Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands

•Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation. Signifi...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 366; p. 114234
Main Authors Zhang, Xinmu, Guo, Jingheng, Vogt, Rolf David, Mulder, Jan, Wang, Yajing, Qian, Cheng, Wang, Jingguo, Zhang, Xiaoshan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation. Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences.
AbstractList Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences.
•Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification increases SOC content by decreasing its decomposition.•Soil acidification is a linkage between N fertilization and SOC accumulation. Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C inputs from manure, crop straw and root. However, using a meta-analysis of 185 long-term trials and 6669 spatial data pairs across China, we show here that soil acidification is an additional significant cause for the SOC accumulation. Results from long-term experiments showed that soil acidification due to excessive N fertilization coincided with, and significantly (p < 0.01) contributed to, the observed SOC accrual. Spatially, the amount of SOC increase caused by soil acidification decreased with increasing initial content. In addition, the soil’s basal respiration rate (SBRR), microbial metabolic quotient (MMQ) and the percentage of dissolved organic carbon (DOC) relative to total SOC decreased significantly (p < 0.01) with soil pH decline. This indicates that soil acidification depresses the decomposition of organic matter, both by decreasing microbial activity and by increasing protection of SOC by mineral phases. Thus, N-induced soil acidification promotes the SOC accumulation in Chinese croplands, by increasing its stability. In contrast to the current view emphasizing the importance of organic C inputs, our meta-analysis reveals an alternative mechanism connecting N-fertilization and the resulting SOC accumulation in agricultural ecosystems. More research is needed to further clarify its operating processes, relative importance, and agro-environmental consequences.
ArticleNumber 114234
Author Vogt, Rolf David
Wang, Yajing
Guo, Jingheng
Zhang, Xiaoshan
Qian, Cheng
Wang, Jingguo
Zhang, Xinmu
Mulder, Jan
Author_xml – sequence: 1
  givenname: Xinmu
  surname: Zhang
  fullname: Zhang, Xinmu
  organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Jingheng
  surname: Guo
  fullname: Guo, Jingheng
  email: guojingheng@cau.edu.cn
  organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
– sequence: 3
  givenname: Rolf David
  surname: Vogt
  fullname: Vogt, Rolf David
  organization: Department of Chemistry, University of Oslo, 0315 Oslo, Norway
– sequence: 4
  givenname: Jan
  surname: Mulder
  fullname: Mulder, Jan
  organization: Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430 Ås, Norway
– sequence: 5
  givenname: Yajing
  surname: Wang
  fullname: Wang, Yajing
  organization: College of Resources and Environment Science, Hebei Agricultural University, Baoding 071001, China
– sequence: 6
  givenname: Cheng
  surname: Qian
  fullname: Qian, Cheng
  organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
– sequence: 7
  givenname: Jingguo
  surname: Wang
  fullname: Wang, Jingguo
  organization: Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
– sequence: 8
  givenname: Xiaoshan
  surname: Zhang
  fullname: Zhang, Xiaoshan
  organization: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
BookMark eNqFkE1v2zAMhoWhBZam_QuFjrs4lT8kO8AOG4JtLVCgh7ZngabojIFtZZITYP--yrxeesmFBIXnJajnSlyMfiQhbnO1ylVu7narLXlHYYBVoYr0mFdFWX0Si7ypi8wUen0hFiqRWa1M_llcxbhLY53YhXDPnnsJyI47RpjYjxKihFSd49MIvXSBjxTk5KUPWxgZJUJoTyTiYTj0c4xHOcDOB7n5zSNFkhj8vofRxWtx2UEf6eZ_X4rXnz9eNvfZ49Ovh833xwzLSk-ZBjCtwqrrFOiiWAN0BiuDpda1RnAV5spga2q3LlXnunULqkZHrtUNknblUnyZ9-6D_3OgONmBI1KfjiB_iLYom6auk5YmoV9nNB0ZY6DOIk___jEF4N7myp7k2p19l2tPcu0sN8XNh_g-8ADh7_ngtzlIycORKdiITCOS40A4Wef53Io3Jn6cwg
CitedBy_id crossref_primary_10_1016_j_agee_2022_108141
crossref_primary_10_1016_j_chemosphere_2024_141265
crossref_primary_10_1080_15324982_2023_2284889
crossref_primary_10_3390_su14148912
crossref_primary_10_1007_s11104_024_06476_2
crossref_primary_10_1111_ejss_13333
crossref_primary_10_1111_gcb_15731
crossref_primary_10_1016_j_scitotenv_2023_169007
crossref_primary_10_1016_j_jhazmat_2023_133054
crossref_primary_10_1016_j_scitotenv_2023_167749
crossref_primary_10_2139_ssrn_4156071
crossref_primary_10_1016_j_ecoenv_2021_112152
crossref_primary_10_1111_gcb_17507
crossref_primary_10_3390_f13111943
crossref_primary_10_5194_soil_7_677_2021
crossref_primary_10_1007_s42832_024_0290_y
crossref_primary_10_1016_j_still_2024_106414
crossref_primary_10_3390_f15122204
crossref_primary_10_1016_j_still_2022_105321
crossref_primary_10_3390_agronomy15020333
crossref_primary_10_1016_j_scitotenv_2020_138330
crossref_primary_10_47743_jpd_2023_30_1_933
crossref_primary_10_1007_s10668_023_03777_x
crossref_primary_10_1016_j_chemosphere_2022_137570
crossref_primary_10_1016_j_catena_2024_108333
crossref_primary_10_1007_s11104_024_06608_8
crossref_primary_10_1016_j_geodrs_2022_e00582
crossref_primary_10_1016_j_jenvman_2024_121834
crossref_primary_10_1080_00103624_2024_2439290
crossref_primary_10_1016_j_scitotenv_2024_173287
crossref_primary_10_1016_j_agee_2023_108723
crossref_primary_10_1016_j_pedsph_2023_07_011
crossref_primary_10_1016_j_jenvman_2024_121839
crossref_primary_10_1016_j_geoderma_2021_115322
crossref_primary_10_1016_j_scitotenv_2024_170294
crossref_primary_10_1016_j_jenvman_2024_122803
crossref_primary_10_1016_j_agee_2024_109330
crossref_primary_10_1016_j_scitotenv_2020_143277
crossref_primary_10_1016_j_scitotenv_2023_162670
crossref_primary_10_3390_horticulturae10101090
crossref_primary_10_1016_j_scitotenv_2021_150632
crossref_primary_10_1007_s10533_024_01179_3
crossref_primary_10_1016_j_scitotenv_2024_173579
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1038_s41598_023_35134_3
crossref_primary_10_1016_j_ijbiomac_2022_12_009
crossref_primary_10_1186_s41610_021_00180_3
crossref_primary_10_1021_acs_est_3c07000
crossref_primary_10_1016_j_pedsph_2023_09_012
crossref_primary_10_3390_agronomy14010177
crossref_primary_10_1016_j_envpol_2021_118588
crossref_primary_10_1016_j_plaphy_2025_109810
crossref_primary_10_1016_j_scitotenv_2024_171246
crossref_primary_10_1016_j_agee_2025_109555
crossref_primary_10_3390_su14137543
crossref_primary_10_1016_j_agee_2023_108346
crossref_primary_10_1134_S1064229322020156
crossref_primary_10_1111_1365_2664_14091
crossref_primary_10_1002_saj2_70042
crossref_primary_10_1016_j_geoderma_2021_115586
crossref_primary_10_1016_j_jenvman_2023_117590
crossref_primary_10_1111_gcb_15819
crossref_primary_10_3390_microorganisms10091763
crossref_primary_10_3390_agronomy12071697
crossref_primary_10_1016_j_catena_2024_108266
crossref_primary_10_1016_j_catena_2022_106126
crossref_primary_10_1111_jac_70051
crossref_primary_10_1016_j_jenvman_2022_116672
crossref_primary_10_1007_s00374_023_01722_8
crossref_primary_10_1007_s11368_022_03330_9
crossref_primary_10_3390_agriculture13050999
crossref_primary_10_3390_su141912891
crossref_primary_10_1016_j_catena_2023_107343
crossref_primary_10_1016_j_scitotenv_2022_159253
crossref_primary_10_1061__ASCE_EE_1943_7870_0002022
crossref_primary_10_1016_j_agee_2023_108749
crossref_primary_10_3390_plants12071464
crossref_primary_10_1016_j_eja_2025_127607
crossref_primary_10_3390_agronomy14051056
crossref_primary_10_1016_j_scitotenv_2024_174338
crossref_primary_10_1016_j_catena_2024_107907
crossref_primary_10_1016_j_scitotenv_2024_175388
crossref_primary_10_1016_j_chemosphere_2020_128901
crossref_primary_10_3390_su152115218
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1007_s00253_022_11947_6
crossref_primary_10_1016_j_agee_2021_107353
crossref_primary_10_1016_j_jaridenv_2025_105332
crossref_primary_10_3390_atmos13050754
crossref_primary_10_3390_agriculture13061223
crossref_primary_10_1016_j_earscirev_2021_103689
crossref_primary_10_1016_j_scitotenv_2020_144842
crossref_primary_10_1016_j_catena_2023_107031
crossref_primary_10_1016_j_agee_2021_107589
crossref_primary_10_1016_j_agee_2023_108637
crossref_primary_10_1111_1462_2920_16286
crossref_primary_10_3389_fpls_2024_1499966
crossref_primary_10_1016_j_scitotenv_2022_158339
crossref_primary_10_1016_j_chemosphere_2023_138110
crossref_primary_10_3390_agriculture15060598
crossref_primary_10_1080_00103624_2023_2282997
crossref_primary_10_1007_s11270_023_06420_7
crossref_primary_10_3390_su14053017
crossref_primary_10_1007_s11356_020_12203_y
crossref_primary_10_1111_sum_13049
crossref_primary_10_1016_j_geoderma_2021_115599
crossref_primary_10_1007_s11104_021_04913_0
crossref_primary_10_1016_j_geoderma_2020_114806
crossref_primary_10_1016_j_catena_2023_106993
crossref_primary_10_1016_j_geoderma_2020_114807
crossref_primary_10_1038_s41598_021_02947_z
Cites_doi 10.1016/j.scitotenv.2017.09.131
10.1038/nature10386
10.1126/science.1170261
10.1002/jpln.1998.3581610408
10.1111/j.1365-2389.2010.01342.x
10.1016/j.geoderma.2016.02.009
10.1111/j.1365-2389.2008.01030.x
10.1111/j.1365-2486.2012.02794.x
10.1111/1365-2435.12525
10.1016/j.envpol.2015.07.033
10.1016/S0065-2113(01)71014-0
10.1016/B978-0-12-394277-7.00001-4
10.1111/j.1365-2389.2010.01310.x
10.1016/S0038-0717(97)00094-1
10.1016/j.soilbio.2014.01.022
10.1007/s10533-015-0123-2
10.1016/j.scitotenv.2015.11.025
10.1016/j.still.2018.04.011
10.1126/science.284.5423.2095
10.1038/s41586-019-1280-6
10.1111/j.1365-2389.2009.01123.x
10.1007/s10533-007-9140-0
10.1111/ejss.12104
10.1007/s10533-008-9256-x
10.1016/j.soilbio.2015.06.028
10.1016/j.soilbio.2015.06.014
10.1023/A:1016125726789
10.1016/j.apsoil.2010.09.007
10.1016/j.soilbio.2005.08.006
10.2134/jeq2011.0064
10.1088/1748-9326/9/9/095002
10.1093/aob/mcx138
10.1126/science.1097396
10.1007/s11368-018-1934-2
10.1016/j.geoderma.2015.08.038
10.1111/j.1365-2486.2010.02286.x
10.1038/nature06316
10.1111/ele.13083
10.1016/j.geoderma.2012.05.004
10.1111/gcb.14304
10.1007/BF02369968
10.5194/acp-18-10419-2018
10.1016/j.soilbio.2014.03.023
10.1111/j.1365-2486.2011.02603.x
10.1016/bs.agron.2014.10.005
10.1016/j.soilbio.2018.03.009
10.1038/ngeo844
10.1016/j.envpol.2018.03.081
10.1038/nature16069
10.1111/gcb.13966
10.3389/fmicb.2017.01325
10.1016/j.ejsobi.2019.103097
10.1016/j.soilbio.2015.12.012
10.1016/j.soilbio.2014.11.017
10.1088/1748-9326/10/2/024019
10.1111/j.1365-2389.2006.00834.x
10.1073/pnas.1700292114
10.1007/s00374-016-1111-y
10.1016/S0038-0717(01)00022-0
10.2134/agronj2016.08.0462
10.1007/s10113-016-1101-5
10.1016/j.soilbio.2015.09.018
10.1126/science.1182570
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114234
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114234
S0016706119328186
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-5aa6b0c4ff0a5229aaf6c46c35575cad4c106cb67d930fdf9ba07cdedb58ce5d3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 01:56:06 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nitrogen fertilization
Carbon accumulation
Decomposition
Soil acidification
Soil organic carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-5aa6b0c4ff0a5229aaf6c46c35575cad4c106cb67d930fdf9ba07cdedb58ce5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388771878
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388771878
crossref_citationtrail_10_1016_j_geoderma_2020_114234
crossref_primary_10_1016_j_geoderma_2020_114234
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Liu, Wu, Jiang, Chen, Cai, Wang, Zhang, Zhang, Li (b0145) 2018; 18
Vitousek, Naylor, Crews, David, Drinkwater, Holland, Johnes, Katzenberger, Martinelli, Matson, Nziguheba, Ojima, Palm, Robertson, Sanchez, Townsend, Zhang (b0255) 2009; 324
Xu, Shi, Li, Rey, Ruan, Craine, Liang, Zhou, Luo (b0300) 2016; 262
Zhou, Jiang, Zhou, Zhao, Ma, Guan, Li, Chen, Cao, Shen, Qin (b0350) 2016; 95
Curtin, Campbell, Jalil (b0040) 1998; 30
Liu, Jiang, Hu, Li, Liu, Wang (b0150) 2014; 72
Powlson, Whitmore, Goulding (b0185) 2011; 62
Yan, Cai, Wang, Smith (b0305) 2011; 17
Geisseler, Scow (b0060) 2014; 75
Tonon, Sohi, Francioso, Ferrari, Montecchio, Gioacchini, Ciavatta, Panzacchi, Powlson (b0245) 2010; 61
Wang, TangC (b0275) 2018; 121
Tian, Niu (b0235) 2015; 10
Lehmann, Kleber (b0135) 2015; 528
McBride (b0155) 1994
Xu, Zhang, Huang (b0295) 2015
Chen, Lan, Hu, Bai (b0015) 2015; 89
Guggenberger, Kaiser, Zech (b0080) 1998; 161
Six, Conant, Paul, Paustian (b0210) 2002; 241
Gu, Ju, Chang, Ge, Chang (b0075) 2017; 17
Gong, Zhang, Chen (b0070) 2007
Riggs, Hobbie, Bach, Hofmockel, Kazanski (b0195) 2015; 125
Wu, Liang, Hui, Deng, Xiong, Qiu, Liu, Chu, Zhou, Zhang (b0290) 2016; 544
Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0115) 2015; 130
Weslien, Klemedtsson, Börjesson, Klemedtsson (b0285) 2009; 60
Ye, Chen, Hao, Pan, Yan, Bai, Guo, Zhang, Bai, Hu (b0315) 2018; 21
Curtin, Peterson, Anderson (b0045) 2016; 271
MEE (Ministry of Ecology and Environment, PRC), 2018. Report on the state of ecology and environment in China in 2017.
Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (b0030) 2019; 188
Aye, Sale, Tang (b0010) 2016; 52
Wang, Guo, Vogt, Mulder, Wang, Zhang (b0280) 2018; 24
Evans, Goodale, Caporn, Dise, Emmett, Fernandez, Field, Findlay, Lovett, Meesenburg, Moldan, Sheppard (b0050) 2008; 91
Oren, Chefetz (b0175) 2012; 189–190
Zeng, Liu, Song, Lin, Zhang, Shen, Chu (b0320) 2016; 92
Chen, Li, Lan, Hu, Bai (b0020) 2016; 30
Wang, Akiyama, Yagi, Yan (b0265) 2018; 18
Hagedorn, Kammer (b0095) 2012; 18
Kemmitt, Wright, Goulding, Jones (b0110) 2006; 38
Song, Guo, Yu, Zhang, Cao, Cornelissen (b0215) 2018; 24
Zhang, Cui, Chen, Ju, Shen, Chen, Liu, Zhang, Mi, Fan, Jiang (b0325) 2012; 116
Yan, Ti, Vitousek, Chen, Leip, Cai, Zhu (b0310) 2014; 9
Zhang, Zhang, Wang, Huang, Yu, Li, Shen, Ran (b0330) 2013; 64
Stewart, Paustian, Conant, Plante, Six (b0230) 2007; 86
(access on 20 September 2019).
Chen, Li, Gurmesa, Yu, Li, Zhang, Fang, Mo (b0025) 2015; 206
Lal (b0130) 2004; 304
Hemingway, Rothman, Grant, Rosengard, Elinton, Derry, Galy (b0100) 2019; 570
Monteith, Stoddard, Evans, de Wit, Forsius, Høgåsen, Wilander, Skjelkvåle, Jeffries, Vuorenmaa, Keller, Kopácek, Vesely (b0170) 2007; 450
Hagedorn, Bruderhofer, Ferrari, Niklaus (b0090) 2015; 88
Spielvogel, Prietzel, Kögel-Knabner (b0225) 2008; 59
Mitchell, Simpson, Soong, Simpson (b0165) 2015; 81
Schlesinger (b0200) 1999; 284
Ladha, Reddy, Padre, van Kessel (b0120) 2011; 40
Oulehle, Tahovská, Tomáš, Evans, Hruška, Růžek, Bárta (b0180) 2018; 238
Sparks (b0220) 2003
Wang, Lu, Mori, Mao, Zhou, Zhou, Nie, Mo (b0260) 2018; 121
Ghimire, Machado, Bista (b0065) 2017; 109
Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie, Zhu, Yu, Pan, Xu, Shi (b0345) 2018; 115
Van Breemen, Mulder, Driscoll (b0250) 1983; 75
Janssens, Dieleman, Luyssaert, Subke, Reichstein, Ceulemans, Ciais, Dolman, Grace, Matteucci, Papale, Piao, Schulze, Tang, Law (b0105) 2010; 3
Chenu, Plante (b0035) 2006; 57
Andersson, Nilsson (b0005) 2001; 33
Lal (b0125) 2001; 71
Evans, Jones, Burden, Ostle, Zieliński, Cooper, Peacock, Clark, Oulehle, Cooper, Freeman (b0055) 2012; 18
Zhang, Yang, Wang, Tian, Li, He, Niu (b0335) 2019; 93
Reuss, Johnson (b0190) 1986
Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (b0085) 2010; 327
Tian, Emily Dell, Wei (b0240) 2010; 46
Zhang, Shen, He, Thomas, Lupwayi, Hao, Shi (b0340) 2017; 8
Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0205) 2011; 487
Li, Sun, Tian, Wang, Ha, Qu, Jing, Niu (b0140) 2018; 615
Weslien (10.1016/j.geoderma.2020.114234_b0285) 2009; 60
Spielvogel (10.1016/j.geoderma.2020.114234_b0225) 2008; 59
Li (10.1016/j.geoderma.2020.114234_b0140) 2018; 615
Wang (10.1016/j.geoderma.2020.114234_b0280) 2018; 24
Ghimire (10.1016/j.geoderma.2020.114234_b0065) 2017; 109
Kleber (10.1016/j.geoderma.2020.114234_b0115) 2015; 130
McBride (10.1016/j.geoderma.2020.114234_b0155) 1994
Curtin (10.1016/j.geoderma.2020.114234_b0040) 1998; 30
Schmidt (10.1016/j.geoderma.2020.114234_b0205) 2011; 487
Oren (10.1016/j.geoderma.2020.114234_b0175) 2012; 189–190
Andersson (10.1016/j.geoderma.2020.114234_b0005) 2001; 33
Gong (10.1016/j.geoderma.2020.114234_b0070) 2007
Yan (10.1016/j.geoderma.2020.114234_b0305) 2011; 17
Chen (10.1016/j.geoderma.2020.114234_b0015) 2015; 89
Chenu (10.1016/j.geoderma.2020.114234_b0030) 2019; 188
Lal (10.1016/j.geoderma.2020.114234_b0125) 2001; 71
Zhang (10.1016/j.geoderma.2020.114234_b0330) 2013; 64
Zhang (10.1016/j.geoderma.2020.114234_b0340) 2017; 8
Chenu (10.1016/j.geoderma.2020.114234_b0035) 2006; 57
Hemingway (10.1016/j.geoderma.2020.114234_b0100) 2019; 570
Geisseler (10.1016/j.geoderma.2020.114234_b0060) 2014; 75
Liu (10.1016/j.geoderma.2020.114234_b0145) 2018; 18
Ye (10.1016/j.geoderma.2020.114234_b0315) 2018; 21
Aye (10.1016/j.geoderma.2020.114234_b0010) 2016; 52
Curtin (10.1016/j.geoderma.2020.114234_b0045) 2016; 271
Wang (10.1016/j.geoderma.2020.114234_b0275) 2018; 121
Mitchell (10.1016/j.geoderma.2020.114234_b0165) 2015; 81
Schlesinger (10.1016/j.geoderma.2020.114234_b0200) 1999; 284
Zhao (10.1016/j.geoderma.2020.114234_b0345) 2018; 115
Tian (10.1016/j.geoderma.2020.114234_b0235) 2015; 10
Six (10.1016/j.geoderma.2020.114234_b0210) 2002; 241
Kemmitt (10.1016/j.geoderma.2020.114234_b0110) 2006; 38
Lehmann (10.1016/j.geoderma.2020.114234_b0135) 2015; 528
10.1016/j.geoderma.2020.114234_b0160
Guggenberger (10.1016/j.geoderma.2020.114234_b0080) 1998; 161
Hagedorn (10.1016/j.geoderma.2020.114234_b0095) 2012; 18
Monteith (10.1016/j.geoderma.2020.114234_b0170) 2007; 450
Reuss (10.1016/j.geoderma.2020.114234_b0190) 1986
Wang (10.1016/j.geoderma.2020.114234_b0265) 2018; 18
Zhang (10.1016/j.geoderma.2020.114234_b0335) 2019; 93
Evans (10.1016/j.geoderma.2020.114234_b0055) 2012; 18
Stewart (10.1016/j.geoderma.2020.114234_b0230) 2007; 86
Tian (10.1016/j.geoderma.2020.114234_b0240) 2010; 46
Evans (10.1016/j.geoderma.2020.114234_b0050) 2008; 91
Vitousek (10.1016/j.geoderma.2020.114234_b0255) 2009; 324
Riggs (10.1016/j.geoderma.2020.114234_b0195) 2015; 125
Janssens (10.1016/j.geoderma.2020.114234_b0105) 2010; 3
Guo (10.1016/j.geoderma.2020.114234_b0085) 2010; 327
Zhang (10.1016/j.geoderma.2020.114234_b0325) 2012; 116
Chen (10.1016/j.geoderma.2020.114234_b0020) 2016; 30
Powlson (10.1016/j.geoderma.2020.114234_b0185) 2011; 62
Wu (10.1016/j.geoderma.2020.114234_b0290) 2016; 544
Liu (10.1016/j.geoderma.2020.114234_b0150) 2014; 72
Song (10.1016/j.geoderma.2020.114234_b0215) 2018; 24
Zhou (10.1016/j.geoderma.2020.114234_b0350) 2016; 95
Lal (10.1016/j.geoderma.2020.114234_b0130) 2004; 304
Sparks (10.1016/j.geoderma.2020.114234_b0220) 2003
Chen (10.1016/j.geoderma.2020.114234_b0025) 2015; 206
Gu (10.1016/j.geoderma.2020.114234_b0075) 2017; 17
Wang (10.1016/j.geoderma.2020.114234_b0260) 2018; 121
Ladha (10.1016/j.geoderma.2020.114234_b0120) 2011; 40
Oulehle (10.1016/j.geoderma.2020.114234_b0180) 2018; 238
Xu (10.1016/j.geoderma.2020.114234_b0295) 2015
Tonon (10.1016/j.geoderma.2020.114234_b0245) 2010; 61
Van Breemen (10.1016/j.geoderma.2020.114234_b0250) 1983; 75
Yan (10.1016/j.geoderma.2020.114234_b0310) 2014; 9
Hagedorn (10.1016/j.geoderma.2020.114234_b0090) 2015; 88
Xu (10.1016/j.geoderma.2020.114234_b0300) 2016; 262
Zeng (10.1016/j.geoderma.2020.114234_b0320) 2016; 92
References_xml – volume: 30
  start-page: 57
  year: 1998
  end-page: 64
  ident: b0040
  article-title: Effects of acidity on mineralization pH dependence of organic matter mineralization in weakly acidic soils
  publication-title: Soil Biol. Biochem.
– volume: 450
  start-page: 537
  year: 2007
  end-page: 540
  ident: b0170
  article-title: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry
  publication-title: Nature
– year: 1994
  ident: b0155
  article-title: Environmental Chemistry of Soils
– year: 1986
  ident: b0190
  article-title: Acid Deposition and the Acidification of Soils and Waters
– volume: 61
  start-page: 970
  year: 2010
  end-page: 979
  ident: b0245
  article-title: Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK
  publication-title: Eur. J. Soil Sci.
– volume: 71
  start-page: 145
  year: 2001
  end-page: 191
  ident: b0125
  article-title: World cropland soils as a source or sink for atmospheric carbon
  publication-title: Adv. Agronomy
– volume: 72
  start-page: 116
  year: 2014
  end-page: 122
  ident: b0150
  article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe
  publication-title: Soil Biol. Biochem.
– volume: 10
  year: 2015
  ident: b0235
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
– volume: 615
  start-page: 1535
  year: 2018
  end-page: 1546
  ident: b0140
  article-title: Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification
  publication-title: Sci. Total Environ.
– volume: 60
  start-page: 311
  year: 2009
  end-page: 320
  ident: b0285
  article-title: Strong pH influence on N
  publication-title: Eur. J. Soil Sci.
– volume: 38
  start-page: 898
  year: 2006
  end-page: 911
  ident: b0110
  article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils
  publication-title: Soil Biol. Biochem.
– volume: 238
  start-page: 884
  year: 2018
  end-page: 893
  ident: b0180
  article-title: Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests
  publication-title: Environ. Pollut.
– volume: 52
  start-page: 697
  year: 2016
  end-page: 709
  ident: b0010
  article-title: The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils
  publication-title: Biol. Fertil. Soils
– volume: 130
  start-page: 1
  year: 2015
  end-page: 140
  ident: b0115
  article-title: Mineral-organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agronomy
– volume: 75
  start-page: 283
  year: 1983
  end-page: 308
  ident: b0250
  article-title: Acidification and alkalinization of soils
  publication-title: Plant Soil
– reference: MEE (Ministry of Ecology and Environment, PRC), 2018. Report on the state of ecology and environment in China in 2017.
– volume: 64
  start-page: 797
  year: 2013
  end-page: 804
  ident: b0330
  article-title: The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China
  publication-title: Eur. J. Soil Sci.
– volume: 40
  start-page: 1756
  year: 2011
  end-page: 1766
  ident: b0120
  article-title: Role of nitrogen fertilization in sustaining organic matter in cultivated soils
  publication-title: J. Environ. Qual.
– volume: 271
  start-page: 161
  year: 2016
  end-page: 172
  ident: b0045
  article-title: pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy
  publication-title: Geoderma
– reference: (access on 20 September 2019).
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  ident: b0105
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nat. Geosci.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: b0130
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 121
  start-page: 103
  year: 2018
  end-page: 112
  ident: b0260
  article-title: Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest
  publication-title: Soil Biol. Biochem.
– volume: 262
  start-page: 235
  year: 2016
  end-page: 242
  ident: b0300
  article-title: Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis
  publication-title: Geoderma
– volume: 89
  start-page: 99
  year: 2015
  end-page: 108
  ident: b0015
  article-title: Effects of nitrogen enrichment on below ground communities in grassland: relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biol. Biochem.
– volume: 75
  start-page: 54
  year: 2014
  end-page: 63
  ident: b0060
  article-title: Long-term effects of mineral fertilizers on soil microorganisms – a review
  publication-title: Soil Biol. Biochem.
– volume: 18
  start-page: 1853
  year: 2018
  end-page: 1864
  ident: b0145
  article-title: Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China
  publication-title: J. Soil Sediment
– volume: 18
  start-page: 3317
  year: 2012
  end-page: 3331
  ident: b0055
  article-title: Acidity controls on dissolved organic carbon mobility in organic soils
  publication-title: Glob. Change Biol.
– volume: 33
  start-page: 1181
  year: 2001
  end-page: 1191
  ident: b0005
  article-title: Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a more humus
  publication-title: Soil Biol. Biochem.
– volume: 188
  start-page: 41
  year: 2019
  end-page: 52
  ident: b0030
  article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations
  publication-title: Soil Tillage Res.
– volume: 570
  start-page: 228
  year: 2019
  end-page: 231
  ident: b0100
  article-title: Mineral protection regulates long-term global preservation of natural organic carbon
  publication-title: Nature
– volume: 59
  start-page: 674
  year: 2008
  end-page: 692
  ident: b0225
  article-title: Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific
  publication-title: Eur. J. Soil Sci.
– volume: 92
  start-page: 41
  year: 2016
  end-page: 49
  ident: b0320
  article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition
  publication-title: Soil Biol. Biochem.
– volume: 125
  start-page: 203
  year: 2015
  end-page: 219
  ident: b0195
  article-title: Nitrogen addition changes grassland soil organic matter decomposition
  publication-title: Biogeochemistry
– year: 2015
  ident: b0295
  article-title: Evolution of Soil Fertility in China
– year: 2003
  ident: b0220
  article-title: Environmental Soil Chemistry
– volume: 21
  start-page: 1162
  year: 2018
  end-page: 1173
  ident: b0315
  article-title: Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls
  publication-title: Ecol. Lett.
– volume: 18
  start-page: 1412
  year: 2012
  end-page: 1427
  ident: b0095
  article-title: Nitrogen addition alters mineralization dynamics of
  publication-title: Glob. Change Biol.
– volume: 46
  start-page: 426
  year: 2010
  end-page: 435
  ident: b0240
  article-title: Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization
  publication-title: Appl. Soil Ecol.
– volume: 8
  start-page: 1325
  year: 2017
  ident: b0340
  article-title: Fertilization shapes bacterial community structure by alteration of soil pH
  publication-title: Front. Microbiol.
– volume: 109
  start-page: 706
  year: 2017
  end-page: 717
  ident: b0065
  article-title: Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems
  publication-title: Agron. J.
– volume: 121
  start-page: 143
  year: 2018
  end-page: 151
  ident: b0275
  article-title: The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants
  publication-title: Ann. Bot.
– volume: 324
  start-page: 1519
  year: 2009
  end-page: 1520
  ident: b0255
  article-title: Nutrient imbalances in agricultural development
  publication-title: Science
– volume: 9
  year: 2014
  ident: b0310
  article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen
  publication-title: Environ. Res. Lett.
– volume: 24
  start-page: e617
  year: 2018
  end-page: e626
  ident: b0280
  article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation
  publication-title: Glob. Change Biol.
– volume: 95
  start-page: 135
  year: 2016
  end-page: 143
  ident: b0350
  article-title: Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China
  publication-title: Soil Biol. Biochem.
– volume: 17
  start-page: 1487
  year: 2011
  end-page: 1496
  ident: b0305
  article-title: Direct measurement of soil organic carbon content change in the croplands of China
  publication-title: Glob. Change Biol.
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: b0210
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
– volume: 86
  start-page: 19
  year: 2007
  end-page: 31
  ident: b0230
  article-title: Soil carbon saturation: concept, evidence and evaluation
  publication-title: Biogeochemistry
– volume: 115
  start-page: 4045
  year: 2018
  end-page: 4050
  ident: b0345
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 17
  start-page: 1217
  year: 2017
  end-page: 1227
  ident: b0075
  article-title: Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection
  publication-title: Regional Environ. Change
– volume: 91
  start-page: 13
  year: 2008
  end-page: 35
  ident: b0050
  article-title: Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? a review of evidence from field nitrogen addition experiments
  publication-title: Biogeochemistry
– volume: 487
  start-page: 49
  year: 2011
  end-page: 56
  ident: b0205
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– year: 2007
  ident: b0070
  article-title: Pedogenesis and Soil Taxonomy
– volume: 544
  start-page: 94
  year: 2016
  end-page: 102
  ident: b0290
  article-title: Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 333
  year: 2015
  end-page: 343
  ident: b0090
  article-title: Tracking litter-derived dissolved organic matter along a soil chronosequence using
  publication-title: Soil Biol. Biochem.
– volume: 189–190
  start-page: 108
  year: 2012
  end-page: 115
  ident: b0175
  article-title: Successive sorption–desorption cycles of dissolved organic matter in mineral soil matrices
  publication-title: Geoderma
– volume: 284
  start-page: 2095
  year: 1999
  ident: b0200
  article-title: Carbon and agriculture – carbon sequestration in soils
  publication-title: Science
– volume: 206
  start-page: 352
  year: 2015
  end-page: 360
  ident: b0025
  article-title: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis
  publication-title: Environ. Pollut.
– volume: 116
  start-page: 1
  year: 2012
  end-page: 40
  ident: b0325
  article-title: Integrated nutrient management for food security and environmental quality in China
  publication-title: Adv. Agron.
– volume: 93
  year: 2019
  ident: b0335
  article-title: Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect
  publication-title: Eur. J. Soil Biol.
– volume: 30
  start-page: 658
  year: 2016
  end-page: 669
  ident: b0020
  article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment
  publication-title: Funct. Ecol.
– volume: 24
  start-page: 4160
  year: 2018
  end-page: 4172
  ident: b0215
  article-title: Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage
  publication-title: Glob. Change Biol.
– volume: 57
  start-page: 596
  year: 2006
  end-page: 607
  ident: b0035
  article-title: Clay-sized organo-mineral complexes in a cultivation chronosequence revisiting the concept of the ‘primary organo-mineral complex’
  publication-title: Eur. J. Soil Sci.
– volume: 161
  start-page: 401
  year: 1998
  end-page: 408
  ident: b0080
  article-title: Mobilization and immobilization of dissolved organic matter in forest soils
  publication-title: Z. Pflanzenernähr. Bodenk.
– volume: 18
  start-page: 10419
  year: 2018
  end-page: 10431
  ident: b0265
  article-title: Controlling variables and emission factors of methane from global rice fields
  publication-title: Atmos. Chem. Phys.
– volume: 81
  start-page: 244
  year: 2015
  end-page: 254
  ident: b0165
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
– volume: 62
  start-page: 42
  year: 2011
  end-page: 55
  ident: b0185
  article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false
  publication-title: Eur. J. Soil Sci.
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: b0135
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  ident: b0085
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 615
  start-page: 1535
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0140
  article-title: Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.131
– volume: 487
  start-page: 49
  year: 2011
  ident: 10.1016/j.geoderma.2020.114234_b0205
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0295
– volume: 324
  start-page: 1519
  year: 2009
  ident: 10.1016/j.geoderma.2020.114234_b0255
  article-title: Nutrient imbalances in agricultural development
  publication-title: Science
  doi: 10.1126/science.1170261
– volume: 161
  start-page: 401
  year: 1998
  ident: 10.1016/j.geoderma.2020.114234_b0080
  article-title: Mobilization and immobilization of dissolved organic matter in forest soils
  publication-title: Z. Pflanzenernähr. Bodenk.
  doi: 10.1002/jpln.1998.3581610408
– volume: 62
  start-page: 42
  year: 2011
  ident: 10.1016/j.geoderma.2020.114234_b0185
  article-title: Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01342.x
– year: 2007
  ident: 10.1016/j.geoderma.2020.114234_b0070
– volume: 271
  start-page: 161
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0045
  article-title: pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.009
– volume: 59
  start-page: 674
  year: 2008
  ident: 10.1016/j.geoderma.2020.114234_b0225
  article-title: Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2008.01030.x
– volume: 18
  start-page: 3317
  year: 2012
  ident: 10.1016/j.geoderma.2020.114234_b0055
  article-title: Acidity controls on dissolved organic carbon mobility in organic soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02794.x
– volume: 30
  start-page: 658
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0020
  article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12525
– volume: 206
  start-page: 352
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0025
  article-title: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.033
– volume: 71
  start-page: 145
  year: 2001
  ident: 10.1016/j.geoderma.2020.114234_b0125
  article-title: World cropland soils as a source or sink for atmospheric carbon
  publication-title: Adv. Agronomy
  doi: 10.1016/S0065-2113(01)71014-0
– volume: 116
  start-page: 1
  year: 2012
  ident: 10.1016/j.geoderma.2020.114234_b0325
  article-title: Integrated nutrient management for food security and environmental quality in China
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-394277-7.00001-4
– volume: 61
  start-page: 970
  year: 2010
  ident: 10.1016/j.geoderma.2020.114234_b0245
  article-title: Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01310.x
– volume: 30
  start-page: 57
  year: 1998
  ident: 10.1016/j.geoderma.2020.114234_b0040
  article-title: Effects of acidity on mineralization pH dependence of organic matter mineralization in weakly acidic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(97)00094-1
– volume: 72
  start-page: 116
  year: 2014
  ident: 10.1016/j.geoderma.2020.114234_b0150
  article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.022
– year: 1986
  ident: 10.1016/j.geoderma.2020.114234_b0190
– year: 1994
  ident: 10.1016/j.geoderma.2020.114234_b0155
– volume: 125
  start-page: 203
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0195
  article-title: Nitrogen addition changes grassland soil organic matter decomposition
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0123-2
– volume: 544
  start-page: 94
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0290
  article-title: Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.11.025
– volume: 188
  start-page: 41
  year: 2019
  ident: 10.1016/j.geoderma.2020.114234_b0030
  article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.04.011
– volume: 284
  start-page: 2095
  year: 1999
  ident: 10.1016/j.geoderma.2020.114234_b0200
  article-title: Carbon and agriculture – carbon sequestration in soils
  publication-title: Science
  doi: 10.1126/science.284.5423.2095
– volume: 570
  start-page: 228
  year: 2019
  ident: 10.1016/j.geoderma.2020.114234_b0100
  article-title: Mineral protection regulates long-term global preservation of natural organic carbon
  publication-title: Nature
  doi: 10.1038/s41586-019-1280-6
– volume: 60
  start-page: 311
  year: 2009
  ident: 10.1016/j.geoderma.2020.114234_b0285
  article-title: Strong pH influence on N2O and CH4 fluxes from forested organic soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01123.x
– volume: 86
  start-page: 19
  year: 2007
  ident: 10.1016/j.geoderma.2020.114234_b0230
  article-title: Soil carbon saturation: concept, evidence and evaluation
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9140-0
– volume: 64
  start-page: 797
  year: 2013
  ident: 10.1016/j.geoderma.2020.114234_b0330
  article-title: The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12104
– volume: 91
  start-page: 13
  year: 2008
  ident: 10.1016/j.geoderma.2020.114234_b0050
  article-title: Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? a review of evidence from field nitrogen addition experiments
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9256-x
– volume: 89
  start-page: 99
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0015
  article-title: Effects of nitrogen enrichment on below ground communities in grassland: relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.028
– volume: 88
  start-page: 333
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0090
  article-title: Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.014
– volume: 241
  start-page: 155
  year: 2002
  ident: 10.1016/j.geoderma.2020.114234_b0210
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 46
  start-page: 426
  year: 2010
  ident: 10.1016/j.geoderma.2020.114234_b0240
  article-title: Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2010.09.007
– volume: 38
  start-page: 898
  year: 2006
  ident: 10.1016/j.geoderma.2020.114234_b0110
  article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.006
– volume: 40
  start-page: 1756
  year: 2011
  ident: 10.1016/j.geoderma.2020.114234_b0120
  article-title: Role of nitrogen fertilization in sustaining organic matter in cultivated soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0064
– volume: 9
  year: 2014
  ident: 10.1016/j.geoderma.2020.114234_b0310
  article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/9/095002
– volume: 121
  start-page: 143
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0275
  article-title: The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcx138
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.geoderma.2020.114234_b0130
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 18
  start-page: 1853
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0145
  article-title: Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China
  publication-title: J. Soil Sediment
  doi: 10.1007/s11368-018-1934-2
– volume: 262
  start-page: 235
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0300
  article-title: Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.038
– volume: 17
  start-page: 1487
  year: 2011
  ident: 10.1016/j.geoderma.2020.114234_b0305
  article-title: Direct measurement of soil organic carbon content change in the croplands of China
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02286.x
– ident: 10.1016/j.geoderma.2020.114234_b0160
– volume: 450
  start-page: 537
  year: 2007
  ident: 10.1016/j.geoderma.2020.114234_b0170
  article-title: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry
  publication-title: Nature
  doi: 10.1038/nature06316
– volume: 21
  start-page: 1162
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0315
  article-title: Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13083
– volume: 189–190
  start-page: 108
  year: 2012
  ident: 10.1016/j.geoderma.2020.114234_b0175
  article-title: Successive sorption–desorption cycles of dissolved organic matter in mineral soil matrices
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.004
– volume: 24
  start-page: 4160
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0215
  article-title: Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14304
– volume: 75
  start-page: 283
  year: 1983
  ident: 10.1016/j.geoderma.2020.114234_b0250
  article-title: Acidification and alkalinization of soils
  publication-title: Plant Soil
  doi: 10.1007/BF02369968
– volume: 18
  start-page: 10419
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0265
  article-title: Controlling variables and emission factors of methane from global rice fields
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-10419-2018
– volume: 75
  start-page: 54
  year: 2014
  ident: 10.1016/j.geoderma.2020.114234_b0060
  article-title: Long-term effects of mineral fertilizers on soil microorganisms – a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.023
– volume: 18
  start-page: 1412
  year: 2012
  ident: 10.1016/j.geoderma.2020.114234_b0095
  article-title: Nitrogen addition alters mineralization dynamics of 13C depleted leaf and twig litter and reduces leaching of older DOC from mineral soil
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02603.x
– volume: 130
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0115
  article-title: Mineral-organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agronomy
  doi: 10.1016/bs.agron.2014.10.005
– volume: 121
  start-page: 103
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0260
  article-title: Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.009
– volume: 3
  start-page: 315
  year: 2010
  ident: 10.1016/j.geoderma.2020.114234_b0105
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo844
– volume: 238
  start-page: 884
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0180
  article-title: Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.081
– volume: 528
  start-page: 60
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0135
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 24
  start-page: e617
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0280
  article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13966
– volume: 8
  start-page: 1325
  year: 2017
  ident: 10.1016/j.geoderma.2020.114234_b0340
  article-title: Fertilization shapes bacterial community structure by alteration of soil pH
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01325
– volume: 93
  year: 2019
  ident: 10.1016/j.geoderma.2020.114234_b0335
  article-title: Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2019.103097
– volume: 95
  start-page: 135
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0350
  article-title: Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.12.012
– year: 2003
  ident: 10.1016/j.geoderma.2020.114234_b0220
– volume: 81
  start-page: 244
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0165
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.017
– volume: 10
  year: 2015
  ident: 10.1016/j.geoderma.2020.114234_b0235
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– volume: 57
  start-page: 596
  year: 2006
  ident: 10.1016/j.geoderma.2020.114234_b0035
  article-title: Clay-sized organo-mineral complexes in a cultivation chronosequence revisiting the concept of the ‘primary organo-mineral complex’
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00834.x
– volume: 115
  start-page: 4045
  year: 2018
  ident: 10.1016/j.geoderma.2020.114234_b0345
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1700292114
– volume: 52
  start-page: 697
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0010
  article-title: The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1111-y
– volume: 33
  start-page: 1181
  year: 2001
  ident: 10.1016/j.geoderma.2020.114234_b0005
  article-title: Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a more humus
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00022-0
– volume: 109
  start-page: 706
  year: 2017
  ident: 10.1016/j.geoderma.2020.114234_b0065
  article-title: Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.08.0462
– volume: 17
  start-page: 1217
  year: 2017
  ident: 10.1016/j.geoderma.2020.114234_b0075
  article-title: Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection
  publication-title: Regional Environ. Change
  doi: 10.1007/s10113-016-1101-5
– volume: 92
  start-page: 41
  year: 2016
  ident: 10.1016/j.geoderma.2020.114234_b0320
  article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.09.018
– volume: 327
  start-page: 1008
  year: 2010
  ident: 10.1016/j.geoderma.2020.114234_b0085
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
SSID ssj0017020
Score 2.6254652
Snippet •Impacts of N-induced soil acidification on SOC stock are assessed.•N fertilization synchronously causes soil acidification and SOC accrual.•Soil acidification...
Significant increase in soil organic carbon (SOC) has been found in Chinese croplands. Current literature largely attributes this to the increased organic C...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114234
SubjectTerms agroecosystems
Carbon accumulation
cell respiration
China
cropland
Decomposition
dissolved organic carbon
fertilizer application
long term experiments
meta-analysis
microbial activity
Nitrogen fertilization
nitrogen fertilizers
Soil acidification
Soil organic carbon
soil pH
spatial data
straw
Title Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands
URI https://dx.doi.org/10.1016/j.geoderma.2020.114234
https://www.proquest.com/docview/2388771878
Volume 366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS-RAEG1EL-tBVt1F111pYa9xkumPzBwHWRkVvLiCt6a6ulsyaCKZmev-druSjriCePASSKgO4XWnqjqpeo-x3xIKsEGEzIUxZhJtkVkpfQaFtrlABdJ2bJ_Xen4rL-_U3QY7G3phqKwy-f7ep3feOl0ZJTRHT1VFPb6FLmM4ohSEeNmog12WtMpP_72UeRRlnqgZC52R9asu4UWcIxIc6_iHxh1t7ljI9wLUG1fdxZ_zr2wnJY581j_bLtvw9R7bnt23iTzD7zN301QPHLByVP_TQc5hySEenav6j37ctVSJwVcN7wWdkCO0liwR149JzItXNX-ERdNy0tf2S89J6atrC_7Gbs___D2bZ0lFIUMh1SpTABF2lCHkEJOtKUDQKDXGRKNUCE5i3BWi1aWbijy4MLWQl-i8s2qCXjnxnW3WTe0PGI9bP-dsAUoLlJgLGyDkwqGO1ihcccjUAJ3BRDFOShcPZqglW5gBckOQmx7yQzZ6GffUk2x8OGI6zIz5b7mYGAk-HHsyTKWJ7xL9IIHaN-ulienLpIzBupz8-MT9j9gXOuurIn-yzVW79r9i5rKyx93SPGZbs4ur-fUz3qnx9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dByqPoU9OlKXKNN1o_sHleoaCmwF0DiZo3HdpUVJCi7-_-xEweVSogDlxwSTxR9dmYm8cz3ARwKLNB47jPrJ5QJMkVmhHAZFsrknCQK07F9LtXiSvy5ltc7cDT0wsSyyuT7e5_eeet0ZpzQHN9VVezxLVQZwlFMQSIv2yvYjexUcgS785PTxfJhM6HMEztjobJo8E-j8CpMU9Qc6yiIJh1z7oSLp2LUf966C0HH7-Btyh3ZvH-897Dj6g-wN__bJv4M9xHsRVPdMKTKxhKgDnWGa4bhaG3V__djto3FGGzTsF7TiRhha-JIou1t0vNiVc1ucdW0LEpsu7VjUeyr6wz-BFfHvy-PFlkSUsiIC7nJJGJAnoT3OYZ8a4boFQlFIdcoJaEVFD4MyajSznjurZ8ZzEuyzho5JSct_wyjuqndPrDw9WetKVAqToJybjz6nFtSYTRxWxyAHKDTlFjGo9jFjR7KyVZ6gFxHyHUP-QGMH-zuep6NZy1mw8zoRytGh2DwrO2vYSp1eJ3iHgnWrtmudchgpmWI1-X0ywvu_xNeLy7Pz_TZyfL0K7yJV_oiyW8w2rRb9z0kMhvzIy3UeyLx9KU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+as+an+additional+driver+to+organic+carbon+accumulation+in+major+Chinese+croplands&rft.jtitle=Geoderma&rft.au=Zhang%2C+Xinmu&rft.au=Guo%2C+Jingheng&rft.au=Vogt%2C+Rolf+David&rft.au=Mulder%2C+Jan&rft.date=2020-05-01&rft.issn=0016-7061&rft.volume=366+p.114234-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114234&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon