Design powerful predictor for mRNA subcellular location prediction in Homo sapiens

Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptom...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 526 - 535
Main Authors Zhang, Zhao-Yue, Yang, Yu-He, Ding, Hui, Wang, Dong, Chen, Wei, Lin, Hao
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.
AbstractList Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.
Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.
Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.
Author Chen, Wei
Yang, Yu-He
Lin, Hao
Zhang, Zhao-Yue
Wang, Dong
Ding, Hui
Author_xml – sequence: 1
  givenname: Zhao-Yue
  surname: Zhang
  fullname: Zhang, Zhao-Yue
  organization: Center for Informational Biology at University of Electronic Science and Technology of China
– sequence: 2
  givenname: Yu-He
  surname: Yang
  fullname: Yang, Yu-He
  organization: Center for Informational Biology at University of Electronic Science and Technology of China
– sequence: 3
  givenname: Hui
  surname: Ding
  fullname: Ding, Hui
  organization: Center for Informational Biology at University of Electronic Science and Technology of China
– sequence: 4
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  email: wangdong79@smu.edu.cn
  organization: Department of Bioinformatics at Southern Medical University
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: chenweiimu@gmail.com
  organization: Innovative Institute of Chinese Medicine and Pharmacy at Chengdu University of Traditional Chinese Medicine
– sequence: 6
  givenname: Hao
  surname: Lin
  fullname: Lin, Hao
  email: hlin@uestc.edu.cn
  organization: Center for Informational Biology at University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31994694$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtLwzAUx4Mo7qIvfgApiCDCXJKmTfM45mXCUBj6HJImlYy2qUmL6Kc3sxvIEB8O58LvHM45_xE4rG2tAThD8AZBFk-lkVMpvxClB2CICKUTAhNy-CsegJH3awgxpBk6BoMYMUZSRoZgdau9eaujxn5oV3Rl1DitTN5aFxXBqtXTLPKdzHVZdqVwUWlz0Rpb77hNaOpoYSsbedEYXfsTcFSI0uvTrR-D1_u7l_lisnx-eJzPlpM8Jkk7oUInUuRMIaWw1CwkomBKpEQJpEWKQ1GhcFTGYkiJRFmBqSJYIQElgiIeg6t-buPse6d9yyvjN4uKWtvOcxyTLBjEWUAv9tC17VwdtuM4wYylNCVxoM63VCcrrXjjTCXcJ999KwCwB3JnvXe64Llpf97ROmFKjiDfCMKDILwXJLRc77Xspv4JX_aw7Zr_uG-UZ5nv
CitedBy_id crossref_primary_10_3390_genes11020197
crossref_primary_10_1007_s11082_023_06272_9
crossref_primary_10_1007_s11704_021_1015_3
crossref_primary_10_3389_fcell_2021_617366
crossref_primary_10_1093_bfgp_elad007
crossref_primary_10_1155_2021_5518209
crossref_primary_10_3390_pr12040666
crossref_primary_10_1016_j_compbiomed_2022_105700
crossref_primary_10_3934_mbe_2021167
crossref_primary_10_2174_1389557522666220405202222
crossref_primary_10_3390_ijms22168719
crossref_primary_10_1007_s12672_025_01945_1
crossref_primary_10_3390_diagnostics13142465
crossref_primary_10_3390_ijms22168958
crossref_primary_10_2174_1389202923666220214122506
crossref_primary_10_1093_bfgp_elaa028
crossref_primary_10_1016_j_inffus_2021_02_015
crossref_primary_10_1155_2021_5515342
crossref_primary_10_1093_bib_bbaa275
crossref_primary_10_1093_bib_bbaa304
crossref_primary_10_1093_bib_bbad170
crossref_primary_10_1007_s11704_021_0548_9
crossref_primary_10_1007_s00726_021_02941_9
crossref_primary_10_1016_j_compbiomed_2024_108289
crossref_primary_10_1155_2020_9235920
crossref_primary_10_3389_fbioe_2020_584807
crossref_primary_10_1093_bioinformatics_btab463
crossref_primary_10_1186_s12859_021_04446_4
crossref_primary_10_1002_advs_202407013
crossref_primary_10_1016_j_ijbiomac_2022_11_299
crossref_primary_10_1093_bib_bbad209
crossref_primary_10_1093_bioinformatics_btab071
crossref_primary_10_1093_bioinformatics_btae065
crossref_primary_10_2174_0929867328666210915112030
crossref_primary_10_1109_ACCESS_2020_2991477
crossref_primary_10_1038_s41374_021_00662_x
crossref_primary_10_1093_bioinformatics_btae504
crossref_primary_10_1186_s12859_021_04264_8
crossref_primary_10_3389_fgene_2021_664860
crossref_primary_10_1155_2022_7493834
crossref_primary_10_3389_fcell_2021_664669
crossref_primary_10_3389_fbioe_2020_00201
crossref_primary_10_1186_s13007_023_01092_0
crossref_primary_10_1016_j_ymeth_2021_04_013
crossref_primary_10_1016_j_csbj_2022_07_031
crossref_primary_10_1093_bib_bbab412
crossref_primary_10_1093_bib_bbac467
crossref_primary_10_1093_bib_bbac509
crossref_primary_10_3389_fcell_2020_00472
crossref_primary_10_3390_molecules28052284
crossref_primary_10_1093_nar_gkab016
crossref_primary_10_1016_j_jobab_2024_12_005
crossref_primary_10_1038_s41398_022_02147_x
crossref_primary_10_3390_biom14091067
crossref_primary_10_1016_j_jmb_2022_167549
crossref_primary_10_1016_j_ymthe_2021_04_004
crossref_primary_10_1016_j_ab_2022_114746
crossref_primary_10_1016_j_compbiomed_2023_107243
crossref_primary_10_1186_s12859_020_03748_3
crossref_primary_10_1109_ACCESS_2020_2994206
crossref_primary_10_1016_j_ygeno_2021_06_038
crossref_primary_10_1093_nar_gkab825
crossref_primary_10_1186_s12864_020_07347_7
crossref_primary_10_3389_fgene_2021_665498
crossref_primary_10_1016_j_ymeth_2024_04_018
crossref_primary_10_1186_s12859_023_05232_0
crossref_primary_10_1093_bfgp_elab031
crossref_primary_10_3390_genes15050603
crossref_primary_10_2174_1381612826666201124112710
crossref_primary_10_3389_fbioe_2020_627335
crossref_primary_10_2174_0929867328666210804090644
crossref_primary_10_3390_ijms232416152
crossref_primary_10_1093_bib_bbab434
crossref_primary_10_3390_diagnostics14242772
crossref_primary_10_1007_s10989_021_10280_2
crossref_primary_10_2174_1381612826666201125105730
crossref_primary_10_3389_fgene_2021_669328
crossref_primary_10_3389_fbinf_2024_1341479
crossref_primary_10_1109_TCBB_2021_3107621
crossref_primary_10_2174_0929867328666210810145806
crossref_primary_10_2174_1574893616666211007102747
crossref_primary_10_1093_bib_bbad249
crossref_primary_10_1371_journal_pone_0258793
crossref_primary_10_1093_nar_gkae872
crossref_primary_10_1049_syb2_12105
crossref_primary_10_3389_frnar_2024_1419979
crossref_primary_10_1186_s12864_024_11173_6
crossref_primary_10_3390_a18020067
crossref_primary_10_1016_j_csbj_2022_01_019
crossref_primary_10_2174_0929867328666211005140625
crossref_primary_10_1016_j_compbiomed_2022_105911
crossref_primary_10_2174_0929867328666210910125802
crossref_primary_10_1155_2020_8872329
crossref_primary_10_2174_1381612826666201102105827
crossref_primary_10_1186_s12864_024_10077_9
crossref_primary_10_2174_0929867328666210804090224
crossref_primary_10_3389_fgene_2023_1121694
crossref_primary_10_1155_2020_8845133
Cites_doi 10.1109/TCBB.2017.2670558
10.1261/rna.060814.117
10.1093/bioinformatics/bty827
10.1093/database/bay085
10.1093/bioinformatics/btw564
10.3389/fmicb.2018.00476
10.3791/57774
10.4161/rna.32146
10.1016/j.omtn.2019.05.028
10.1093/bioinformatics/bty140
10.1016/j.celrep.2018.07.106
10.1093/bioinformatics/bts565
10.1007/978-1-4939-1221-6_2
10.1093/bioinformatics/btr261
10.1016/0092-8674(91)90137-N
10.2174/1574893611666160609081155
10.1093/bib/bbx165
10.1093/nar/gkz740
10.1093/bioinformatics/btx223
10.1016/j.tcb.2009.02.001
10.1074/mcp.M113.035600
10.1093/bib/bby028
10.1093/nar/gkz804
10.1016/j.omtn.2019.07.019
10.1016/j.knosys.2018.10.007
10.1038/srep19091
10.1002/pmic.201900007
10.2174/1389200219666180820112457
10.1093/bib/bbz123
10.1101/gad.190413.112
10.1093/bioinformatics/bty085
10.1016/j.cell.2019.05.027
10.3389/fimmu.2018.01695
10.1093/nar/gkw1070
10.1016/j.sbi.2018.11.001
10.1016/j.omtn.2019.08.022
10.1016/j.ymeth.2016.09.010
10.1093/bioinformatics/btx670
10.1093/bib/bbz098
10.1038/nsmb.1593
10.1093/bioinformatics/bty508
10.1016/j.molcel.2016.01.020
10.1021/acs.jproteome.8b00148
10.1093/nar/gky1270
10.3390/molecules22101732
10.1093/bioinformatics/btz337
10.3389/fgene.2019.00003
10.1093/bioinformatics/bty943
10.1109/TCBB.2018.2816032
10.1142/S1793524517500504
10.2174/1574893612666170125124538
10.1093/bib/bbz048
10.1111/j.1467-985X.2010.00676_9.x
10.1109/TCBB.2017.2666141
10.1261/rna.069112.118
10.3389/fbioe.2019.00224
10.1523/JNEUROSCI.3432-06.2006
10.1186/s13058-018-1076-x
10.1016/j.bbagrm.2018.10.017
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz177
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 535
ExternalDocumentID 31994694
10_1093_bib_bbz177
10.1093/bib/bbz177
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c345t-7ae5bac9d1dd2be95baaf9da64da1ea622bed1177893074b18f27d42d1a0b10a3
IEDL.DBID TOX
ISSN 1477-4054
1467-5463
IngestDate Fri Jul 11 02:02:01 EDT 2025
Mon Jun 30 08:42:51 EDT 2025
Wed Feb 19 02:29:58 EST 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mRNA
subcellular location
statistical analysis
feature selection
web server
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-7ae5bac9d1dd2be95baaf9da64da1ea622bed1177893074b18f27d42d1a0b10a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31994694
PQID 2529967643
PQPubID 26846
PageCount 10
ParticipantIDs proquest_miscellaneous_2348234028
proquest_journals_2529967643
pubmed_primary_31994694
crossref_citationtrail_10_1093_bib_bbz177
crossref_primary_10_1093_bib_bbz177
oup_primary_10_1093_bib_bbz177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Chen (2021012203432034500_ref29) 2018; 34
Feng (2021012203432034500_ref33) 2019; 35
Chao (2021012203432034500_ref48) 2019; 19
Liu (2021012203432034500_ref3) 2018; 06
Cao (2021012203432034500_ref63) 2017; 22
Meyer (2021012203432034500_ref1) 2017; 118-119
Wen (2021012203432034500_ref19) 2018; 2018
Yang (2021012203432034500_ref31) 2017; 33
Lin (2021012203432034500_ref6) 2020; 48
Manavalan (2021012203432034500_ref27) 2018; 17
Song (2021012203432034500_ref40) 2019; 20
Wei (2021012203432034500_ref45) 2019; 16
Mili (2021012203432034500_ref4) 2009; 19
Liu (2021012203432034500_ref9) 2020; 48
Zuo (2021012203432034500_ref25) 2017; 33
Peer (2021012203432034500_ref12) 2018; 11
Chen (2021012203432034500_ref64) 2019; 18
Deng (2021012203432034500_ref51) 2019; 10
Long (2021012203432034500_ref43) 2019
Yu (2021012203432034500_ref44) 2018; 13
Chao (2021012203432034500_ref49) 2019; 7
Liu (2021012203432034500_ref50)
Liu (2021012203432034500_ref30) 2019; 47
Zou (2021012203432034500_ref61) 2019; 25
Lin (2021012203432034500_ref34) 2019; 16
Dao (2021012203432034500_ref39) 2019; 35
Liu (2021012203432034500_ref55) 2019; 16
Didiot (2021012203432034500_ref7) 2018; 24
Lv (2021012203432034500_ref35) 2019
Katz (2021012203432034500_ref5) 2012; 26
Xu (2021012203432034500_ref57) 2019; 1862
Raveendran (2021012203432034500_ref37) 2016; 6
Ginestet (2021012203432034500_ref56) 2011; 174
Song (2021012203432034500_ref26) 2018; 34
Manavalan (2021012203432034500_ref28) 2018; 9
Lai (2021012203432034500_ref32) 2019; 17
Yang (2021012203432034500_ref41) 2019
Ru (2021012203432034500_ref65) 2019; 18
Fagerberg (2021012203432034500_ref16) 2014; 13
Benson (2021012203432034500_ref23) 2017; 45
Yan (2021012203432034500_ref60) 2019; 35
Taliaferro (2021012203432034500_ref13) 2016; 61
Chen (2021012203432034500_ref14) 2018
Ephrussi (2021012203432034500_ref2) 1991; 66
Mas-Ponte (2021012203432034500_ref20) 2017; 23
Zhang (2021012203432034500_ref18) 2017; 45
Manavalan (2021012203432034500_ref53) 2018; 9
Liu (2021012203432034500_ref46) 2019; 20
Liao (2021012203432034500_ref47) 2018; 13
Tang (2021012203432034500_ref54) 2017; 10
Yin (2021012203432034500_ref36) 2009; 16
Wen (2021012203432034500_ref52) 2018; 19
Bailey (2021012203432034500_ref58) 2011; 27
Taliaferro (2021012203432034500_ref10) 2014; 11
Ru (2021012203432034500_ref38) 2018; 53
Poon (2021012203432034500_ref15) 2006; 26
Fazal (2021012203432034500_ref17) 2019; 178
Pelekanou (2021012203432034500_ref8) 2018; 20
Zhu (2021012203432034500_ref42) 2019; 163
Cao (2021012203432034500_ref21) 2018; 34
Su (2021012203432034500_ref22) 2018; 34
Fu (2021012203432034500_ref24) 2012; 28
Ciolli Mattioli (2021012203432034500_ref11) 2019; 47
Bergalet (2021012203432034500_ref59) 2014; 825
Stephenson (2021012203432034500_ref62) 2019; 20
References_xml – volume: 16
  start-page: 1264
  year: 2019
  ident: 2021012203432034500_ref45
  article-title: Fast prediction of protein methylation sites using a sequence-based feature selection technique
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2670558
– volume: 23
  start-page: 1080
  year: 2017
  ident: 2021012203432034500_ref20
  article-title: LncATLAS database for subcellular localization of long noncoding RNAs
  publication-title: RNA
  doi: 10.1261/rna.060814.117
– volume: 35
  start-page: 1469
  year: 2019
  ident: 2021012203432034500_ref33
  article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
– volume: 2018
  start-page: 1
  year: 2018
  ident: 2021012203432034500_ref19
  article-title: lncSLdb: a resource for long non-coding RNA subcellular localization
  publication-title: Database (Oxford)
  doi: 10.1093/database/bay085
– volume: 48
  start-page: D871
  year: 2020
  ident: 2021012203432034500_ref9
  article-title: DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy
  publication-title: Nucleic Acids Res
– volume: 33
  start-page: 122
  year: 2017
  ident: 2021012203432034500_ref25
  article-title: PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw564
– volume: 9
  start-page: 476
  year: 2018
  ident: 2021012203432034500_ref53
  article-title: Sequence-based prediction of phage Virion proteins using a support vector machine
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00476
– year: 2018
  ident: 2021012203432034500_ref14
  article-title: Single molecule fluorescence in situ hybridization (smFISH) analysis in budding yeast vegetative growth and meiosis
  publication-title: J Vis Exp
  doi: 10.3791/57774
– volume: 11
  start-page: 1040
  year: 2014
  ident: 2021012203432034500_ref10
  article-title: Genomic analysis of RNA localization
  publication-title: RNA Biol
  doi: 10.4161/rna.32146
– volume: 17
  start-page: 337
  year: 2019
  ident: 2021012203432034500_ref32
  article-title: iProEP: a computational predictor for predicting promoter
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.05.028
– volume: 11
  year: 2018
  ident: 2021012203432034500_ref12
  article-title: The Epitranscriptome in translation regulation
  publication-title: Cold Spring Harb Perspect Biol
– volume: 34
  start-page: 2499
  year: 2018
  ident: 2021012203432034500_ref29
  article-title: iFeature: a python package and web server for features extraction and selection from protein and peptide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty140
– volume: 24
  start-page: 2553
  year: 2018
  ident: 2021012203432034500_ref7
  article-title: Nuclear localization of Huntingtin mRNA is specific to cells of neuronal origin
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.07.106
– volume: 28
  start-page: 3150
  year: 2012
  ident: 2021012203432034500_ref24
  article-title: CD-HIT: accelerated for clustering the next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts565
– volume: 825
  start-page: 57
  year: 2014
  ident: 2021012203432034500_ref59
  article-title: The functions and regulatory principles of mRNA intracellular trafficking
  publication-title: Syst Bio of RNA Binding Proteins
  doi: 10.1007/978-1-4939-1221-6_2
– volume: 27
  start-page: 1653
  year: 2011
  ident: 2021012203432034500_ref58
  article-title: DREME motif discovery in transcription factor ChIP-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr261
– volume: 66
  start-page: 37
  year: 1991
  ident: 2021012203432034500_ref2
  article-title: Oskar organizes the germ plasm and directs localization of the posterior determinant nanos
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90137-N
– volume: 13
  start-page: 57
  year: 2018
  ident: 2021012203432034500_ref47
  article-title: Cancer diagnosis through IsomiR expression with machine learning method
  publication-title: Curr Bioinforma
  doi: 10.2174/1574893611666160609081155
– volume: 20
  start-page: 1280
  year: 2019
  ident: 2021012203432034500_ref46
  article-title: BioSeq-analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx165
– volume: 47
  start-page: e127
  year: 2019
  ident: 2021012203432034500_ref30
  article-title: BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA, and protein sequences at sequence level and residue level based on machine learning approaches
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz740
– volume: 33
  start-page: 2586
  year: 2017
  ident: 2021012203432034500_ref31
  article-title: DMINDA 2.0: integrated and systematic views of regulatory DNA motif identification and analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx223
– volume: 19
  start-page: 156
  year: 2009
  ident: 2021012203432034500_ref4
  article-title: Macara IG. RNA localization and polarity: from a(PC) to Z(BP)
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2009.02.001
– volume: 13
  start-page: 397
  year: 2014
  ident: 2021012203432034500_ref16
  article-title: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M113.035600
– volume: 20
  start-page: 638
  year: 2019
  ident: 2021012203432034500_ref40
  article-title: iProt-sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby028
– volume: 48
  start-page: D189
  year: 2020
  ident: 2021012203432034500_ref6
  article-title: RNAInter in 2020: RNA interactome repository with increased coverage and annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz804
– volume: 18
  start-page: 16
  year: 2019
  ident: 2021012203432034500_ref65
  article-title: Selecting essential MicroRNAs using a novel voting method
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.07.019
– volume: 163
  start-page: 787
  year: 2019
  ident: 2021012203432034500_ref42
  article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.007
– volume: 6
  start-page: 19091
  year: 2016
  ident: 2021012203432034500_ref37
  article-title: Biochemical characterization of Nonamer binding domain of RAG1 reveals its thymine preference with respect to length and position
  publication-title: Sci Rep
  doi: 10.1038/srep19091
– volume: 19
  start-page: e1900007
  year: 2019
  ident: 2021012203432034500_ref48
  article-title: SecProMTB: a SVM-based classifier for secretory proteins of mycobacterium tuberculosis with imbalanced data set
  publication-title: Proteomics
  doi: 10.1002/pmic.201900007
– volume: 19
  start-page: 1
  year: 2018
  ident: 2021012203432034500_ref52
  article-title: ThunderSVM: a fast SVM library on GPUs and CPUs
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 185
  year: 2019
  ident: 2021012203432034500_ref62
  article-title: Survey of machine learning techniques in drug discovery
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200219666180820112457
– year: 2019
  ident: 2021012203432034500_ref41
  article-title: A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz123
– volume: 26
  start-page: 1885
  year: 2012
  ident: 2021012203432034500_ref5
  article-title: Beta-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration
  publication-title: Genes Dev
  doi: 10.1101/gad.190413.112
– volume: 34
  start-page: 2185
  year: 2018
  ident: 2021012203432034500_ref21
  article-title: The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty085
– volume: 178
  start-page: 473
  year: 2019
  ident: 2021012203432034500_ref17
  article-title: Atlas of subcellular RNA localization revealed by APEX-Seq
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.027
– volume: 9
  start-page: 1695
  year: 2018
  ident: 2021012203432034500_ref28
  article-title: iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01695
– volume: 45
  start-page: D37
  year: 2017
  ident: 2021012203432034500_ref23
  article-title: GenBank
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1070
– volume: 45
  start-page: D135
  year: 2017
  ident: 2021012203432034500_ref18
  article-title: RNALocate: a resource for RNA subcellular localizations
  publication-title: Nucleic Acids Res
– volume: 53
  start-page: 178
  year: 2018
  ident: 2021012203432034500_ref38
  article-title: Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2018.11.001
– volume: 18
  start-page: 269
  year: 2019
  ident: 2021012203432034500_ref64
  article-title: iRNA-m7G: identifying N(7)-methylguanosine sites by fusing multiple features
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.022
– volume: 118-119
  start-page: 101
  year: 2017
  ident: 2021012203432034500_ref1
  article-title: Simultaneous detection of the subcellular localization of RNAs and proteins in cultured cells by combined multicolor RNA-FISH and IF
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.010
– volume: 34
  start-page: 684
  year: 2018
  ident: 2021012203432034500_ref26
  article-title: PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx670
– ident: 2021012203432034500_ref50
  article-title: DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz098
– volume: 16
  start-page: 499
  year: 2009
  ident: 2021012203432034500_ref36
  article-title: Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1593
– volume: 34
  start-page: 4196
  year: 2018
  ident: 2021012203432034500_ref22
  article-title: iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty508
– volume: 61
  start-page: 821
  year: 2016
  ident: 2021012203432034500_ref13
  article-title: Distal alternative last exons localize mRNAs to neural projections
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.01.020
– volume: 17
  start-page: 2715
  year: 2018
  ident: 2021012203432034500_ref27
  article-title: Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00148
– volume: 47
  start-page: 2560
  year: 2019
  ident: 2021012203432034500_ref11
  article-title: Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1270
– volume: 22
  start-page: 1732
  year: 2017
  ident: 2021012203432034500_ref63
  article-title: ProLanGO: protein function prediction using neural machine translation based on a recurrent neural network
  publication-title: Molecules
  doi: 10.3390/molecules22101732
– volume: 35
  start-page: I333
  year: 2019
  ident: 2021012203432034500_ref60
  article-title: Prediction of mRNA subcellular localization using deep recurrent neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz337
– volume: 06
  start-page: 1
  year: 2018
  ident: 2021012203432034500_ref3
  article-title: Function determinants of TET proteins: the arrangements of sequence motifs with specific codes
  publication-title: Brief Bioinform
– volume: 10
  start-page: 3
  year: 2019
  ident: 2021012203432034500_ref51
  article-title: Predicting gene ontology function of human MicroRNAs by integrating multiple networks
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00003
– volume: 35
  start-page: 2075
  year: 2019
  ident: 2021012203432034500_ref39
  article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
– volume: 16
  start-page: 1211
  year: 2019
  ident: 2021012203432034500_ref55
  article-title: Computational prediction of sigma-54 promoters in bacterial genomes by integrating motif finding and machine learning strategies
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2816032
– volume: 10
  start-page: 1750050
  year: 2017
  ident: 2021012203432034500_ref54
  article-title: A two-step discriminated method to identify thermophilic proteins
  publication-title: Int J Biomath
  doi: 10.1142/S1793524517500504
– start-page: 7794
  year: 2019
  ident: 2021012203432034500_ref43
  article-title: Transcriptome comparisons of multi-species identify differential genome activation of mammals embryogenesis
– volume: 13
  start-page: 253
  year: 2018
  ident: 2021012203432034500_ref44
  article-title: Drug and nondrug classification based on deep learning with various feature selection strategies
  publication-title: Curr Bioinforma
  doi: 10.2174/1574893612666170125124538
– year: 2019
  ident: 2021012203432034500_ref35
  article-title: Evaluation of different computational methods on 5-methylcytosine sites identification
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz048
– volume: 174
  start-page: 245
  year: 2011
  ident: 2021012203432034500_ref56
  article-title: ggplot2: elegant graphics for data analysis
  publication-title: Journal of the Royal Statistical Society Series a-Statistics in Society
  doi: 10.1111/j.1467-985X.2010.00676_9.x
– volume: 16
  start-page: 1316
  year: 2019
  ident: 2021012203432034500_ref34
  article-title: Identifying Sigma70 promoters with novel pseudo nucleotide composition
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2666141
– volume: 25
  start-page: 205
  year: 2019
  ident: 2021012203432034500_ref61
  article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-Methyladenosine sites from mRNA
  publication-title: RNA
  doi: 10.1261/rna.069112.118
– volume: 7
  start-page: 224
  year: 2019
  ident: 2021012203432034500_ref49
  article-title: AOPs-SVM: a sequence-based classifier of antioxidant proteins using a support vector machine
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00224
– volume: 26
  start-page: 13390
  year: 2006
  ident: 2021012203432034500_ref15
  article-title: Identification of process-localized mRNAs from cultured rodent hippocampal neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3432-06.2006
– volume: 20
  start-page: 154
  year: 2018
  ident: 2021012203432034500_ref8
  article-title: CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-018-1076-x
– volume: 1862
  start-page: 47
  year: 2019
  ident: 2021012203432034500_ref57
  article-title: The 3' UTR of human MAVS mRNA contains multiple regulatory elements for the control of protein expression and subcellular localization
  publication-title: Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms
  doi: 10.1016/j.bbagrm.2018.10.017
SSID ssj0020781
Score 2.5869915
Snippet Abstract Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating...
Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 526
SubjectTerms Binomial distribution
Computer applications
Cytoplasm
Deoxyribonucleic acid
DNA
Gene sequencing
Genetic code
Homo sapiens
Hybridization
Localization
Servers
Software
Support vector machines
Transcriptomics
Translocation
Variance analysis
Title Design powerful predictor for mRNA subcellular location prediction in Homo sapiens
URI https://www.ncbi.nlm.nih.gov/pubmed/31994694
https://www.proquest.com/docview/2529967643
https://www.proquest.com/docview/2348234028
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8MwDDajMNhl7L1sXfHYLjuExnk4ybFsK2WHDkoLvQU7dqDQJqFpDtuvn5QXlJXtFsciBslGnyL5EyHP3I8FZ4lnahkGpstUbAbKs81Ea27FtpUoWVX5Tvlk4X4svWVTRFMcSOGHzlCu5FDKb-bjnXHwvsiQP_9cdmEV0tW0xKN74nuuZu_62i8UWXmT8Rk5bWAgHdV2OydHOr0gx3VjyK9LMnurCitojj3MknJN8y0mVCA-pgAy6WY2HdGilPjXHctIKXok1HArh4-rlE6yTUYLkcPxLa7IYvw-f52YTfcDM3Zcb2f6QntSxKFiStlShzAQSagEd5VgWnAbXipMuQLiABwgWZDYvnJtxYQlmSWca9JLs1TfEmpZAuaxApM7buyFIkHOHQc-mUhYQBvkpVVUFDfU4NihYh3VKWonAqVGtVIN8tTJ5jUhxkGpAej7T4F-a4qoOTVFZHvgHLkPIMkgj9007HdUp0h1VoIMsvE4EPUGBrmpTdgt4yDRMQ_du_9WvycnNtamWMxkQZ_0dttSPwC42MlBtbd-AHbuz8U
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+powerful+predictor+for+mRNA+subcellular+location+prediction+in+Homo+sapiens&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhao-Yue%2C+Zhang&rft.au=Yu-He%2C+Yang&rft.au=Ding%2C+Hui&rft.au=Wang%2C+Dong&rft.date=2021-01-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=526&rft.epage=535&rft_id=info:doi/10.1093%2Fbib%2Fbbz177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon