Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore
•Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district...
Saved in:
Published in | Applied energy Vol. 273; p. 114917 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2020.114917 |
Cover
Abstract | •Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district in Singapore.•Up to 36.3% reduction in investment cost and 0.81% reduction in total cost.
The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility. |
---|---|
AbstractList | The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility. •Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side flexibility.•Integrated problem formulated as a single-stage, mixed-integer quadratic program.•Tested for a real-world, green-field test case based on a district in Singapore.•Up to 36.3% reduction in investment cost and 0.81% reduction in total cost. The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of peak load conditions. With the advent of demand-side flexibility, there is the opportunity to reshape peak loads such that the investment cost of the electric grid decreases, in exchange for a minor increase in the operating cost. To this end, there exists a gap in formulating the trade-off between investment cost and operating cost, and a unsatisfactory understanding of the potential cost savings. This paper formulates a numerical optimization problem for the planning of the electric distribution grid, which incorporates the demand-side flexibility from thermal building systems, e.g., heating, ventilation and air-conditioning systems. The problem is formulated as a single-stage, mixed-integer quadratic program and aims at minimizing the investment cost for the grid along with the operating cost of the flexible loads. This is subject to the fixed electricity demand and thermal-comfort constraints of building occupants. The approach is tested on a district planning test case based in Singapore, where the results show reductions of up to 36.3% in investment cost and reductions of up to 0.81% in total annualized cost. Urban planning authorities, developers and utility companies can all benefit from the presented approach to make optimized investment decisions. For building operators, the results point to the need to adopt control systems for demand-side flexibility. |
ArticleNumber | 114917 |
Author | Moine, Aurelie Troitzsch, Sebastian Hanif, Sarmad Hamacher, Thomas Sreepathi, Bhargava Krishna Fonseca, Jimeno Huynh, Thanh Phong |
Author_xml | – sequence: 1 givenname: Sebastian surname: Troitzsch fullname: Troitzsch, Sebastian email: sebastian.troitzsch@tum-create.edu.sg organization: TUMCREATE, Singapore – sequence: 2 givenname: Bhargava Krishna surname: Sreepathi fullname: Sreepathi, Bhargava Krishna organization: Singapore-ETH Centre, Singapore – sequence: 3 givenname: Thanh Phong surname: Huynh fullname: Huynh, Thanh Phong organization: TUMCREATE, Singapore – sequence: 4 givenname: Aurelie surname: Moine fullname: Moine, Aurelie organization: TUMCREATE, Singapore – sequence: 5 givenname: Sarmad surname: Hanif fullname: Hanif, Sarmad organization: Pacific Northwest National Laboratory, USA – sequence: 6 givenname: Jimeno surname: Fonseca fullname: Fonseca, Jimeno organization: Singapore-ETH Centre, Singapore – sequence: 7 givenname: Thomas surname: Hamacher fullname: Hamacher, Thomas organization: Technical University of Munich (TUM), Germany |
BookMark | eNqFUcFuEzEQtVCRSEt_AfnIZVPb2fXuShxAFdBKlXqAni3HHoeJHHuxHUT-gY_GVuDSS08zmnnvaea9S3IRYgBC3nG25ozLm_1aLxAg7U5rwUQd8n7m4yuy4tMoupnz6YKs2IbJTkg-vyGXOe8ZY4ILtiJ_HpeCB-0peDAloeks5lq3x4IxdLuEli5eh4BhR00MGS2k1pcfQC0cdLBdm1Hn4Tdu0WM50ejaOjXZ7RG9bfh8ygUOmbqYqKYFcqFGZ6AY6Le610tM8Ja8dtpnuP5Xr8jTl8_fb--6h8ev97efHjqz6YfSSc0d45OdjDTDPLOpl3YcJbBeDsIaZ2bnJDfc6Zk7oWcrteADH7diENr0YnNF3p91lxR_Husp6oDZgK9_QjxmJfoqJ6pjDfrhDDUp5pzAKYNFN29K0ugVZ6qFoPbqfwiqhaDOIVS6fEZfUrU7nV4mfjwTofrwCyGpbBCCAYupBqVsxJck_gJNL6sw |
CitedBy_id | crossref_primary_10_3390_en14123673 crossref_primary_10_1016_j_scs_2023_104437 crossref_primary_10_1016_j_energy_2024_130691 crossref_primary_10_1016_j_est_2022_105454 crossref_primary_10_3390_en14248482 crossref_primary_10_1016_j_enbuild_2021_111354 crossref_primary_10_1016_j_esr_2023_101256 crossref_primary_10_1016_j_adapen_2024_100167 crossref_primary_10_1016_j_eng_2022_01_010 crossref_primary_10_1016_j_apenergy_2020_116418 crossref_primary_10_1016_j_cie_2021_107900 crossref_primary_10_1016_j_est_2025_115850 crossref_primary_10_1016_j_rser_2021_111892 crossref_primary_10_3389_fenrg_2021_632992 crossref_primary_10_1007_s12273_024_1208_4 crossref_primary_10_1016_j_energy_2020_119729 crossref_primary_10_1016_j_esr_2023_101250 crossref_primary_10_1016_j_enconman_2024_118949 crossref_primary_10_1016_j_segan_2022_100654 crossref_primary_10_3389_fenrg_2024_1361919 crossref_primary_10_1016_j_enbuild_2021_111176 crossref_primary_10_1016_j_ijepes_2024_110215 crossref_primary_10_1016_j_apenergy_2022_118692 crossref_primary_10_2139_ssrn_4187012 |
Cites_doi | 10.1109/PTC.2015.7232360 10.1016/j.apenergy.2012.10.037 10.1109/TSG.2016.2628897 10.21105/joss.00884 10.1109/TSG.2011.2168431 10.1016/j.energy.2017.06.025 10.1016/j.epsr.2014.12.010 10.1109/TPWRD.2008.917916 10.1109/TSG.2012.2195686 10.23919/ECC.2013.6669762 10.1007/s12667-012-0073-x 10.1109/UPEC.2018.8542054 10.1016/j.enbuild.2015.11.055 10.1109/TSG.2016.2519541 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2020.114917 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2020_114917 S0306261920304293 |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-6a1f018d8c6c5990846d776e04652dcfc9ff61c1fa91f2a9d6a21517b252ac423 |
IEDL.DBID | AIKHN |
ISSN | 0306-2619 |
IngestDate | Fri Sep 05 12:33:02 EDT 2025 Tue Jul 01 02:53:52 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:46:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optimal planning and operation Demand-side flexibility Power system planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-6a1f018d8c6c5990846d776e04652dcfc9ff61c1fa91f2a9d6a21517b252ac423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2477623062 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2477623062 crossref_citationtrail_10_1016_j_apenergy_2020_114917 crossref_primary_10_1016_j_apenergy_2020_114917 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ganguly, Sahoo, Das (b0045) 2013; 4 BCA Building and Construction Authority. BCA Building Energy Benchmarking Report 2018; 2018. Troitzsch, Hanif, Hamacher (b0070) 2018 Lannoye, Flynn, O’Malley (b0055) 2011 Oldewurtel, Parisio, Jones, Morari, Gyalistras, Gwerder (b0035) 2010 Wolisz, Schütz, Blanke, Hagenkamp, Kohrn, Wesseling (b0080) 2017; 137 Park (b0095) 2010 Willis (b0100) 1997 EMA Energy Market Authority. Singapore Energy Statistics 2018; 2018. Dena Deutsche Energie-Agentur. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030; 2012. Haffner, Pereira, Pereira, Barreto (b0065) 2008; 23 Vrettos E, Kara EC, MacDonald J, Andersson G, Callaway DS. Experimental demonstration of frequency regulation by commercial buildings - Part I: modeling and hierarchical control design. IEEE Trans Smart Grid. Trpovski A, Recalde D, Hamacher T. Synthetic distribution grid generation using power system planning: case study of Singapore. In: Int. Univ. Power Eng. Conf.; 2018. doi: 10.1109/UPEC.2018.8542054. Hanif, Gruentgens, Massier, Hamacher, Reindl (b0010) 2016 J. Kim, Y. Dvorkin, Peer-to-peer energy trading in distribution systems, arXiv Preprint (arXiv:1902.03940). van Beuzekom I, Gibescu M, Slootweg J. A review of multi-energy system planning and optimization tools for sustainable urban development. In: IEEE PowerTech. Eindhoven, Netherlands: IEEE; 2015. doi: 10.1109/PTC.2015.7232360. Sundstrom, Binding (b0020) 2012; 3 . Chua, Chou, Yang, Yan (b0030) 2013; 104 Fonseca, Schlueter, Nguyen, Marechal (b0115) 2016; 113 Kersting (b0005) 2001 Georgilakis, Hatziargyriou (b0050) 2015; 121 Atia, Yamada (b0015) 2016; 7 Vrettos E, Lai K, Oldewurtel F, Andersson G. Predictive Control of buildings for Demand Response with dynamic day-ahead and real-time prices. In: Eur. Control Conf., Zurich, Switzerland; 2013. Logenthiran T, Srinivasan D, Shun TZ. Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3). doi: 10.1109/TSG.2012.2195686. Holmgren, Hansen, Mikofski (b0125) 2018; 3 Atia (10.1016/j.apenergy.2020.114917_b0015) 2016; 7 10.1016/j.apenergy.2020.114917_b0120 10.1016/j.apenergy.2020.114917_b0105 10.1016/j.apenergy.2020.114917_b0025 10.1016/j.apenergy.2020.114917_b0060 Holmgren (10.1016/j.apenergy.2020.114917_b0125) 2018; 3 Chua (10.1016/j.apenergy.2020.114917_b0030) 2013; 104 10.1016/j.apenergy.2020.114917_b0085 Sundstrom (10.1016/j.apenergy.2020.114917_b0020) 2012; 3 10.1016/j.apenergy.2020.114917_b0040 Hanif (10.1016/j.apenergy.2020.114917_b0010) 2016 Willis (10.1016/j.apenergy.2020.114917_b0100) 1997 Ganguly (10.1016/j.apenergy.2020.114917_b0045) 2013; 4 Wolisz (10.1016/j.apenergy.2020.114917_b0080) 2017; 137 Troitzsch (10.1016/j.apenergy.2020.114917_b0070) 2018 Park (10.1016/j.apenergy.2020.114917_b0095) 2010 Oldewurtel (10.1016/j.apenergy.2020.114917_b0035) 2010 Lannoye (10.1016/j.apenergy.2020.114917_b0055) 2011 10.1016/j.apenergy.2020.114917_b0110 10.1016/j.apenergy.2020.114917_b0090 Georgilakis (10.1016/j.apenergy.2020.114917_b0050) 2015; 121 10.1016/j.apenergy.2020.114917_b0075 Haffner (10.1016/j.apenergy.2020.114917_b0065) 2008; 23 Fonseca (10.1016/j.apenergy.2020.114917_b0115) 2016; 113 Kersting (10.1016/j.apenergy.2020.114917_b0005) 2001 |
References_xml | – volume: 7 start-page: 1204 year: 2016 end-page: 1213 ident: b0015 article-title: Sizing and analysis of renewable energy and battery systems in residential microgrids publication-title: IEEE Trans Smart Grid – year: 2010 ident: b0095 publication-title: Contemp Eng Econ – volume: 137 start-page: 715 year: 2017 end-page: 728 ident: b0080 article-title: Cost optimal sizing of smart buildings’ energy system components considering changing end-consumer electricity markets publication-title: Energy – reference: BCA Building and Construction Authority. BCA Building Energy Benchmarking Report 2018; 2018. – year: 2001 ident: b0005 article-title: Distribution system modeling and analysis – volume: 3 start-page: 884 year: 2018 ident: b0125 article-title: pvlib python: a python package for modeling solar energy systems publication-title: J Open Source Softw – volume: 3 start-page: 26 year: 2012 end-page: 37 ident: b0020 article-title: Flexible charging optimization for electric vehicles considering distribution grid constraints publication-title: IEEE Trans Smart Grid – volume: 4 start-page: 165 year: 2013 end-page: 193 ident: b0045 article-title: Recent advances on power distribution system planning: a state-of-the-art survey publication-title: Energy Syst – year: 2016 ident: b0010 article-title: Cost-optimal operation for a flexible building with local PV in a Singaporean environment publication-title: IEEE PES innov. smart grid technol. conf. – reference: Vrettos E, Kara EC, MacDonald J, Andersson G, Callaway DS. Experimental demonstration of frequency regulation by commercial buildings - Part I: modeling and hierarchical control design. IEEE Trans Smart Grid. – year: 1997 ident: b0100 article-title: Power distribution planning reference book – start-page: 5100 year: 2010 end-page: 5105 ident: b0035 article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions publication-title: Am. Control Conf. – volume: 104 start-page: 87 year: 2013 end-page: 104 ident: b0030 article-title: Achieving better energy-efficient air conditioning - a review of technologies and strategies publication-title: Appl Energy – year: 2018 ident: b0070 article-title: Distributed robust reserve scheduling in congested distribution systems publication-title: IEEE PES Gen. Meet. – volume: 113 start-page: 202 year: 2016 end-page: 226 ident: b0115 article-title: City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts publication-title: Energy Build – reference: Vrettos E, Lai K, Oldewurtel F, Andersson G. Predictive Control of buildings for Demand Response with dynamic day-ahead and real-time prices. In: Eur. Control Conf., Zurich, Switzerland; 2013. – reference: van Beuzekom I, Gibescu M, Slootweg J. A review of multi-energy system planning and optimization tools for sustainable urban development. In: IEEE PowerTech. Eindhoven, Netherlands: IEEE; 2015. doi: 10.1109/PTC.2015.7232360. – reference: EMA Energy Market Authority. Singapore Energy Statistics 2018; 2018. – reference: J. Kim, Y. Dvorkin, Peer-to-peer energy trading in distribution systems, arXiv Preprint (arXiv:1902.03940). – reference: . – volume: 23 start-page: 915 year: 2008 end-page: 923 ident: b0065 article-title: Multistage model for distribution expansion planning with distributed generation-part i: problem formulation publication-title: IEEE Trans Power Delivery – reference: Logenthiran T, Srinivasan D, Shun TZ. Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3). doi: 10.1109/TSG.2012.2195686. – reference: Dena Deutsche Energie-Agentur. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030; 2012. – year: 2011 ident: b0055 article-title: The role of power system flexibility in generation planning publication-title: IEEE PES Gen. Meet. – volume: 121 start-page: 89 year: 2015 end-page: 100 ident: b0050 article-title: A review of power distribution planning in the modern power systems era: models, methods and future research publication-title: Electr Power Syst Res – reference: Trpovski A, Recalde D, Hamacher T. Synthetic distribution grid generation using power system planning: case study of Singapore. In: Int. Univ. Power Eng. Conf.; 2018. doi: 10.1109/UPEC.2018.8542054. – ident: 10.1016/j.apenergy.2020.114917_b0060 doi: 10.1109/PTC.2015.7232360 – volume: 104 start-page: 87 year: 2013 ident: 10.1016/j.apenergy.2020.114917_b0030 article-title: Achieving better energy-efficient air conditioning - a review of technologies and strategies publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.10.037 – ident: 10.1016/j.apenergy.2020.114917_b0105 – ident: 10.1016/j.apenergy.2020.114917_b0025 doi: 10.1109/TSG.2016.2628897 – volume: 3 start-page: 884 issue: 29 year: 2018 ident: 10.1016/j.apenergy.2020.114917_b0125 article-title: pvlib python: a python package for modeling solar energy systems publication-title: J Open Source Softw doi: 10.21105/joss.00884 – year: 2011 ident: 10.1016/j.apenergy.2020.114917_b0055 article-title: The role of power system flexibility in generation planning – year: 2016 ident: 10.1016/j.apenergy.2020.114917_b0010 article-title: Cost-optimal operation for a flexible building with local PV in a Singaporean environment – ident: 10.1016/j.apenergy.2020.114917_b0085 – volume: 3 start-page: 26 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2020.114917_b0020 article-title: Flexible charging optimization for electric vehicles considering distribution grid constraints publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2168431 – year: 2018 ident: 10.1016/j.apenergy.2020.114917_b0070 article-title: Distributed robust reserve scheduling in congested distribution systems – volume: 137 start-page: 715 year: 2017 ident: 10.1016/j.apenergy.2020.114917_b0080 article-title: Cost optimal sizing of smart buildings’ energy system components considering changing end-consumer electricity markets publication-title: Energy doi: 10.1016/j.energy.2017.06.025 – volume: 121 start-page: 89 year: 2015 ident: 10.1016/j.apenergy.2020.114917_b0050 article-title: A review of power distribution planning in the modern power systems era: models, methods and future research publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2014.12.010 – volume: 23 start-page: 915 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2020.114917_b0065 article-title: Multistage model for distribution expansion planning with distributed generation-part i: problem formulation publication-title: IEEE Trans Power Delivery doi: 10.1109/TPWRD.2008.917916 – ident: 10.1016/j.apenergy.2020.114917_b0075 doi: 10.1109/TSG.2012.2195686 – ident: 10.1016/j.apenergy.2020.114917_b0040 doi: 10.23919/ECC.2013.6669762 – year: 2001 ident: 10.1016/j.apenergy.2020.114917_b0005 – volume: 4 start-page: 165 year: 2013 ident: 10.1016/j.apenergy.2020.114917_b0045 article-title: Recent advances on power distribution system planning: a state-of-the-art survey publication-title: Energy Syst doi: 10.1007/s12667-012-0073-x – ident: 10.1016/j.apenergy.2020.114917_b0110 – start-page: 5100 year: 2010 ident: 10.1016/j.apenergy.2020.114917_b0035 article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions – year: 2010 ident: 10.1016/j.apenergy.2020.114917_b0095 publication-title: Contemp Eng Econ – ident: 10.1016/j.apenergy.2020.114917_b0090 doi: 10.1109/UPEC.2018.8542054 – year: 1997 ident: 10.1016/j.apenergy.2020.114917_b0100 – volume: 113 start-page: 202 year: 2016 ident: 10.1016/j.apenergy.2020.114917_b0115 article-title: City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.055 – ident: 10.1016/j.apenergy.2020.114917_b0120 – volume: 7 start-page: 1204 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2020.114917_b0015 article-title: Sizing and analysis of renewable energy and battery systems in residential microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2519541 |
SSID | ssj0002120 |
Score | 2.4519372 |
Snippet | •Integrated planning of electric grids and operation of thermal building systems.•Considers the peak shaving potential due to demand side... The planning of electric distribution grids aims at designing the most cost-efficient grid topology, while ensuring sufficient maximum capacity in the case of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114917 |
SubjectTerms | air conditioning cost effectiveness Demand-side flexibility electricity heat operating costs Optimal planning and operation Power system planning quadratic programming Singapore topology urban planning utilities |
Title | Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore |
URI | https://dx.doi.org/10.1016/j.apenergy.2020.114917 https://www.proquest.com/docview/2477623062 |
Volume | 273 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcmkPqNCiAgW5Uq9m106cjY8IgRaq0gNF4mY5flRBJbvaXQ5c-gv6o5lJHB4VEgduieMZRX7MfCN75gP4Zkd5zDD04V6VFc9FELwsNQYrTilESd5nGeU7_zgvJpf52ZW6WoGjPheGrlUm29_Z9NZap5ZhGs3hrK6HF4R2W_xPp3votVZhTWa6UANYOzz9Pjl_MMgyVWfE_pwEniQKXx_YWWiT7DBUlG3lXN1yl73oo_6z1q0LOvkA6wk7ssPu9zZgJTSb8P5JRcFN2Dp-TFzDrmnnLj7Cv59oG26wqeO9qR33VDI3sV3x3_Pas1kiMGIusXjSMwJE5sONbTynNhapgmZ7o_aOTSN9npPaKtFrs6409IIhGGaWIZBdMoeektUNuyD6bcT74RNcnhz_OprwxMTAXZarJS-siCNR-tIVTqH_QtDix-MiYHCtpHfR6RgL4US0WkRptS8sQYlxJZW0DhHbFgyaaRM-AxuhjlElggpO01lymUWN2q2KiG1sVW2D6sfeuFSmnNgy_pj-Ptq16efM0JyZbs62YfggN-sKdbwqofupNc-WnEFv8qrs134tGNyPdMhimzC9XRiZ48BQXCd33qB_F97RW3eZ7QsMlvPbsIfoZ1ntw-rBX7Gf1vg9b-gIOA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFECBOMWNkWjNbg5nkxIh0HIXgERnOT5QVpBd7S4FDV_ARzOTOFxCoqCLfCny2DNv5Jl5APuqHbsIXR9uRJrzOLABT9MMnRUtBKIkY6KI8p0vr5LuXXx2L-4n4KjJhaGwSq_7a51eaWvf0vK72RoUReuG0G6F_-l1D63WJEzHIupQXN_B62ecR-hrM-JoTsO_pAn3DtTAVil26CiGVd3crGIu-9VC_dDVlQE6WYB5jxzZYf1zizBhyyWY-1JPcAlWjz_T1nCov7ejZXi7Rs3whE01602huaGCuZ7rij8MC8MGnr6Iac_hSd8ID5mxT6o0nNqYo_qZVTztC-s76h7Ssrkn12Z1YegRQyjMFEMYO2Ya7SQrSnZD5NuI9u0K3J0c3x51uedh4DqKxZgnKnDtIDWpTrRA64WQxXQ6iUXXWoRGO505lwQ6cCoLXKgykygCEp08FKHSiNdWYarsl3YNWBvXaOeBFVZn9JKcRi7D1ZVwiGxUnq-DaPZeal-knLgyHmUTjdaTjcwkyUzWMluH1se8QV2m488ZWSNa-e3ASbQlf87da86CxNtITyyqtP3nkQxj3Bjy6sKNf6y_CzPd28sLeXF6db4Js9RTh7VtwdR4-Gy3EQeN853qnL8Dtn8JAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+electric-distribution-grid+planning+considering+the+demand-side+flexibility+of+thermal+building+systems+for+a+test+case+in+Singapore&rft.jtitle=Applied+energy&rft.au=Troitzsch%2C+Sebastian&rft.au=Sreepathi%2C+Bhargava+Krishna&rft.au=Huynh%2C+Thanh+Phong&rft.au=Moine%2C+Aurelie&rft.date=2020-09-01&rft.issn=0306-2619&rft.volume=273&rft.spage=114917&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114917&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |