Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China

Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method fro...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 337; pp. 1309 - 1319
Main Authors Peng, Jie, Biswas, Asim, Jiang, Qingsong, Zhao, Ruiying, Hu, Jie, Hu, Bifeng, Shi, Zhou
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R2, RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m−1, 3.76 dS m−1 and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m−1, 8.21 dS m−1 and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas. •Soil salinity maps were produced using Cubist and PLSR models.•Cubist was proved a more suitable method for soil salinity mapping than PLSR.•Subregional modeling could improve the prediction results of soil salinity.•The study shows a large variability in EC across various land use.•Vegetation indices, soil salinity spectral indices and terrain attributes are important predictors of EC.
AbstractList Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R2, RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m−1, 3.76 dS m−1 and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m−1, 8.21 dS m−1 and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas. •Soil salinity maps were produced using Cubist and PLSR models.•Cubist was proved a more suitable method for soil salinity mapping than PLSR.•Subregional modeling could improve the prediction results of soil salinity.•The study shows a large variability in EC across various land use.•Vegetation indices, soil salinity spectral indices and terrain attributes are important predictors of EC.
Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R², RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m⁻¹, 3.76 dS m⁻¹ and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m⁻¹, 8.21 dS m⁻¹ and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas.
Author Peng, Jie
Jiang, Qingsong
Hu, Bifeng
Zhao, Ruiying
Hu, Jie
Shi, Zhou
Biswas, Asim
Author_xml – sequence: 1
  givenname: Jie
  surname: Peng
  fullname: Peng, Jie
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 2
  givenname: Asim
  orcidid: 0000-0003-0801-3546
  surname: Biswas
  fullname: Biswas, Asim
  organization: School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
– sequence: 3
  givenname: Qingsong
  surname: Jiang
  fullname: Jiang, Qingsong
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Ruiying
  surname: Zhao
  fullname: Zhao, Ruiying
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 5
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 6
  givenname: Bifeng
  surname: Hu
  fullname: Hu, Bifeng
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 7
  givenname: Zhou
  surname: Shi
  fullname: Shi, Zhou
  email: shizhou@zju.edu.cn
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
BookMark eNqFkE9LAzEQxXNQ0Fa_guTowdZk082m4EEp_gNBDwrewmQza1N2k5qkQr-9KdWLF2HgMcx7D-Y3Igc-eCTkjLMpZ1xerqYfGCzGAaYV42rKyjB5QI5ZuU4aJvkRGaW0KmvDKnZMzG3KboDs_AdNwfU0Qe-8y1vaxTDQiEPISBP6tHOAtzRjjOA8tZCBFk1hk5cYPX13fuWguF5i-HK-xQu6WDoPJ-Swgz7h6Y-Oydvd7eviYfL0fP-4uHmatGJW50mtUEBXQ8WVkYqBmc8bY2rFxMxYsF1jba2ERGNmAqwRHKFRIA3MpTKVMWJMzve96xg-N5iyHlxqse_BY9gkXXEuVSPFXBTr1d7axpBSxE63LhcIwefyW6850zuceqV_ceodTs3KMFni8k98HQvEuP0_eL0PYuHw5TDq1DosqKyL2GZtg_uv4hvGX5pS
CitedBy_id crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1007_s40808_024_02050_y
crossref_primary_10_3390_rs12244043
crossref_primary_10_1016_j_ijdrr_2024_104854
crossref_primary_10_3390_ijms25189818
crossref_primary_10_1016_j_catena_2020_104939
crossref_primary_10_3390_rs14143407
crossref_primary_10_3390_su132413711
crossref_primary_10_3390_rs11222605
crossref_primary_10_1002_ldr_3737
crossref_primary_10_1080_01431161_2020_1718239
crossref_primary_10_3390_agriculture15030323
crossref_primary_10_3390_rs12010131
crossref_primary_10_1111_ppl_13832
crossref_primary_10_3390_land13060877
crossref_primary_10_22389_0016_7126_2022_986_8_39_44
crossref_primary_10_1002_hyp_14542
crossref_primary_10_3390_rs14112599
crossref_primary_10_1016_j_geoderma_2020_114858
crossref_primary_10_1007_s12145_024_01467_4
crossref_primary_10_1007_s40333_022_0077_x
crossref_primary_10_1016_j_rsase_2022_100847
crossref_primary_10_34133_remotesensing_0130
crossref_primary_10_1016_j_ecolind_2022_109139
crossref_primary_10_3389_fmars_2022_895172
crossref_primary_10_3390_app13063440
crossref_primary_10_1016_j_jclepro_2020_123674
crossref_primary_10_1007_s11104_023_06446_0
crossref_primary_10_1002_ldr_5222
crossref_primary_10_1016_j_jag_2022_102838
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1111_sum_12772
crossref_primary_10_1117_1_JRS_17_018502
crossref_primary_10_1016_j_scitotenv_2021_152524
crossref_primary_10_1007_s40808_025_02331_0
crossref_primary_10_3390_rs17061086
crossref_primary_10_3390_rs11202336
crossref_primary_10_3390_agriculture14101777
crossref_primary_10_3390_agriculture14030377
crossref_primary_10_3390_su132413930
crossref_primary_10_3390_land13091488
crossref_primary_10_1007_s40333_023_0093_5
crossref_primary_10_1016_j_geoderma_2019_06_040
crossref_primary_10_3390_rs14030512
crossref_primary_10_3389_fpls_2024_1437390
crossref_primary_10_1016_j_catena_2023_107477
crossref_primary_10_1071_AN21069
crossref_primary_10_3390_rs15041066
crossref_primary_10_1016_j_scitotenv_2019_136092
crossref_primary_10_1016_j_catena_2022_106529
crossref_primary_10_1007_s43538_023_00157_x
crossref_primary_10_3390_rs15102540
crossref_primary_10_1007_s12665_021_09752_x
crossref_primary_10_1007_s11368_021_02906_1
crossref_primary_10_3390_agriculture14071200
crossref_primary_10_1088_1755_1315_545_1_012016
crossref_primary_10_1016_j_eja_2023_127066
crossref_primary_10_3390_rs15102556
crossref_primary_10_1007_s12517_022_09944_0
crossref_primary_10_1016_j_agwat_2024_109140
crossref_primary_10_1016_j_jenvman_2023_117993
crossref_primary_10_1080_01431161_2021_2009589
crossref_primary_10_3390_drones6090257
crossref_primary_10_1007_s11356_021_17677_y
crossref_primary_10_1016_j_still_2022_105470
crossref_primary_10_1371_journal_pone_0315807
crossref_primary_10_3390_drones7050290
crossref_primary_10_1080_15226514_2021_1901849
crossref_primary_10_3390_rs13204165
crossref_primary_10_1016_j_geodrs_2024_e00773
crossref_primary_10_3390_rs13245140
crossref_primary_10_1111_sum_12980
crossref_primary_10_3390_rs14225639
crossref_primary_10_1080_00103624_2023_2211111
crossref_primary_10_1007_s40808_023_01723_4
crossref_primary_10_1016_j_ecoinf_2024_102982
crossref_primary_10_1080_10106049_2021_1996638
crossref_primary_10_3390_rs11141700
crossref_primary_10_1016_j_geoderma_2022_116321
crossref_primary_10_1016_j_compag_2025_110055
crossref_primary_10_1016_j_envpol_2020_116041
crossref_primary_10_3390_rs17020210
crossref_primary_10_1016_j_geodrs_2024_e00783
crossref_primary_10_1016_j_still_2023_105744
crossref_primary_10_3390_lubricants12110367
crossref_primary_10_1007_s10668_023_04321_7
crossref_primary_10_3390_rs14112602
crossref_primary_10_1016_j_envpol_2020_114308
crossref_primary_10_3390_rs16193671
crossref_primary_10_3389_fpls_2020_553087
crossref_primary_10_1016_j_geodrs_2021_e00424
crossref_primary_10_3390_rs14020347
crossref_primary_10_1016_j_pce_2022_103230
crossref_primary_10_1016_j_geoderma_2020_114233
crossref_primary_10_1016_j_ecolind_2020_106869
crossref_primary_10_3390_pollutants4010001
crossref_primary_10_3390_s22166124
crossref_primary_10_1002_ldr_4445
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_1007_s10666_022_09823_8
crossref_primary_10_1016_j_catena_2022_106468
crossref_primary_10_1016_j_catena_2022_106900
crossref_primary_10_1016_j_catena_2021_105854
crossref_primary_10_1016_j_rsase_2023_100969
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_3390_rs14081804
crossref_primary_10_1016_j_pce_2023_103400
crossref_primary_10_3390_w12030880
crossref_primary_10_3390_w13040559
crossref_primary_10_3390_land14040677
crossref_primary_10_3390_rs13234825
crossref_primary_10_1016_j_geoderma_2022_115935
crossref_primary_10_3390_land14030649
crossref_primary_10_1016_j_agwat_2023_108559
crossref_primary_10_1016_j_agwat_2024_109147
crossref_primary_10_3389_fevo_2021_771439
crossref_primary_10_1016_j_ecolind_2020_106173
crossref_primary_10_1007_s12145_022_00866_9
crossref_primary_10_1016_j_agwat_2024_108970
crossref_primary_10_3390_rs14092253
crossref_primary_10_1007_s11769_019_1071_x
crossref_primary_10_1080_01431161_2021_1978579
crossref_primary_10_3390_rs13050881
crossref_primary_10_3390_rs14133204
crossref_primary_10_1016_j_infrared_2024_105194
crossref_primary_10_2139_ssrn_4119211
crossref_primary_10_1007_s11356_023_25508_5
crossref_primary_10_1016_j_geoderma_2020_114211
crossref_primary_10_3390_rs14215627
crossref_primary_10_3390_rs14194962
crossref_primary_10_3390_rs16244812
crossref_primary_10_3390_agronomy12071653
crossref_primary_10_3390_su15010471
crossref_primary_10_1007_s10661_023_11613_y
crossref_primary_10_1007_s11368_023_03471_5
crossref_primary_10_1002_ldr_5194
crossref_primary_10_1007_s13201_022_01619_1
crossref_primary_10_1016_j_geodrs_2023_e00695
crossref_primary_10_4491_eer_2022_234
crossref_primary_10_3390_rs14102380
crossref_primary_10_1016_j_scitotenv_2021_146253
crossref_primary_10_1002_cpe_7611
crossref_primary_10_1007_s40808_020_01015_1
crossref_primary_10_1016_j_geoderma_2024_117051
crossref_primary_10_3390_rs13020305
crossref_primary_10_3390_rs11070736
crossref_primary_10_1016_j_jclepro_2021_126493
crossref_primary_10_1016_j_infrared_2023_104826
crossref_primary_10_1080_22797254_2019_1596756
crossref_primary_10_1016_j_isprsjprs_2022_03_002
crossref_primary_10_1016_j_scitotenv_2020_142030
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1016_j_geoderma_2023_116457
crossref_primary_10_1016_j_jenvman_2024_121311
crossref_primary_10_3390_rs12162601
crossref_primary_10_3390_su11247142
crossref_primary_10_3390_rs15215254
crossref_primary_10_3390_rs14030472
crossref_primary_10_1038_s41598_023_27760_8
crossref_primary_10_3390_rs15071751
crossref_primary_10_1016_j_catena_2024_107832
crossref_primary_10_1109_JSTARS_2023_3274579
crossref_primary_10_3390_land10060558
crossref_primary_10_1016_j_jag_2021_102360
crossref_primary_10_1186_s40538_024_00552_6
crossref_primary_10_3390_w13192762
crossref_primary_10_1002_ldr_4877
crossref_primary_10_1016_j_jag_2023_103250
crossref_primary_10_3390_land11122287
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_1109_JSTARS_2022_3223935
crossref_primary_10_1002_ldr_4632
crossref_primary_10_1016_j_procs_2019_09_442
crossref_primary_10_1016_j_geodrs_2019_e00240
crossref_primary_10_1016_j_regsus_2021_06_001
crossref_primary_10_1016_j_catena_2024_107824
crossref_primary_10_1109_JIOT_2019_2954738
crossref_primary_10_3390_agronomy14112673
crossref_primary_10_1016_j_envres_2022_114870
crossref_primary_10_1016_j_geoderma_2024_116798
crossref_primary_10_7717_peerj_6926
crossref_primary_10_3390_rs14205221
crossref_primary_10_1016_j_geodrs_2024_e00800
crossref_primary_10_3390_land11122307
crossref_primary_10_2139_ssrn_4020072
crossref_primary_10_1016_j_jclepro_2022_133302
crossref_primary_10_1007_s13762_022_03930_5
crossref_primary_10_1109_ACCESS_2021_3101873
crossref_primary_10_1007_s12524_024_01906_1
crossref_primary_10_1007_s10661_023_11007_0
crossref_primary_10_1016_j_agwat_2025_109392
crossref_primary_10_3390_land13111941
crossref_primary_10_1002_ldr_4613
crossref_primary_10_1371_journal_pone_0307853
crossref_primary_10_1080_2150704X_2019_1610981
crossref_primary_10_1016_j_scitotenv_2020_140965
crossref_primary_10_1016_j_jaridenv_2022_104775
crossref_primary_10_1016_j_agwat_2024_108679
crossref_primary_10_1080_01431161_2020_1823515
crossref_primary_10_3389_fenvs_2022_962581
crossref_primary_10_1109_ACCESS_2024_3352006
crossref_primary_10_1016_j_scitotenv_2021_152347
crossref_primary_10_3390_su142416486
crossref_primary_10_1016_j_geoderma_2023_116378
crossref_primary_10_1016_j_scitotenv_2019_05_037
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_1080_10106049_2020_1822925
crossref_primary_10_1016_j_saa_2020_118553
crossref_primary_10_3390_rs13204106
crossref_primary_10_1016_j_jag_2022_102969
crossref_primary_10_3390_rs14071606
crossref_primary_10_1016_j_heliyon_2024_e33410
crossref_primary_10_1016_j_geodrs_2021_e00399
crossref_primary_10_1002_ldr_4162
crossref_primary_10_1016_j_catena_2023_107313
crossref_primary_10_1016_j_jenvman_2025_124917
crossref_primary_10_3390_ijerph16152694
crossref_primary_10_3390_rs14184448
crossref_primary_10_3390_agronomy14102182
crossref_primary_10_3390_rs12244118
crossref_primary_10_1016_j_geoderma_2022_116065
crossref_primary_10_3390_f15122222
crossref_primary_10_1016_j_catena_2022_106054
crossref_primary_10_1016_j_saa_2022_121647
crossref_primary_10_3390_rs13193974
crossref_primary_10_3389_feart_2024_1488504
crossref_primary_10_1016_j_geoderma_2020_114645
crossref_primary_10_3390_agriculture13050976
crossref_primary_10_1016_j_scitotenv_2022_157416
crossref_primary_10_3390_rs12213511
Cites_doi 10.1080/01431160110107635
10.1016/j.rse.2015.08.026
10.1016/S0034-4257(02)00096-2
10.1016/S0034-4257(00)00198-X
10.1109/JSTARS.2014.2360411
10.1080/01431160701395195
10.1080/01431161.2018.1441565
10.1016/j.geoderma.2005.02.003
10.1016/j.jag.2016.05.009
10.1016/j.geoderma.2013.10.027
10.5589/m08-017
10.1016/S1001-0742(07)60008-4
10.1016/j.proeps.2015.08.062
10.1016/j.biosystemseng.2016.04.015
10.1016/j.geoderma.2014.07.028
10.1111/gcb.12569
10.1029/2002WR001426
10.1016/j.agwat.2004.09.038
10.1016/j.geoderma.2014.03.025
10.1080/00103620802432717
10.1016/j.jag.2016.03.008
10.1016/j.jag.2013.06.002
10.2136/sssaj1981.03615995004500060031x
10.1016/j.geoderma.2011.04.001
10.1016/j.jag.2015.01.018
10.1109/JSTARS.2014.2333535
10.1016/j.crte.2011.09.003
10.1029/2009GB003506
10.1016/j.ecolind.2015.01.004
10.1016/j.rse.2017.08.023
10.1016/j.pce.2010.12.004
10.1016/j.rse.2016.01.002
10.1016/j.geoderma.2014.08.008
10.1016/S0016-7061(98)00069-X
10.1080/02757259409532252
10.1016/j.rse.2007.02.005
10.1016/j.ecolind.2016.11.043
10.1016/0034-4257(88)90106-X
10.1016/j.ecolind.2011.03.025
10.1016/S0034-4257(96)00072-7
10.1016/j.geoderma.2004.06.007
10.1016/j.geoderma.2005.10.009
10.1002/hyp.3360050103
10.3390/rs61110813
10.1016/j.geoderma.2013.07.020
10.3390/rs70100488
10.1016/j.geodrs.2014.10.004
10.1016/S1002-0160(10)60027-6
10.1016/S0034-4257(02)00188-8
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.08.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EndPage 1319
ExternalDocumentID 10_1016_j_geoderma_2018_08_006
S0016706117319584
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AALCJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-58e3af5a218b680ab997bb58034bdadf7dd5836ebb43adb31ea78a6ba968b2bb3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 10:11:24 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Jul 01 04:04:47 EDT 2025
Tue Oct 01 07:16:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cubist
Soil salinization
Partial least squares regression
Digital soil mapping
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-58e3af5a218b680ab997bb58034bdadf7dd5836ebb43adb31ea78a6ba968b2bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0801-3546
PQID 2116876393
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2116876393
crossref_citationtrail_10_1016_j_geoderma_2018_08_006
crossref_primary_10_1016_j_geoderma_2018_08_006
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Ruecker, Agyare, Akramkhanov, Kim, Vlek (bb0210) 2009; 44
Scudiero, Skaggs, Corwin (bb0230) 2015; 169
Henderson, Bui, Moran, Simon (bb0145) 2005; 124
Abdel-Kader (bb0015) 2011; 14
Fang, Yu, Qi (bb0095) 2015; 38
Deng, Yang, Long (bb0070) 2013; 35
Cheng, Shi, Zhu (bb0060) 2007; 19
Gorji, Tanik, Sertel (bb0130) 2015; 15
Sidike, Zhao, Wen (bb0240) 2014; 26
Rouse, Haas, Schell, Deering (bb0220) 1973; 351
Metternicht, Zinck (bb0190) 2003; 85
Fan, Weng, Tao (bb0090) 2016; 52
Peng, Ji, Ma, Li, Chen, Zhou, Shi (bb0215) 2016; 152
Gallant, Dowling (bb0110) 2003; 39
Allbed, Kumar, Aldakheel (bb0035) 2014; 230
Bui, Henderson, Viergever (bb0055) 2009; 23
Ma, Xu, Peng, Chen, Wan, He, Shi, Li (bb0175) 2018; 39
Weng, Gong, Zhu (bb0270) 2010; 20
Bannari, Guedon, El-Harti, Cherkaoui, El-Ghmari (bb0040) 2008; 39
Khan, Rastoskuev, Sato, Shiozawa (bb0160) 2005; 77
Wang, Pang, Zheng, Hu, Liu (bb0260) 2006; 22
Gutierrez, Johnson (bb1000) 2010; 30
Farifteh, Van der Meer, Atzberger, Carranza (bb0105) 2007; 110
Stoner, Baumgardner (bb0245) 1981; 45
Wu, Al-Shafie, Mhaimeed, Ziadat, Nangia, Payne (bb0275) 2014; 7
Zhang, Zeng, Gao, Ouyang, Li, Fang, Zhao (bb0280) 2011; 11
Ma, Shi, Zhou, Xu, Yu, Yang (bb0170) 2017; 200
Bouaziz, Matschullat, Gloaguen (bb0050) 2011; 343
Weng, Gong, Zhu (bb0265) 2008; 34
Viscarra Rossel, Webster, Bui, Baldock (bb0255) 2014; 20
Farifteh, Farshad, George (bb0100) 2006; 130
Mehrjardi, Minasny, Sarmadian, Malone (bb0185) 2014; 213
Ding, Yu (bb0075) 2014; 235–236
Abbas, Khan (bb0005) 2007
Akramkhanov, Martius, Park, Hendrickx (bb0020) 2011; 163
Douaoui, Nicolas, Walter (bb0080) 2006; 134
Moore, Grayson, Ladson (bb0195) 1991; 5
Muller, Decamps (bb0200) 2001; 76
Dehaan, Taylor (bb0065) 2003; 24
Li, Webster, Shi (bb0165) 2015; 237-238
Zhang, Lu, Chen, Zhang, Maisupova, Tao (bb0290) 2016; 175
Masoud (bb0180) 2014; 217
Goel, Qin (bb0120) 1994; 10
Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, Ghmari (bb0140) 2016; 50
Goossens, Van Ranst (bb0125) 1998; 87
Nawar, Buddenbaum, Hill, Kozak (bb0205) 2014; 6
Huete (bb0150) 1988; 25
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0155) 2002; 83
Scudiero, Skaggs, Corwin (bb0225) 2014; 2-3
Gitelson, Kaufman, Merzlyak (bb0115) 1996; 58
Shi, Wang, Zhou, Chen (bb0235) 2006; 25
Abbas, Khan, Hussain, Hanjra, Akbar (bb0010) 2013; 55–57
Turhong, Abudukeremu, Nishizaki, Abuliz, Kurbanjan (bb0250) 2008; 31
Alhammadi, Glenn (bb0025) 2008; 29
Barbouchi, Abdelfattah, Chokmani, Ben Aissa, Lhissou, Harti (bb0045) 2015; 8
Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0285) 2015; 52
Fan, Liu, Tao, Weng (bb0085) 2015; 7
Gorji, Sertel, Tanik (bb0135) 2017; 74
Barbouchi (10.1016/j.geoderma.2018.08.006_bb0045) 2015; 8
Scudiero (10.1016/j.geoderma.2018.08.006_bb0225) 2014; 2-3
Moore (10.1016/j.geoderma.2018.08.006_bb0195) 1991; 5
Sidike (10.1016/j.geoderma.2018.08.006_bb0240) 2014; 26
Masoud (10.1016/j.geoderma.2018.08.006_bb0180) 2014; 217
Cheng (10.1016/j.geoderma.2018.08.006_bb0060) 2007; 19
Peng (10.1016/j.geoderma.2018.08.006_bb0215) 2016; 152
Goel (10.1016/j.geoderma.2018.08.006_bb0120) 1994; 10
Ma (10.1016/j.geoderma.2018.08.006_bb0170) 2017; 200
Weng (10.1016/j.geoderma.2018.08.006_bb0270) 2010; 20
Mehrjardi (10.1016/j.geoderma.2018.08.006_bb0185) 2014; 213
Gallant (10.1016/j.geoderma.2018.08.006_bb0110) 2003; 39
Khan (10.1016/j.geoderma.2018.08.006_bb0160) 2005; 77
Abbas (10.1016/j.geoderma.2018.08.006_bb0010) 2013; 55–57
Gutierrez (10.1016/j.geoderma.2018.08.006_bb1000) 2010; 30
Huete (10.1016/j.geoderma.2018.08.006_bb0155) 2002; 83
Park (10.1016/j.geoderma.2018.08.006_bb0210) 2009; 44
Abdel-Kader (10.1016/j.geoderma.2018.08.006_bb0015) 2011; 14
Weng (10.1016/j.geoderma.2018.08.006_bb0265) 2008; 34
Nawar (10.1016/j.geoderma.2018.08.006_bb0205) 2014; 6
Rouse (10.1016/j.geoderma.2018.08.006_bb0220) 1973; 351
Fan (10.1016/j.geoderma.2018.08.006_bb0090) 2016; 52
Huete (10.1016/j.geoderma.2018.08.006_bb0150) 1988; 25
Gitelson (10.1016/j.geoderma.2018.08.006_bb0115) 1996; 58
Deng (10.1016/j.geoderma.2018.08.006_bb0070) 2013; 35
Muller (10.1016/j.geoderma.2018.08.006_bb0200) 2001; 76
Goossens (10.1016/j.geoderma.2018.08.006_bb0125) 1998; 87
Akramkhanov (10.1016/j.geoderma.2018.08.006_bb0020) 2011; 163
Douaoui (10.1016/j.geoderma.2018.08.006_bb0080) 2006; 134
Stoner (10.1016/j.geoderma.2018.08.006_bb0245) 1981; 45
Dehaan (10.1016/j.geoderma.2018.08.006_bb0065) 2003; 24
Bouaziz (10.1016/j.geoderma.2018.08.006_bb0050) 2011; 343
Zhang (10.1016/j.geoderma.2018.08.006_bb0280) 2011; 11
Gorji (10.1016/j.geoderma.2018.08.006_bb0130) 2015; 15
Metternicht (10.1016/j.geoderma.2018.08.006_bb0190) 2003; 85
Fang (10.1016/j.geoderma.2018.08.006_bb0095) 2015; 38
Harti (10.1016/j.geoderma.2018.08.006_bb0140) 2016; 50
Li (10.1016/j.geoderma.2018.08.006_bb0165) 2015; 237-238
Gorji (10.1016/j.geoderma.2018.08.006_bb0135) 2017; 74
Fan (10.1016/j.geoderma.2018.08.006_bb0085) 2015; 7
Wu (10.1016/j.geoderma.2018.08.006_bb0275) 2014; 7
Alhammadi (10.1016/j.geoderma.2018.08.006_bb0025) 2008; 29
Farifteh (10.1016/j.geoderma.2018.08.006_bb0100) 2006; 130
Scudiero (10.1016/j.geoderma.2018.08.006_bb0230) 2015; 169
Allbed (10.1016/j.geoderma.2018.08.006_bb0035) 2014; 230
Henderson (10.1016/j.geoderma.2018.08.006_bb0145) 2005; 124
Abbas (10.1016/j.geoderma.2018.08.006_bb0005) 2007
Bannari (10.1016/j.geoderma.2018.08.006_bb0040) 2008; 39
Turhong (10.1016/j.geoderma.2018.08.006_bb0250) 2008; 31
Bui (10.1016/j.geoderma.2018.08.006_bb0055) 2009; 23
Zhang (10.1016/j.geoderma.2018.08.006_bb0290) 2016; 175
Ding (10.1016/j.geoderma.2018.08.006_bb0075) 2014; 235–236
Viscarra Rossel (10.1016/j.geoderma.2018.08.006_bb0255) 2014; 20
Wang (10.1016/j.geoderma.2018.08.006_bb0260) 2006; 22
Ma (10.1016/j.geoderma.2018.08.006_bb0175) 2018; 39
Shi (10.1016/j.geoderma.2018.08.006_bb0235) 2006; 25
Farifteh (10.1016/j.geoderma.2018.08.006_bb0105) 2007; 110
Zhang (10.1016/j.geoderma.2018.08.006_bb0285) 2015; 52
References_xml – volume: 24
  start-page: 775
  year: 2003
  end-page: 794
  ident: bb0065
  article-title: Image-derived spectral endmembers as indicators of salinisation
  publication-title: Int. J. Remote Sens.
– volume: 134
  start-page: 217
  year: 2006
  end-page: 230
  ident: bb0080
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
– volume: 39
  start-page: 3891
  year: 2018
  end-page: 3907
  ident: bb0175
  article-title: Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings
  publication-title: Int. J. Remote Sens.
– volume: 235–236
  start-page: 316
  year: 2014
  end-page: 322
  ident: bb0075
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
– volume: 237-238
  start-page: 71
  year: 2015
  end-page: 77
  ident: bb0165
  article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited
  publication-title: Geoderma
– volume: 343
  start-page: 795
  year: 2011
  end-page: 803
  ident: bb0050
  article-title: Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil
  publication-title: Compt. Rendus Geosci.
– volume: 44
  start-page: 122
  year: 2009
  end-page: 145
  ident: bb0210
  article-title: Influence of grid cell size and flow routing algorithm on soil-landform modeling
  publication-title: Journal of the Korean Geographical Society
– volume: 34
  start-page: 259
  year: 2008
  end-page: 270
  ident: bb0265
  article-title: Soil salt content estimation in the Yellow River delta with satellite hyperspectral data
  publication-title: Can. J. Remote. Sens.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0150
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: bb0195
  article-title: Digital terrain modeling - a review of hydrological, geomorpholgical, and biological applications
  publication-title: Hydrol. Process.
– volume: 230
  start-page: 1
  year: 2014
  end-page: 8
  ident: bb0035
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region
  publication-title: Geoderma
– volume: 200
  start-page: 378
  year: 2017
  end-page: 395
  ident: bb0170
  article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effect of systematic anomalies removed
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 10813
  year: 2014
  end-page: 10834
  ident: bb0205
  article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS)
  publication-title: Remote Sens.
– volume: 8
  start-page: 3823
  year: 2015
  end-page: 3832
  ident: bb0045
  article-title: Soil salinity characterization using polarimetric InSAR coherence: case studies in Tunisia and Morocco
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 2-3
  start-page: 82
  year: 2014
  end-page: 90
  ident: bb0225
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg.
– volume: 152
  start-page: 94
  year: 2016
  end-page: 103
  ident: bb0215
  article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers
  publication-title: Biosyst. Eng.
– volume: 22
  start-page: 193
  year: 2006
  end-page: 196
  ident: bb0260
  article-title: Present situation, existing problem and control countermeasures of Tarim river basin ecological environment
  publication-title: System Science and Comprehensive Studies in Agriculture
– volume: 25
  start-page: 753
  year: 2006
  end-page: 758
  ident: bb0235
  article-title: Land use change and its ecological effects in the ecotone of Southern Xinjiang Uyghur Autonomous Region: a case study of Akesu City area
  publication-title: Chinese Journal of Ecology
– volume: 50
  start-page: 64
  year: 2016
  end-page: 73
  ident: bb0140
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 50
  year: 2007
  end-page: 54
  ident: bb0060
  article-title: Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China
  publication-title: J. Environ. Sci. (China)
– volume: 7
  start-page: 488
  year: 2015
  end-page: 511
  ident: bb0085
  article-title: Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression
  publication-title: Remote Sens.
– volume: 29
  start-page: 1745
  year: 2008
  end-page: 1765
  ident: bb0025
  article-title: Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI
  publication-title: Int. J. Remote Sens.
– volume: 39
  start-page: 291
  year: 2003
  end-page: 297
  ident: bb0110
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
– start-page: 2632
  year: 2007
  end-page: 2638
  ident: bb0005
  article-title: Using remote sensing techniques for appraisal of irrigated soil salinity
  publication-title: MODSIM 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability
– volume: 35
  start-page: 1600
  year: 2013
  end-page: 1609
  ident: bb0070
  article-title: Ecological operation in the Tarim River basin based on rational allocation of water resource
  publication-title: J. Glaciol. Geocryol.
– volume: 38
  start-page: 261
  year: 2015
  end-page: 266
  ident: bb0095
  article-title: Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 163
  start-page: 55
  year: 2011
  end-page: 62
  ident: bb0020
  article-title: Environmental factors of spatial distribution of soil salinity on flat irrigated terrain
  publication-title: Geoderma
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: bb0190
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
– volume: 213
  start-page: 15
  year: 2014
  end-page: 28
  ident: bb0185
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
– volume: 58
  start-page: 289
  year: 1996
  end-page: 298
  ident: bb0115
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 156
  year: 2014
  end-page: 175
  ident: bb0240
  article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 110
  start-page: 59
  year: 2007
  end-page: 78
  ident: bb0105
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
– volume: 87
  start-page: 47
  year: 1998
  end-page: 56
  ident: bb0125
  article-title: The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt)
  publication-title: Geoderma
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: bb0145
  article-title: Australia-wide predictions of soil properties using, decision trees
  publication-title: Geoderma
– volume: 23
  start-page: 1
  year: 2009
  end-page: 15
  ident: bb0055
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
– volume: 45
  start-page: 1161
  year: 1981
  end-page: 1165
  ident: bb0245
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 20
  start-page: 2953
  year: 2014
  end-page: 2970
  ident: bb0255
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
– volume: 217
  start-page: 45
  year: 2014
  end-page: 56
  ident: bb0180
  article-title: Predicting salt abundance in slightly saline soils from Landsat ETM plus imagery using spectral mixture analysis and soil spectrometry
  publication-title: Geoderma
– volume: 52
  start-page: 480
  year: 2015
  end-page: 489
  ident: bb0285
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
– volume: 175
  start-page: 271
  year: 2016
  end-page: 281
  ident: bb0290
  article-title: The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 378
  year: 2010
  end-page: 388
  ident: bb0270
  article-title: A spectral index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 Hyperion data
  publication-title: Pedosphere
– volume: 77
  start-page: 96
  year: 2005
  end-page: 109
  ident: bb0160
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0155
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 55–57
  start-page: 43
  year: 2013
  end-page: 52
  ident: bb0010
  article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach
  publication-title: Phys. Chem. Earth
– volume: 39
  start-page: 2795
  year: 2008
  end-page: 2811
  ident: bb0040
  article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 31
  start-page: 22
  year: 2008
  end-page: 26
  ident: bb0250
  article-title: Distribution and characteristics of salinized soil in the south region of Xinjiang
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 4442
  year: 2014
  end-page: 4452
  ident: bb0275
  article-title: Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 10
  start-page: 309
  year: 1994
  end-page: 347
  ident: bb0120
  article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR
  publication-title: Remote Sens. Rev.
– volume: 11
  start-page: 1552
  year: 2011
  end-page: 1562
  ident: bb0280
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
– volume: 351
  start-page: 309
  year: 1973
  ident: bb0220
  article-title: Monitoring vegetation systems in the great plains with ERTS
  publication-title: NASA Special Publication
– volume: 52
  start-page: 32
  year: 2016
  end-page: 41
  ident: bb0090
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 169
  start-page: 335
  year: 2015
  end-page: 343
  ident: bb0230
  article-title: Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 29
  year: 2011
  end-page: 40
  ident: bb0015
  article-title: Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach
  publication-title: Egypt. J. Remote Sens. Space. Sci.
– volume: 76
  start-page: 173
  year: 2001
  end-page: 180
  ident: bb0200
  article-title: Modeling soil moisture-reflectance
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 46
  year: 2010
  end-page: 57
  ident: bb1000
  article-title: Temporal variations of natural soil salinity in an arid environment using satellite images
– volume: 15
  start-page: 507
  year: 2015
  end-page: 512
  ident: bb0130
  article-title: Soil salinity prediction, monitoring and mapping using modern technologies
  publication-title: Procedia Earth and Planetary Science
– volume: 130
  start-page: 191
  year: 2006
  end-page: 206
  ident: bb0100
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: bb0135
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
– volume: 24
  start-page: 775
  issue: 4
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.006_bb0065
  article-title: Image-derived spectral endmembers as indicators of salinisation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110107635
– volume: 169
  start-page: 335
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0230
  article-title: Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.026
– volume: 83
  start-page: 195
  issue: 1–2
  year: 2002
  ident: 10.1016/j.geoderma.2018.08.006_bb0155
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 76
  start-page: 173
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2018.08.006_bb0200
  article-title: Modeling soil moisture-reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00198-X
– volume: 7
  start-page: 4442
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0275
  article-title: Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2360411
– volume: 29
  start-page: 1745
  issue: 6
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.006_bb0025
  article-title: Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701395195
– volume: 39
  start-page: 3891
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.006_bb0175
  article-title: Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1441565
– volume: 130
  start-page: 191
  issue: 3–4
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.006_bb0100
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.003
– volume: 52
  start-page: 32
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.006_bb0090
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.05.009
– volume: 217
  start-page: 45
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0180
  article-title: Predicting salt abundance in slightly saline soils from Landsat ETM plus imagery using spectral mixture analysis and soil spectrometry
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.10.027
– volume: 34
  start-page: 259
  issue: 3
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.006_bb0265
  article-title: Soil salt content estimation in the Yellow River delta with satellite hyperspectral data
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m08-017
– volume: 19
  start-page: 50
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.006_bb0060
  article-title: Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/S1001-0742(07)60008-4
– volume: 15
  start-page: 507
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0130
  article-title: Soil salinity prediction, monitoring and mapping using modern technologies
  publication-title: Procedia Earth and Planetary Science
  doi: 10.1016/j.proeps.2015.08.062
– volume: 152
  start-page: 94
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.006_bb0215
  article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.04.015
– volume: 235–236
  start-page: 316
  issue: 4
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0075
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.028
– volume: 20
  start-page: 2953
  issue: 9
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0255
  article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12569
– volume: 25
  start-page: 753
  issue: 7
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.006_bb0235
  article-title: Land use change and its ecological effects in the ecotone of Southern Xinjiang Uyghur Autonomous Region: a case study of Akesu City area
  publication-title: Chinese Journal of Ecology
– volume: 39
  start-page: 291
  issue: 12
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.006_bb0110
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 77
  start-page: 96
  issue: 1–3
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.006_bb0160
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.09.038
– volume: 230
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0035
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 14
  start-page: 29
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.006_bb0015
  article-title: Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach
  publication-title: Egypt. J. Remote Sens. Space. Sci.
– volume: 39
  start-page: 2795
  issue: 19–20
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.006_bb0040
  article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620802432717
– volume: 22
  start-page: 193
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.006_bb0260
  article-title: Present situation, existing problem and control countermeasures of Tarim river basin ecological environment
– volume: 50
  start-page: 64
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.006_bb0140
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.03.008
– volume: 26
  start-page: 156
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0240
  article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2013.06.002
– volume: 45
  start-page: 1161
  year: 1981
  ident: 10.1016/j.geoderma.2018.08.006_bb0245
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500060031x
– volume: 163
  start-page: 55
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.006_bb0020
  article-title: Environmental factors of spatial distribution of soil salinity on flat irrigated terrain
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.001
– volume: 38
  start-page: 261
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0095
  article-title: Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2015.01.018
– volume: 31
  start-page: 22
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.006_bb0250
  article-title: Distribution and characteristics of salinized soil in the south region of Xinjiang
  publication-title: Environ. Sci. Technol.
– start-page: 2632
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.006_bb0005
  article-title: Using remote sensing techniques for appraisal of irrigated soil salinity
– volume: 8
  start-page: 3823
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0045
  article-title: Soil salinity characterization using polarimetric InSAR coherence: case studies in Tunisia and Morocco
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2333535
– volume: 343
  start-page: 795
  issue: 11−12
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.006_bb0050
  article-title: Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil
  publication-title: Compt. Rendus Geosci.
  doi: 10.1016/j.crte.2011.09.003
– volume: 23
  start-page: 1
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.006_bb0055
  article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003506
– volume: 52
  start-page: 480
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0285
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.01.004
– volume: 200
  start-page: 378
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.006_bb0170
  article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effect of systematic anomalies removed
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.023
– volume: 55–57
  start-page: 43
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.006_bb0010
  article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2010.12.004
– volume: 175
  start-page: 271
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.006_bb0290
  article-title: The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.002
– volume: 237-238
  start-page: 71
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0165
  article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.008
– volume: 351
  start-page: 309
  year: 1973
  ident: 10.1016/j.geoderma.2018.08.006_bb0220
  article-title: Monitoring vegetation systems in the great plains with ERTS
– volume: 87
  start-page: 47
  issue: 1–2
  year: 1998
  ident: 10.1016/j.geoderma.2018.08.006_bb0125
  article-title: The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt)
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00069-X
– volume: 10
  start-page: 309
  issue: 4
  year: 1994
  ident: 10.1016/j.geoderma.2018.08.006_bb0120
  article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259409532252
– volume: 110
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.006_bb0105
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.005
– volume: 74
  start-page: 384
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.006_bb0135
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 44
  start-page: 122
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.006_bb0210
  article-title: Influence of grid cell size and flow routing algorithm on soil-landform modeling
  publication-title: Journal of the Korean Geographical Society
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.1016/j.geoderma.2018.08.006_bb0150
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 11
  start-page: 1552
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2018.08.006_bb0280
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2011.03.025
– volume: 58
  start-page: 289
  issue: 3
  year: 1996
  ident: 10.1016/j.geoderma.2018.08.006_bb0115
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 124
  start-page: 383
  issue: 3–4
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.006_bb0145
  article-title: Australia-wide predictions of soil properties using, decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– volume: 134
  start-page: 217
  issue: 1–2
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.006_bb0080
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.10.009
– volume: 5
  start-page: 3
  year: 1991
  ident: 10.1016/j.geoderma.2018.08.006_bb0195
  article-title: Digital terrain modeling - a review of hydrological, geomorpholgical, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– volume: 6
  start-page: 10813
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0205
  article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS)
  publication-title: Remote Sens.
  doi: 10.3390/rs61110813
– volume: 213
  start-page: 15
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0185
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 7
  start-page: 488
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.006_bb0085
  article-title: Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression
  publication-title: Remote Sens.
  doi: 10.3390/rs70100488
– volume: 2-3
  start-page: 82
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.006_bb0225
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.10.004
– volume: 30
  start-page: 46
  year: 2010
  ident: 10.1016/j.geoderma.2018.08.006_bb1000
  article-title: Temporal variations of natural soil salinity in an arid environment using satellite images
– volume: 20
  start-page: 378
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2018.08.006_bb0270
  article-title: A spectral index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 Hyperion data
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60027-6
– volume: 35
  start-page: 1600
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.006_bb0070
  article-title: Ecological operation in the Tarim River basin based on rational allocation of water resource
  publication-title: J. Glaciol. Geocryol.
– volume: 85
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2018.08.006_bb0190
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
SSID ssj0017020
Score 2.6596546
Snippet Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1309
SubjectTerms arid zones
calibration
China
Cubist
data collection
Digital soil mapping
ecosystems
electrical conductivity
field experimentation
landscapes
least squares
Partial least squares regression
Remote sensing
salinity
satellites
semiarid zones
soil quality
soil salinity
Soil salinization
soil sampling
soil water content
vegetation
Title Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
URI https://dx.doi.org/10.1016/j.geoderma.2018.08.006
https://www.proquest.com/docview/2116876393
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1CcmkOJWkamk-20GNVS95PHU2wcVpqemjAt2VHuzI2QQ6Wc8glvz0zshSSEPAhJyGxK8TMaGa1evMeYz-yPmDd8SaRJuaJlIVOIHiVqGDKINJoDNA-5N-JHt_I31M13WFXXS8MwSrb3L_J6U22bq_0Wmv27uZz6vHNtMFylBlBjCnECSqloSj_9fgM88hM2lIzZjqh0S-6hBfoIxIca_iHMttQeZLy0fsF6k2qburP6IB9bheOfLB5tkO2E6svbH8wW7XkGfGIwRDfV1qBVjNeL-e3vPbU97h-4NREwlcR3RJ5TZB1HOGrwNGoJBHBCSfK8VgvG8B7xafzaoGBM-P_mi2HIv7kjdL2V3YzGv6_GiethkJSCKnWibJR-FJ5rOSgbeohzw2AsqmQ6JNQmhCUFToCSOEDiCx6Y70Gn2sLfQBxzHarZRW_MW7LUvV1yKKNhSyhBLBK4mgJOo99aU-Y6gznipZgnHQubl2HJFu4zuCODO5IADPVJ6z3PO9uQ7GxdUbe-cW9ChaHdWDr3O-dIx2-SfR7xFdxeV87_BTWxM-Xi9MP3P-MfcKzfANTO2e769V9vMB1yxoum8C8ZHuD6z_jyRPvuvB0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5S55D2UJqmpekrW-gxwpL3qaMJCc7L5JCAb8uOdmVsghws59B_3xl5FdpQyKEngbQjxMzszGp35vsY-1mMAPOON5k0scykrHQGwatMBVMHkUdjgPYhr6d6cicvZmq2w076Xhgqq0yxfxvTu2id7gyTNocPiwX1-BbaYDoqjCDEFPmK7RI6lRqw3fH55WT6dJhg8oTOWOiMBP5oFF6imYhzrIMgKmyH5knkR__OUc-idZeCzt6xt2ntyMfbz9tnO7F5z96M5-uEnxEPGJzilKVFaDPn7Wpxz1tPrY-bX5z6SPg6omUib6lqHUf4JnDUK7FEcCoV5XhtV13Ne8Nni2aJvjPnN92uQxWPeUe2_YHdnZ3enkyyRKOQVUKqTaZsFL5WHpM5aJt7KEsDoGwuJJol1CYEZYWOAFL4AKKI3livwZfawghAfGSDZtXET4zbulYjHYpoYyVrqAGskjhagi7jSNpDpnrFuSphjBPVxb3ri8mWrle4I4U74sDM9SEbPsk9bFE2XpQoe7u4v_zFYSp4UfZHb0iHk4lOSHwTV4-tw79hTRB9pfj8H-8_YnuT2-srd3U-vfzCXuOTclu19pUNNuvH-A2XMRv4ntz0NybY8yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+soil+salinity+from+remote+sensing+and+terrain+data+in+southern+Xinjiang+Province%2C+China&rft.jtitle=Geoderma&rft.au=Peng%2C+Jie&rft.au=Biswas%2C+Asim&rft.au=Jiang%2C+Qingsong&rft.au=Zhao%2C+Ruiying&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337&rft.spage=1309&rft.epage=1319&rft_id=info:doi/10.1016%2Fj.geoderma.2018.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_08_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon