Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”

The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 24; p. 5366
Main Authors Perchikov, Roman N., Provotorova, Daria V., Kharkova, Anna S., Arlyapov, Vyacheslav A., Medvedeva, Anastasia S., Machulin, Andrey V., Filonov, Andrey E., Reshetilov, Anatoly N.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10−3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10−3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.
AbstractList The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10−3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10−3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.
The possibility of using the microorganisms sp. 7p-81, BS394(pBS216), s67, 5Ap, X5, F5 and DSM 11331 as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm /(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10 mg/dm , the sensitivity coefficient was (5.8 ± 0.2)∙10 μA·dm /mg, Michaelis constant K = 230 mg/dm , the maximum rate of the enzymatic reaction R = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331 T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm 3 /(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10 −3 mg/dm 3 , the sensitivity coefficient was (5.8 ± 0.2)∙10 −3 μA·dm 3 /mg, Michaelis constant K M = 230 mg/dm 3 , the maximum rate of the enzymatic reaction R max = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10-3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10-3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10-3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10-3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.
Author Filonov, Andrey E.
Reshetilov, Anatoly N.
Medvedeva, Anastasia S.
Machulin, Andrey V.
Perchikov, Roman N.
Arlyapov, Vyacheslav A.
Kharkova, Anna S.
Provotorova, Daria V.
AuthorAffiliation 2 Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
1 Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
3 Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
AuthorAffiliation_xml – name: 1 Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
– name: 3 Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
– name: 2 Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
Author_xml – sequence: 1
  givenname: Roman N.
  orcidid: 0000-0001-8454-6307
  surname: Perchikov
  fullname: Perchikov, Roman N.
– sequence: 2
  givenname: Daria V.
  surname: Provotorova
  fullname: Provotorova, Daria V.
– sequence: 3
  givenname: Anna S.
  orcidid: 0000-0002-0451-8080
  surname: Kharkova
  fullname: Kharkova, Anna S.
– sequence: 4
  givenname: Vyacheslav A.
  orcidid: 0000-0002-5449-7353
  surname: Arlyapov
  fullname: Arlyapov, Vyacheslav A.
– sequence: 5
  givenname: Anastasia S.
  surname: Medvedeva
  fullname: Medvedeva, Anastasia S.
– sequence: 6
  givenname: Andrey V.
  surname: Machulin
  fullname: Machulin, Andrey V.
– sequence: 7
  givenname: Andrey E.
  orcidid: 0000-0003-4800-7706
  surname: Filonov
  fullname: Filonov, Andrey E.
– sequence: 8
  givenname: Anatoly N.
  orcidid: 0000-0002-9607-253X
  surname: Reshetilov
  fullname: Reshetilov, Anatoly N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36559732$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAUhSNURMvQJVtkiU1ZBOL4J8kGaWagMFIFFQPryHFuOq4cO9jOqMOq78AW3g3Nk-DpD2orvPGV_N1zj3Xu02TPWANJ8hxnrwmpsjeD1Zse05wywvmj5CDPCpJSwrO9O_V-cuj9eRYPZZzj4kmyTzhjVUHyg-TPTFlhhN4EJYVGy40P0KPOOvQOArheGWXOUFgBOl2BsRotTAsXaCY8tMgadOphbG1vjfBoGINqBZotSUWPhtkyx_xVJGXUUQIt-t42SqsfsVEZJNAXaO1FOpVBrQFFG9L2gwiq0YDmsbRehTh190NwaHv5a2bXygBaght7NNXNGM1tL38eg3NWgoFYz4VroqlPwtgwNuC3l7-fJY87oT0c3tyT5Nvx-6_zj-nJ5w-L-fQklYSykDLR4TJjVSdbwFJgiilpJWlyWVKBm45y0nWEtV3FBMt4l5W0bArIsoLirmVAJsnba91hbHpoo6HghK4Hp3rhNrUVqr7_YtSqPrPruipKjhmPAkc3As5-H8GHuldegtbCgB19nResxHFejHWSvHyAntvRxRSvKF4UJbuiXtx19M_KbfgRINeAdNZ7B10tVYgJ2J1BpWuc1bstq-9tWexKH3TdCv-f_ws0mtym
CitedBy_id crossref_primary_10_1007_s10924_024_03421_3
crossref_primary_10_3390_polym15051296
crossref_primary_10_1021_acsapm_4c01394
crossref_primary_10_3390_bios14060302
crossref_primary_10_20517_wecn_2024_14
crossref_primary_10_3390_polym15183783
Cites_doi 10.1016/j.aca.2018.08.007
10.1016/j.bios.2019.03.008
10.1016/S0039-9140(03)00237-6
10.1016/S0003-2670(02)00606-2
10.1007/s11356-019-05495-2
10.1016/j.bioelechem.2018.04.003
10.1016/j.inoche.2022.109702
10.3390/polym14163433
10.1002/cbic.202200139
10.1016/j.msec.2019.01.082
10.1021/acsomega.9b03788
10.1016/j.bios.2016.01.026
10.1016/S0956-5663(02)00076-3
10.1063/5.0104743
10.1016/j.jece.2017.12.023
10.1016/j.psep.2019.01.032
10.1016/j.colsurfb.2019.110683
10.1134/S2635167622010025
10.1016/j.snb.2007.11.022
10.1007/s00253-011-3700-x
10.1080/10826068.2010.540607
10.1016/S0032-9592(01)00257-6
10.1002/elan.202060084
10.3389/fmats.2022.875163
10.1016/j.jelechem.2020.114784
10.1021/acssensors.1c00329
10.1016/j.enzmictec.2020.109706
10.1134/S0003683819010083
10.3390/polym14204448
10.1016/j.talanta.2011.02.006
10.1007/s42114-022-00435-0
10.3390/polym12081835
10.1021/ac60210a007
10.1016/j.enzmictec.2019.109435
10.1007/s13205-021-02709-8
10.1016/j.ijbiomac.2020.03.049
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym14245366
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC9786156
36559732
10_3390_polym14245366
Genre Journal Article
GrantInformation_xml – fundername: Presinent of the Russian Federaton for young Russian scientists agreement No. MK-4815.2022.1.4
  grantid: agreement No. MK-4815.2022.1.4
– fundername: TulSU for students in educational programs of higher education—master’s programs
  grantid: 8922GRR_M
– fundername: President of the Russian Federation
  grantid: MK-4815.2022.1.4; 075-15-2022-530 (C4422MK)
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c345t-5af18059fcde1ca14143dc3b2c84a1bf463ff35df95a506f0848b7e00741fd5e3
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:40:35 EDT 2025
Thu Jul 10 23:41:38 EDT 2025
Fri Jul 25 11:43:35 EDT 2025
Wed Feb 19 02:26:11 EST 2025
Thu Apr 24 23:05:30 EDT 2025
Tue Jul 01 02:20:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords redox-active polymer
biosensor
phenol index
bacteria
carbon nanotubes
bovine serum albumin-ferrocene-carbon nanotubes
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-5af18059fcde1ca14143dc3b2c84a1bf463ff35df95a506f0848b7e00741fd5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4800-7706
0000-0002-9607-253X
0000-0002-5449-7353
0000-0001-8454-6307
0000-0002-0451-8080
OpenAccessLink https://www.proquest.com/docview/2756778507?pq-origsite=%requestingapplication%
PMID 36559732
PQID 2756778507
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786156
proquest_miscellaneous_2758100707
proquest_journals_2756778507
pubmed_primary_36559732
crossref_citationtrail_10_3390_polym14245366
crossref_primary_10_3390_polym14245366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221208
PublicationDateYYYYMMDD 2022-12-08
PublicationDate_xml – month: 12
  year: 2022
  text: 20221208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lei (ref_18) 2004; 16
Mansoor (ref_29) 2022; 142
Apetrei (ref_4) 2022; 23
Emelyanova (ref_22) 2002; 37
Yashas (ref_2) 2020; 27
Arinbasarov (ref_36) 2007; 76
Beitollahi (ref_37) 2020; 5
Shahid (ref_7) 2022; 9
Kolahchi (ref_26) 2018; 6
Sagiroglu (ref_23) 2011; 41
ref_33
ref_31
Kharkova (ref_35) 2020; 132
Shin (ref_24) 2012; 93
Timur (ref_25) 2003; 61
(ref_40) 2018; 1040
Bilal (ref_6) 2019; 124
Othman (ref_14) 2020; 153
Mulyawan (ref_44) 2022; 2638
Wu (ref_15) 2016; 79
Arlyapov (ref_42) 2022; 17
Wong (ref_10) 2021; 33
Roy (ref_39) 2021; 6
Wang (ref_12) 2018; 122
Wee (ref_11) 2019; 132
Betz (ref_3) 2014; 3
Sun (ref_5) 2022; 5
Banik (ref_20) 2008; 131
Chernyavskaya (ref_34) 2016; 11
Felisardo (ref_16) 2020; 879
Liu (ref_21) 2011; 84
Kharkova (ref_38) 2021; 11
Hong (ref_1) 2019; 99
Kharkova (ref_32) 2019; 55
Arlyapov (ref_30) 2021; 143
ref_28
Zhang (ref_13) 2020; 186
ref_27
Morozova (ref_43) 2002; 17
Nicholson (ref_41) 1964; 36
ref_9
ref_8
Kolahchi (ref_19) 2019; 8
Mulchandani (ref_17) 2002; 470
References_xml – ident: ref_9
– volume: 1040
  start-page: 128
  year: 2018
  ident: ref_40
  article-title: Experimental development of a biosensor system to measure the concentration of phenol diluted in water using alternative sources of oxidoreductase enzymes
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.08.007
– volume: 132
  start-page: 279
  year: 2019
  ident: ref_11
  article-title: Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.03.008
– volume: 61
  start-page: 87
  year: 2003
  ident: ref_25
  article-title: Detection of phenolic compounds by thick film sensors based on Pseudomonas putida
  publication-title: Talanta
  doi: 10.1016/S0039-9140(03)00237-6
– volume: 470
  start-page: 79
  year: 2002
  ident: ref_17
  article-title: Microbial biosensor for p-nitrophenol using Moraxella sp.
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(02)00606-2
– volume: 27
  start-page: 27234
  year: 2020
  ident: ref_2
  article-title: Potentiometric polyphenol oxidase biosensor for sensitive determination of phenolic micropollutant in environmental samples
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05495-2
– volume: 122
  start-page: 174
  year: 2018
  ident: ref_12
  article-title: A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.04.003
– volume: 142
  start-page: 109702
  year: 2022
  ident: ref_29
  article-title: Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applications
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2022.109702
– volume: 8
  start-page: 165
  year: 2019
  ident: ref_19
  article-title: Application of Multi walled Carbon Nanotubes (MWCNTs) in Phenol biosensor based on bacterial cells
  publication-title: Biol. J. Microorg.
– ident: ref_28
  doi: 10.3390/polym14163433
– volume: 23
  start-page: e202200139
  year: 2022
  ident: ref_4
  article-title: Trace-Level Phenolics Detection Based on Composite PAN-MWCNTs Nanofibers
  publication-title: ChemBioChem
  doi: 10.1002/cbic.202200139
– volume: 99
  start-page: 37
  year: 2019
  ident: ref_1
  article-title: Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.082
– volume: 5
  start-page: 2049
  year: 2020
  ident: ref_37
  article-title: Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03788
– volume: 79
  start-page: 843
  year: 2016
  ident: ref_15
  article-title: Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.01.026
– volume: 17
  start-page: 867
  year: 2002
  ident: ref_43
  article-title: Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(02)00076-3
– volume: 2638
  start-page: 50009
  year: 2022
  ident: ref_44
  article-title: Biosensor performance of phenol analysis using microbial consortium of Bacillus sp.
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0104743
– volume: 6
  start-page: 478
  year: 2018
  ident: ref_26
  article-title: Direct detection of phenol using a new bacterial strain-based conductometric biosensor
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.12.023
– volume: 124
  start-page: 8
  year: 2019
  ident: ref_6
  article-title: Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.01.032
– volume: 186
  start-page: 110683
  year: 2020
  ident: ref_13
  article-title: A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2019.110683
– volume: 17
  start-page: 106
  year: 2022
  ident: ref_42
  article-title: On the Development of Reagent-Free Conductive Nanocomposite Systems for the Modification of Printed Electrodes when Producing Glucose Biosensors
  publication-title: Nanobiotechnol. Rep.
  doi: 10.1134/S2635167622010025
– volume: 131
  start-page: 295
  year: 2008
  ident: ref_20
  article-title: Microbial biosensor based on whole cell of Pseudomonas sp. for online measurement of p-Nitrophenol
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2007.11.022
– volume: 3
  start-page: 243
  year: 2014
  ident: ref_3
  article-title: Purification of water from phenol and its derivatives on materials from vegetable raw materials
  publication-title: Polzunovskiy Vestn.
– ident: ref_8
– volume: 93
  start-page: 1895
  year: 2012
  ident: ref_24
  article-title: Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3700-x
– ident: ref_33
– volume: 41
  start-page: 321
  year: 2011
  ident: ref_23
  article-title: A novel biosensor based on Lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater
  publication-title: Prep. Biochem. Biotechnol.
  doi: 10.1080/10826068.2010.540607
– volume: 37
  start-page: 683
  year: 2002
  ident: ref_22
  article-title: Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: Effect of ‘co-oxidation’
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(01)00257-6
– volume: 33
  start-page: 431
  year: 2021
  ident: ref_10
  article-title: Amperometric tyrosinase biosensor based on carbon black paste electrode for sensitive detection of catechol in environmental samples
  publication-title: Electroanalysis
  doi: 10.1002/elan.202060084
– volume: 9
  start-page: 875163
  year: 2022
  ident: ref_7
  article-title: The Anti-Inflammatory and Free Radical Scavenging Activities of Bio-Inspired Nano Magnesium Oxide
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2022.875163
– volume: 879
  start-page: 114784
  year: 2020
  ident: ref_16
  article-title: Biosensor of horseradish peroxidase immobilized onto self-assembled monolayers: Optimization of the deposition enzyme concentration
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114784
– volume: 76
  start-page: 354
  year: 2007
  ident: ref_36
  article-title: the effect of catabolic plasmids on the physiological parameters of the bacteria of the genus pseudomones and the efficiency of biodegradation of oil
  publication-title: Microbiology
– volume: 6
  start-page: 1933
  year: 2021
  ident: ref_39
  article-title: Tunable multiplexed whole-cell biosensors as environmental diagnostics for ppb-level detection of aromatic pollutants
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00329
– volume: 11
  start-page: 190
  year: 2016
  ident: ref_34
  article-title: Characterization of strains of naphthalene-utilizing bacteria of the genus Rhodococcus
  publication-title: Proc. BSU Phys. Biochem. Molec Bas Fun Bio.
– volume: 143
  start-page: 109706
  year: 2021
  ident: ref_30
  article-title: Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2020.109706
– volume: 55
  start-page: 189
  year: 2019
  ident: ref_32
  article-title: Mediator BOD biosensor based on cells of microorganisms isolated from activated sludge
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1134/S0003683819010083
– ident: ref_27
  doi: 10.3390/polym14204448
– volume: 16
  start-page: 2030
  year: 2004
  ident: ref_18
  article-title: Arthrobacter sp. JS443-Based Whole Cell Amperometric Biosensor for p-Nitrophenol
  publication-title: Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal.
– volume: 84
  start-page: 766
  year: 2011
  ident: ref_21
  article-title: Cell-based biosensor for measurement of phenol and nitrophenols toxicity
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.02.006
– volume: 5
  start-page: 627
  year: 2022
  ident: ref_5
  article-title: Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-022-00435-0
– ident: ref_31
  doi: 10.3390/polym12081835
– volume: 36
  start-page: 706
  year: 1964
  ident: ref_41
  article-title: Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems
  publication-title: Anal. Chem.
  doi: 10.1021/ac60210a007
– volume: 132
  start-page: 109435
  year: 2020
  ident: ref_35
  article-title: A mediator microbial biosensor for assaying general toxicity
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2019.109435
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_38
  article-title: A kinetic approach to the formation of two-mediator systems for developing microbial biosensors as exemplified by a rapid biochemical oxygen demand assay
  publication-title: 3 Biotech
  doi: 10.1007/s13205-021-02709-8
– volume: 153
  start-page: 855
  year: 2020
  ident: ref_14
  article-title: Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.03.049
SSID ssj0000456617
Score 2.3414733
Snippet The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans...
The possibility of using the microorganisms sp. 7p-81, BS394(pBS216), s67, 5Ap, X5, F5 and DSM 11331 as the basis of a biosensor for the phenol index to assess...
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5366
SubjectTerms Adaptation
Bacteria
Biocompatibility
Biomass
Biomedical materials
Biosensors
Carbon
Carbon nanotubes
Cattle
Electrodes
Enzymes
Glucose
Hydrogels
Laboratories
Metabolites
Microorganisms
Phenols
Pollutants
Polymers
Potassium
Pseudomonas putida
Rate constants
Rhodococcus
Selectivity
Sensitivity
Serum albumin
Title Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”
URI https://www.ncbi.nlm.nih.gov/pubmed/36559732
https://www.proquest.com/docview/2756778507
https://www.proquest.com/docview/2758100707
https://pubmed.ncbi.nlm.nih.gov/PMC9786156
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF7R9gAXxH9TSjVICIGE1drrtZ0TqkPTlkMVtVTKLdo_q5FSOyS2VDjlHbjCu6E8CTNrxzQguCXyRN7sjGe-mR1_w9irwI-iwOfWE5ERXqh97SkZcI93kyg-iDKrjGuQPYtOLsOPQzFsCm7zpq1y5ROdozaFphr5PtGUx3GC8OX99LNHU6PodLUZobHBttAFJ5h8baVHZ4PztspCgAVjdE2uyTG_358Wky_X9HqX4I4Z8VYw-gth_tkoeSvy9B-w-w1khMNaxw_ZHZs_Ynd7q0ltj9nPdFxIIhdxdWmoScgB0Sh8aJpdMD4BIj0YXNm8mMApUSRCigHMQJHDYG4rU-AflHOYoiEaCekF74ZvpukF7vJblHSUzhJOcRuom_Yr_nCcg4Rza4ob79A5TcBluJb2cqwmFsjTUEcY3pU2w85gufieUgHDAnqo6hrc8cA4Xy6-9e2MAmlu8XNPzhQuCt1-UVbKzpeLH0_YZf_oU-_EayY3eJqHovSEzPwEgVumjfW19ENEZUZzFegklL7KwohnGRcm6wop0CKI1F_F1uGbzAjLn7LNvMjtNgMTHJhQWk0n1wh2EM75mbAqRiAnpVSyw96tVDjSDa05TdeYjDC9IY2P1jTeYa9b8WnN5_Evwd2VPYyax3o--m2EHfayvYzaplMWmduicjKJ71iUOuxZbT7tnXhECRwPOixeM6xWgMi-16_k4ytH-o3ZPoLPaOf_y3rO7gX0fgb12yS7bLOcVfYFoqZS7bGNpH-81zwg-O146P8ClmokMw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGeBgviP8UBhwSIJCI1sRxkj4gtHaUlo1pYpu0t8yOHa1Sl4S2EYynfgde4SvwmVA_CXdOU1YQvO0tki-J5Tvf_Wyff8fYE88NAs_lxhGBFo6fuImjpMcd3oqCsBmkRmmbILsb9A79d0fiaIX9qO_CUFpl7ROto9Z5QnvkG0RTHoYRwpfXxUeHqkbR6WpdQqMyi21z9gmXbONX_S3U71PP67456PSceVUBJ-G-mDhCpm6EoCJNtHET6fqIGHTClZdEvnRV6gc8TbnQaUtIgb0lwnkVGht7Uy0Mx-9eYpd9zls0o6Lu28WeDsEjRAQVlSe2NzeKfHh2SpfJBLc8jOdC31949s-0zHNxrnuNXZ0DVNisLOo6WzHZDbbWqevC3WQ_24NcEpWJ3QWHivIcEPvC1jy1BqMhIK6EvROT5UPoEyEjtDFcasgz2BubUuc4nHIMBZq9ltDe5y3_edHeR52-QElLIC2hj4NOubtf8MVBBhI-GJ1_djatiwbshk2gnwzU0AD5Nco_w7_SYJgRzKbf2rRdYgD9YXkK9jBikM2mX7tmRGE7M_jckSOFncIgk09KZcaz6fdb7PBCNHqbrWZ5Zu4y0F5T-9IkdE6O0ArBo5sKo0KEjVJKJRvsZa3COJmTqFMtj2GMiynSeLyk8QZ7thAvKvaQfwmu1_YQz53IOP5t8g32eNGM2qYzHZmZvLQykWs5mxrsTmU-iz_xgJaL3GuwcMmwFgJELb7ckg1OLMV4K4wQ6gb3_t-tR2ytd_B-J97p727fZ1c8uhlCmT7ROludjErzAPHaRD20kwTY8UXPyl9sCV5O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiDeBUgYJEEhYib1-5YBQnTRqKIqilkq9mV3vWo2U2iEPQTnlP3CFP8KvqfJLmFnboQHBrbdIHsernde3u7PfMPbMsX3fsbm2PF95lpvYiSWFwy3eCv2g6adaKlMg2_f3jtx3x97xBvtZ3YWhssoqJppArfKE9sgbRFMeBCHCl0ZalkUMOt23408WdZCik9aqnUZhIvv67DMu36Zveh3U9XPH6e5-aO9ZZYcBK-GuN7M8kdohAow0UdpOhO0ielAJl04SusKWqevzNOWeSlue8HDkRD4vA23ycKo8zfF_r7DNAFdFzRrbjHb7g4PVDg-BJcQHBbEn561mY5yPzk7papnHDSvjhUT4F7r9s0jzQtbr3mQ3SrgKO4V93WIbOrvNrrWrLnF32Hk0zAURm5g9cSgI0AGRMHTKQhvMjYAoEwYnOstH0CN6RogweSrIMxhM9VzlOKFiCmN0AiUgOuQt9-U4OkQNv0JJQyctoIfTTpW8X_HFYQYCDrTKv1g7JmADDsOU08-GcqSBohxVo-FXaTL0BJaL7xFtnmjA6Dg_BXM0McyWi29dPaEknmn83RYTiYPClJPP5lJPl4sfd9nRpej0HqtleaYfMFBOU7lCJ3RqjkALoaSdeloGCCKFEFLU2etKhXFSUqpTZ49RjEsr0ni8pvE6e7ESHxdcIv8S3KrsIS5DyjT-7QB19nT1GLVNJzwi0_ncyIS2YXCqs_uF-ay-xH1aPHKnzoI1w1oJENH4-pNseGIIx1tBiMDXf_j_YT1hV9Ej4_e9_v4jdt2hayJU9hNusdpsMtePEbzN5HbpJcA-XrZj_gLaKWPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioanalytical+System+for+Determining+the+Phenol+Index+Based+on+Pseudomonas+putida+BS394%28pBS216%29+Bacteria+Immobilized+in+a+Redox-Active+Biocompatible+Composite+Polymer+%E2%80%9CBovine+Serum+Albumin%E2%80%93Ferrocene%E2%80%93Carbon+Nanotubes%E2%80%9D&rft.jtitle=Polymers&rft.au=Perchikov%2C+Roman+N&rft.au=Provotorova%2C+Daria+V&rft.au=Kharkova%2C+Anna+S&rft.au=Arlyapov%2C+Vyacheslav+A&rft.date=2022-12-08&rft.pub=MDPI+AG&rft.eissn=2073-4360&rft.volume=14&rft.issue=24&rft.spage=5366&rft_id=info:doi/10.3390%2Fpolym14245366&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon