Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol...
Saved in:
Published in | Polymers Vol. 14; no. 24; p. 5366 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10−3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10−3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. |
---|---|
AbstractList | The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10−3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10−3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. The possibility of using the microorganisms sp. 7p-81, BS394(pBS216), s67, 5Ap, X5, F5 and DSM 11331 as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm /(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10 mg/dm , the sensitivity coefficient was (5.8 ± 0.2)∙10 μA·dm /mg, Michaelis constant K = 230 mg/dm , the maximum rate of the enzymatic reaction R = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331 T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm 3 /(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10 −3 mg/dm 3 , the sensitivity coefficient was (5.8 ± 0.2)∙10 −3 μA·dm 3 /mg, Michaelis constant K M = 230 mg/dm 3 , the maximum rate of the enzymatic reaction R max = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10-3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10-3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method.The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10-3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10-3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. |
Author | Filonov, Andrey E. Reshetilov, Anatoly N. Medvedeva, Anastasia S. Machulin, Andrey V. Perchikov, Roman N. Arlyapov, Vyacheslav A. Kharkova, Anna S. Provotorova, Daria V. |
AuthorAffiliation | 2 Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia 1 Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia 3 Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia |
AuthorAffiliation_xml | – name: 1 Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia – name: 3 Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia – name: 2 Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia |
Author_xml | – sequence: 1 givenname: Roman N. orcidid: 0000-0001-8454-6307 surname: Perchikov fullname: Perchikov, Roman N. – sequence: 2 givenname: Daria V. surname: Provotorova fullname: Provotorova, Daria V. – sequence: 3 givenname: Anna S. orcidid: 0000-0002-0451-8080 surname: Kharkova fullname: Kharkova, Anna S. – sequence: 4 givenname: Vyacheslav A. orcidid: 0000-0002-5449-7353 surname: Arlyapov fullname: Arlyapov, Vyacheslav A. – sequence: 5 givenname: Anastasia S. surname: Medvedeva fullname: Medvedeva, Anastasia S. – sequence: 6 givenname: Andrey V. surname: Machulin fullname: Machulin, Andrey V. – sequence: 7 givenname: Andrey E. orcidid: 0000-0003-4800-7706 surname: Filonov fullname: Filonov, Andrey E. – sequence: 8 givenname: Anatoly N. orcidid: 0000-0002-9607-253X surname: Reshetilov fullname: Reshetilov, Anatoly N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36559732$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAUhSNURMvQJVtkiU1ZBOL4J8kGaWagMFIFFQPryHFuOq4cO9jOqMOq78AW3g3Nk-DpD2orvPGV_N1zj3Xu02TPWANJ8hxnrwmpsjeD1Zse05wywvmj5CDPCpJSwrO9O_V-cuj9eRYPZZzj4kmyTzhjVUHyg-TPTFlhhN4EJYVGy40P0KPOOvQOArheGWXOUFgBOl2BsRotTAsXaCY8tMgadOphbG1vjfBoGINqBZotSUWPhtkyx_xVJGXUUQIt-t42SqsfsVEZJNAXaO1FOpVBrQFFG9L2gwiq0YDmsbRehTh190NwaHv5a2bXygBaght7NNXNGM1tL38eg3NWgoFYz4VroqlPwtgwNuC3l7-fJY87oT0c3tyT5Nvx-6_zj-nJ5w-L-fQklYSykDLR4TJjVSdbwFJgiilpJWlyWVKBm45y0nWEtV3FBMt4l5W0bArIsoLirmVAJsnba91hbHpoo6HghK4Hp3rhNrUVqr7_YtSqPrPruipKjhmPAkc3As5-H8GHuldegtbCgB19nResxHFejHWSvHyAntvRxRSvKF4UJbuiXtx19M_KbfgRINeAdNZ7B10tVYgJ2J1BpWuc1bstq-9tWexKH3TdCv-f_ws0mtym |
CitedBy_id | crossref_primary_10_1007_s10924_024_03421_3 crossref_primary_10_3390_polym15051296 crossref_primary_10_1021_acsapm_4c01394 crossref_primary_10_3390_bios14060302 crossref_primary_10_20517_wecn_2024_14 crossref_primary_10_3390_polym15183783 |
Cites_doi | 10.1016/j.aca.2018.08.007 10.1016/j.bios.2019.03.008 10.1016/S0039-9140(03)00237-6 10.1016/S0003-2670(02)00606-2 10.1007/s11356-019-05495-2 10.1016/j.bioelechem.2018.04.003 10.1016/j.inoche.2022.109702 10.3390/polym14163433 10.1002/cbic.202200139 10.1016/j.msec.2019.01.082 10.1021/acsomega.9b03788 10.1016/j.bios.2016.01.026 10.1016/S0956-5663(02)00076-3 10.1063/5.0104743 10.1016/j.jece.2017.12.023 10.1016/j.psep.2019.01.032 10.1016/j.colsurfb.2019.110683 10.1134/S2635167622010025 10.1016/j.snb.2007.11.022 10.1007/s00253-011-3700-x 10.1080/10826068.2010.540607 10.1016/S0032-9592(01)00257-6 10.1002/elan.202060084 10.3389/fmats.2022.875163 10.1016/j.jelechem.2020.114784 10.1021/acssensors.1c00329 10.1016/j.enzmictec.2020.109706 10.1134/S0003683819010083 10.3390/polym14204448 10.1016/j.talanta.2011.02.006 10.1007/s42114-022-00435-0 10.3390/polym12081835 10.1021/ac60210a007 10.1016/j.enzmictec.2019.109435 10.1007/s13205-021-02709-8 10.1016/j.ijbiomac.2020.03.049 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym14245366 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC9786156 36559732 10_3390_polym14245366 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Presinent of the Russian Federaton for young Russian scientists agreement No. MK-4815.2022.1.4 grantid: agreement No. MK-4815.2022.1.4 – fundername: TulSU for students in educational programs of higher education—master’s programs grantid: 8922GRR_M – fundername: President of the Russian Federation grantid: MK-4815.2022.1.4; 075-15-2022-530 (C4422MK) |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c345t-5af18059fcde1ca14143dc3b2c84a1bf463ff35df95a506f0848b7e00741fd5e3 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:40:35 EDT 2025 Thu Jul 10 23:41:38 EDT 2025 Fri Jul 25 11:43:35 EDT 2025 Wed Feb 19 02:26:11 EST 2025 Thu Apr 24 23:05:30 EDT 2025 Tue Jul 01 02:20:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | redox-active polymer biosensor phenol index bacteria carbon nanotubes bovine serum albumin-ferrocene-carbon nanotubes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-5af18059fcde1ca14143dc3b2c84a1bf463ff35df95a506f0848b7e00741fd5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4800-7706 0000-0002-9607-253X 0000-0002-5449-7353 0000-0001-8454-6307 0000-0002-0451-8080 |
OpenAccessLink | https://www.proquest.com/docview/2756778507?pq-origsite=%requestingapplication% |
PMID | 36559732 |
PQID | 2756778507 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786156 proquest_miscellaneous_2758100707 proquest_journals_2756778507 pubmed_primary_36559732 crossref_citationtrail_10_3390_polym14245366 crossref_primary_10_3390_polym14245366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221208 |
PublicationDateYYYYMMDD | 2022-12-08 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221208 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lei (ref_18) 2004; 16 Mansoor (ref_29) 2022; 142 Apetrei (ref_4) 2022; 23 Emelyanova (ref_22) 2002; 37 Yashas (ref_2) 2020; 27 Arinbasarov (ref_36) 2007; 76 Beitollahi (ref_37) 2020; 5 Shahid (ref_7) 2022; 9 Kolahchi (ref_26) 2018; 6 Sagiroglu (ref_23) 2011; 41 ref_33 ref_31 Kharkova (ref_35) 2020; 132 Shin (ref_24) 2012; 93 Timur (ref_25) 2003; 61 (ref_40) 2018; 1040 Bilal (ref_6) 2019; 124 Othman (ref_14) 2020; 153 Mulyawan (ref_44) 2022; 2638 Wu (ref_15) 2016; 79 Arlyapov (ref_42) 2022; 17 Wong (ref_10) 2021; 33 Roy (ref_39) 2021; 6 Wang (ref_12) 2018; 122 Wee (ref_11) 2019; 132 Betz (ref_3) 2014; 3 Sun (ref_5) 2022; 5 Banik (ref_20) 2008; 131 Chernyavskaya (ref_34) 2016; 11 Felisardo (ref_16) 2020; 879 Liu (ref_21) 2011; 84 Kharkova (ref_38) 2021; 11 Hong (ref_1) 2019; 99 Kharkova (ref_32) 2019; 55 Arlyapov (ref_30) 2021; 143 ref_28 Zhang (ref_13) 2020; 186 ref_27 Morozova (ref_43) 2002; 17 Nicholson (ref_41) 1964; 36 ref_9 ref_8 Kolahchi (ref_19) 2019; 8 Mulchandani (ref_17) 2002; 470 |
References_xml | – ident: ref_9 – volume: 1040 start-page: 128 year: 2018 ident: ref_40 article-title: Experimental development of a biosensor system to measure the concentration of phenol diluted in water using alternative sources of oxidoreductase enzymes publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.08.007 – volume: 132 start-page: 279 year: 2019 ident: ref_11 article-title: Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.03.008 – volume: 61 start-page: 87 year: 2003 ident: ref_25 article-title: Detection of phenolic compounds by thick film sensors based on Pseudomonas putida publication-title: Talanta doi: 10.1016/S0039-9140(03)00237-6 – volume: 470 start-page: 79 year: 2002 ident: ref_17 article-title: Microbial biosensor for p-nitrophenol using Moraxella sp. publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(02)00606-2 – volume: 27 start-page: 27234 year: 2020 ident: ref_2 article-title: Potentiometric polyphenol oxidase biosensor for sensitive determination of phenolic micropollutant in environmental samples publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05495-2 – volume: 122 start-page: 174 year: 2018 ident: ref_12 article-title: A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.04.003 – volume: 142 start-page: 109702 year: 2022 ident: ref_29 article-title: Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applications publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2022.109702 – volume: 8 start-page: 165 year: 2019 ident: ref_19 article-title: Application of Multi walled Carbon Nanotubes (MWCNTs) in Phenol biosensor based on bacterial cells publication-title: Biol. J. Microorg. – ident: ref_28 doi: 10.3390/polym14163433 – volume: 23 start-page: e202200139 year: 2022 ident: ref_4 article-title: Trace-Level Phenolics Detection Based on Composite PAN-MWCNTs Nanofibers publication-title: ChemBioChem doi: 10.1002/cbic.202200139 – volume: 99 start-page: 37 year: 2019 ident: ref_1 article-title: Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.082 – volume: 5 start-page: 2049 year: 2020 ident: ref_37 article-title: Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives publication-title: ACS Omega doi: 10.1021/acsomega.9b03788 – volume: 79 start-page: 843 year: 2016 ident: ref_15 article-title: Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.026 – volume: 17 start-page: 867 year: 2002 ident: ref_43 article-title: Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(02)00076-3 – volume: 2638 start-page: 50009 year: 2022 ident: ref_44 article-title: Biosensor performance of phenol analysis using microbial consortium of Bacillus sp. publication-title: AIP Conf. Proc. doi: 10.1063/5.0104743 – volume: 6 start-page: 478 year: 2018 ident: ref_26 article-title: Direct detection of phenol using a new bacterial strain-based conductometric biosensor publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.12.023 – volume: 124 start-page: 8 year: 2019 ident: ref_6 article-title: Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.01.032 – volume: 186 start-page: 110683 year: 2020 ident: ref_13 article-title: A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2019.110683 – volume: 17 start-page: 106 year: 2022 ident: ref_42 article-title: On the Development of Reagent-Free Conductive Nanocomposite Systems for the Modification of Printed Electrodes when Producing Glucose Biosensors publication-title: Nanobiotechnol. Rep. doi: 10.1134/S2635167622010025 – volume: 131 start-page: 295 year: 2008 ident: ref_20 article-title: Microbial biosensor based on whole cell of Pseudomonas sp. for online measurement of p-Nitrophenol publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2007.11.022 – volume: 3 start-page: 243 year: 2014 ident: ref_3 article-title: Purification of water from phenol and its derivatives on materials from vegetable raw materials publication-title: Polzunovskiy Vestn. – ident: ref_8 – volume: 93 start-page: 1895 year: 2012 ident: ref_24 article-title: Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3700-x – ident: ref_33 – volume: 41 start-page: 321 year: 2011 ident: ref_23 article-title: A novel biosensor based on Lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater publication-title: Prep. Biochem. Biotechnol. doi: 10.1080/10826068.2010.540607 – volume: 37 start-page: 683 year: 2002 ident: ref_22 article-title: Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: Effect of ‘co-oxidation’ publication-title: Process Biochem. doi: 10.1016/S0032-9592(01)00257-6 – volume: 33 start-page: 431 year: 2021 ident: ref_10 article-title: Amperometric tyrosinase biosensor based on carbon black paste electrode for sensitive detection of catechol in environmental samples publication-title: Electroanalysis doi: 10.1002/elan.202060084 – volume: 9 start-page: 875163 year: 2022 ident: ref_7 article-title: The Anti-Inflammatory and Free Radical Scavenging Activities of Bio-Inspired Nano Magnesium Oxide publication-title: Front. Mater. doi: 10.3389/fmats.2022.875163 – volume: 879 start-page: 114784 year: 2020 ident: ref_16 article-title: Biosensor of horseradish peroxidase immobilized onto self-assembled monolayers: Optimization of the deposition enzyme concentration publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114784 – volume: 76 start-page: 354 year: 2007 ident: ref_36 article-title: the effect of catabolic plasmids on the physiological parameters of the bacteria of the genus pseudomones and the efficiency of biodegradation of oil publication-title: Microbiology – volume: 6 start-page: 1933 year: 2021 ident: ref_39 article-title: Tunable multiplexed whole-cell biosensors as environmental diagnostics for ppb-level detection of aromatic pollutants publication-title: ACS Sens. doi: 10.1021/acssensors.1c00329 – volume: 11 start-page: 190 year: 2016 ident: ref_34 article-title: Characterization of strains of naphthalene-utilizing bacteria of the genus Rhodococcus publication-title: Proc. BSU Phys. Biochem. Molec Bas Fun Bio. – volume: 143 start-page: 109706 year: 2021 ident: ref_30 article-title: Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2020.109706 – volume: 55 start-page: 189 year: 2019 ident: ref_32 article-title: Mediator BOD biosensor based on cells of microorganisms isolated from activated sludge publication-title: Appl. Biochem. Microbiol. doi: 10.1134/S0003683819010083 – ident: ref_27 doi: 10.3390/polym14204448 – volume: 16 start-page: 2030 year: 2004 ident: ref_18 article-title: Arthrobacter sp. JS443-Based Whole Cell Amperometric Biosensor for p-Nitrophenol publication-title: Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. – volume: 84 start-page: 766 year: 2011 ident: ref_21 article-title: Cell-based biosensor for measurement of phenol and nitrophenols toxicity publication-title: Talanta doi: 10.1016/j.talanta.2011.02.006 – volume: 5 start-page: 627 year: 2022 ident: ref_5 article-title: Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00435-0 – ident: ref_31 doi: 10.3390/polym12081835 – volume: 36 start-page: 706 year: 1964 ident: ref_41 article-title: Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems publication-title: Anal. Chem. doi: 10.1021/ac60210a007 – volume: 132 start-page: 109435 year: 2020 ident: ref_35 article-title: A mediator microbial biosensor for assaying general toxicity publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2019.109435 – volume: 11 start-page: 1 year: 2021 ident: ref_38 article-title: A kinetic approach to the formation of two-mediator systems for developing microbial biosensors as exemplified by a rapid biochemical oxygen demand assay publication-title: 3 Biotech doi: 10.1007/s13205-021-02709-8 – volume: 153 start-page: 855 year: 2020 ident: ref_14 article-title: Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.03.049 |
SSID | ssj0000456617 |
Score | 2.3414733 |
Snippet | The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans... The possibility of using the microorganisms sp. 7p-81, BS394(pBS216), s67, 5Ap, X5, F5 and DSM 11331 as the basis of a biosensor for the phenol index to assess... The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5366 |
SubjectTerms | Adaptation Bacteria Biocompatibility Biomass Biomedical materials Biosensors Carbon Carbon nanotubes Cattle Electrodes Enzymes Glucose Hydrogels Laboratories Metabolites Microorganisms Phenols Pollutants Polymers Potassium Pseudomonas putida Rate constants Rhodococcus Selectivity Sensitivity Serum albumin |
Title | Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes” |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36559732 https://www.proquest.com/docview/2756778507 https://www.proquest.com/docview/2758100707 https://pubmed.ncbi.nlm.nih.gov/PMC9786156 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF7R9gAXxH9TSjVICIGE1drrtZ0TqkPTlkMVtVTKLdo_q5FSOyS2VDjlHbjCu6E8CTNrxzQguCXyRN7sjGe-mR1_w9irwI-iwOfWE5ERXqh97SkZcI93kyg-iDKrjGuQPYtOLsOPQzFsCm7zpq1y5ROdozaFphr5PtGUx3GC8OX99LNHU6PodLUZobHBttAFJ5h8baVHZ4PztspCgAVjdE2uyTG_358Wky_X9HqX4I4Z8VYw-gth_tkoeSvy9B-w-w1khMNaxw_ZHZs_Ynd7q0ltj9nPdFxIIhdxdWmoScgB0Sh8aJpdMD4BIj0YXNm8mMApUSRCigHMQJHDYG4rU-AflHOYoiEaCekF74ZvpukF7vJblHSUzhJOcRuom_Yr_nCcg4Rza4ob79A5TcBluJb2cqwmFsjTUEcY3pU2w85gufieUgHDAnqo6hrc8cA4Xy6-9e2MAmlu8XNPzhQuCt1-UVbKzpeLH0_YZf_oU-_EayY3eJqHovSEzPwEgVumjfW19ENEZUZzFegklL7KwohnGRcm6wop0CKI1F_F1uGbzAjLn7LNvMjtNgMTHJhQWk0n1wh2EM75mbAqRiAnpVSyw96tVDjSDa05TdeYjDC9IY2P1jTeYa9b8WnN5_Evwd2VPYyax3o--m2EHfayvYzaplMWmduicjKJ71iUOuxZbT7tnXhECRwPOixeM6xWgMi-16_k4ytH-o3ZPoLPaOf_y3rO7gX0fgb12yS7bLOcVfYFoqZS7bGNpH-81zwg-O146P8ClmokMw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGeBgviP8UBhwSIJCI1sRxkj4gtHaUlo1pYpu0t8yOHa1Sl4S2EYynfgde4SvwmVA_CXdOU1YQvO0tki-J5Tvf_Wyff8fYE88NAs_lxhGBFo6fuImjpMcd3oqCsBmkRmmbILsb9A79d0fiaIX9qO_CUFpl7ROto9Z5QnvkG0RTHoYRwpfXxUeHqkbR6WpdQqMyi21z9gmXbONX_S3U71PP67456PSceVUBJ-G-mDhCpm6EoCJNtHET6fqIGHTClZdEvnRV6gc8TbnQaUtIgb0lwnkVGht7Uy0Mx-9eYpd9zls0o6Lu28WeDsEjRAQVlSe2NzeKfHh2SpfJBLc8jOdC31949s-0zHNxrnuNXZ0DVNisLOo6WzHZDbbWqevC3WQ_24NcEpWJ3QWHivIcEPvC1jy1BqMhIK6EvROT5UPoEyEjtDFcasgz2BubUuc4nHIMBZq9ltDe5y3_edHeR52-QElLIC2hj4NOubtf8MVBBhI-GJ1_djatiwbshk2gnwzU0AD5Nco_w7_SYJgRzKbf2rRdYgD9YXkK9jBikM2mX7tmRGE7M_jckSOFncIgk09KZcaz6fdb7PBCNHqbrWZ5Zu4y0F5T-9IkdE6O0ArBo5sKo0KEjVJKJRvsZa3COJmTqFMtj2GMiynSeLyk8QZ7thAvKvaQfwmu1_YQz53IOP5t8g32eNGM2qYzHZmZvLQykWs5mxrsTmU-iz_xgJaL3GuwcMmwFgJELb7ckg1OLMV4K4wQ6gb3_t-tR2ytd_B-J97p727fZ1c8uhlCmT7ROludjErzAPHaRD20kwTY8UXPyl9sCV5O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiDeBUgYJEEhYib1-5YBQnTRqKIqilkq9mV3vWo2U2iEPQTnlP3CFP8KvqfJLmFnboQHBrbdIHsernde3u7PfMPbMsX3fsbm2PF95lpvYiSWFwy3eCv2g6adaKlMg2_f3jtx3x97xBvtZ3YWhssoqJppArfKE9sgbRFMeBCHCl0ZalkUMOt23408WdZCik9aqnUZhIvv67DMu36Zveh3U9XPH6e5-aO9ZZYcBK-GuN7M8kdohAow0UdpOhO0ielAJl04SusKWqevzNOWeSlue8HDkRD4vA23ycKo8zfF_r7DNAFdFzRrbjHb7g4PVDg-BJcQHBbEn561mY5yPzk7papnHDSvjhUT4F7r9s0jzQtbr3mQ3SrgKO4V93WIbOrvNrrWrLnF32Hk0zAURm5g9cSgI0AGRMHTKQhvMjYAoEwYnOstH0CN6RogweSrIMxhM9VzlOKFiCmN0AiUgOuQt9-U4OkQNv0JJQyctoIfTTpW8X_HFYQYCDrTKv1g7JmADDsOU08-GcqSBohxVo-FXaTL0BJaL7xFtnmjA6Dg_BXM0McyWi29dPaEknmn83RYTiYPClJPP5lJPl4sfd9nRpej0HqtleaYfMFBOU7lCJ3RqjkALoaSdeloGCCKFEFLU2etKhXFSUqpTZ49RjEsr0ni8pvE6e7ESHxdcIv8S3KrsIS5DyjT-7QB19nT1GLVNJzwi0_ncyIS2YXCqs_uF-ay-xH1aPHKnzoI1w1oJENH4-pNseGIIx1tBiMDXf_j_YT1hV9Ej4_e9_v4jdt2hayJU9hNusdpsMtePEbzN5HbpJcA-XrZj_gLaKWPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioanalytical+System+for+Determining+the+Phenol+Index+Based+on+Pseudomonas+putida+BS394%28pBS216%29+Bacteria+Immobilized+in+a+Redox-Active+Biocompatible+Composite+Polymer+%E2%80%9CBovine+Serum+Albumin%E2%80%93Ferrocene%E2%80%93Carbon+Nanotubes%E2%80%9D&rft.jtitle=Polymers&rft.au=Perchikov%2C+Roman+N&rft.au=Provotorova%2C+Daria+V&rft.au=Kharkova%2C+Anna+S&rft.au=Arlyapov%2C+Vyacheslav+A&rft.date=2022-12-08&rft.pub=MDPI+AG&rft.eissn=2073-4360&rft.volume=14&rft.issue=24&rft.spage=5366&rft_id=info:doi/10.3390%2Fpolym14245366&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |