Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands
•Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation. Signifi...
Saved in:
Published in | Geoderma Vol. 366; p. 114234 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation.
Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences. |
---|---|
AbstractList | Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences. •Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation. Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences. |
ArticleNumber | 114234 |
Author | Vogt, Rolf David Wang, Yajing Guo, Jingheng Zhang, Xiaoshan Qian, Cheng Wang, Jingguo Zhang, Xinmu Mulder, Jan |
Author_xml | – sequence: 1 givenname: Xinmu surname: Zhang fullname: Zhang, Xinmu organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China – sequence: 2 givenname: Jingheng surname: Guo fullname: Guo, Jingheng email: guojingheng@cau.edu.cn organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China – sequence: 3 givenname: Rolf David surname: Vogt fullname: Vogt, Rolf David organization: Department of Chemistry, University of Oslo, 0315 Oslo, Norway – sequence: 4 givenname: Jan surname: Mulder fullname: Mulder, Jan organization: Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430 Ås, Norway – sequence: 5 givenname: Yajing surname: Wang fullname: Wang, Yajing organization: College of Resources and Environment Science, Hebei Agricultural University, Baoding 071001, China – sequence: 6 givenname: Cheng surname: Qian fullname: Qian, Cheng organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China – sequence: 7 givenname: Jingguo surname: Wang fullname: Wang, Jingguo organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China – sequence: 8 givenname: Xiaoshan surname: Zhang fullname: Zhang, Xiaoshan organization: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
BookMark | eNqFkE1v2zAMhoWhBZam_QuFjrs4lT8kO8AOG4JtLVCgh7ZngabojIFtZZITYP--yrxeesmFBIXnJajnSlyMfiQhbnO1ylVu7narLXlHYYBVoYr0mFdFWX0Si7ypi8wUen0hFiqRWa1M_llcxbhLY53YhXDPnnsJyI47RpjYjxKihFSd49MIvXSBjxTk5KUPWxgZJUJoTyTiYTj0c4xHOcDOB7n5zSNFkhj8vofRxWtx2UEf6eZ_X4rXnz9eNvfZ49Ovh833xwzLSk-ZBjCtwqrrFOiiWAN0BiuDpda1RnAV5spga2q3LlXnunULqkZHrtUNknblUnyZ9-6D_3OgONmBI1KfjiB_iLYom6auk5YmoV9nNB0ZY6DOIk___jEF4N7myp7k2p19l2tPcu0sN8XNh_g-8ADh7_ngtzlIycORKdiITCOS40A4Wef53Io3Jn6cwg |
CitedBy_id | crossref_primary_10_1016_j_agee_2022_108141 crossref_primary_10_1016_j_chemosphere_2024_141265 crossref_primary_10_1080_15324982_2023_2284889 crossref_primary_10_3390_su14148912 crossref_primary_10_1007_s11104_024_06476_2 crossref_primary_10_1111_ejss_13333 crossref_primary_10_1111_gcb_15731 crossref_primary_10_1016_j_scitotenv_2023_169007 crossref_primary_10_1016_j_jhazmat_2023_133054 crossref_primary_10_1016_j_scitotenv_2023_167749 crossref_primary_10_2139_ssrn_4156071 crossref_primary_10_1016_j_ecoenv_2021_112152 crossref_primary_10_1111_gcb_17507 crossref_primary_10_3390_f13111943 crossref_primary_10_5194_soil_7_677_2021 crossref_primary_10_1007_s42832_024_0290_y crossref_primary_10_1016_j_still_2024_106414 crossref_primary_10_3390_f15122204 crossref_primary_10_1016_j_still_2022_105321 crossref_primary_10_3390_agronomy15020333 crossref_primary_10_1016_j_scitotenv_2020_138330 crossref_primary_10_47743_jpd_2023_30_1_933 crossref_primary_10_1007_s10668_023_03777_x crossref_primary_10_1016_j_chemosphere_2022_137570 crossref_primary_10_1016_j_catena_2024_108333 crossref_primary_10_1007_s11104_024_06608_8 crossref_primary_10_1016_j_geodrs_2022_e00582 crossref_primary_10_1016_j_jenvman_2024_121834 crossref_primary_10_1080_00103624_2024_2439290 crossref_primary_10_1016_j_scitotenv_2024_173287 crossref_primary_10_1016_j_agee_2023_108723 crossref_primary_10_1016_j_pedsph_2023_07_011 crossref_primary_10_1016_j_jenvman_2024_121839 crossref_primary_10_1016_j_geoderma_2021_115322 crossref_primary_10_1016_j_scitotenv_2024_170294 crossref_primary_10_1016_j_jenvman_2024_122803 crossref_primary_10_1016_j_agee_2024_109330 crossref_primary_10_1016_j_scitotenv_2020_143277 crossref_primary_10_1016_j_scitotenv_2023_162670 crossref_primary_10_3390_horticulturae10101090 crossref_primary_10_1016_j_scitotenv_2021_150632 crossref_primary_10_1007_s10533_024_01179_3 crossref_primary_10_1016_j_scitotenv_2024_173579 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1038_s41598_023_35134_3 crossref_primary_10_1016_j_ijbiomac_2022_12_009 crossref_primary_10_1186_s41610_021_00180_3 crossref_primary_10_1021_acs_est_3c07000 crossref_primary_10_1016_j_pedsph_2023_09_012 crossref_primary_10_3390_agronomy14010177 crossref_primary_10_1016_j_envpol_2021_118588 crossref_primary_10_1016_j_plaphy_2025_109810 crossref_primary_10_1016_j_scitotenv_2024_171246 crossref_primary_10_1016_j_agee_2025_109555 crossref_primary_10_3390_su14137543 crossref_primary_10_1016_j_agee_2023_108346 crossref_primary_10_1134_S1064229322020156 crossref_primary_10_1111_1365_2664_14091 crossref_primary_10_1002_saj2_70042 crossref_primary_10_1016_j_geoderma_2021_115586 crossref_primary_10_1016_j_jenvman_2023_117590 crossref_primary_10_1111_gcb_15819 crossref_primary_10_3390_microorganisms10091763 crossref_primary_10_3390_agronomy12071697 crossref_primary_10_1016_j_catena_2024_108266 crossref_primary_10_1016_j_catena_2022_106126 crossref_primary_10_1111_jac_70051 crossref_primary_10_1016_j_jenvman_2022_116672 crossref_primary_10_1007_s00374_023_01722_8 crossref_primary_10_1007_s11368_022_03330_9 crossref_primary_10_3390_agriculture13050999 crossref_primary_10_3390_su141912891 crossref_primary_10_1016_j_catena_2023_107343 crossref_primary_10_1016_j_scitotenv_2022_159253 crossref_primary_10_1061__ASCE_EE_1943_7870_0002022 crossref_primary_10_1016_j_agee_2023_108749 crossref_primary_10_3390_plants12071464 crossref_primary_10_1016_j_eja_2025_127607 crossref_primary_10_3390_agronomy14051056 crossref_primary_10_1016_j_scitotenv_2024_174338 crossref_primary_10_1016_j_catena_2024_107907 crossref_primary_10_1016_j_scitotenv_2024_175388 crossref_primary_10_1016_j_chemosphere_2020_128901 crossref_primary_10_3390_su152115218 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1007_s00253_022_11947_6 crossref_primary_10_1016_j_agee_2021_107353 crossref_primary_10_1016_j_jaridenv_2025_105332 crossref_primary_10_3390_atmos13050754 crossref_primary_10_3390_agriculture13061223 crossref_primary_10_1016_j_earscirev_2021_103689 crossref_primary_10_1016_j_scitotenv_2020_144842 crossref_primary_10_1016_j_catena_2023_107031 crossref_primary_10_1016_j_agee_2021_107589 crossref_primary_10_1016_j_agee_2023_108637 crossref_primary_10_1111_1462_2920_16286 crossref_primary_10_3389_fpls_2024_1499966 crossref_primary_10_1016_j_scitotenv_2022_158339 crossref_primary_10_1016_j_chemosphere_2023_138110 crossref_primary_10_3390_agriculture15060598 crossref_primary_10_1080_00103624_2023_2282997 crossref_primary_10_1007_s11270_023_06420_7 crossref_primary_10_3390_su14053017 crossref_primary_10_1007_s11356_020_12203_y crossref_primary_10_1111_sum_13049 crossref_primary_10_1016_j_geoderma_2021_115599 crossref_primary_10_1007_s11104_021_04913_0 crossref_primary_10_1016_j_geoderma_2020_114806 crossref_primary_10_1016_j_catena_2023_106993 crossref_primary_10_1016_j_geoderma_2020_114807 crossref_primary_10_1038_s41598_021_02947_z |
Cites_doi | 10.1016/j.scitotenv.2017.09.131 10.1038/nature10386 10.1126/science.1170261 10.1002/jpln.1998.3581610408 10.1111/j.1365-2389.2010.01342.x 10.1016/j.geoderma.2016.02.009 10.1111/j.1365-2389.2008.01030.x 10.1111/j.1365-2486.2012.02794.x 10.1111/1365-2435.12525 10.1016/j.envpol.2015.07.033 10.1016/S0065-2113(01)71014-0 10.1016/B978-0-12-394277-7.00001-4 10.1111/j.1365-2389.2010.01310.x 10.1016/S0038-0717(97)00094-1 10.1016/j.soilbio.2014.01.022 10.1007/s10533-015-0123-2 10.1016/j.scitotenv.2015.11.025 10.1016/j.still.2018.04.011 10.1126/science.284.5423.2095 10.1038/s41586-019-1280-6 10.1111/j.1365-2389.2009.01123.x 10.1007/s10533-007-9140-0 10.1111/ejss.12104 10.1007/s10533-008-9256-x 10.1016/j.soilbio.2015.06.028 10.1016/j.soilbio.2015.06.014 10.1023/A:1016125726789 10.1016/j.apsoil.2010.09.007 10.1016/j.soilbio.2005.08.006 10.2134/jeq2011.0064 10.1088/1748-9326/9/9/095002 10.1093/aob/mcx138 10.1126/science.1097396 10.1007/s11368-018-1934-2 10.1016/j.geoderma.2015.08.038 10.1111/j.1365-2486.2010.02286.x 10.1038/nature06316 10.1111/ele.13083 10.1016/j.geoderma.2012.05.004 10.1111/gcb.14304 10.1007/BF02369968 10.5194/acp-18-10419-2018 10.1016/j.soilbio.2014.03.023 10.1111/j.1365-2486.2011.02603.x 10.1016/bs.agron.2014.10.005 10.1016/j.soilbio.2018.03.009 10.1038/ngeo844 10.1016/j.envpol.2018.03.081 10.1038/nature16069 10.1111/gcb.13966 10.3389/fmicb.2017.01325 10.1016/j.ejsobi.2019.103097 10.1016/j.soilbio.2015.12.012 10.1016/j.soilbio.2014.11.017 10.1088/1748-9326/10/2/024019 10.1111/j.1365-2389.2006.00834.x 10.1073/pnas.1700292114 10.1007/s00374-016-1111-y 10.1016/S0038-0717(01)00022-0 10.2134/agronj2016.08.0462 10.1007/s10113-016-1101-5 10.1016/j.soilbio.2015.09.018 10.1126/science.1182570 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114234 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114234 S0016706119328186 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-5aa6b0c4ff0a5229aaf6c46c35575cad4c106cb67d930fdf9ba07cdedb58ce5d3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 01:56:06 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrogen fertilization Carbon accumulation Decomposition Soil acidification Soil organic carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-5aa6b0c4ff0a5229aaf6c46c35575cad4c106cb67d930fdf9ba07cdedb58ce5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388771878 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388771878 crossref_citationtrail_10_1016_j_geoderma_2020_114234 crossref_primary_10_1016_j_geoderma_2020_114234 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Liu, Wu, Jiang, Chen, Cai, Wang, Zhang, Zhang, Li (b0145) 2018; 18 Vitousek, Naylor, Crews, David, Drinkwater, Holland, Johnes, Katzenberger, Martinelli, Matson, Nziguheba, Ojima, Palm, Robertson, Sanchez, Townsend, Zhang (b0255) 2009; 324 Xu, Shi, Li, Rey, Ruan, Craine, Liang, Zhou, Luo (b0300) 2016; 262 Zhou, Jiang, Zhou, Zhao, Ma, Guan, Li, Chen, Cao, Shen, Qin (b0350) 2016; 95 Curtin, Campbell, Jalil (b0040) 1998; 30 Liu, Jiang, Hu, Li, Liu, Wang (b0150) 2014; 72 Powlson, Whitmore, Goulding (b0185) 2011; 62 Yan, Cai, Wang, Smith (b0305) 2011; 17 Geisseler, Scow (b0060) 2014; 75 Tonon, Sohi, Francioso, Ferrari, Montecchio, Gioacchini, Ciavatta, Panzacchi, Powlson (b0245) 2010; 61 Wang, TangC (b0275) 2018; 121 Tian, Niu (b0235) 2015; 10 Lehmann, Kleber (b0135) 2015; 528 McBride (b0155) 1994 Xu, Zhang, Huang (b0295) 2015 Chen, Lan, Hu, Bai (b0015) 2015; 89 Guggenberger, Kaiser, Zech (b0080) 1998; 161 Six, Conant, Paul, Paustian (b0210) 2002; 241 Gu, Ju, Chang, Ge, Chang (b0075) 2017; 17 Gong, Zhang, Chen (b0070) 2007 Riggs, Hobbie, Bach, Hofmockel, Kazanski (b0195) 2015; 125 Wu, Liang, Hui, Deng, Xiong, Qiu, Liu, Chu, Zhou, Zhang (b0290) 2016; 544 Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0115) 2015; 130 Weslien, Klemedtsson, Börjesson, Klemedtsson (b0285) 2009; 60 Ye, Chen, Hao, Pan, Yan, Bai, Guo, Zhang, Bai, Hu (b0315) 2018; 21 Curtin, Peterson, Anderson (b0045) 2016; 271 MEE (Ministry of Ecology and Environment, PRC), 2018. Report on the state of ecology and environment in China in 2017. Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (b0030) 2019; 188 Aye, Sale, Tang (b0010) 2016; 52 Wang, Guo, Vogt, Mulder, Wang, Zhang (b0280) 2018; 24 Evans, Goodale, Caporn, Dise, Emmett, Fernandez, Field, Findlay, Lovett, Meesenburg, Moldan, Sheppard (b0050) 2008; 91 Oren, Chefetz (b0175) 2012; 189–190 Zeng, Liu, Song, Lin, Zhang, Shen, Chu (b0320) 2016; 92 Chen, Li, Lan, Hu, Bai (b0020) 2016; 30 Wang, Akiyama, Yagi, Yan (b0265) 2018; 18 Hagedorn, Kammer (b0095) 2012; 18 Kemmitt, Wright, Goulding, Jones (b0110) 2006; 38 Song, Guo, Yu, Zhang, Cao, Cornelissen (b0215) 2018; 24 Zhang, Cui, Chen, Ju, Shen, Chen, Liu, Zhang, Mi, Fan, Jiang (b0325) 2012; 116 Yan, Ti, Vitousek, Chen, Leip, Cai, Zhu (b0310) 2014; 9 Zhang, Zhang, Wang, Huang, Yu, Li, Shen, Ran (b0330) 2013; 64 Stewart, Paustian, Conant, Plante, Six (b0230) 2007; 86 (access on 20 September 2019). Chen, Li, Gurmesa, Yu, Li, Zhang, Fang, Mo (b0025) 2015; 206 Lal (b0130) 2004; 304 Hemingway, Rothman, Grant, Rosengard, Elinton, Derry, Galy (b0100) 2019; 570 Monteith, Stoddard, Evans, de Wit, Forsius, Høgåsen, Wilander, Skjelkvåle, Jeffries, Vuorenmaa, Keller, Kopácek, Vesely (b0170) 2007; 450 Hagedorn, Bruderhofer, Ferrari, Niklaus (b0090) 2015; 88 Spielvogel, Prietzel, Kögel-Knabner (b0225) 2008; 59 Mitchell, Simpson, Soong, Simpson (b0165) 2015; 81 Schlesinger (b0200) 1999; 284 Ladha, Reddy, Padre, van Kessel (b0120) 2011; 40 Oulehle, Tahovská, Tomáš, Evans, Hruška, Růžek, Bárta (b0180) 2018; 238 Sparks (b0220) 2003 Wang, Lu, Mori, Mao, Zhou, Zhou, Nie, Mo (b0260) 2018; 121 Ghimire, Machado, Bista (b0065) 2017; 109 Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie, Zhu, Yu, Pan, Xu, Shi (b0345) 2018; 115 Van Breemen, Mulder, Driscoll (b0250) 1983; 75 Janssens, Dieleman, Luyssaert, Subke, Reichstein, Ceulemans, Ciais, Dolman, Grace, Matteucci, Papale, Piao, Schulze, Tang, Law (b0105) 2010; 3 Chenu, Plante (b0035) 2006; 57 Andersson, Nilsson (b0005) 2001; 33 Lal (b0125) 2001; 71 Evans, Jones, Burden, Ostle, Zieliński, Cooper, Peacock, Clark, Oulehle, Cooper, Freeman (b0055) 2012; 18 Zhang, Yang, Wang, Tian, Li, He, Niu (b0335) 2019; 93 Reuss, Johnson (b0190) 1986 Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (b0085) 2010; 327 Tian, Emily Dell, Wei (b0240) 2010; 46 Zhang, Shen, He, Thomas, Lupwayi, Hao, Shi (b0340) 2017; 8 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0205) 2011; 487 Li, Sun, Tian, Wang, Ha, Qu, Jing, Niu (b0140) 2018; 615 Weslien (10.1016/j.geoderma.2020.114234_b0285) 2009; 60 Spielvogel (10.1016/j.geoderma.2020.114234_b0225) 2008; 59 Li (10.1016/j.geoderma.2020.114234_b0140) 2018; 615 Wang (10.1016/j.geoderma.2020.114234_b0280) 2018; 24 Ghimire (10.1016/j.geoderma.2020.114234_b0065) 2017; 109 Kleber (10.1016/j.geoderma.2020.114234_b0115) 2015; 130 McBride (10.1016/j.geoderma.2020.114234_b0155) 1994 Curtin (10.1016/j.geoderma.2020.114234_b0040) 1998; 30 Schmidt (10.1016/j.geoderma.2020.114234_b0205) 2011; 487 Oren (10.1016/j.geoderma.2020.114234_b0175) 2012; 189–190 Andersson (10.1016/j.geoderma.2020.114234_b0005) 2001; 33 Gong (10.1016/j.geoderma.2020.114234_b0070) 2007 Yan (10.1016/j.geoderma.2020.114234_b0305) 2011; 17 Chen (10.1016/j.geoderma.2020.114234_b0015) 2015; 89 Chenu (10.1016/j.geoderma.2020.114234_b0030) 2019; 188 Lal (10.1016/j.geoderma.2020.114234_b0125) 2001; 71 Zhang (10.1016/j.geoderma.2020.114234_b0330) 2013; 64 Zhang (10.1016/j.geoderma.2020.114234_b0340) 2017; 8 Chenu (10.1016/j.geoderma.2020.114234_b0035) 2006; 57 Hemingway (10.1016/j.geoderma.2020.114234_b0100) 2019; 570 Geisseler (10.1016/j.geoderma.2020.114234_b0060) 2014; 75 Liu (10.1016/j.geoderma.2020.114234_b0145) 2018; 18 Ye (10.1016/j.geoderma.2020.114234_b0315) 2018; 21 Aye (10.1016/j.geoderma.2020.114234_b0010) 2016; 52 Curtin (10.1016/j.geoderma.2020.114234_b0045) 2016; 271 Wang (10.1016/j.geoderma.2020.114234_b0275) 2018; 121 Mitchell (10.1016/j.geoderma.2020.114234_b0165) 2015; 81 Schlesinger (10.1016/j.geoderma.2020.114234_b0200) 1999; 284 Zhao (10.1016/j.geoderma.2020.114234_b0345) 2018; 115 Tian (10.1016/j.geoderma.2020.114234_b0235) 2015; 10 Six (10.1016/j.geoderma.2020.114234_b0210) 2002; 241 Kemmitt (10.1016/j.geoderma.2020.114234_b0110) 2006; 38 Lehmann (10.1016/j.geoderma.2020.114234_b0135) 2015; 528 10.1016/j.geoderma.2020.114234_b0160 Guggenberger (10.1016/j.geoderma.2020.114234_b0080) 1998; 161 Hagedorn (10.1016/j.geoderma.2020.114234_b0095) 2012; 18 Monteith (10.1016/j.geoderma.2020.114234_b0170) 2007; 450 Reuss (10.1016/j.geoderma.2020.114234_b0190) 1986 Wang (10.1016/j.geoderma.2020.114234_b0265) 2018; 18 Zhang (10.1016/j.geoderma.2020.114234_b0335) 2019; 93 Evans (10.1016/j.geoderma.2020.114234_b0055) 2012; 18 Stewart (10.1016/j.geoderma.2020.114234_b0230) 2007; 86 Tian (10.1016/j.geoderma.2020.114234_b0240) 2010; 46 Evans (10.1016/j.geoderma.2020.114234_b0050) 2008; 91 Vitousek (10.1016/j.geoderma.2020.114234_b0255) 2009; 324 Riggs (10.1016/j.geoderma.2020.114234_b0195) 2015; 125 Janssens (10.1016/j.geoderma.2020.114234_b0105) 2010; 3 Guo (10.1016/j.geoderma.2020.114234_b0085) 2010; 327 Zhang (10.1016/j.geoderma.2020.114234_b0325) 2012; 116 Chen (10.1016/j.geoderma.2020.114234_b0020) 2016; 30 Powlson (10.1016/j.geoderma.2020.114234_b0185) 2011; 62 Wu (10.1016/j.geoderma.2020.114234_b0290) 2016; 544 Liu (10.1016/j.geoderma.2020.114234_b0150) 2014; 72 Song (10.1016/j.geoderma.2020.114234_b0215) 2018; 24 Zhou (10.1016/j.geoderma.2020.114234_b0350) 2016; 95 Lal (10.1016/j.geoderma.2020.114234_b0130) 2004; 304 Sparks (10.1016/j.geoderma.2020.114234_b0220) 2003 Chen (10.1016/j.geoderma.2020.114234_b0025) 2015; 206 Gu (10.1016/j.geoderma.2020.114234_b0075) 2017; 17 Wang (10.1016/j.geoderma.2020.114234_b0260) 2018; 121 Ladha (10.1016/j.geoderma.2020.114234_b0120) 2011; 40 Oulehle (10.1016/j.geoderma.2020.114234_b0180) 2018; 238 Xu (10.1016/j.geoderma.2020.114234_b0295) 2015 Tonon (10.1016/j.geoderma.2020.114234_b0245) 2010; 61 Van Breemen (10.1016/j.geoderma.2020.114234_b0250) 1983; 75 Yan (10.1016/j.geoderma.2020.114234_b0310) 2014; 9 Hagedorn (10.1016/j.geoderma.2020.114234_b0090) 2015; 88 Xu (10.1016/j.geoderma.2020.114234_b0300) 2016; 262 Zeng (10.1016/j.geoderma.2020.114234_b0320) 2016; 92 |
References_xml | – volume: 30 start-page: 57 year: 1998 end-page: 64 ident: b0040 article-title: Effects of acidity on mineralization pH dependence of organic matter mineralization in weakly acidic soils publication-title: Soil Biol. Biochem. – volume: 450 start-page: 537 year: 2007 end-page: 540 ident: b0170 article-title: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry publication-title: Nature – year: 1994 ident: b0155 article-title: Environmental Chemistry of Soils – year: 1986 ident: b0190 article-title: Acid Deposition and the Acidification of Soils and Waters – volume: 61 start-page: 970 year: 2010 end-page: 979 ident: b0245 article-title: Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK publication-title: Eur. J. Soil Sci. – volume: 71 start-page: 145 year: 2001 end-page: 191 ident: b0125 article-title: World cropland soils as a source or sink for atmospheric carbon publication-title: Adv. Agronomy – volume: 72 start-page: 116 year: 2014 end-page: 122 ident: b0150 article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe publication-title: Soil Biol. Biochem. – volume: 10 year: 2015 ident: b0235 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. – volume: 615 start-page: 1535 year: 2018 end-page: 1546 ident: b0140 article-title: Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification publication-title: Sci. Total Environ. – volume: 60 start-page: 311 year: 2009 end-page: 320 ident: b0285 article-title: Strong pH influence on N publication-title: Eur. J. Soil Sci. – volume: 38 start-page: 898 year: 2006 end-page: 911 ident: b0110 article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils publication-title: Soil Biol. Biochem. – volume: 238 start-page: 884 year: 2018 end-page: 893 ident: b0180 article-title: Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests publication-title: Environ. Pollut. – volume: 52 start-page: 697 year: 2016 end-page: 709 ident: b0010 article-title: The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils publication-title: Biol. Fertil. Soils – volume: 130 start-page: 1 year: 2015 end-page: 140 ident: b0115 article-title: Mineral-organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agronomy – volume: 75 start-page: 283 year: 1983 end-page: 308 ident: b0250 article-title: Acidification and alkalinization of soils publication-title: Plant Soil – reference: MEE (Ministry of Ecology and Environment, PRC), 2018. Report on the state of ecology and environment in China in 2017. – volume: 64 start-page: 797 year: 2013 end-page: 804 ident: b0330 article-title: The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China publication-title: Eur. J. Soil Sci. – volume: 40 start-page: 1756 year: 2011 end-page: 1766 ident: b0120 article-title: Role of nitrogen fertilization in sustaining organic matter in cultivated soils publication-title: J. Environ. Qual. – volume: 271 start-page: 161 year: 2016 end-page: 172 ident: b0045 article-title: pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy publication-title: Geoderma – reference: (access on 20 September 2019). – volume: 3 start-page: 315 year: 2010 end-page: 322 ident: b0105 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nat. Geosci. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: b0130 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 121 start-page: 103 year: 2018 end-page: 112 ident: b0260 article-title: Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest publication-title: Soil Biol. Biochem. – volume: 262 start-page: 235 year: 2016 end-page: 242 ident: b0300 article-title: Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis publication-title: Geoderma – volume: 89 start-page: 99 year: 2015 end-page: 108 ident: b0015 article-title: Effects of nitrogen enrichment on below ground communities in grassland: relative role of soil nitrogen availability vs. soil acidification publication-title: Soil Biol. Biochem. – volume: 75 start-page: 54 year: 2014 end-page: 63 ident: b0060 article-title: Long-term effects of mineral fertilizers on soil microorganisms – a review publication-title: Soil Biol. Biochem. – volume: 18 start-page: 1853 year: 2018 end-page: 1864 ident: b0145 article-title: Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China publication-title: J. Soil Sediment – volume: 18 start-page: 3317 year: 2012 end-page: 3331 ident: b0055 article-title: Acidity controls on dissolved organic carbon mobility in organic soils publication-title: Glob. Change Biol. – volume: 33 start-page: 1181 year: 2001 end-page: 1191 ident: b0005 article-title: Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a more humus publication-title: Soil Biol. Biochem. – volume: 188 start-page: 41 year: 2019 end-page: 52 ident: b0030 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. – volume: 570 start-page: 228 year: 2019 end-page: 231 ident: b0100 article-title: Mineral protection regulates long-term global preservation of natural organic carbon publication-title: Nature – volume: 59 start-page: 674 year: 2008 end-page: 692 ident: b0225 article-title: Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific publication-title: Eur. J. Soil Sci. – volume: 92 start-page: 41 year: 2016 end-page: 49 ident: b0320 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biol. Biochem. – volume: 125 start-page: 203 year: 2015 end-page: 219 ident: b0195 article-title: Nitrogen addition changes grassland soil organic matter decomposition publication-title: Biogeochemistry – year: 2015 ident: b0295 article-title: Evolution of Soil Fertility in China – year: 2003 ident: b0220 article-title: Environmental Soil Chemistry – volume: 21 start-page: 1162 year: 2018 end-page: 1173 ident: b0315 article-title: Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls publication-title: Ecol. Lett. – volume: 18 start-page: 1412 year: 2012 end-page: 1427 ident: b0095 article-title: Nitrogen addition alters mineralization dynamics of publication-title: Glob. Change Biol. – volume: 46 start-page: 426 year: 2010 end-page: 435 ident: b0240 article-title: Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization publication-title: Appl. Soil Ecol. – volume: 8 start-page: 1325 year: 2017 ident: b0340 article-title: Fertilization shapes bacterial community structure by alteration of soil pH publication-title: Front. Microbiol. – volume: 109 start-page: 706 year: 2017 end-page: 717 ident: b0065 article-title: Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems publication-title: Agron. J. – volume: 121 start-page: 143 year: 2018 end-page: 151 ident: b0275 article-title: The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants publication-title: Ann. Bot. – volume: 324 start-page: 1519 year: 2009 end-page: 1520 ident: b0255 article-title: Nutrient imbalances in agricultural development publication-title: Science – volume: 9 year: 2014 ident: b0310 article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen publication-title: Environ. Res. Lett. – volume: 24 start-page: e617 year: 2018 end-page: e626 ident: b0280 article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation publication-title: Glob. Change Biol. – volume: 95 start-page: 135 year: 2016 end-page: 143 ident: b0350 article-title: Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China publication-title: Soil Biol. Biochem. – volume: 17 start-page: 1487 year: 2011 end-page: 1496 ident: b0305 article-title: Direct measurement of soil organic carbon content change in the croplands of China publication-title: Glob. Change Biol. – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: b0210 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 86 start-page: 19 year: 2007 end-page: 31 ident: b0230 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry – volume: 115 start-page: 4045 year: 2018 end-page: 4050 ident: b0345 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 17 start-page: 1217 year: 2017 end-page: 1227 ident: b0075 article-title: Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection publication-title: Regional Environ. Change – volume: 91 start-page: 13 year: 2008 end-page: 35 ident: b0050 article-title: Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? a review of evidence from field nitrogen addition experiments publication-title: Biogeochemistry – volume: 487 start-page: 49 year: 2011 end-page: 56 ident: b0205 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – year: 2007 ident: b0070 article-title: Pedogenesis and Soil Taxonomy – volume: 544 start-page: 94 year: 2016 end-page: 102 ident: b0290 article-title: Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China publication-title: Sci. Total Environ. – volume: 88 start-page: 333 year: 2015 end-page: 343 ident: b0090 article-title: Tracking litter-derived dissolved organic matter along a soil chronosequence using publication-title: Soil Biol. Biochem. – volume: 189–190 start-page: 108 year: 2012 end-page: 115 ident: b0175 article-title: Successive sorption–desorption cycles of dissolved organic matter in mineral soil matrices publication-title: Geoderma – volume: 284 start-page: 2095 year: 1999 ident: b0200 article-title: Carbon and agriculture – carbon sequestration in soils publication-title: Science – volume: 206 start-page: 352 year: 2015 end-page: 360 ident: b0025 article-title: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis publication-title: Environ. Pollut. – volume: 116 start-page: 1 year: 2012 end-page: 40 ident: b0325 article-title: Integrated nutrient management for food security and environmental quality in China publication-title: Adv. Agron. – volume: 93 year: 2019 ident: b0335 article-title: Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect publication-title: Eur. J. Soil Biol. – volume: 30 start-page: 658 year: 2016 end-page: 669 ident: b0020 article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment publication-title: Funct. Ecol. – volume: 24 start-page: 4160 year: 2018 end-page: 4172 ident: b0215 article-title: Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage publication-title: Glob. Change Biol. – volume: 57 start-page: 596 year: 2006 end-page: 607 ident: b0035 article-title: Clay-sized organo-mineral complexes in a cultivation chronosequence revisiting the concept of the ‘primary organo-mineral complex’ publication-title: Eur. J. Soil Sci. – volume: 161 start-page: 401 year: 1998 end-page: 408 ident: b0080 article-title: Mobilization and immobilization of dissolved organic matter in forest soils publication-title: Z. Pflanzenernähr. Bodenk. – volume: 18 start-page: 10419 year: 2018 end-page: 10431 ident: b0265 article-title: Controlling variables and emission factors of methane from global rice fields publication-title: Atmos. Chem. Phys. – volume: 81 start-page: 244 year: 2015 end-page: 254 ident: b0165 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. – volume: 62 start-page: 42 year: 2011 end-page: 55 ident: b0185 article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false publication-title: Eur. J. Soil Sci. – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: b0135 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: b0085 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 615 start-page: 1535 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0140 article-title: Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.131 – volume: 487 start-page: 49 year: 2011 ident: 10.1016/j.geoderma.2020.114234_b0205 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0295 – volume: 324 start-page: 1519 year: 2009 ident: 10.1016/j.geoderma.2020.114234_b0255 article-title: Nutrient imbalances in agricultural development publication-title: Science doi: 10.1126/science.1170261 – volume: 161 start-page: 401 year: 1998 ident: 10.1016/j.geoderma.2020.114234_b0080 article-title: Mobilization and immobilization of dissolved organic matter in forest soils publication-title: Z. Pflanzenernähr. Bodenk. doi: 10.1002/jpln.1998.3581610408 – volume: 62 start-page: 42 year: 2011 ident: 10.1016/j.geoderma.2020.114234_b0185 article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01342.x – year: 2007 ident: 10.1016/j.geoderma.2020.114234_b0070 – volume: 271 start-page: 161 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0045 article-title: pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.009 – volume: 59 start-page: 674 year: 2008 ident: 10.1016/j.geoderma.2020.114234_b0225 article-title: Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01030.x – volume: 18 start-page: 3317 year: 2012 ident: 10.1016/j.geoderma.2020.114234_b0055 article-title: Acidity controls on dissolved organic carbon mobility in organic soils publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02794.x – volume: 30 start-page: 658 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0020 article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12525 – volume: 206 start-page: 352 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0025 article-title: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.07.033 – volume: 71 start-page: 145 year: 2001 ident: 10.1016/j.geoderma.2020.114234_b0125 article-title: World cropland soils as a source or sink for atmospheric carbon publication-title: Adv. Agronomy doi: 10.1016/S0065-2113(01)71014-0 – volume: 116 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2020.114234_b0325 article-title: Integrated nutrient management for food security and environmental quality in China publication-title: Adv. Agron. doi: 10.1016/B978-0-12-394277-7.00001-4 – volume: 61 start-page: 970 year: 2010 ident: 10.1016/j.geoderma.2020.114234_b0245 article-title: Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01310.x – volume: 30 start-page: 57 year: 1998 ident: 10.1016/j.geoderma.2020.114234_b0040 article-title: Effects of acidity on mineralization pH dependence of organic matter mineralization in weakly acidic soils publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00094-1 – volume: 72 start-page: 116 year: 2014 ident: 10.1016/j.geoderma.2020.114234_b0150 article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.022 – year: 1986 ident: 10.1016/j.geoderma.2020.114234_b0190 – year: 1994 ident: 10.1016/j.geoderma.2020.114234_b0155 – volume: 125 start-page: 203 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0195 article-title: Nitrogen addition changes grassland soil organic matter decomposition publication-title: Biogeochemistry doi: 10.1007/s10533-015-0123-2 – volume: 544 start-page: 94 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0290 article-title: Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.025 – volume: 188 start-page: 41 year: 2019 ident: 10.1016/j.geoderma.2020.114234_b0030 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.04.011 – volume: 284 start-page: 2095 year: 1999 ident: 10.1016/j.geoderma.2020.114234_b0200 article-title: Carbon and agriculture – carbon sequestration in soils publication-title: Science doi: 10.1126/science.284.5423.2095 – volume: 570 start-page: 228 year: 2019 ident: 10.1016/j.geoderma.2020.114234_b0100 article-title: Mineral protection regulates long-term global preservation of natural organic carbon publication-title: Nature doi: 10.1038/s41586-019-1280-6 – volume: 60 start-page: 311 year: 2009 ident: 10.1016/j.geoderma.2020.114234_b0285 article-title: Strong pH influence on N2O and CH4 fluxes from forested organic soils publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01123.x – volume: 86 start-page: 19 year: 2007 ident: 10.1016/j.geoderma.2020.114234_b0230 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry doi: 10.1007/s10533-007-9140-0 – volume: 64 start-page: 797 year: 2013 ident: 10.1016/j.geoderma.2020.114234_b0330 article-title: The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12104 – volume: 91 start-page: 13 year: 2008 ident: 10.1016/j.geoderma.2020.114234_b0050 article-title: Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? a review of evidence from field nitrogen addition experiments publication-title: Biogeochemistry doi: 10.1007/s10533-008-9256-x – volume: 89 start-page: 99 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0015 article-title: Effects of nitrogen enrichment on below ground communities in grassland: relative role of soil nitrogen availability vs. soil acidification publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.028 – volume: 88 start-page: 333 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0090 article-title: Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.014 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2020.114234_b0210 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 46 start-page: 426 year: 2010 ident: 10.1016/j.geoderma.2020.114234_b0240 article-title: Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2010.09.007 – volume: 38 start-page: 898 year: 2006 ident: 10.1016/j.geoderma.2020.114234_b0110 article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.006 – volume: 40 start-page: 1756 year: 2011 ident: 10.1016/j.geoderma.2020.114234_b0120 article-title: Role of nitrogen fertilization in sustaining organic matter in cultivated soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0064 – volume: 9 year: 2014 ident: 10.1016/j.geoderma.2020.114234_b0310 article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/9/095002 – volume: 121 start-page: 143 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0275 article-title: The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants publication-title: Ann. Bot. doi: 10.1093/aob/mcx138 – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.geoderma.2020.114234_b0130 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 18 start-page: 1853 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0145 article-title: Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China publication-title: J. Soil Sediment doi: 10.1007/s11368-018-1934-2 – volume: 262 start-page: 235 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0300 article-title: Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.038 – volume: 17 start-page: 1487 year: 2011 ident: 10.1016/j.geoderma.2020.114234_b0305 article-title: Direct measurement of soil organic carbon content change in the croplands of China publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02286.x – ident: 10.1016/j.geoderma.2020.114234_b0160 – volume: 450 start-page: 537 year: 2007 ident: 10.1016/j.geoderma.2020.114234_b0170 article-title: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry publication-title: Nature doi: 10.1038/nature06316 – volume: 21 start-page: 1162 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0315 article-title: Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls publication-title: Ecol. Lett. doi: 10.1111/ele.13083 – volume: 189–190 start-page: 108 year: 2012 ident: 10.1016/j.geoderma.2020.114234_b0175 article-title: Successive sorption–desorption cycles of dissolved organic matter in mineral soil matrices publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.004 – volume: 24 start-page: 4160 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0215 article-title: Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage publication-title: Glob. Change Biol. doi: 10.1111/gcb.14304 – volume: 75 start-page: 283 year: 1983 ident: 10.1016/j.geoderma.2020.114234_b0250 article-title: Acidification and alkalinization of soils publication-title: Plant Soil doi: 10.1007/BF02369968 – volume: 18 start-page: 10419 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0265 article-title: Controlling variables and emission factors of methane from global rice fields publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-10419-2018 – volume: 75 start-page: 54 year: 2014 ident: 10.1016/j.geoderma.2020.114234_b0060 article-title: Long-term effects of mineral fertilizers on soil microorganisms – a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.03.023 – volume: 18 start-page: 1412 year: 2012 ident: 10.1016/j.geoderma.2020.114234_b0095 article-title: Nitrogen addition alters mineralization dynamics of 13C depleted leaf and twig litter and reduces leaching of older DOC from mineral soil publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02603.x – volume: 130 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0115 article-title: Mineral-organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agronomy doi: 10.1016/bs.agron.2014.10.005 – volume: 121 start-page: 103 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0260 article-title: Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.03.009 – volume: 3 start-page: 315 year: 2010 ident: 10.1016/j.geoderma.2020.114234_b0105 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nat. Geosci. doi: 10.1038/ngeo844 – volume: 238 start-page: 884 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0180 article-title: Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.081 – volume: 528 start-page: 60 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0135 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 24 start-page: e617 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0280 article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation publication-title: Glob. Change Biol. doi: 10.1111/gcb.13966 – volume: 8 start-page: 1325 year: 2017 ident: 10.1016/j.geoderma.2020.114234_b0340 article-title: Fertilization shapes bacterial community structure by alteration of soil pH publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01325 – volume: 93 year: 2019 ident: 10.1016/j.geoderma.2020.114234_b0335 article-title: Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2019.103097 – volume: 95 start-page: 135 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0350 article-title: Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.12.012 – year: 2003 ident: 10.1016/j.geoderma.2020.114234_b0220 – volume: 81 start-page: 244 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0165 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.017 – volume: 10 year: 2015 ident: 10.1016/j.geoderma.2020.114234_b0235 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/2/024019 – volume: 57 start-page: 596 year: 2006 ident: 10.1016/j.geoderma.2020.114234_b0035 article-title: Clay-sized organo-mineral complexes in a cultivation chronosequence revisiting the concept of the ‘primary organo-mineral complex’ publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00834.x – volume: 115 start-page: 4045 year: 2018 ident: 10.1016/j.geoderma.2020.114234_b0345 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1700292114 – volume: 52 start-page: 697 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0010 article-title: The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1111-y – volume: 33 start-page: 1181 year: 2001 ident: 10.1016/j.geoderma.2020.114234_b0005 article-title: Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a more humus publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00022-0 – volume: 109 start-page: 706 year: 2017 ident: 10.1016/j.geoderma.2020.114234_b0065 article-title: Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems publication-title: Agron. J. doi: 10.2134/agronj2016.08.0462 – volume: 17 start-page: 1217 year: 2017 ident: 10.1016/j.geoderma.2020.114234_b0075 article-title: Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection publication-title: Regional Environ. Change doi: 10.1007/s10113-016-1101-5 – volume: 92 start-page: 41 year: 2016 ident: 10.1016/j.geoderma.2020.114234_b0320 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.09.018 – volume: 327 start-page: 1008 year: 2010 ident: 10.1016/j.geoderma.2020.114234_b0085 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 |
SSID | ssj0017020 |
Score | 2.6254652 |
Snippet | •Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification... Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114234 |
SubjectTerms | agroecosystems Carbon accumulation cell respiration China cropland Decomposition dissolved organic carbon fertilizer application long term experiments meta-analysis microbial activity Nitrogen fertilization nitrogen fertilizers Soil acidification Soil organic carbon soil pH spatial data straw |
Title | Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114234 https://www.proquest.com/docview/2388771878 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS-RAEG1EL-tBVt1F111pYa9xkumPzBwHWRkVvLiCt6a6ulsyaCKZmev-druSjriCePASSKgO4XWnqjqpeo-x3xIKsEGEzIUxZhJtkVkpfQaFtrlABdJ2bJ_Xen4rL-_U3QY7G3phqKwy-f7ep3feOl0ZJTRHT1VFPb6FLmM4ohSEeNmog12WtMpP_72UeRRlnqgZC52R9asu4UWcIxIc6_iHxh1t7ljI9wLUG1fdxZ_zr2wnJY581j_bLtvw9R7bnt23iTzD7zN301QPHLByVP_TQc5hySEenav6j37ctVSJwVcN7wWdkCO0liwR149JzItXNX-ERdNy0tf2S89J6atrC_7Gbs___D2bZ0lFIUMh1SpTABF2lCHkEJOtKUDQKDXGRKNUCE5i3BWi1aWbijy4MLWQl-i8s2qCXjnxnW3WTe0PGI9bP-dsAUoLlJgLGyDkwqGO1ihcccjUAJ3BRDFOShcPZqglW5gBckOQmx7yQzZ6GffUk2x8OGI6zIz5b7mYGAk-HHsyTKWJ7xL9IIHaN-ulienLpIzBupz8-MT9j9gXOuurIn-yzVW79r9i5rKyx93SPGZbs4ur-fUz3qnx9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByqPoU9OlKXKNN1o_sHleoaCmwF0DiZo3HdpUVJCi7-_-xEweVSogDlxwSTxR9dmYm8cz3ARwKLNB47jPrJ5QJMkVmhHAZFsrknCQK07F9LtXiSvy5ltc7cDT0wsSyyuT7e5_eeet0ZpzQHN9VVezxLVQZwlFMQSIv2yvYjexUcgS785PTxfJhM6HMEztjobJo8E-j8CpMU9Qc6yiIJh1z7oSLp2LUf966C0HH7-Btyh3ZvH-897Dj6g-wN__bJv4M9xHsRVPdMKTKxhKgDnWGa4bhaG3V__djto3FGGzTsF7TiRhha-JIou1t0vNiVc1ucdW0LEpsu7VjUeyr6wz-BFfHvy-PFlkSUsiIC7nJJGJAnoT3OYZ8a4boFQlFIdcoJaEVFD4MyajSznjurZ8ZzEuyzho5JSct_wyjuqndPrDw9WetKVAqToJybjz6nFtSYTRxWxyAHKDTlFjGo9jFjR7KyVZ6gFxHyHUP-QGMH-zuep6NZy1mw8zoRytGh2DwrO2vYSp1eJ3iHgnWrtmudchgpmWI1-X0ywvu_xNeLy7Pz_TZyfL0K7yJV_oiyW8w2rRb9z0kMhvzIy3UeyLx9KU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+as+an+additional+driver+to+organic+carbon+accumulation+in+major+Chinese+croplands&rft.jtitle=Geoderma&rft.au=Zhang%2C+Xinmu&rft.au=Guo%2C+Jingheng&rft.au=Vogt%2C+Rolf+David&rft.au=Mulder%2C+Jan&rft.date=2020-05-01&rft.issn=0016-7061&rft.volume=366+p.114234-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114234&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |