Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore

•Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 273; p. 114917
Main Authors Troitzsch, Sebastian, Sreepathi, Bhargava Krishna, Huynh, Thanh Phong, Moine, Aurelie, Hanif, Sarmad, Fonseca, Jimeno, Hamacher, Thomas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2020.114917

Cover

Abstract •Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district in Singapore.•Up to 36.3% reduction in investment cost and 0.81% reduction in total cost. The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility.
AbstractList The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility.
•Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district in Singapore.•Up to 36.3% reduction in investment cost and 0.81% reduction in total cost. The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility.
ArticleNumber 114917
Author Moine, Aurelie
Troitzsch, Sebastian
Hanif, Sarmad
Hamacher, Thomas
Sreepathi, Bhargava Krishna
Fonseca, Jimeno
Huynh, Thanh Phong
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Troitzsch
  fullname: Troitzsch, Sebastian
  email: sebastian.troitzsch@tum-create.edu.sg
  organization: TUMCREATE, Singapore
– sequence: 2
  givenname: Bhargava Krishna
  surname: Sreepathi
  fullname: Sreepathi, Bhargava Krishna
  organization: Singapore-ETH Centre, Singapore
– sequence: 3
  givenname: Thanh Phong
  surname: Huynh
  fullname: Huynh, Thanh Phong
  organization: TUMCREATE, Singapore
– sequence: 4
  givenname: Aurelie
  surname: Moine
  fullname: Moine, Aurelie
  organization: TUMCREATE, Singapore
– sequence: 5
  givenname: Sarmad
  surname: Hanif
  fullname: Hanif, Sarmad
  organization: Pacific Northwest National Laboratory, USA
– sequence: 6
  givenname: Jimeno
  surname: Fonseca
  fullname: Fonseca, Jimeno
  organization: Singapore-ETH Centre, Singapore
– sequence: 7
  givenname: Thomas
  surname: Hamacher
  fullname: Hamacher, Thomas
  organization: Technical University of Munich (TUM), Germany
BookMark eNqFUcFuEzEQtVCRSEt_AfnIZVPb2fXuShxAFdBKlXqAni3HHoeJHHuxHUT-gY_GVuDSS08zmnnvaea9S3IRYgBC3nG25ozLm_1aLxAg7U5rwUQd8n7m4yuy4tMoupnz6YKs2IbJTkg-vyGXOe8ZY4ILtiJ_HpeCB-0peDAloeks5lq3x4IxdLuEli5eh4BhR00MGS2k1pcfQC0cdLBdm1Hn4Tdu0WM50ejaOjXZ7RG9bfh8ygUOmbqYqKYFcqFGZ6AY6Le610tM8Ja8dtpnuP5Xr8jTl8_fb--6h8ev97efHjqz6YfSSc0d45OdjDTDPLOpl3YcJbBeDsIaZ2bnJDfc6Zk7oWcrteADH7diENr0YnNF3p91lxR_Husp6oDZgK9_QjxmJfoqJ6pjDfrhDDUp5pzAKYNFN29K0ugVZ6qFoPbqfwiqhaDOIVS6fEZfUrU7nV4mfjwTofrwCyGpbBCCAYupBqVsxJck_gJNL6sw
CitedBy_id crossref_primary_10_3390_en14123673
crossref_primary_10_1016_j_scs_2023_104437
crossref_primary_10_1016_j_energy_2024_130691
crossref_primary_10_1016_j_est_2022_105454
crossref_primary_10_3390_en14248482
crossref_primary_10_1016_j_enbuild_2021_111354
crossref_primary_10_1016_j_esr_2023_101256
crossref_primary_10_1016_j_adapen_2024_100167
crossref_primary_10_1016_j_eng_2022_01_010
crossref_primary_10_1016_j_apenergy_2020_116418
crossref_primary_10_1016_j_cie_2021_107900
crossref_primary_10_1016_j_est_2025_115850
crossref_primary_10_1016_j_rser_2021_111892
crossref_primary_10_3389_fenrg_2021_632992
crossref_primary_10_1007_s12273_024_1208_4
crossref_primary_10_1016_j_energy_2020_119729
crossref_primary_10_1016_j_esr_2023_101250
crossref_primary_10_1016_j_enconman_2024_118949
crossref_primary_10_1016_j_segan_2022_100654
crossref_primary_10_3389_fenrg_2024_1361919
crossref_primary_10_1016_j_enbuild_2021_111176
crossref_primary_10_1016_j_ijepes_2024_110215
crossref_primary_10_1016_j_apenergy_2022_118692
crossref_primary_10_2139_ssrn_4187012
Cites_doi 10.1109/PTC.2015.7232360
10.1016/j.apenergy.2012.10.037
10.1109/TSG.2016.2628897
10.21105/joss.00884
10.1109/TSG.2011.2168431
10.1016/j.energy.2017.06.025
10.1016/j.epsr.2014.12.010
10.1109/TPWRD.2008.917916
10.1109/TSG.2012.2195686
10.23919/ECC.2013.6669762
10.1007/s12667-012-0073-x
10.1109/UPEC.2018.8542054
10.1016/j.enbuild.2015.11.055
10.1109/TSG.2016.2519541
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114917
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114917
S0306261920304293
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-6a1f018d8c6c5990846d776e04652dcfc9ff61c1fa91f2a9d6a21517b252ac423
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Fri Sep 05 12:33:02 EDT 2025
Tue Jul 01 02:53:52 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimal planning and operation
Demand-side flexibility
Power system planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-6a1f018d8c6c5990846d776e04652dcfc9ff61c1fa91f2a9d6a21517b252ac423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2477623062
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2477623062
crossref_citationtrail_10_1016_j_apenergy_2020_114917
crossref_primary_10_1016_j_apenergy_2020_114917
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ganguly, Sahoo, Das (b0045) 2013; 4
BCA Building and Construction Authority. BCA Building Energy Benchmarking Report 2018; 2018.
Troitzsch, Hanif, Hamacher (b0070) 2018
Lannoye, Flynn, O’Malley (b0055) 2011
Oldewurtel, Parisio, Jones, Morari, Gyalistras, Gwerder (b0035) 2010
Wolisz, Schütz, Blanke, Hagenkamp, Kohrn, Wesseling (b0080) 2017; 137
Park (b0095) 2010
Willis (b0100) 1997
EMA Energy Market Authority. Singapore Energy Statistics 2018; 2018.
Dena Deutsche Energie-Agentur. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030; 2012.
Haffner, Pereira, Pereira, Barreto (b0065) 2008; 23
Vrettos E, Kara EC, MacDonald J, Andersson G, Callaway DS. Experimental demonstration of frequency regulation by commercial buildings - Part I: modeling and hierarchical control design. IEEE Trans Smart Grid.
Trpovski A, Recalde D, Hamacher T. Synthetic distribution grid generation using power system planning: case study of Singapore. In: Int. Univ. Power Eng. Conf.; 2018. doi: 10.1109/UPEC.2018.8542054.
Hanif, Gruentgens, Massier, Hamacher, Reindl (b0010) 2016
J. Kim, Y. Dvorkin, Peer-to-peer energy trading in distribution systems, arXiv Preprint (arXiv:1902.03940).
van Beuzekom I, Gibescu M, Slootweg J. A review of multi-energy system planning and optimization tools for sustainable urban development. In: IEEE PowerTech. Eindhoven, Netherlands: IEEE; 2015. doi: 10.1109/PTC.2015.7232360.
Sundstrom, Binding (b0020) 2012; 3
.
Chua, Chou, Yang, Yan (b0030) 2013; 104
Fonseca, Schlueter, Nguyen, Marechal (b0115) 2016; 113
Kersting (b0005) 2001
Georgilakis, Hatziargyriou (b0050) 2015; 121
Atia, Yamada (b0015) 2016; 7
Vrettos E, Lai K, Oldewurtel F, Andersson G. Predictive Control of buildings for Demand Response with dynamic day-ahead and real-time prices. In: Eur. Control Conf., Zurich, Switzerland; 2013.
Logenthiran T, Srinivasan D, Shun TZ. Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3). doi: 10.1109/TSG.2012.2195686.
Holmgren, Hansen, Mikofski (b0125) 2018; 3
Atia (10.1016/j.apenergy.2020.114917_b0015) 2016; 7
10.1016/j.apenergy.2020.114917_b0120
10.1016/j.apenergy.2020.114917_b0105
10.1016/j.apenergy.2020.114917_b0025
10.1016/j.apenergy.2020.114917_b0060
Holmgren (10.1016/j.apenergy.2020.114917_b0125) 2018; 3
Chua (10.1016/j.apenergy.2020.114917_b0030) 2013; 104
10.1016/j.apenergy.2020.114917_b0085
Sundstrom (10.1016/j.apenergy.2020.114917_b0020) 2012; 3
10.1016/j.apenergy.2020.114917_b0040
Hanif (10.1016/j.apenergy.2020.114917_b0010) 2016
Willis (10.1016/j.apenergy.2020.114917_b0100) 1997
Ganguly (10.1016/j.apenergy.2020.114917_b0045) 2013; 4
Wolisz (10.1016/j.apenergy.2020.114917_b0080) 2017; 137
Troitzsch (10.1016/j.apenergy.2020.114917_b0070) 2018
Park (10.1016/j.apenergy.2020.114917_b0095) 2010
Oldewurtel (10.1016/j.apenergy.2020.114917_b0035) 2010
Lannoye (10.1016/j.apenergy.2020.114917_b0055) 2011
10.1016/j.apenergy.2020.114917_b0110
10.1016/j.apenergy.2020.114917_b0090
Georgilakis (10.1016/j.apenergy.2020.114917_b0050) 2015; 121
10.1016/j.apenergy.2020.114917_b0075
Haffner (10.1016/j.apenergy.2020.114917_b0065) 2008; 23
Fonseca (10.1016/j.apenergy.2020.114917_b0115) 2016; 113
Kersting (10.1016/j.apenergy.2020.114917_b0005) 2001
References_xml – volume: 7
  start-page: 1204
  year: 2016
  end-page: 1213
  ident: b0015
  article-title: Sizing and analysis of renewable energy and battery systems in residential microgrids
  publication-title: IEEE Trans Smart Grid
– year: 2010
  ident: b0095
  publication-title: Contemp Eng Econ
– volume: 137
  start-page: 715
  year: 2017
  end-page: 728
  ident: b0080
  article-title: Cost optimal sizing of smart buildings’ energy system components considering changing end-consumer electricity markets
  publication-title: Energy
– reference: BCA Building and Construction Authority. BCA Building Energy Benchmarking Report 2018; 2018.
– year: 2001
  ident: b0005
  article-title: Distribution system modeling and analysis
– volume: 3
  start-page: 884
  year: 2018
  ident: b0125
  article-title: pvlib python: a python package for modeling solar energy systems
  publication-title: J Open Source Softw
– volume: 3
  start-page: 26
  year: 2012
  end-page: 37
  ident: b0020
  article-title: Flexible charging optimization for electric vehicles considering distribution grid constraints
  publication-title: IEEE Trans Smart Grid
– volume: 4
  start-page: 165
  year: 2013
  end-page: 193
  ident: b0045
  article-title: Recent advances on power distribution system planning: a state-of-the-art survey
  publication-title: Energy Syst
– year: 2016
  ident: b0010
  article-title: Cost-optimal operation for a flexible building with local PV in a Singaporean environment
  publication-title: IEEE PES innov. smart grid technol. conf.
– reference: Vrettos E, Kara EC, MacDonald J, Andersson G, Callaway DS. Experimental demonstration of frequency regulation by commercial buildings - Part I: modeling and hierarchical control design. IEEE Trans Smart Grid.
– year: 1997
  ident: b0100
  article-title: Power distribution planning reference book
– start-page: 5100
  year: 2010
  end-page: 5105
  ident: b0035
  article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions
  publication-title: Am. Control Conf.
– volume: 104
  start-page: 87
  year: 2013
  end-page: 104
  ident: b0030
  article-title: Achieving better energy-efficient air conditioning - a review of technologies and strategies
  publication-title: Appl Energy
– year: 2018
  ident: b0070
  article-title: Distributed robust reserve scheduling in congested distribution systems
  publication-title: IEEE PES Gen. Meet.
– volume: 113
  start-page: 202
  year: 2016
  end-page: 226
  ident: b0115
  article-title: City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts
  publication-title: Energy Build
– reference: Vrettos E, Lai K, Oldewurtel F, Andersson G. Predictive Control of buildings for Demand Response with dynamic day-ahead and real-time prices. In: Eur. Control Conf., Zurich, Switzerland; 2013.
– reference: van Beuzekom I, Gibescu M, Slootweg J. A review of multi-energy system planning and optimization tools for sustainable urban development. In: IEEE PowerTech. Eindhoven, Netherlands: IEEE; 2015. doi: 10.1109/PTC.2015.7232360.
– reference: EMA Energy Market Authority. Singapore Energy Statistics 2018; 2018.
– reference: J. Kim, Y. Dvorkin, Peer-to-peer energy trading in distribution systems, arXiv Preprint (arXiv:1902.03940).
– reference: .
– volume: 23
  start-page: 915
  year: 2008
  end-page: 923
  ident: b0065
  article-title: Multistage model for distribution expansion planning with distributed generation-part i: problem formulation
  publication-title: IEEE Trans Power Delivery
– reference: Logenthiran T, Srinivasan D, Shun TZ. Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3). doi: 10.1109/TSG.2012.2195686.
– reference: Dena Deutsche Energie-Agentur. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030; 2012.
– year: 2011
  ident: b0055
  article-title: The role of power system flexibility in generation planning
  publication-title: IEEE PES Gen. Meet.
– volume: 121
  start-page: 89
  year: 2015
  end-page: 100
  ident: b0050
  article-title: A review of power distribution planning in the modern power systems era: models, methods and future research
  publication-title: Electr Power Syst Res
– reference: Trpovski A, Recalde D, Hamacher T. Synthetic distribution grid generation using power system planning: case study of Singapore. In: Int. Univ. Power Eng. Conf.; 2018. doi: 10.1109/UPEC.2018.8542054.
– ident: 10.1016/j.apenergy.2020.114917_b0060
  doi: 10.1109/PTC.2015.7232360
– volume: 104
  start-page: 87
  year: 2013
  ident: 10.1016/j.apenergy.2020.114917_b0030
  article-title: Achieving better energy-efficient air conditioning - a review of technologies and strategies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.10.037
– ident: 10.1016/j.apenergy.2020.114917_b0105
– ident: 10.1016/j.apenergy.2020.114917_b0025
  doi: 10.1109/TSG.2016.2628897
– volume: 3
  start-page: 884
  issue: 29
  year: 2018
  ident: 10.1016/j.apenergy.2020.114917_b0125
  article-title: pvlib python: a python package for modeling solar energy systems
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00884
– year: 2011
  ident: 10.1016/j.apenergy.2020.114917_b0055
  article-title: The role of power system flexibility in generation planning
– year: 2016
  ident: 10.1016/j.apenergy.2020.114917_b0010
  article-title: Cost-optimal operation for a flexible building with local PV in a Singaporean environment
– ident: 10.1016/j.apenergy.2020.114917_b0085
– volume: 3
  start-page: 26
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2020.114917_b0020
  article-title: Flexible charging optimization for electric vehicles considering distribution grid constraints
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2168431
– year: 2018
  ident: 10.1016/j.apenergy.2020.114917_b0070
  article-title: Distributed robust reserve scheduling in congested distribution systems
– volume: 137
  start-page: 715
  year: 2017
  ident: 10.1016/j.apenergy.2020.114917_b0080
  article-title: Cost optimal sizing of smart buildings’ energy system components considering changing end-consumer electricity markets
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.025
– volume: 121
  start-page: 89
  year: 2015
  ident: 10.1016/j.apenergy.2020.114917_b0050
  article-title: A review of power distribution planning in the modern power systems era: models, methods and future research
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2014.12.010
– volume: 23
  start-page: 915
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2020.114917_b0065
  article-title: Multistage model for distribution expansion planning with distributed generation-part i: problem formulation
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2008.917916
– ident: 10.1016/j.apenergy.2020.114917_b0075
  doi: 10.1109/TSG.2012.2195686
– ident: 10.1016/j.apenergy.2020.114917_b0040
  doi: 10.23919/ECC.2013.6669762
– year: 2001
  ident: 10.1016/j.apenergy.2020.114917_b0005
– volume: 4
  start-page: 165
  year: 2013
  ident: 10.1016/j.apenergy.2020.114917_b0045
  article-title: Recent advances on power distribution system planning: a state-of-the-art survey
  publication-title: Energy Syst
  doi: 10.1007/s12667-012-0073-x
– ident: 10.1016/j.apenergy.2020.114917_b0110
– start-page: 5100
  year: 2010
  ident: 10.1016/j.apenergy.2020.114917_b0035
  article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions
– year: 2010
  ident: 10.1016/j.apenergy.2020.114917_b0095
  publication-title: Contemp Eng Econ
– ident: 10.1016/j.apenergy.2020.114917_b0090
  doi: 10.1109/UPEC.2018.8542054
– year: 1997
  ident: 10.1016/j.apenergy.2020.114917_b0100
– volume: 113
  start-page: 202
  year: 2016
  ident: 10.1016/j.apenergy.2020.114917_b0115
  article-title: City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.055
– ident: 10.1016/j.apenergy.2020.114917_b0120
– volume: 7
  start-page: 1204
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2020.114917_b0015
  article-title: Sizing and analysis of renewable energy and battery systems in residential microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2519541
SSID ssj0002120
Score 2.4519372
Snippet •Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side...
The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114917
SubjectTerms air conditioning
cost effectiveness
Demand-side flexibility
electricity
heat
operating costs
Optimal planning and operation
Power system planning
quadratic programming
Singapore
topology
urban planning
utilities
Title Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore
URI https://dx.doi.org/10.1016/j.apenergy.2020.114917
https://www.proquest.com/docview/2477623062
Volume 273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcmkPqNCiAgW5Uq9m106cjY8IgRaq0gNF4mY5flRBJbvaXQ5c-gv6o5lJHB4VEgduieMZRX7MfCN75gP4Zkd5zDD04V6VFc9FELwsNQYrTilESd5nGeU7_zgvJpf52ZW6WoGjPheGrlUm29_Z9NZap5ZhGs3hrK6HF4R2W_xPp3votVZhTWa6UANYOzz9Pjl_MMgyVWfE_pwEniQKXx_YWWiT7DBUlG3lXN1yl73oo_6z1q0LOvkA6wk7ssPu9zZgJTSb8P5JRcFN2Dp-TFzDrmnnLj7Cv59oG26wqeO9qR33VDI3sV3x3_Pas1kiMGIusXjSMwJE5sONbTynNhapgmZ7o_aOTSN9npPaKtFrs6409IIhGGaWIZBdMoeektUNuyD6bcT74RNcnhz_OprwxMTAXZarJS-siCNR-tIVTqH_QtDix-MiYHCtpHfR6RgL4US0WkRptS8sQYlxJZW0DhHbFgyaaRM-AxuhjlElggpO01lymUWN2q2KiG1sVW2D6sfeuFSmnNgy_pj-Ptq16efM0JyZbs62YfggN-sKdbwqofupNc-WnEFv8qrs134tGNyPdMhimzC9XRiZ48BQXCd33qB_F97RW3eZ7QsMlvPbsIfoZ1ntw-rBX7Gf1vg9b-gIOA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFECBOMWNkWjNbg5nkxIh0HIXgERnOT5QVpBd7S4FDV_ARzOTOFxCoqCLfCny2DNv5Jl5APuqHbsIXR9uRJrzOLABT9MMnRUtBKIkY6KI8p0vr5LuXXx2L-4n4KjJhaGwSq_7a51eaWvf0vK72RoUReuG0G6F_-l1D63WJEzHIupQXN_B62ecR-hrM-JoTsO_pAn3DtTAVil26CiGVd3crGIu-9VC_dDVlQE6WYB5jxzZYf1zizBhyyWY-1JPcAlWjz_T1nCov7ejZXi7Rs3whE01602huaGCuZ7rij8MC8MGnr6Iac_hSd8ID5mxT6o0nNqYo_qZVTztC-s76h7Ssrkn12Z1YegRQyjMFEMYO2Ya7SQrSnZD5NuI9u0K3J0c3x51uedh4DqKxZgnKnDtIDWpTrRA64WQxXQ6iUXXWoRGO505lwQ6cCoLXKgykygCEp08FKHSiNdWYarsl3YNWBvXaOeBFVZn9JKcRi7D1ZVwiGxUnq-DaPZeal-knLgyHmUTjdaTjcwkyUzWMluH1se8QV2m488ZWSNa-e3ASbQlf87da86CxNtITyyqtP3nkQxj3Bjy6sKNf6y_CzPd28sLeXF6db4Js9RTh7VtwdR4-Gy3EQeN853qnL8Dtn8JAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electric-distribution-grid+planning+considering+the+demand-side+flexibility+of+thermal+building+systems+for+a+test+case+in+Singapore&rft.jtitle=Applied+energy&rft.au=Troitzsch%2C+Sebastian&rft.au=Sreepathi%2C+Bhargava+Krishna&rft.au=Huynh%2C+Thanh+Phong&rft.au=Moine%2C+Aurelie&rft.date=2020-09-01&rft.issn=0306-2619&rft.volume=273&rft.spage=114917&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114917&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon