
crossref_primary_10_1007_s44246_023_00056_2
crossref_primary_10_1016_j_geoderma_2020_114810
crossref_primary_10_1016_j_geoderma_2023_116712
crossref_primary_10_1016_j_scitotenv_2023_163187
crossref_primary_10_1016_j_catena_2019_03_015
crossref_primary_10_18393_ejss_492466
crossref_primary_10_3390_f15101827
crossref_primary_10_1016_j_still_2019_04_017
crossref_primary_10_3390_f16010120
crossref_primary_10_1016_j_rhisph_2021_100337
crossref_primary_10_1002_ldr_3646
crossref_primary_10_3390_soilsystems8020044
crossref_primary_10_1007_s00267_020_01302_8
crossref_primary_10_1007_s11104_019_04377_3
crossref_primary_10_1007_s10457_019_00377_5
crossref_primary_10_1007_s10457_020_00524_3
crossref_primary_10_1016_j_catena_2021_105321
crossref_primary_10_3389_ffgc_2023_1322660
crossref_primary_10_3390_f11111163
crossref_primary_10_2478_ffp_2024_0004
crossref_primary_10_3390_f16010013
crossref_primary_10_1016_j_eja_2021_126353
crossref_primary_10_1016_j_soilbio_2018_08_010
crossref_primary_10_1016_j_geoderma_2022_115880
crossref_primary_10_1016_j_still_2024_106069
crossref_primary_10_1016_j_geoderma_2020_114754
crossref_primary_10_1007_s11104_020_04754_3
crossref_primary_10_3390_agronomy12051106
crossref_primary_10_1016_j_agee_2017_11_032
crossref_primary_10_1016_j_geodrs_2019_e00218
crossref_primary_10_1016_j_scitotenv_2020_138042
crossref_primary_10_1016_j_scitotenv_2020_143114
crossref_primary_10_1007_s11104_022_05322_7
crossref_primary_10_1007_s42729_024_02076_2
crossref_primary_10_1016_j_agrformet_2021_108391
crossref_primary_10_1016_j_agee_2021_107349
crossref_primary_10_1016_j_jhazmat_2024_133794
crossref_primary_10_1016_j_jssas_2024_03_002
crossref_primary_10_1007_s10457_020_00554_x
crossref_primary_10_1007_s00248_025_02506_3
crossref_primary_10_1016_j_agee_2020_106937
crossref_primary_10_4025_actasciagron_v46i1_63601
crossref_primary_10_1007_s42464_024_00256_4
crossref_primary_10_1016_j_scitotenv_2024_174340
crossref_primary_10_1016_j_gecco_2022_e02051
crossref_primary_10_1002_ldr_3068
crossref_primary_10_1016_j_jenvman_2021_112147
crossref_primary_10_1016_j_geoderma_2018_07_023
crossref_primary_10_1016_j_ecolind_2024_112725
crossref_primary_10_4236_abb_2024_158030
Cites_doi 10.1002/jpln.200800030
10.1126/science.1173833
10.2136/sssaj1986.03615995005000030017x
10.1038/457246a
10.1016/j.agee.2003.12.009
10.1007/s10310-007-0047-3
10.1016/j.scitotenv.2007.11.016
10.1007/BF00118726
10.1007/s10457-009-9219-9
10.1007/s10457-009-9229-7
10.1890/07-2076.1
10.1111/j.1365-2389.1982.tb01755.x
10.2134/agronj1936.00021962002800050001x
10.1111/j.1365-2389.2006.00823.x
10.1017/S0014479711000421
10.2136/sssaj1994.03615995005800040023x
10.1126/science.214.4521.665
10.1016/j.ecolind.2012.08.023
10.2136/sssaj1978.03615995004200010008x
10.1007/s10310-005-0171-x
10.1007/s10531-006-9052-7
10.2136/sssaj1988.03615995005200050031x
10.1111/j.1351-0754.2004.0608.x
10.1111/j.1365-2389.1996.tb01843.x
10.1016/S0038-0717(00)00179-6
10.1016/S0167-1987(98)00117-2
10.1016/j.apsoil.2007.12.002
10.1016/0016-7061(93)90150-J
10.1007/s11104-015-2647-6
10.1016/S0960-8524(03)00005-1
10.1016/0038-0717(78)90080-9
10.1007/s00267-012-9942-2
10.2136/sssaj1992.03615995005600050046x
10.1016/j.still.2010.10.012
10.2136/sssaj2008.0011
10.1023/A:1004213929699
10.1126/science.325_564
10.1016/j.geoderma.2004.12.013
10.2136/sssaj1996.03615995006000030017x
10.1007/s00267-009-9420-7
10.1071/SR9900641
10.1007/s11104-009-9906-3
10.1016/j.soilbio.2010.12.002
10.1097/00010694-199208000-00004
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2017.03.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 24
ExternalDocumentID 10_1016_j_geoderma_2017_03_021
S0016706117300769
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-7de288bff20e3a9a1f45320c363683f82996d57683a4dac70bba1f2ea2daa14c3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 01:37:33 EDT 2025
Tue Jul 01 04:04:43 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Aggregate stability
Aggregate-associated carbon
Agroforestry systems
Erosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-7de288bff20e3a9a1f45320c363683f82996d57683a4dac70bba1f2ea2daa14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000426376
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000426376
crossref_citationtrail_10_1016_j_geoderma_2017_03_021
crossref_primary_10_1016_j_geoderma_2017_03_021
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
2017-08-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gama-Rodrigues, Nair, Nair, Gama-Rodrigues, Baligar, Machado (bb0090) 2010; 45
Hassink, Bouwman, Zwart, Bloem, Brussaard (bb0110) 1993; 57
Rochester (bb0185) 2011; 112
Li, Aide, Ma, Liu, Cao (bb0130) 2007; 16
Oades (bb0155) 1984
Hassink (bb0105) 1997; 191
Jose (bb0125) 2009; 76
Viswanathan, Shivakoti (bb0210) 2008; 13
Ziegler, Fox, Xu (bb0255) 2009; 324
Jastrow, Miller, Boutton (bb0115) 1996; 60
Budelman (bb0030) 1990; 10
Chevallier, Blanchart, Albrecht, Feller (bb0055) 2004; 103
Frenkel, Goertzen, Rhoades (bb0085) 1978; 42
Palis, Okwach, Rose, Saffigna (bb0160) 1990; 28
Tisdall, Oades (bb0200) 1982; 33
Bruce, Langdale, West, Miller (bb0025) 1992; 56
Chivenge, Vanlauwe, Gentile, Six (bb0060) 2011; 43
Ramachandran Nair, Mohan Kumar, Nair (bb0175) 2009; 172
Yoder (bb0240) 1936; 28
Zhang, Fu, Fang, Zou (bb0250) 2007; 48
van Reeuwijk (bb0180) 2002
Adu, Oades (bb0005) 1978; 10
Balabane, Plante (bb0010) 2004; 55
Wick, Stahl, Ingram (bb0225) 2009; 73
Bissonnais (bb0015) 1996; 47
Gupta, Kukal, Bawa, Dhaliwal (bb0100) 2009; 76
Carr, Lockwood (bb0045) 2011; 47
Vogel, Wang, Huang (bb0220) 1995
Zeytin, Baran (bb0245) 2003; 88
Foster (bb0080) 1981; 214
Udawatta, Kremer, Adamson, Anderson (bb0205) 2008; 39
Xu, Grumbine, Beckschäfer (bb0235) 2014; 36
Gregorich, Greer, Anderson, Liang (bb0095) 1998; 47
Elliott (bb0070) 1986; 50
Pohl, Alig, Korner, Rixen (bb0165) 2009; 324
Six, Elliott, Paustian (bb0195) 2000; 32
Erktan, Cécillon, Graf, Roumet, Legout, Rey (bb0075) 2016; 398
Woods, Schuman (bb0230) 1988; 52
Cuenca, Aranguren, Herrera (bb0065) 1983; Vol. 71
Chaudhary, Bowker, O'Dell, Grace, Redman, Rillig, Johnson (bb0050) 2009; 19
Bissonnais, Blavet, Noni, Laurent, Asseline, Chenu (bb0020) 2007; 58
John, Yamashita, Ludwig, Flessa (bb0120) 2005; 128
Mann (bb0140) 2009; 325
Nath, Inoue, Myant (bb0145) 2005; 10
van Noordwijk, Tata, Xu, Dewi, Minang (bb0150) 2012
Li, Ma, Liu, Liu (bb0135) 2012; 50
Buyanovsky, Aslam, Wagner (bb0035) 1994; 58
Shainberg, Levy, Rengasamy, Frenkel (bb0190) 1992; 154
Callesen, Raulund-Rasmussen, Westman, Tau-Strand (bb0040) 2007; 12
Qiu (bb0170) 2009; 457
Vodnik, Grčman, Maček, Van Elteren, Kovačevič (bb0215) 2008; 392
Hassink (10.1016/j.geoderma.2017.03.021_bb0105) 1997; 191
Jose (10.1016/j.geoderma.2017.03.021_bb0125) 2009; 76
Vogel (10.1016/j.geoderma.2017.03.021_bb0220) 1995
Gupta (10.1016/j.geoderma.2017.03.021_bb0100) 2009; 76
Hassink (10.1016/j.geoderma.2017.03.021_bb0110) 1993; 57
Erktan (10.1016/j.geoderma.2017.03.021_bb0075) 2016; 398
van Noordwijk (10.1016/j.geoderma.2017.03.021_bb0150) 2012
Ramachandran Nair (10.1016/j.geoderma.2017.03.021_bb0175) 2009; 172
Elliott (10.1016/j.geoderma.2017.03.021_bb0070) 1986; 50
Shainberg (10.1016/j.geoderma.2017.03.021_bb0190) 1992; 154
van Reeuwijk (10.1016/j.geoderma.2017.03.021_bb0180) 2002
Udawatta (10.1016/j.geoderma.2017.03.021_bb0205) 2008; 39
Nath (10.1016/j.geoderma.2017.03.021_bb0145) 2005; 10
Pohl (10.1016/j.geoderma.2017.03.021_bb0165) 2009; 324
Zeytin (10.1016/j.geoderma.2017.03.021_bb0245) 2003; 88
Jastrow (10.1016/j.geoderma.2017.03.021_bb0115) 1996; 60
John (10.1016/j.geoderma.2017.03.021_bb0120) 2005; 128
Zhang (10.1016/j.geoderma.2017.03.021_bb0250) 2007; 48
Frenkel (10.1016/j.geoderma.2017.03.021_bb0085) 1978; 42
Oades (10.1016/j.geoderma.2017.03.021_bb0155) 1984
Mann (10.1016/j.geoderma.2017.03.021_bb0140) 2009; 325
Qiu (10.1016/j.geoderma.2017.03.021_bb0170) 2009; 457
Vodnik (10.1016/j.geoderma.2017.03.021_bb0215) 2008; 392
Tisdall (10.1016/j.geoderma.2017.03.021_bb0200) 1982; 33
Li (10.1016/j.geoderma.2017.03.021_bb0130) 2007; 16
Wick (10.1016/j.geoderma.2017.03.021_bb0225) 2009; 73
Adu (10.1016/j.geoderma.2017.03.021_bb0005) 1978; 10
Viswanathan (10.1016/j.geoderma.2017.03.021_bb0210) 2008; 13
Ziegler (10.1016/j.geoderma.2017.03.021_bb0255) 2009; 324
Woods (10.1016/j.geoderma.2017.03.021_bb0230) 1988; 52
Six (10.1016/j.geoderma.2017.03.021_bb0195) 2000; 32
Palis (10.1016/j.geoderma.2017.03.021_bb0160) 1990; 28
Buyanovsky (10.1016/j.geoderma.2017.03.021_bb0035) 1994; 58
Cuenca (10.1016/j.geoderma.2017.03.021_bb0065) 1983; Vol. 71
Chevallier (10.1016/j.geoderma.2017.03.021_bb0055) 2004; 103
Rochester (10.1016/j.geoderma.2017.03.021_bb0185) 2011; 112
Callesen (10.1016/j.geoderma.2017.03.021_bb0040) 2007; 12
Bissonnais (10.1016/j.geoderma.2017.03.021_bb0020) 2007; 58
Bissonnais (10.1016/j.geoderma.2017.03.021_bb0015) 1996; 47
Foster (10.1016/j.geoderma.2017.03.021_bb0080) 1981; 214
Chaudhary (10.1016/j.geoderma.2017.03.021_bb0050) 2009; 19
Xu (10.1016/j.geoderma.2017.03.021_bb0235) 2014; 36
Gregorich (10.1016/j.geoderma.2017.03.021_bb0095) 1998; 47
Gama-Rodrigues (10.1016/j.geoderma.2017.03.021_bb0090) 2010; 45
Chivenge (10.1016/j.geoderma.2017.03.021_bb0060) 2011; 43
Budelman (10.1016/j.geoderma.2017.03.021_bb0030) 1990; 10
Carr (10.1016/j.geoderma.2017.03.021_bb0045) 2011; 47
Li (10.1016/j.geoderma.2017.03.021_bb0135) 2012; 50
Balabane (10.1016/j.geoderma.2017.03.021_bb0010) 2004; 55
Yoder (10.1016/j.geoderma.2017.03.021_bb0240) 1936; 28
Bruce (10.1016/j.geoderma.2017.03.021_bb0025) 1992; 56
References_xml – volume: 324
  start-page: 1024
  year: 2009
  end-page: 1025
  ident: bb0255
  article-title: The rubber juggernaut
  publication-title: Science
– volume: 57
  start-page: 105
  year: 1993
  end-page: 128
  ident: bb0110
  article-title: Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils
  publication-title: Geoderma
– volume: 13
  start-page: 1
  year: 2008
  end-page: 14
  ident: bb0210
  article-title: Adoption of rubber-integrated farm-livelihood systems: contrasting empirical evidence from the Indian context
  publication-title: J. For. Res.
– start-page: 69
  year: 2012
  end-page: 104
  ident: bb0150
  article-title: Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China
  publication-title: Agroforestry–The Future of Global Land Use
– volume: 76
  start-page: 27
  year: 2009
  end-page: 35
  ident: bb0100
  article-title: Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type
  publication-title: Agrofor. Syst.
– volume: 42
  start-page: 32
  year: 1978
  end-page: 39
  ident: bb0085
  article-title: Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 76
  start-page: 1
  year: 2009
  end-page: 10
  ident: bb0125
  article-title: Agroforestry for ecosystem services and environmental benefits: an overview
  publication-title: Agrofor. Syst.
– volume: 392
  start-page: 130
  year: 2008
  end-page: 136
  ident: bb0215
  article-title: The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil
  publication-title: Sci. Total Environ.
– volume: 103
  start-page: 375
  year: 2004
  end-page: 387
  ident: bb0055
  article-title: The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies)
  publication-title: Agric. Ecosyst. Environ.
– volume: 58
  start-page: 1167
  year: 1994
  end-page: 1173
  ident: bb0035
  article-title: Carbon turnover in soil physical fractions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 10
  start-page: 47
  year: 1990
  end-page: 59
  ident: bb0030
  article-title: Woody legumes as live support systems in yam cultivation
  publication-title: Agrofor. Syst.
– volume: Vol. 71
  start-page: 477
  year: 1983
  end-page: 486
  ident: bb0065
  article-title: Root growth and litter decomposition in a coffee plantation under shade trees
  publication-title: Developments in Plant and Soil Sciences
– volume: 48
  start-page: 201
  year: 2007
  ident: bb0250
  article-title: Soil organic carbon in pure rubber and tea-rubber plantations in southwestern China
  publication-title: Trop. Ecol.
– volume: 33
  start-page: 141
  year: 1982
  end-page: 163
  ident: bb0200
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: J. Soil Sci.
– volume: 12
  start-page: 681
  year: 2007
  end-page: 692
  ident: bb0040
  article-title: Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate change and soil texture
  publication-title: Boreal Environ. Res.
– volume: 55
  start-page: 415
  year: 2004
  end-page: 427
  ident: bb0010
  article-title: Aggregation and carbon storage in silty soil using physical fractionation techniques
  publication-title: Eur. J. Soil Sci.
– volume: 398
  start-page: 121
  year: 2016
  end-page: 137
  ident: bb0075
  article-title: Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics
  publication-title: Plant Soil
– volume: 47
  start-page: 653
  year: 2011
  end-page: 676
  ident: bb0045
  article-title: The water relations and irrigation requirements of cocoa (
  publication-title: Exp. Agric.
– volume: 191
  start-page: 77
  year: 1997
  end-page: 87
  ident: bb0105
  article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles
  publication-title: Plant Soil
– volume: 214
  start-page: 665
  year: 1981
  end-page: 667
  ident: bb0080
  article-title: Polysaccharides in soil fabrics
  publication-title: Science
– volume: 52
  start-page: 1371
  year: 1988
  end-page: 1376
  ident: bb0230
  article-title: Cultivation and slope position effects on soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
– year: 2002
  ident: bb0180
  article-title: Procedures for Soil Analysis
– volume: 39
  start-page: 153
  year: 2008
  end-page: 160
  ident: bb0205
  article-title: Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice
  publication-title: Appl. Soil Ecol.
– volume: 58
  start-page: 188
  year: 2007
  end-page: 195
  ident: bb0020
  article-title: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables
  publication-title: Eur. J. Soil Sci.
– volume: 457
  start-page: 246
  year: 2009
  end-page: 247
  ident: bb0170
  article-title: Where the rubber meets the garden
  publication-title: Nature
– volume: 43
  start-page: 657
  year: 2011
  end-page: 666
  ident: bb0060
  article-title: Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation
  publication-title: Soil Biol. Biochem.
– volume: 10
  start-page: 109
  year: 1978
  end-page: 115
  ident: bb0005
  article-title: Physical factors influencing decomposition of organic materials in soil aggregates
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 1614
  year: 1992
  end-page: 1620
  ident: bb0025
  article-title: Soil surface modification by biomass inputs affecting rainfall infiltration
  publication-title: Soil Sci. Soc. Am. J.
– volume: 88
  start-page: 241
  year: 2003
  end-page: 244
  ident: bb0245
  article-title: Influences of composted hazelnut husk on some physical properties of soils
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 641
  year: 1990
  end-page: 658
  ident: bb0160
  article-title: Soil erosion processes and nutrient loss. II. The effect of surface contact cover and erosion processes on enrichment ratio and nitrogen loss in eroded sediment
  publication-title: Soil Res.
– volume: 73
  start-page: 1852
  year: 2009
  end-page: 1860
  ident: bb0225
  article-title: Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 47
  start-page: 291
  year: 1998
  end-page: 302
  ident: bb0095
  article-title: Carbon distribution and losses: erosion and deposition effects
  publication-title: Soil Tillage Res.
– year: 1995
  ident: bb0220
  article-title: People's Republic of China: Reference Soil (Lotosal) of Tropical Southern Yunnan Province
– volume: 325
  start-page: 564
  year: 2009
  end-page: 566
  ident: bb0140
  article-title: Addicted to rubber
  publication-title: Science
– volume: 10
  start-page: 443
  year: 2005
  end-page: 452
  ident: bb0145
  article-title: Small-scale agroforestry for upland community development: a case study from Chittagong Hill Tracts, Bangladesh
  publication-title: J. For. Res.
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: bb0195
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 154
  start-page: 113
  year: 1992
  end-page: 119
  ident: bb0190
  article-title: Aggregate stability and seal formation as affected by drops' impact energy and soil amendments
  publication-title: Soil Sci.
– volume: 47
  start-page: 425
  year: 1996
  end-page: 437
  ident: bb0015
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
– volume: 45
  start-page: 274
  year: 2010
  end-page: 283
  ident: bb0090
  article-title: Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil
  publication-title: Environ. Manag.
– volume: 172
  start-page: 10
  year: 2009
  end-page: 23
  ident: bb0175
  article-title: Agroforestry as a strategy for carbon sequestration
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 50
  start-page: 627
  year: 1986
  end-page: 633
  ident: bb0070
  article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 1731
  year: 2007
  end-page: 1745
  ident: bb0130
  article-title: Demand for rubber is causing the loss of high diversity rain forest in SW China
  publication-title: Biodivers. Conserv.
– volume: 112
  start-page: 1
  year: 2011
  end-page: 7
  ident: bb0185
  article-title: Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production
  publication-title: Soil Tillage Res.
– start-page: 319
  year: 1984
  end-page: 337
  ident: bb0155
  article-title: Soil organic matter and structural stability: mechanisms and implications for management
  publication-title: Biological Processes and Soil Fertility
– volume: 28
  start-page: 337
  year: 1936
  end-page: 351
  ident: bb0240
  article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses
  publication-title: Agron. J.
– volume: 60
  start-page: 801
  year: 1996
  end-page: 807
  ident: bb0115
  article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  start-page: 110
  year: 2009
  end-page: 122
  ident: bb0050
  article-title: Untangling the biological contributions to soil stability in semiarid shrublands
  publication-title: Ecol. Appl.
– volume: 128
  start-page: 63
  year: 2005
  end-page: 79
  ident: bb0120
  article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use
  publication-title: Geoderma
– volume: 324
  start-page: 91
  year: 2009
  end-page: 102
  ident: bb0165
  article-title: Higher plant diversity enhances soil stability in disturbed alpine ecosystems
  publication-title: Plant Soil
– volume: 50
  start-page: 837
  year: 2012
  end-page: 848
  ident: bb0135
  article-title: Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China
  publication-title: Environ. Manag.
– volume: 36
  start-page: 749
  year: 2014
  end-page: 756
  ident: bb0235
  article-title: Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region
  publication-title: Ecol. Indic.
– volume: 172
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0175
  article-title: Agroforestry as a strategy for carbon sequestration
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200800030
– volume: 324
  start-page: 1024
  issue: 5930
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0255
  article-title: The rubber juggernaut
  publication-title: Science
  doi: 10.1126/science.1173833
– volume: 50
  start-page: 627
  issue: 3
  year: 1986
  ident: 10.1016/j.geoderma.2017.03.021_bb0070
  article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000030017x
– volume: 457
  start-page: 246
  issue: 7227
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0170
  article-title: Where the rubber meets the garden
  publication-title: Nature
  doi: 10.1038/457246a
– volume: 103
  start-page: 375
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2017.03.021_bb0055
  article-title: The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies)
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2003.12.009
– volume: 13
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2017.03.021_bb0210
  article-title: Adoption of rubber-integrated farm-livelihood systems: contrasting empirical evidence from the Indian context
  publication-title: J. For. Res.
  doi: 10.1007/s10310-007-0047-3
– volume: 392
  start-page: 130
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2017.03.021_bb0215
  article-title: The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.11.016
– volume: 10
  start-page: 47
  issue: 1
  year: 1990
  ident: 10.1016/j.geoderma.2017.03.021_bb0030
  article-title: Woody legumes as live support systems in yam cultivation
  publication-title: Agrofor. Syst.
  doi: 10.1007/BF00118726
– volume: 48
  start-page: 201
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2017.03.021_bb0250
  article-title: Soil organic carbon in pure rubber and tea-rubber plantations in southwestern China
  publication-title: Trop. Ecol.
– volume: 76
  start-page: 27
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0100
  article-title: Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-009-9219-9
– volume: 76
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0125
  article-title: Agroforestry for ecosystem services and environmental benefits: an overview
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-009-9229-7
– volume: 19
  start-page: 110
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0050
  article-title: Untangling the biological contributions to soil stability in semiarid shrublands
  publication-title: Ecol. Appl.
  doi: 10.1890/07-2076.1
– start-page: 69
  year: 2012
  ident: 10.1016/j.geoderma.2017.03.021_bb0150
  article-title: Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China
– volume: 33
  start-page: 141
  issue: 2
  year: 1982
  ident: 10.1016/j.geoderma.2017.03.021_bb0200
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1982.tb01755.x
– volume: 28
  start-page: 337
  issue: 5
  year: 1936
  ident: 10.1016/j.geoderma.2017.03.021_bb0240
  article-title: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses
  publication-title: Agron. J.
  doi: 10.2134/agronj1936.00021962002800050001x
– volume: 58
  start-page: 188
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2017.03.021_bb0020
  article-title: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00823.x
– volume: 47
  start-page: 653
  issue: 04
  year: 2011
  ident: 10.1016/j.geoderma.2017.03.021_bb0045
  article-title: The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review
  publication-title: Exp. Agric.
  doi: 10.1017/S0014479711000421
– volume: 58
  start-page: 1167
  issue: 4
  year: 1994
  ident: 10.1016/j.geoderma.2017.03.021_bb0035
  article-title: Carbon turnover in soil physical fractions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800040023x
– volume: 214
  start-page: 665
  issue: 4521
  year: 1981
  ident: 10.1016/j.geoderma.2017.03.021_bb0080
  article-title: Polysaccharides in soil fabrics
  publication-title: Science
  doi: 10.1126/science.214.4521.665
– volume: 36
  start-page: 749
  year: 2014
  ident: 10.1016/j.geoderma.2017.03.021_bb0235
  article-title: Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.08.023
– volume: 42
  start-page: 32
  issue: 1
  year: 1978
  ident: 10.1016/j.geoderma.2017.03.021_bb0085
  article-title: Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200010008x
– volume: 10
  start-page: 443
  issue: 6
  year: 2005
  ident: 10.1016/j.geoderma.2017.03.021_bb0145
  article-title: Small-scale agroforestry for upland community development: a case study from Chittagong Hill Tracts, Bangladesh
  publication-title: J. For. Res.
  doi: 10.1007/s10310-005-0171-x
– volume: 16
  start-page: 1731
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2017.03.021_bb0130
  article-title: Demand for rubber is causing the loss of high diversity rain forest in SW China
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-006-9052-7
– volume: 52
  start-page: 1371
  issue: 5
  year: 1988
  ident: 10.1016/j.geoderma.2017.03.021_bb0230
  article-title: Cultivation and slope position effects on soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200050031x
– volume: 55
  start-page: 415
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2017.03.021_bb0010
  article-title: Aggregation and carbon storage in silty soil using physical fractionation techniques
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1351-0754.2004.0608.x
– volume: 47
  start-page: 425
  issue: 4
  year: 1996
  ident: 10.1016/j.geoderma.2017.03.021_bb0015
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01843.x
– volume: 32
  start-page: 2099
  issue: 14
  year: 2000
  ident: 10.1016/j.geoderma.2017.03.021_bb0195
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– start-page: 319
  year: 1984
  ident: 10.1016/j.geoderma.2017.03.021_bb0155
  article-title: Soil organic matter and structural stability: mechanisms and implications for management
– volume: 47
  start-page: 291
  issue: 3
  year: 1998
  ident: 10.1016/j.geoderma.2017.03.021_bb0095
  article-title: Carbon distribution and losses: erosion and deposition effects
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(98)00117-2
– volume: 39
  start-page: 153
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2017.03.021_bb0205
  article-title: Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2007.12.002
– volume: 57
  start-page: 105
  issue: 1
  year: 1993
  ident: 10.1016/j.geoderma.2017.03.021_bb0110
  article-title: Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils
  publication-title: Geoderma
  doi: 10.1016/0016-7061(93)90150-J
– volume: 398
  start-page: 121
  issue: 1–2
  year: 2016
  ident: 10.1016/j.geoderma.2017.03.021_bb0075
  article-title: Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2647-6
– volume: 12
  start-page: 681
  year: 2007
  ident: 10.1016/j.geoderma.2017.03.021_bb0040
  article-title: Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate change and soil texture
  publication-title: Boreal Environ. Res.
– year: 1995
  ident: 10.1016/j.geoderma.2017.03.021_bb0220
– volume: 88
  start-page: 241
  issue: 3
  year: 2003
  ident: 10.1016/j.geoderma.2017.03.021_bb0245
  article-title: Influences of composted hazelnut husk on some physical properties of soils
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(03)00005-1
– volume: 10
  start-page: 109
  issue: 2
  year: 1978
  ident: 10.1016/j.geoderma.2017.03.021_bb0005
  article-title: Physical factors influencing decomposition of organic materials in soil aggregates
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(78)90080-9
– volume: 50
  start-page: 837
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2017.03.021_bb0135
  article-title: Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-012-9942-2
– volume: 56
  start-page: 1614
  issue: 5
  year: 1992
  ident: 10.1016/j.geoderma.2017.03.021_bb0025
  article-title: Soil surface modification by biomass inputs affecting rainfall infiltration
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600050046x
– volume: 112
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2017.03.021_bb0185
  article-title: Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2010.10.012
– volume: Vol. 71
  start-page: 477
  year: 1983
  ident: 10.1016/j.geoderma.2017.03.021_bb0065
  article-title: Root growth and litter decomposition in a coffee plantation under shade trees
– volume: 73
  start-page: 1852
  issue: 6
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0225
  article-title: Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0011
– volume: 191
  start-page: 77
  issue: 1
  year: 1997
  ident: 10.1016/j.geoderma.2017.03.021_bb0105
  article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles
  publication-title: Plant Soil
  doi: 10.1023/A:1004213929699
– volume: 325
  start-page: 564
  issue: 5940
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0140
  article-title: Addicted to rubber
  publication-title: Science
  doi: 10.1126/science.325_564
– volume: 128
  start-page: 63
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2017.03.021_bb0120
  article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.013
– volume: 60
  start-page: 801
  issue: 3
  year: 1996
  ident: 10.1016/j.geoderma.2017.03.021_bb0115
  article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000030017x
– volume: 45
  start-page: 274
  issue: 2
  year: 2010
  ident: 10.1016/j.geoderma.2017.03.021_bb0090
  article-title: Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-009-9420-7
– volume: 28
  start-page: 641
  issue: 4
  year: 1990
  ident: 10.1016/j.geoderma.2017.03.021_bb0160
  article-title: Soil erosion processes and nutrient loss. II. The effect of surface contact cover and erosion processes on enrichment ratio and nitrogen loss in eroded sediment
  publication-title: Soil Res.
  doi: 10.1071/SR9900641
– volume: 324
  start-page: 91
  issue: 1–2
  year: 2009
  ident: 10.1016/j.geoderma.2017.03.021_bb0165
  article-title: Higher plant diversity enhances soil stability in disturbed alpine ecosystems
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9906-3
– volume: 43
  start-page: 657
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2017.03.021_bb0060
  article-title: Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.12.002
– volume: 154
  start-page: 113
  issue: 2
  year: 1992
  ident: 10.1016/j.geoderma.2017.03.021_bb0190
  article-title: Aggregate stability and seal formation as affected by drops' impact energy and soil amendments
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199208000-00004
– year: 2002
  ident: 10.1016/j.geoderma.2017.03.021_bb0180
SSID ssj0017020
Score 2.5396225
Snippet Rubber-based agroforestry (Hevea brasiliensis) systems are considered the best way to improve soil properties and the overall environmental quality of rubber...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Aggregate stability
Aggregate-associated carbon
agroforestry
Agroforestry systems
China
environmental quality
Erosion
farmers
forests
Hevea brasiliensis
intercropping
land use
landscapes
local government
nitrogen
nitrogen content
plantations
root systems
rubber
sieving
soil aggregates
soil aggregation
soil erosion
soil organic carbon
Soil organic matter
trees
Title Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use
URI https://dx.doi.org/10.1016/j.geoderma.2017.03.021
https://www.proquest.com/docview/2000426376
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7EvehBdn2grg694DVOOt1JJ94GWZlxwZOCt6afw4gkkpk5ePG3W5V0RAXxsMekq5rQX6eqH1VfEXLGnU91JlwiHB7dsNwn2uMZfOUq68GBhT7a4qaY3onr-_x-g1wOuTAYVhltf2_TO2sd34zjaI6fFgvM8WWFBHfEkHJdFpjEJ4TEWX7-8hbmwWQaqRlZkaD0uyzhB8AIC451_ENMdmSnGfvKQX0y1Z3_ufpJduLCkU76b_tFNny9S7Yn8zaSZ_g98tJTES9pE2i7Nsa3CTopR_UcrG2DVTjaZ9pzN4NQTZfN4hEaYcs97wCiugbhCBjode193SdLrW5NU1_Q2bsYdAq9UoyNpOul3yd3V39vL6dJrK-QWC7yVSKdz8rShJClnutKsyCwTITlBS9KHkrwVIXD_QjXwmkrU2NAJvM6c1ozYfkB2ayb2h8SGoJ1VY63fKUVTGpjcgfiJjBps2DkEcmHQVU2ko9jDYxHNUSZPagBDIVgqJQrAOOIjN_0nnr6jW81qgEz9WEiKfAR3-r-GUBW8Jfh1YmufbNeYrFO3GyCNT7-j_5_ky186uMHT8jmql37U1jTrMyom7Qj8mMy-ze9eQV6Svpr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4oJaHWqDUSFyjjeMkTritKqpdWvbUSr1Zfq62qpIqu3vgwm9nJnGqgoR64BrPWFE-Z8aP8fcBfBHOpzrLXZI72rrhhU-0pz342tXWYwILQ7XFspxf599vips9OBvvwlBZZYz9Q0zvo3V8Mo1fc3q_XtMdX15KTEecKNdlWT-DfWKnKiawP1tczJcPhwkyjeyMvEzI4dFF4VuEiTTHegoiLnu-04z_K0f9Fa37FHR-AK_i3JHNhtc7hD3fvIaXs1UX-TP8G_g1sBFvWBtYtzPGdwnlKcf0CgNuS0Ic3U820DejUcM27foOG3HVveoxYrpB44gZ-vXtg_STZVZ3pm2-ssWjMnSGvTIqj2S7jX8L1-ffrs7mSZRYSKzIi20inc-qyoSQpV7oWvOQk1KEFaUoKxEqTFaloyWJ0LnTVqbGoE3mdea05rkV72DStI0_AhaCdXVBB32VzbnUxhQOzU3g0mbByGMoxo-qbOQfJxmMOzUWmt2qEQxFYKhUKATjGKYPfvcDA8eTHvWImfpjLClME0_6fh5BVvij0emJbny725BeJ603MSC__4_-T-H5_OrHpbpcLC8-wAtqGcoJP8Jk2-38CU5xtuZTHMK_AQJk_Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+rubber-based+agroforestry+systems+on+soil+aggregation+and+associated+soil+organic+carbon%3A+Implications+for+land+use&rft.jtitle=Geoderma&rft.au=Chen%2C+Chunfeng&rft.au=Liu%2C+Wenjie&rft.au=Jiang%2C+Xiaojin&rft.au=Wu%2C+Junen&rft.date=2017-08-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=299&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.geoderma.2017.03.021&rft.externalDocID=S0016706117300769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon