Design powerful predictor for mRNA subcellular location prediction in Homo sapiens
Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptom...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 526 - 535 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/. |
---|---|
AbstractList | Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/. Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/. Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/. |
Author | Chen, Wei Yang, Yu-He Lin, Hao Zhang, Zhao-Yue Wang, Dong Ding, Hui |
Author_xml | – sequence: 1 givenname: Zhao-Yue surname: Zhang fullname: Zhang, Zhao-Yue organization: Center for Informational Biology at University of Electronic Science and Technology of China – sequence: 2 givenname: Yu-He surname: Yang fullname: Yang, Yu-He organization: Center for Informational Biology at University of Electronic Science and Technology of China – sequence: 3 givenname: Hui surname: Ding fullname: Ding, Hui organization: Center for Informational Biology at University of Electronic Science and Technology of China – sequence: 4 givenname: Dong surname: Wang fullname: Wang, Dong email: wangdong79@smu.edu.cn organization: Department of Bioinformatics at Southern Medical University – sequence: 5 givenname: Wei surname: Chen fullname: Chen, Wei email: chenweiimu@gmail.com organization: Innovative Institute of Chinese Medicine and Pharmacy at Chengdu University of Traditional Chinese Medicine – sequence: 6 givenname: Hao surname: Lin fullname: Lin, Hao email: hlin@uestc.edu.cn organization: Center for Informational Biology at University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31994694$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtLwzAUx4Mo7qIvfgApiCDCXJKmTfM45mXCUBj6HJImlYy2qUmL6Kc3sxvIEB8O58LvHM45_xE4rG2tAThD8AZBFk-lkVMpvxClB2CICKUTAhNy-CsegJH3awgxpBk6BoMYMUZSRoZgdau9eaujxn5oV3Rl1DitTN5aFxXBqtXTLPKdzHVZdqVwUWlz0Rpb77hNaOpoYSsbedEYXfsTcFSI0uvTrR-D1_u7l_lisnx-eJzPlpM8Jkk7oUInUuRMIaWw1CwkomBKpEQJpEWKQ1GhcFTGYkiJRFmBqSJYIQElgiIeg6t-buPse6d9yyvjN4uKWtvOcxyTLBjEWUAv9tC17VwdtuM4wYylNCVxoM63VCcrrXjjTCXcJ999KwCwB3JnvXe64Llpf97ROmFKjiDfCMKDILwXJLRc77Xspv4JX_aw7Zr_uG-UZ5nv |
CitedBy_id | crossref_primary_10_3390_genes11020197 crossref_primary_10_1007_s11082_023_06272_9 crossref_primary_10_1007_s11704_021_1015_3 crossref_primary_10_3389_fcell_2021_617366 crossref_primary_10_1093_bfgp_elad007 crossref_primary_10_1155_2021_5518209 crossref_primary_10_3390_pr12040666 crossref_primary_10_1016_j_compbiomed_2022_105700 crossref_primary_10_3934_mbe_2021167 crossref_primary_10_2174_1389557522666220405202222 crossref_primary_10_3390_ijms22168719 crossref_primary_10_1007_s12672_025_01945_1 crossref_primary_10_3390_diagnostics13142465 crossref_primary_10_3390_ijms22168958 crossref_primary_10_2174_1389202923666220214122506 crossref_primary_10_1093_bfgp_elaa028 crossref_primary_10_1016_j_inffus_2021_02_015 crossref_primary_10_1155_2021_5515342 crossref_primary_10_1093_bib_bbaa275 crossref_primary_10_1093_bib_bbaa304 crossref_primary_10_1093_bib_bbad170 crossref_primary_10_1007_s11704_021_0548_9 crossref_primary_10_1007_s00726_021_02941_9 crossref_primary_10_1016_j_compbiomed_2024_108289 crossref_primary_10_1155_2020_9235920 crossref_primary_10_3389_fbioe_2020_584807 crossref_primary_10_1093_bioinformatics_btab463 crossref_primary_10_1186_s12859_021_04446_4 crossref_primary_10_1002_advs_202407013 crossref_primary_10_1016_j_ijbiomac_2022_11_299 crossref_primary_10_1093_bib_bbad209 crossref_primary_10_1093_bioinformatics_btab071 crossref_primary_10_1093_bioinformatics_btae065 crossref_primary_10_2174_0929867328666210915112030 crossref_primary_10_1109_ACCESS_2020_2991477 crossref_primary_10_1038_s41374_021_00662_x crossref_primary_10_1093_bioinformatics_btae504 crossref_primary_10_1186_s12859_021_04264_8 crossref_primary_10_3389_fgene_2021_664860 crossref_primary_10_1155_2022_7493834 crossref_primary_10_3389_fcell_2021_664669 crossref_primary_10_3389_fbioe_2020_00201 crossref_primary_10_1186_s13007_023_01092_0 crossref_primary_10_1016_j_ymeth_2021_04_013 crossref_primary_10_1016_j_csbj_2022_07_031 crossref_primary_10_1093_bib_bbab412 crossref_primary_10_1093_bib_bbac467 crossref_primary_10_1093_bib_bbac509 crossref_primary_10_3389_fcell_2020_00472 crossref_primary_10_3390_molecules28052284 crossref_primary_10_1093_nar_gkab016 crossref_primary_10_1016_j_jobab_2024_12_005 crossref_primary_10_1038_s41398_022_02147_x crossref_primary_10_3390_biom14091067 crossref_primary_10_1016_j_jmb_2022_167549 crossref_primary_10_1016_j_ymthe_2021_04_004 crossref_primary_10_1016_j_ab_2022_114746 crossref_primary_10_1016_j_compbiomed_2023_107243 crossref_primary_10_1186_s12859_020_03748_3 crossref_primary_10_1109_ACCESS_2020_2994206 crossref_primary_10_1016_j_ygeno_2021_06_038 crossref_primary_10_1093_nar_gkab825 crossref_primary_10_1186_s12864_020_07347_7 crossref_primary_10_3389_fgene_2021_665498 crossref_primary_10_1016_j_ymeth_2024_04_018 crossref_primary_10_1186_s12859_023_05232_0 crossref_primary_10_1093_bfgp_elab031 crossref_primary_10_3390_genes15050603 crossref_primary_10_2174_1381612826666201124112710 crossref_primary_10_3389_fbioe_2020_627335 crossref_primary_10_2174_0929867328666210804090644 crossref_primary_10_3390_ijms232416152 crossref_primary_10_1093_bib_bbab434 crossref_primary_10_3390_diagnostics14242772 crossref_primary_10_1007_s10989_021_10280_2 crossref_primary_10_2174_1381612826666201125105730 crossref_primary_10_3389_fgene_2021_669328 crossref_primary_10_3389_fbinf_2024_1341479 crossref_primary_10_1109_TCBB_2021_3107621 crossref_primary_10_2174_0929867328666210810145806 crossref_primary_10_2174_1574893616666211007102747 crossref_primary_10_1093_bib_bbad249 crossref_primary_10_1371_journal_pone_0258793 crossref_primary_10_1093_nar_gkae872 crossref_primary_10_1049_syb2_12105 crossref_primary_10_3389_frnar_2024_1419979 crossref_primary_10_1186_s12864_024_11173_6 crossref_primary_10_3390_a18020067 crossref_primary_10_1016_j_csbj_2022_01_019 crossref_primary_10_2174_0929867328666211005140625 crossref_primary_10_1016_j_compbiomed_2022_105911 crossref_primary_10_2174_0929867328666210910125802 crossref_primary_10_1155_2020_8872329 crossref_primary_10_2174_1381612826666201102105827 crossref_primary_10_1186_s12864_024_10077_9 crossref_primary_10_2174_0929867328666210804090224 crossref_primary_10_3389_fgene_2023_1121694 crossref_primary_10_1155_2020_8845133 |
Cites_doi | 10.1109/TCBB.2017.2670558 10.1261/rna.060814.117 10.1093/bioinformatics/bty827 10.1093/database/bay085 10.1093/bioinformatics/btw564 10.3389/fmicb.2018.00476 10.3791/57774 10.4161/rna.32146 10.1016/j.omtn.2019.05.028 10.1093/bioinformatics/bty140 10.1016/j.celrep.2018.07.106 10.1093/bioinformatics/bts565 10.1007/978-1-4939-1221-6_2 10.1093/bioinformatics/btr261 10.1016/0092-8674(91)90137-N 10.2174/1574893611666160609081155 10.1093/bib/bbx165 10.1093/nar/gkz740 10.1093/bioinformatics/btx223 10.1016/j.tcb.2009.02.001 10.1074/mcp.M113.035600 10.1093/bib/bby028 10.1093/nar/gkz804 10.1016/j.omtn.2019.07.019 10.1016/j.knosys.2018.10.007 10.1038/srep19091 10.1002/pmic.201900007 10.2174/1389200219666180820112457 10.1093/bib/bbz123 10.1101/gad.190413.112 10.1093/bioinformatics/bty085 10.1016/j.cell.2019.05.027 10.3389/fimmu.2018.01695 10.1093/nar/gkw1070 10.1016/j.sbi.2018.11.001 10.1016/j.omtn.2019.08.022 10.1016/j.ymeth.2016.09.010 10.1093/bioinformatics/btx670 10.1093/bib/bbz098 10.1038/nsmb.1593 10.1093/bioinformatics/bty508 10.1016/j.molcel.2016.01.020 10.1021/acs.jproteome.8b00148 10.1093/nar/gky1270 10.3390/molecules22101732 10.1093/bioinformatics/btz337 10.3389/fgene.2019.00003 10.1093/bioinformatics/bty943 10.1109/TCBB.2018.2816032 10.1142/S1793524517500504 10.2174/1574893612666170125124538 10.1093/bib/bbz048 10.1111/j.1467-985X.2010.00676_9.x 10.1109/TCBB.2017.2666141 10.1261/rna.069112.118 10.3389/fbioe.2019.00224 10.1523/JNEUROSCI.3432-06.2006 10.1186/s13058-018-1076-x 10.1016/j.bbagrm.2018.10.017 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz177 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 535 |
ExternalDocumentID | 31994694 10_1093_bib_bbz177 10.1093/bib/bbz177 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c345t-7ae5bac9d1dd2be95baaf9da64da1ea622bed1177893074b18f27d42d1a0b10a3 |
IEDL.DBID | TOX |
ISSN | 1477-4054 1467-5463 |
IngestDate | Fri Jul 11 02:02:01 EDT 2025 Mon Jun 30 08:42:51 EDT 2025 Wed Feb 19 02:29:58 EST 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | mRNA subcellular location statistical analysis feature selection web server |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-7ae5bac9d1dd2be95baaf9da64da1ea622bed1177893074b18f27d42d1a0b10a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31994694 |
PQID | 2529967643 |
PQPubID | 26846 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2348234028 proquest_journals_2529967643 pubmed_primary_31994694 crossref_citationtrail_10_1093_bib_bbz177 crossref_primary_10_1093_bib_bbz177 oup_primary_10_1093_bib_bbz177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Chen (2021012203432034500_ref29) 2018; 34 Feng (2021012203432034500_ref33) 2019; 35 Chao (2021012203432034500_ref48) 2019; 19 Liu (2021012203432034500_ref3) 2018; 06 Cao (2021012203432034500_ref63) 2017; 22 Meyer (2021012203432034500_ref1) 2017; 118-119 Wen (2021012203432034500_ref19) 2018; 2018 Yang (2021012203432034500_ref31) 2017; 33 Lin (2021012203432034500_ref6) 2020; 48 Manavalan (2021012203432034500_ref27) 2018; 17 Song (2021012203432034500_ref40) 2019; 20 Wei (2021012203432034500_ref45) 2019; 16 Mili (2021012203432034500_ref4) 2009; 19 Liu (2021012203432034500_ref9) 2020; 48 Zuo (2021012203432034500_ref25) 2017; 33 Peer (2021012203432034500_ref12) 2018; 11 Chen (2021012203432034500_ref64) 2019; 18 Deng (2021012203432034500_ref51) 2019; 10 Long (2021012203432034500_ref43) 2019 Yu (2021012203432034500_ref44) 2018; 13 Chao (2021012203432034500_ref49) 2019; 7 Liu (2021012203432034500_ref50) Liu (2021012203432034500_ref30) 2019; 47 Zou (2021012203432034500_ref61) 2019; 25 Lin (2021012203432034500_ref34) 2019; 16 Dao (2021012203432034500_ref39) 2019; 35 Liu (2021012203432034500_ref55) 2019; 16 Didiot (2021012203432034500_ref7) 2018; 24 Lv (2021012203432034500_ref35) 2019 Katz (2021012203432034500_ref5) 2012; 26 Xu (2021012203432034500_ref57) 2019; 1862 Raveendran (2021012203432034500_ref37) 2016; 6 Ginestet (2021012203432034500_ref56) 2011; 174 Song (2021012203432034500_ref26) 2018; 34 Manavalan (2021012203432034500_ref28) 2018; 9 Lai (2021012203432034500_ref32) 2019; 17 Yang (2021012203432034500_ref41) 2019 Ru (2021012203432034500_ref65) 2019; 18 Fagerberg (2021012203432034500_ref16) 2014; 13 Benson (2021012203432034500_ref23) 2017; 45 Yan (2021012203432034500_ref60) 2019; 35 Taliaferro (2021012203432034500_ref13) 2016; 61 Chen (2021012203432034500_ref14) 2018 Ephrussi (2021012203432034500_ref2) 1991; 66 Mas-Ponte (2021012203432034500_ref20) 2017; 23 Zhang (2021012203432034500_ref18) 2017; 45 Manavalan (2021012203432034500_ref53) 2018; 9 Liu (2021012203432034500_ref46) 2019; 20 Liao (2021012203432034500_ref47) 2018; 13 Tang (2021012203432034500_ref54) 2017; 10 Yin (2021012203432034500_ref36) 2009; 16 Wen (2021012203432034500_ref52) 2018; 19 Bailey (2021012203432034500_ref58) 2011; 27 Taliaferro (2021012203432034500_ref10) 2014; 11 Ru (2021012203432034500_ref38) 2018; 53 Poon (2021012203432034500_ref15) 2006; 26 Fazal (2021012203432034500_ref17) 2019; 178 Pelekanou (2021012203432034500_ref8) 2018; 20 Zhu (2021012203432034500_ref42) 2019; 163 Cao (2021012203432034500_ref21) 2018; 34 Su (2021012203432034500_ref22) 2018; 34 Fu (2021012203432034500_ref24) 2012; 28 Ciolli Mattioli (2021012203432034500_ref11) 2019; 47 Bergalet (2021012203432034500_ref59) 2014; 825 Stephenson (2021012203432034500_ref62) 2019; 20 |
References_xml | – volume: 16 start-page: 1264 year: 2019 ident: 2021012203432034500_ref45 article-title: Fast prediction of protein methylation sites using a sequence-based feature selection technique publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2670558 – volume: 23 start-page: 1080 year: 2017 ident: 2021012203432034500_ref20 article-title: LncATLAS database for subcellular localization of long noncoding RNAs publication-title: RNA doi: 10.1261/rna.060814.117 – volume: 35 start-page: 1469 year: 2019 ident: 2021012203432034500_ref33 article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 – volume: 2018 start-page: 1 year: 2018 ident: 2021012203432034500_ref19 article-title: lncSLdb: a resource for long non-coding RNA subcellular localization publication-title: Database (Oxford) doi: 10.1093/database/bay085 – volume: 48 start-page: D871 year: 2020 ident: 2021012203432034500_ref9 article-title: DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy publication-title: Nucleic Acids Res – volume: 33 start-page: 122 year: 2017 ident: 2021012203432034500_ref25 article-title: PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw564 – volume: 9 start-page: 476 year: 2018 ident: 2021012203432034500_ref53 article-title: Sequence-based prediction of phage Virion proteins using a support vector machine publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00476 – year: 2018 ident: 2021012203432034500_ref14 article-title: Single molecule fluorescence in situ hybridization (smFISH) analysis in budding yeast vegetative growth and meiosis publication-title: J Vis Exp doi: 10.3791/57774 – volume: 11 start-page: 1040 year: 2014 ident: 2021012203432034500_ref10 article-title: Genomic analysis of RNA localization publication-title: RNA Biol doi: 10.4161/rna.32146 – volume: 17 start-page: 337 year: 2019 ident: 2021012203432034500_ref32 article-title: iProEP: a computational predictor for predicting promoter publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.05.028 – volume: 11 year: 2018 ident: 2021012203432034500_ref12 article-title: The Epitranscriptome in translation regulation publication-title: Cold Spring Harb Perspect Biol – volume: 34 start-page: 2499 year: 2018 ident: 2021012203432034500_ref29 article-title: iFeature: a python package and web server for features extraction and selection from protein and peptide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty140 – volume: 24 start-page: 2553 year: 2018 ident: 2021012203432034500_ref7 article-title: Nuclear localization of Huntingtin mRNA is specific to cells of neuronal origin publication-title: Cell Rep doi: 10.1016/j.celrep.2018.07.106 – volume: 28 start-page: 3150 year: 2012 ident: 2021012203432034500_ref24 article-title: CD-HIT: accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 825 start-page: 57 year: 2014 ident: 2021012203432034500_ref59 article-title: The functions and regulatory principles of mRNA intracellular trafficking publication-title: Syst Bio of RNA Binding Proteins doi: 10.1007/978-1-4939-1221-6_2 – volume: 27 start-page: 1653 year: 2011 ident: 2021012203432034500_ref58 article-title: DREME motif discovery in transcription factor ChIP-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr261 – volume: 66 start-page: 37 year: 1991 ident: 2021012203432034500_ref2 article-title: Oskar organizes the germ plasm and directs localization of the posterior determinant nanos publication-title: Cell doi: 10.1016/0092-8674(91)90137-N – volume: 13 start-page: 57 year: 2018 ident: 2021012203432034500_ref47 article-title: Cancer diagnosis through IsomiR expression with machine learning method publication-title: Curr Bioinforma doi: 10.2174/1574893611666160609081155 – volume: 20 start-page: 1280 year: 2019 ident: 2021012203432034500_ref46 article-title: BioSeq-analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches publication-title: Brief Bioinform doi: 10.1093/bib/bbx165 – volume: 47 start-page: e127 year: 2019 ident: 2021012203432034500_ref30 article-title: BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA, and protein sequences at sequence level and residue level based on machine learning approaches publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz740 – volume: 33 start-page: 2586 year: 2017 ident: 2021012203432034500_ref31 article-title: DMINDA 2.0: integrated and systematic views of regulatory DNA motif identification and analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx223 – volume: 19 start-page: 156 year: 2009 ident: 2021012203432034500_ref4 article-title: Macara IG. RNA localization and polarity: from a(PC) to Z(BP) publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2009.02.001 – volume: 13 start-page: 397 year: 2014 ident: 2021012203432034500_ref16 article-title: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M113.035600 – volume: 20 start-page: 638 year: 2019 ident: 2021012203432034500_ref40 article-title: iProt-sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites publication-title: Brief Bioinform doi: 10.1093/bib/bby028 – volume: 48 start-page: D189 year: 2020 ident: 2021012203432034500_ref6 article-title: RNAInter in 2020: RNA interactome repository with increased coverage and annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz804 – volume: 18 start-page: 16 year: 2019 ident: 2021012203432034500_ref65 article-title: Selecting essential MicroRNAs using a novel voting method publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.07.019 – volume: 163 start-page: 787 year: 2019 ident: 2021012203432034500_ref42 article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.007 – volume: 6 start-page: 19091 year: 2016 ident: 2021012203432034500_ref37 article-title: Biochemical characterization of Nonamer binding domain of RAG1 reveals its thymine preference with respect to length and position publication-title: Sci Rep doi: 10.1038/srep19091 – volume: 19 start-page: e1900007 year: 2019 ident: 2021012203432034500_ref48 article-title: SecProMTB: a SVM-based classifier for secretory proteins of mycobacterium tuberculosis with imbalanced data set publication-title: Proteomics doi: 10.1002/pmic.201900007 – volume: 19 start-page: 1 year: 2018 ident: 2021012203432034500_ref52 article-title: ThunderSVM: a fast SVM library on GPUs and CPUs publication-title: J Mach Learn Res – volume: 20 start-page: 185 year: 2019 ident: 2021012203432034500_ref62 article-title: Survey of machine learning techniques in drug discovery publication-title: Curr Drug Metab doi: 10.2174/1389200219666180820112457 – year: 2019 ident: 2021012203432034500_ref41 article-title: A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae publication-title: Brief Bioinform doi: 10.1093/bib/bbz123 – volume: 26 start-page: 1885 year: 2012 ident: 2021012203432034500_ref5 article-title: Beta-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration publication-title: Genes Dev doi: 10.1101/gad.190413.112 – volume: 34 start-page: 2185 year: 2018 ident: 2021012203432034500_ref21 article-title: The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty085 – volume: 178 start-page: 473 year: 2019 ident: 2021012203432034500_ref17 article-title: Atlas of subcellular RNA localization revealed by APEX-Seq publication-title: Cell doi: 10.1016/j.cell.2019.05.027 – volume: 9 start-page: 1695 year: 2018 ident: 2021012203432034500_ref28 article-title: iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction publication-title: Front Immunol doi: 10.3389/fimmu.2018.01695 – volume: 45 start-page: D37 year: 2017 ident: 2021012203432034500_ref23 article-title: GenBank publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1070 – volume: 45 start-page: D135 year: 2017 ident: 2021012203432034500_ref18 article-title: RNALocate: a resource for RNA subcellular localizations publication-title: Nucleic Acids Res – volume: 53 start-page: 178 year: 2018 ident: 2021012203432034500_ref38 article-title: Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2018.11.001 – volume: 18 start-page: 269 year: 2019 ident: 2021012203432034500_ref64 article-title: iRNA-m7G: identifying N(7)-methylguanosine sites by fusing multiple features publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.08.022 – volume: 118-119 start-page: 101 year: 2017 ident: 2021012203432034500_ref1 article-title: Simultaneous detection of the subcellular localization of RNAs and proteins in cultured cells by combined multicolor RNA-FISH and IF publication-title: Methods doi: 10.1016/j.ymeth.2016.09.010 – volume: 34 start-page: 684 year: 2018 ident: 2021012203432034500_ref26 article-title: PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx670 – ident: 2021012203432034500_ref50 article-title: DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks publication-title: Brief Bioinform doi: 10.1093/bib/bbz098 – volume: 16 start-page: 499 year: 2009 ident: 2021012203432034500_ref36 article-title: Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1593 – volume: 34 start-page: 4196 year: 2018 ident: 2021012203432034500_ref22 article-title: iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty508 – volume: 61 start-page: 821 year: 2016 ident: 2021012203432034500_ref13 article-title: Distal alternative last exons localize mRNAs to neural projections publication-title: Mol Cell doi: 10.1016/j.molcel.2016.01.020 – volume: 17 start-page: 2715 year: 2018 ident: 2021012203432034500_ref27 article-title: Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00148 – volume: 47 start-page: 2560 year: 2019 ident: 2021012203432034500_ref11 article-title: Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1270 – volume: 22 start-page: 1732 year: 2017 ident: 2021012203432034500_ref63 article-title: ProLanGO: protein function prediction using neural machine translation based on a recurrent neural network publication-title: Molecules doi: 10.3390/molecules22101732 – volume: 35 start-page: I333 year: 2019 ident: 2021012203432034500_ref60 article-title: Prediction of mRNA subcellular localization using deep recurrent neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz337 – volume: 06 start-page: 1 year: 2018 ident: 2021012203432034500_ref3 article-title: Function determinants of TET proteins: the arrangements of sequence motifs with specific codes publication-title: Brief Bioinform – volume: 10 start-page: 3 year: 2019 ident: 2021012203432034500_ref51 article-title: Predicting gene ontology function of human MicroRNAs by integrating multiple networks publication-title: Front Genet doi: 10.3389/fgene.2019.00003 – volume: 35 start-page: 2075 year: 2019 ident: 2021012203432034500_ref39 article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 – volume: 16 start-page: 1211 year: 2019 ident: 2021012203432034500_ref55 article-title: Computational prediction of sigma-54 promoters in bacterial genomes by integrating motif finding and machine learning strategies publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2018.2816032 – volume: 10 start-page: 1750050 year: 2017 ident: 2021012203432034500_ref54 article-title: A two-step discriminated method to identify thermophilic proteins publication-title: Int J Biomath doi: 10.1142/S1793524517500504 – start-page: 7794 year: 2019 ident: 2021012203432034500_ref43 article-title: Transcriptome comparisons of multi-species identify differential genome activation of mammals embryogenesis – volume: 13 start-page: 253 year: 2018 ident: 2021012203432034500_ref44 article-title: Drug and nondrug classification based on deep learning with various feature selection strategies publication-title: Curr Bioinforma doi: 10.2174/1574893612666170125124538 – year: 2019 ident: 2021012203432034500_ref35 article-title: Evaluation of different computational methods on 5-methylcytosine sites identification publication-title: Brief Bioinform doi: 10.1093/bib/bbz048 – volume: 174 start-page: 245 year: 2011 ident: 2021012203432034500_ref56 article-title: ggplot2: elegant graphics for data analysis publication-title: Journal of the Royal Statistical Society Series a-Statistics in Society doi: 10.1111/j.1467-985X.2010.00676_9.x – volume: 16 start-page: 1316 year: 2019 ident: 2021012203432034500_ref34 article-title: Identifying Sigma70 promoters with novel pseudo nucleotide composition publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2666141 – volume: 25 start-page: 205 year: 2019 ident: 2021012203432034500_ref61 article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-Methyladenosine sites from mRNA publication-title: RNA doi: 10.1261/rna.069112.118 – volume: 7 start-page: 224 year: 2019 ident: 2021012203432034500_ref49 article-title: AOPs-SVM: a sequence-based classifier of antioxidant proteins using a support vector machine publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00224 – volume: 26 start-page: 13390 year: 2006 ident: 2021012203432034500_ref15 article-title: Identification of process-localized mRNAs from cultured rodent hippocampal neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3432-06.2006 – volume: 20 start-page: 154 year: 2018 ident: 2021012203432034500_ref8 article-title: CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers publication-title: Breast Cancer Res doi: 10.1186/s13058-018-1076-x – volume: 1862 start-page: 47 year: 2019 ident: 2021012203432034500_ref57 article-title: The 3' UTR of human MAVS mRNA contains multiple regulatory elements for the control of protein expression and subcellular localization publication-title: Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms doi: 10.1016/j.bbagrm.2018.10.017 |
SSID | ssj0020781 |
Score | 2.5869915 |
Snippet | Abstract
Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating... Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 526 |
SubjectTerms | Binomial distribution Computer applications Cytoplasm Deoxyribonucleic acid DNA Gene sequencing Genetic code Homo sapiens Hybridization Localization Servers Software Support vector machines Transcriptomics Translocation Variance analysis |
Title | Design powerful predictor for mRNA subcellular location prediction in Homo sapiens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31994694 https://www.proquest.com/docview/2529967643 https://www.proquest.com/docview/2348234028 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8MwDDajMNhl7L1sXfHYLjuExnk4ybFsK2WHDkoLvQU7dqDQJqFpDtuvn5QXlJXtFsciBslGnyL5EyHP3I8FZ4lnahkGpstUbAbKs81Ea27FtpUoWVX5Tvlk4X4svWVTRFMcSOGHzlCu5FDKb-bjnXHwvsiQP_9cdmEV0tW0xKN74nuuZu_62i8UWXmT8Rk5bWAgHdV2OydHOr0gx3VjyK9LMnurCitojj3MknJN8y0mVCA-pgAy6WY2HdGilPjXHctIKXok1HArh4-rlE6yTUYLkcPxLa7IYvw-f52YTfcDM3Zcb2f6QntSxKFiStlShzAQSagEd5VgWnAbXipMuQLiABwgWZDYvnJtxYQlmSWca9JLs1TfEmpZAuaxApM7buyFIkHOHQc-mUhYQBvkpVVUFDfU4NihYh3VKWonAqVGtVIN8tTJ5jUhxkGpAej7T4F-a4qoOTVFZHvgHLkPIMkgj9007HdUp0h1VoIMsvE4EPUGBrmpTdgt4yDRMQ_du_9WvycnNtamWMxkQZ_0dttSPwC42MlBtbd-AHbuz8U |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+powerful+predictor+for+mRNA+subcellular+location+prediction+in+Homo+sapiens&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhao-Yue%2C+Zhang&rft.au=Yu-He%2C+Yang&rft.au=Ding%2C+Hui&rft.au=Wang%2C+Dong&rft.date=2021-01-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=526&rft.epage=535&rft_id=info:doi/10.1093%2Fbib%2Fbbz177&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon |