Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method fro...
Saved in:
Published in | Geoderma Vol. 337; pp. 1309 - 1319 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R2, RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m−1, 3.76 dS m−1 and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m−1, 8.21 dS m−1 and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas.
•Soil salinity maps were produced using Cubist and PLSR models.•Cubist was proved a more suitable method for soil salinity mapping than PLSR.•Subregional modeling could improve the prediction results of soil salinity.•The study shows a large variability in EC across various land use.•Vegetation indices, soil salinity spectral indices and terrain attributes are important predictors of EC. |
---|---|
AbstractList | Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R2, RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m−1, 3.76 dS m−1 and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m−1, 8.21 dS m−1 and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas.
•Soil salinity maps were produced using Cubist and PLSR models.•Cubist was proved a more suitable method for soil salinity mapping than PLSR.•Subregional modeling could improve the prediction results of soil salinity.•The study shows a large variability in EC across various land use.•Vegetation indices, soil salinity spectral indices and terrain attributes are important predictors of EC. Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial variation as precise as possible over a large area, we collected 225 samples using traditional field experiment and laboratory analysis method from the southern part of the Xinjiang Province, China, affected by soil salinity under strong arid climate. Then, we constructed both Cubist and partial least square regression (PLSR) models on electrical conductivity (EC) (150 ground-based measurements as calibration set) using various related covariates (e.g. terrain attributes, remotely sensed spectral indices of vegetation and salinity from landsat8 OLI satellite) that are at the same time period corresponding to soil sampling. Two models were validated using remaining 75 independent ground based measurements and were then used to map the soil salinity over the study area. Finally, the validation results of two models were compared under different intervals of EC, soil moisture content and vegetation coverage. The results indicated that Cubist model could predict EC value with better accuracy and stability under variable environment than PLSR. The R², RMSE, MAE and RPD of the Cubist model were 0.91, 5.18 dS m⁻¹, 3.76 dS m⁻¹ and 3.15 while corresponding values of the PLSR model were 0.66, 10.46 dS m⁻¹, 8.21 dS m⁻¹ and 1.56 in validation dataset, respectively. Additionally, the map derived from Cubist model revealed more detailed variation information of the spatial distribution of EC than that from PLSR model across the study area. Thus, Cubist model was recommended for mapping soil salinity using indices derived from satellite and terrain in other arid areas. |
Author | Peng, Jie Jiang, Qingsong Hu, Bifeng Zhao, Ruiying Hu, Jie Shi, Zhou Biswas, Asim |
Author_xml | – sequence: 1 givenname: Jie surname: Peng fullname: Peng, Jie organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 2 givenname: Asim orcidid: 0000-0003-0801-3546 surname: Biswas fullname: Biswas, Asim organization: School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada – sequence: 3 givenname: Qingsong surname: Jiang fullname: Jiang, Qingsong organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Ruiying surname: Zhao fullname: Zhao, Ruiying organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 5 givenname: Jie surname: Hu fullname: Hu, Jie organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 6 givenname: Bifeng surname: Hu fullname: Hu, Bifeng organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 7 givenname: Zhou surname: Shi fullname: Shi, Zhou email: shizhou@zju.edu.cn organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
BookMark | eNqFkE9LAzEQxXNQ0Fa_guTowdZk082m4EEp_gNBDwrewmQza1N2k5qkQr-9KdWLF2HgMcx7D-Y3Igc-eCTkjLMpZ1xerqYfGCzGAaYV42rKyjB5QI5ZuU4aJvkRGaW0KmvDKnZMzG3KboDs_AdNwfU0Qe-8y1vaxTDQiEPISBP6tHOAtzRjjOA8tZCBFk1hk5cYPX13fuWguF5i-HK-xQu6WDoPJ-Swgz7h6Y-Oydvd7eviYfL0fP-4uHmatGJW50mtUEBXQ8WVkYqBmc8bY2rFxMxYsF1jba2ERGNmAqwRHKFRIA3MpTKVMWJMzve96xg-N5iyHlxqse_BY9gkXXEuVSPFXBTr1d7axpBSxE63LhcIwefyW6850zuceqV_ceodTs3KMFni8k98HQvEuP0_eL0PYuHw5TDq1DosqKyL2GZtg_uv4hvGX5pS |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107512 crossref_primary_10_1007_s40808_024_02050_y crossref_primary_10_3390_rs12244043 crossref_primary_10_1016_j_ijdrr_2024_104854 crossref_primary_10_3390_ijms25189818 crossref_primary_10_1016_j_catena_2020_104939 crossref_primary_10_3390_rs14143407 crossref_primary_10_3390_su132413711 crossref_primary_10_3390_rs11222605 crossref_primary_10_1002_ldr_3737 crossref_primary_10_1080_01431161_2020_1718239 crossref_primary_10_3390_agriculture15030323 crossref_primary_10_3390_rs12010131 crossref_primary_10_1111_ppl_13832 crossref_primary_10_3390_land13060877 crossref_primary_10_22389_0016_7126_2022_986_8_39_44 crossref_primary_10_1002_hyp_14542 crossref_primary_10_3390_rs14112599 crossref_primary_10_1016_j_geoderma_2020_114858 crossref_primary_10_1007_s12145_024_01467_4 crossref_primary_10_1007_s40333_022_0077_x crossref_primary_10_1016_j_rsase_2022_100847 crossref_primary_10_34133_remotesensing_0130 crossref_primary_10_1016_j_ecolind_2022_109139 crossref_primary_10_3389_fmars_2022_895172 crossref_primary_10_3390_app13063440 crossref_primary_10_1016_j_jclepro_2020_123674 crossref_primary_10_1007_s11104_023_06446_0 crossref_primary_10_1002_ldr_5222 crossref_primary_10_1016_j_jag_2022_102838 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_1111_sum_12772 crossref_primary_10_1117_1_JRS_17_018502 crossref_primary_10_1016_j_scitotenv_2021_152524 crossref_primary_10_1007_s40808_025_02331_0 crossref_primary_10_3390_rs17061086 crossref_primary_10_3390_rs11202336 crossref_primary_10_3390_agriculture14101777 crossref_primary_10_3390_agriculture14030377 crossref_primary_10_3390_su132413930 crossref_primary_10_3390_land13091488 crossref_primary_10_1007_s40333_023_0093_5 crossref_primary_10_1016_j_geoderma_2019_06_040 crossref_primary_10_3390_rs14030512 crossref_primary_10_3389_fpls_2024_1437390 crossref_primary_10_1016_j_catena_2023_107477 crossref_primary_10_1071_AN21069 crossref_primary_10_3390_rs15041066 crossref_primary_10_1016_j_scitotenv_2019_136092 crossref_primary_10_1016_j_catena_2022_106529 crossref_primary_10_1007_s43538_023_00157_x crossref_primary_10_3390_rs15102540 crossref_primary_10_1007_s12665_021_09752_x crossref_primary_10_1007_s11368_021_02906_1 crossref_primary_10_3390_agriculture14071200 crossref_primary_10_1088_1755_1315_545_1_012016 crossref_primary_10_1016_j_eja_2023_127066 crossref_primary_10_3390_rs15102556 crossref_primary_10_1007_s12517_022_09944_0 crossref_primary_10_1016_j_agwat_2024_109140 crossref_primary_10_1016_j_jenvman_2023_117993 crossref_primary_10_1080_01431161_2021_2009589 crossref_primary_10_3390_drones6090257 crossref_primary_10_1007_s11356_021_17677_y crossref_primary_10_1016_j_still_2022_105470 crossref_primary_10_1371_journal_pone_0315807 crossref_primary_10_3390_drones7050290 crossref_primary_10_1080_15226514_2021_1901849 crossref_primary_10_3390_rs13204165 crossref_primary_10_1016_j_geodrs_2024_e00773 crossref_primary_10_3390_rs13245140 crossref_primary_10_1111_sum_12980 crossref_primary_10_3390_rs14225639 crossref_primary_10_1080_00103624_2023_2211111 crossref_primary_10_1007_s40808_023_01723_4 crossref_primary_10_1016_j_ecoinf_2024_102982 crossref_primary_10_1080_10106049_2021_1996638 crossref_primary_10_3390_rs11141700 crossref_primary_10_1016_j_geoderma_2022_116321 crossref_primary_10_1016_j_compag_2025_110055 crossref_primary_10_1016_j_envpol_2020_116041 crossref_primary_10_3390_rs17020210 crossref_primary_10_1016_j_geodrs_2024_e00783 crossref_primary_10_1016_j_still_2023_105744 crossref_primary_10_3390_lubricants12110367 crossref_primary_10_1007_s10668_023_04321_7 crossref_primary_10_3390_rs14112602 crossref_primary_10_1016_j_envpol_2020_114308 crossref_primary_10_3390_rs16193671 crossref_primary_10_3389_fpls_2020_553087 crossref_primary_10_1016_j_geodrs_2021_e00424 crossref_primary_10_3390_rs14020347 crossref_primary_10_1016_j_pce_2022_103230 crossref_primary_10_1016_j_geoderma_2020_114233 crossref_primary_10_1016_j_ecolind_2020_106869 crossref_primary_10_3390_pollutants4010001 crossref_primary_10_3390_s22166124 crossref_primary_10_1002_ldr_4445 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_1007_s10666_022_09823_8 crossref_primary_10_1016_j_catena_2022_106468 crossref_primary_10_1016_j_catena_2022_106900 crossref_primary_10_1016_j_catena_2021_105854 crossref_primary_10_1016_j_rsase_2023_100969 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_3390_rs14081804 crossref_primary_10_1016_j_pce_2023_103400 crossref_primary_10_3390_w12030880 crossref_primary_10_3390_w13040559 crossref_primary_10_3390_land14040677 crossref_primary_10_3390_rs13234825 crossref_primary_10_1016_j_geoderma_2022_115935 crossref_primary_10_3390_land14030649 crossref_primary_10_1016_j_agwat_2023_108559 crossref_primary_10_1016_j_agwat_2024_109147 crossref_primary_10_3389_fevo_2021_771439 crossref_primary_10_1016_j_ecolind_2020_106173 crossref_primary_10_1007_s12145_022_00866_9 crossref_primary_10_1016_j_agwat_2024_108970 crossref_primary_10_3390_rs14092253 crossref_primary_10_1007_s11769_019_1071_x crossref_primary_10_1080_01431161_2021_1978579 crossref_primary_10_3390_rs13050881 crossref_primary_10_3390_rs14133204 crossref_primary_10_1016_j_infrared_2024_105194 crossref_primary_10_2139_ssrn_4119211 crossref_primary_10_1007_s11356_023_25508_5 crossref_primary_10_1016_j_geoderma_2020_114211 crossref_primary_10_3390_rs14215627 crossref_primary_10_3390_rs14194962 crossref_primary_10_3390_rs16244812 crossref_primary_10_3390_agronomy12071653 crossref_primary_10_3390_su15010471 crossref_primary_10_1007_s10661_023_11613_y crossref_primary_10_1007_s11368_023_03471_5 crossref_primary_10_1002_ldr_5194 crossref_primary_10_1007_s13201_022_01619_1 crossref_primary_10_1016_j_geodrs_2023_e00695 crossref_primary_10_4491_eer_2022_234 crossref_primary_10_3390_rs14102380 crossref_primary_10_1016_j_scitotenv_2021_146253 crossref_primary_10_1002_cpe_7611 crossref_primary_10_1007_s40808_020_01015_1 crossref_primary_10_1016_j_geoderma_2024_117051 crossref_primary_10_3390_rs13020305 crossref_primary_10_3390_rs11070736 crossref_primary_10_1016_j_jclepro_2021_126493 crossref_primary_10_1016_j_infrared_2023_104826 crossref_primary_10_1080_22797254_2019_1596756 crossref_primary_10_1016_j_isprsjprs_2022_03_002 crossref_primary_10_1016_j_scitotenv_2020_142030 crossref_primary_10_1016_j_geoderma_2023_116697 crossref_primary_10_1016_j_geoderma_2023_116457 crossref_primary_10_1016_j_jenvman_2024_121311 crossref_primary_10_3390_rs12162601 crossref_primary_10_3390_su11247142 crossref_primary_10_3390_rs15215254 crossref_primary_10_3390_rs14030472 crossref_primary_10_1038_s41598_023_27760_8 crossref_primary_10_3390_rs15071751 crossref_primary_10_1016_j_catena_2024_107832 crossref_primary_10_1109_JSTARS_2023_3274579 crossref_primary_10_3390_land10060558 crossref_primary_10_1016_j_jag_2021_102360 crossref_primary_10_1186_s40538_024_00552_6 crossref_primary_10_3390_w13192762 crossref_primary_10_1002_ldr_4877 crossref_primary_10_1016_j_jag_2023_103250 crossref_primary_10_3390_land11122287 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_1109_JSTARS_2022_3223935 crossref_primary_10_1002_ldr_4632 crossref_primary_10_1016_j_procs_2019_09_442 crossref_primary_10_1016_j_geodrs_2019_e00240 crossref_primary_10_1016_j_regsus_2021_06_001 crossref_primary_10_1016_j_catena_2024_107824 crossref_primary_10_1109_JIOT_2019_2954738 crossref_primary_10_3390_agronomy14112673 crossref_primary_10_1016_j_envres_2022_114870 crossref_primary_10_1016_j_geoderma_2024_116798 crossref_primary_10_7717_peerj_6926 crossref_primary_10_3390_rs14205221 crossref_primary_10_1016_j_geodrs_2024_e00800 crossref_primary_10_3390_land11122307 crossref_primary_10_2139_ssrn_4020072 crossref_primary_10_1016_j_jclepro_2022_133302 crossref_primary_10_1007_s13762_022_03930_5 crossref_primary_10_1109_ACCESS_2021_3101873 crossref_primary_10_1007_s12524_024_01906_1 crossref_primary_10_1007_s10661_023_11007_0 crossref_primary_10_1016_j_agwat_2025_109392 crossref_primary_10_3390_land13111941 crossref_primary_10_1002_ldr_4613 crossref_primary_10_1371_journal_pone_0307853 crossref_primary_10_1080_2150704X_2019_1610981 crossref_primary_10_1016_j_scitotenv_2020_140965 crossref_primary_10_1016_j_jaridenv_2022_104775 crossref_primary_10_1016_j_agwat_2024_108679 crossref_primary_10_1080_01431161_2020_1823515 crossref_primary_10_3389_fenvs_2022_962581 crossref_primary_10_1109_ACCESS_2024_3352006 crossref_primary_10_1016_j_scitotenv_2021_152347 crossref_primary_10_3390_su142416486 crossref_primary_10_1016_j_geoderma_2023_116378 crossref_primary_10_1016_j_scitotenv_2019_05_037 crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_1080_10106049_2020_1822925 crossref_primary_10_1016_j_saa_2020_118553 crossref_primary_10_3390_rs13204106 crossref_primary_10_1016_j_jag_2022_102969 crossref_primary_10_3390_rs14071606 crossref_primary_10_1016_j_heliyon_2024_e33410 crossref_primary_10_1016_j_geodrs_2021_e00399 crossref_primary_10_1002_ldr_4162 crossref_primary_10_1016_j_catena_2023_107313 crossref_primary_10_1016_j_jenvman_2025_124917 crossref_primary_10_3390_ijerph16152694 crossref_primary_10_3390_rs14184448 crossref_primary_10_3390_agronomy14102182 crossref_primary_10_3390_rs12244118 crossref_primary_10_1016_j_geoderma_2022_116065 crossref_primary_10_3390_f15122222 crossref_primary_10_1016_j_catena_2022_106054 crossref_primary_10_1016_j_saa_2022_121647 crossref_primary_10_3390_rs13193974 crossref_primary_10_3389_feart_2024_1488504 crossref_primary_10_1016_j_geoderma_2020_114645 crossref_primary_10_3390_agriculture13050976 crossref_primary_10_1016_j_scitotenv_2022_157416 crossref_primary_10_3390_rs12213511 |
Cites_doi | 10.1080/01431160110107635 10.1016/j.rse.2015.08.026 10.1016/S0034-4257(02)00096-2 10.1016/S0034-4257(00)00198-X 10.1109/JSTARS.2014.2360411 10.1080/01431160701395195 10.1080/01431161.2018.1441565 10.1016/j.geoderma.2005.02.003 10.1016/j.jag.2016.05.009 10.1016/j.geoderma.2013.10.027 10.5589/m08-017 10.1016/S1001-0742(07)60008-4 10.1016/j.proeps.2015.08.062 10.1016/j.biosystemseng.2016.04.015 10.1016/j.geoderma.2014.07.028 10.1111/gcb.12569 10.1029/2002WR001426 10.1016/j.agwat.2004.09.038 10.1016/j.geoderma.2014.03.025 10.1080/00103620802432717 10.1016/j.jag.2016.03.008 10.1016/j.jag.2013.06.002 10.2136/sssaj1981.03615995004500060031x 10.1016/j.geoderma.2011.04.001 10.1016/j.jag.2015.01.018 10.1109/JSTARS.2014.2333535 10.1016/j.crte.2011.09.003 10.1029/2009GB003506 10.1016/j.ecolind.2015.01.004 10.1016/j.rse.2017.08.023 10.1016/j.pce.2010.12.004 10.1016/j.rse.2016.01.002 10.1016/j.geoderma.2014.08.008 10.1016/S0016-7061(98)00069-X 10.1080/02757259409532252 10.1016/j.rse.2007.02.005 10.1016/j.ecolind.2016.11.043 10.1016/0034-4257(88)90106-X 10.1016/j.ecolind.2011.03.025 10.1016/S0034-4257(96)00072-7 10.1016/j.geoderma.2004.06.007 10.1016/j.geoderma.2005.10.009 10.1002/hyp.3360050103 10.3390/rs61110813 10.1016/j.geoderma.2013.07.020 10.3390/rs70100488 10.1016/j.geodrs.2014.10.004 10.1016/S1002-0160(10)60027-6 10.1016/S0034-4257(02)00188-8 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.08.006 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 1319 |
ExternalDocumentID | 10_1016_j_geoderma_2018_08_006 S0016706117319584 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-58e3af5a218b680ab997bb58034bdadf7dd5836ebb43adb31ea78a6ba968b2bb3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 10:11:24 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Tue Jul 01 04:04:47 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cubist Soil salinization Partial least squares regression Digital soil mapping Remote sensing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-58e3af5a218b680ab997bb58034bdadf7dd5836ebb43adb31ea78a6ba968b2bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0801-3546 |
PQID | 2116876393 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2116876393 crossref_citationtrail_10_1016_j_geoderma_2018_08_006 crossref_primary_10_1016_j_geoderma_2018_08_006 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Ruecker, Agyare, Akramkhanov, Kim, Vlek (bb0210) 2009; 44 Scudiero, Skaggs, Corwin (bb0230) 2015; 169 Henderson, Bui, Moran, Simon (bb0145) 2005; 124 Abdel-Kader (bb0015) 2011; 14 Fang, Yu, Qi (bb0095) 2015; 38 Deng, Yang, Long (bb0070) 2013; 35 Cheng, Shi, Zhu (bb0060) 2007; 19 Gorji, Tanik, Sertel (bb0130) 2015; 15 Sidike, Zhao, Wen (bb0240) 2014; 26 Rouse, Haas, Schell, Deering (bb0220) 1973; 351 Metternicht, Zinck (bb0190) 2003; 85 Fan, Weng, Tao (bb0090) 2016; 52 Peng, Ji, Ma, Li, Chen, Zhou, Shi (bb0215) 2016; 152 Gallant, Dowling (bb0110) 2003; 39 Allbed, Kumar, Aldakheel (bb0035) 2014; 230 Bui, Henderson, Viergever (bb0055) 2009; 23 Ma, Xu, Peng, Chen, Wan, He, Shi, Li (bb0175) 2018; 39 Weng, Gong, Zhu (bb0270) 2010; 20 Bannari, Guedon, El-Harti, Cherkaoui, El-Ghmari (bb0040) 2008; 39 Khan, Rastoskuev, Sato, Shiozawa (bb0160) 2005; 77 Wang, Pang, Zheng, Hu, Liu (bb0260) 2006; 22 Gutierrez, Johnson (bb1000) 2010; 30 Farifteh, Van der Meer, Atzberger, Carranza (bb0105) 2007; 110 Stoner, Baumgardner (bb0245) 1981; 45 Wu, Al-Shafie, Mhaimeed, Ziadat, Nangia, Payne (bb0275) 2014; 7 Zhang, Zeng, Gao, Ouyang, Li, Fang, Zhao (bb0280) 2011; 11 Ma, Shi, Zhou, Xu, Yu, Yang (bb0170) 2017; 200 Bouaziz, Matschullat, Gloaguen (bb0050) 2011; 343 Weng, Gong, Zhu (bb0265) 2008; 34 Viscarra Rossel, Webster, Bui, Baldock (bb0255) 2014; 20 Farifteh, Farshad, George (bb0100) 2006; 130 Mehrjardi, Minasny, Sarmadian, Malone (bb0185) 2014; 213 Ding, Yu (bb0075) 2014; 235–236 Abbas, Khan (bb0005) 2007 Akramkhanov, Martius, Park, Hendrickx (bb0020) 2011; 163 Douaoui, Nicolas, Walter (bb0080) 2006; 134 Moore, Grayson, Ladson (bb0195) 1991; 5 Muller, Decamps (bb0200) 2001; 76 Dehaan, Taylor (bb0065) 2003; 24 Li, Webster, Shi (bb0165) 2015; 237-238 Zhang, Lu, Chen, Zhang, Maisupova, Tao (bb0290) 2016; 175 Masoud (bb0180) 2014; 217 Goel, Qin (bb0120) 1994; 10 Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, Ghmari (bb0140) 2016; 50 Goossens, Van Ranst (bb0125) 1998; 87 Nawar, Buddenbaum, Hill, Kozak (bb0205) 2014; 6 Huete (bb0150) 1988; 25 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0155) 2002; 83 Scudiero, Skaggs, Corwin (bb0225) 2014; 2-3 Gitelson, Kaufman, Merzlyak (bb0115) 1996; 58 Shi, Wang, Zhou, Chen (bb0235) 2006; 25 Abbas, Khan, Hussain, Hanjra, Akbar (bb0010) 2013; 55–57 Turhong, Abudukeremu, Nishizaki, Abuliz, Kurbanjan (bb0250) 2008; 31 Alhammadi, Glenn (bb0025) 2008; 29 Barbouchi, Abdelfattah, Chokmani, Ben Aissa, Lhissou, Harti (bb0045) 2015; 8 Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0285) 2015; 52 Fan, Liu, Tao, Weng (bb0085) 2015; 7 Gorji, Sertel, Tanik (bb0135) 2017; 74 Barbouchi (10.1016/j.geoderma.2018.08.006_bb0045) 2015; 8 Scudiero (10.1016/j.geoderma.2018.08.006_bb0225) 2014; 2-3 Moore (10.1016/j.geoderma.2018.08.006_bb0195) 1991; 5 Sidike (10.1016/j.geoderma.2018.08.006_bb0240) 2014; 26 Masoud (10.1016/j.geoderma.2018.08.006_bb0180) 2014; 217 Cheng (10.1016/j.geoderma.2018.08.006_bb0060) 2007; 19 Peng (10.1016/j.geoderma.2018.08.006_bb0215) 2016; 152 Goel (10.1016/j.geoderma.2018.08.006_bb0120) 1994; 10 Ma (10.1016/j.geoderma.2018.08.006_bb0170) 2017; 200 Weng (10.1016/j.geoderma.2018.08.006_bb0270) 2010; 20 Mehrjardi (10.1016/j.geoderma.2018.08.006_bb0185) 2014; 213 Gallant (10.1016/j.geoderma.2018.08.006_bb0110) 2003; 39 Khan (10.1016/j.geoderma.2018.08.006_bb0160) 2005; 77 Abbas (10.1016/j.geoderma.2018.08.006_bb0010) 2013; 55–57 Gutierrez (10.1016/j.geoderma.2018.08.006_bb1000) 2010; 30 Huete (10.1016/j.geoderma.2018.08.006_bb0155) 2002; 83 Park (10.1016/j.geoderma.2018.08.006_bb0210) 2009; 44 Abdel-Kader (10.1016/j.geoderma.2018.08.006_bb0015) 2011; 14 Weng (10.1016/j.geoderma.2018.08.006_bb0265) 2008; 34 Nawar (10.1016/j.geoderma.2018.08.006_bb0205) 2014; 6 Rouse (10.1016/j.geoderma.2018.08.006_bb0220) 1973; 351 Fan (10.1016/j.geoderma.2018.08.006_bb0090) 2016; 52 Huete (10.1016/j.geoderma.2018.08.006_bb0150) 1988; 25 Gitelson (10.1016/j.geoderma.2018.08.006_bb0115) 1996; 58 Deng (10.1016/j.geoderma.2018.08.006_bb0070) 2013; 35 Muller (10.1016/j.geoderma.2018.08.006_bb0200) 2001; 76 Goossens (10.1016/j.geoderma.2018.08.006_bb0125) 1998; 87 Akramkhanov (10.1016/j.geoderma.2018.08.006_bb0020) 2011; 163 Douaoui (10.1016/j.geoderma.2018.08.006_bb0080) 2006; 134 Stoner (10.1016/j.geoderma.2018.08.006_bb0245) 1981; 45 Dehaan (10.1016/j.geoderma.2018.08.006_bb0065) 2003; 24 Bouaziz (10.1016/j.geoderma.2018.08.006_bb0050) 2011; 343 Zhang (10.1016/j.geoderma.2018.08.006_bb0280) 2011; 11 Gorji (10.1016/j.geoderma.2018.08.006_bb0130) 2015; 15 Metternicht (10.1016/j.geoderma.2018.08.006_bb0190) 2003; 85 Fang (10.1016/j.geoderma.2018.08.006_bb0095) 2015; 38 Harti (10.1016/j.geoderma.2018.08.006_bb0140) 2016; 50 Li (10.1016/j.geoderma.2018.08.006_bb0165) 2015; 237-238 Gorji (10.1016/j.geoderma.2018.08.006_bb0135) 2017; 74 Fan (10.1016/j.geoderma.2018.08.006_bb0085) 2015; 7 Wu (10.1016/j.geoderma.2018.08.006_bb0275) 2014; 7 Alhammadi (10.1016/j.geoderma.2018.08.006_bb0025) 2008; 29 Farifteh (10.1016/j.geoderma.2018.08.006_bb0100) 2006; 130 Scudiero (10.1016/j.geoderma.2018.08.006_bb0230) 2015; 169 Allbed (10.1016/j.geoderma.2018.08.006_bb0035) 2014; 230 Henderson (10.1016/j.geoderma.2018.08.006_bb0145) 2005; 124 Abbas (10.1016/j.geoderma.2018.08.006_bb0005) 2007 Bannari (10.1016/j.geoderma.2018.08.006_bb0040) 2008; 39 Turhong (10.1016/j.geoderma.2018.08.006_bb0250) 2008; 31 Bui (10.1016/j.geoderma.2018.08.006_bb0055) 2009; 23 Zhang (10.1016/j.geoderma.2018.08.006_bb0290) 2016; 175 Ding (10.1016/j.geoderma.2018.08.006_bb0075) 2014; 235–236 Viscarra Rossel (10.1016/j.geoderma.2018.08.006_bb0255) 2014; 20 Wang (10.1016/j.geoderma.2018.08.006_bb0260) 2006; 22 Ma (10.1016/j.geoderma.2018.08.006_bb0175) 2018; 39 Shi (10.1016/j.geoderma.2018.08.006_bb0235) 2006; 25 Farifteh (10.1016/j.geoderma.2018.08.006_bb0105) 2007; 110 Zhang (10.1016/j.geoderma.2018.08.006_bb0285) 2015; 52 |
References_xml | – volume: 24 start-page: 775 year: 2003 end-page: 794 ident: bb0065 article-title: Image-derived spectral endmembers as indicators of salinisation publication-title: Int. J. Remote Sens. – volume: 134 start-page: 217 year: 2006 end-page: 230 ident: bb0080 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma – volume: 39 start-page: 3891 year: 2018 end-page: 3907 ident: bb0175 article-title: Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings publication-title: Int. J. Remote Sens. – volume: 235–236 start-page: 316 year: 2014 end-page: 322 ident: bb0075 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma – volume: 237-238 start-page: 71 year: 2015 end-page: 77 ident: bb0165 article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited publication-title: Geoderma – volume: 343 start-page: 795 year: 2011 end-page: 803 ident: bb0050 article-title: Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil publication-title: Compt. Rendus Geosci. – volume: 44 start-page: 122 year: 2009 end-page: 145 ident: bb0210 article-title: Influence of grid cell size and flow routing algorithm on soil-landform modeling publication-title: Journal of the Korean Geographical Society – volume: 34 start-page: 259 year: 2008 end-page: 270 ident: bb0265 article-title: Soil salt content estimation in the Yellow River delta with satellite hyperspectral data publication-title: Can. J. Remote. Sens. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0150 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 5 start-page: 3 year: 1991 end-page: 30 ident: bb0195 article-title: Digital terrain modeling - a review of hydrological, geomorpholgical, and biological applications publication-title: Hydrol. Process. – volume: 230 start-page: 1 year: 2014 end-page: 8 ident: bb0035 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region publication-title: Geoderma – volume: 200 start-page: 378 year: 2017 end-page: 395 ident: bb0170 article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effect of systematic anomalies removed publication-title: Remote Sens. Environ. – volume: 6 start-page: 10813 year: 2014 end-page: 10834 ident: bb0205 article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS) publication-title: Remote Sens. – volume: 8 start-page: 3823 year: 2015 end-page: 3832 ident: bb0045 article-title: Soil salinity characterization using polarimetric InSAR coherence: case studies in Tunisia and Morocco publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 2-3 start-page: 82 year: 2014 end-page: 90 ident: bb0225 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg. – volume: 152 start-page: 94 year: 2016 end-page: 103 ident: bb0215 article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers publication-title: Biosyst. Eng. – volume: 22 start-page: 193 year: 2006 end-page: 196 ident: bb0260 article-title: Present situation, existing problem and control countermeasures of Tarim river basin ecological environment publication-title: System Science and Comprehensive Studies in Agriculture – volume: 25 start-page: 753 year: 2006 end-page: 758 ident: bb0235 article-title: Land use change and its ecological effects in the ecotone of Southern Xinjiang Uyghur Autonomous Region: a case study of Akesu City area publication-title: Chinese Journal of Ecology – volume: 50 start-page: 64 year: 2016 end-page: 73 ident: bb0140 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 19 start-page: 50 year: 2007 end-page: 54 ident: bb0060 article-title: Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China publication-title: J. Environ. Sci. (China) – volume: 7 start-page: 488 year: 2015 end-page: 511 ident: bb0085 article-title: Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression publication-title: Remote Sens. – volume: 29 start-page: 1745 year: 2008 end-page: 1765 ident: bb0025 article-title: Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI publication-title: Int. J. Remote Sens. – volume: 39 start-page: 291 year: 2003 end-page: 297 ident: bb0110 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. – start-page: 2632 year: 2007 end-page: 2638 ident: bb0005 article-title: Using remote sensing techniques for appraisal of irrigated soil salinity publication-title: MODSIM 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability – volume: 35 start-page: 1600 year: 2013 end-page: 1609 ident: bb0070 article-title: Ecological operation in the Tarim River basin based on rational allocation of water resource publication-title: J. Glaciol. Geocryol. – volume: 38 start-page: 261 year: 2015 end-page: 266 ident: bb0095 article-title: Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 163 start-page: 55 year: 2011 end-page: 62 ident: bb0020 article-title: Environmental factors of spatial distribution of soil salinity on flat irrigated terrain publication-title: Geoderma – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: bb0190 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. – volume: 213 start-page: 15 year: 2014 end-page: 28 ident: bb0185 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma – volume: 58 start-page: 289 year: 1996 end-page: 298 ident: bb0115 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. – volume: 26 start-page: 156 year: 2014 end-page: 175 ident: bb0240 article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 110 start-page: 59 year: 2007 end-page: 78 ident: bb0105 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. – volume: 87 start-page: 47 year: 1998 end-page: 56 ident: bb0125 article-title: The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt) publication-title: Geoderma – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: bb0145 article-title: Australia-wide predictions of soil properties using, decision trees publication-title: Geoderma – volume: 23 start-page: 1 year: 2009 end-page: 15 ident: bb0055 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles – volume: 45 start-page: 1161 year: 1981 end-page: 1165 ident: bb0245 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. – volume: 20 start-page: 2953 year: 2014 end-page: 2970 ident: bb0255 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. – volume: 217 start-page: 45 year: 2014 end-page: 56 ident: bb0180 article-title: Predicting salt abundance in slightly saline soils from Landsat ETM plus imagery using spectral mixture analysis and soil spectrometry publication-title: Geoderma – volume: 52 start-page: 480 year: 2015 end-page: 489 ident: bb0285 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. – volume: 175 start-page: 271 year: 2016 end-page: 281 ident: bb0290 article-title: The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls publication-title: Remote Sens. Environ. – volume: 20 start-page: 378 year: 2010 end-page: 388 ident: bb0270 article-title: A spectral index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 Hyperion data publication-title: Pedosphere – volume: 77 start-page: 96 year: 2005 end-page: 109 ident: bb0160 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0155 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 55–57 start-page: 43 year: 2013 end-page: 52 ident: bb0010 article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach publication-title: Phys. Chem. Earth – volume: 39 start-page: 2795 year: 2008 end-page: 2811 ident: bb0040 article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor publication-title: Commun. Soil Sci. Plant Anal. – volume: 31 start-page: 22 year: 2008 end-page: 26 ident: bb0250 article-title: Distribution and characteristics of salinized soil in the south region of Xinjiang publication-title: Environ. Sci. Technol. – volume: 7 start-page: 4442 year: 2014 end-page: 4452 ident: bb0275 article-title: Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 10 start-page: 309 year: 1994 end-page: 347 ident: bb0120 article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR publication-title: Remote Sens. Rev. – volume: 11 start-page: 1552 year: 2011 end-page: 1562 ident: bb0280 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecol. Indic. – volume: 351 start-page: 309 year: 1973 ident: bb0220 article-title: Monitoring vegetation systems in the great plains with ERTS publication-title: NASA Special Publication – volume: 52 start-page: 32 year: 2016 end-page: 41 ident: bb0090 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 169 start-page: 335 year: 2015 end-page: 343 ident: bb0230 article-title: Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance publication-title: Remote Sens. Environ. – volume: 14 start-page: 29 year: 2011 end-page: 40 ident: bb0015 article-title: Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach publication-title: Egypt. J. Remote Sens. Space. Sci. – volume: 76 start-page: 173 year: 2001 end-page: 180 ident: bb0200 article-title: Modeling soil moisture-reflectance publication-title: Remote Sens. Environ. – volume: 30 start-page: 46 year: 2010 end-page: 57 ident: bb1000 article-title: Temporal variations of natural soil salinity in an arid environment using satellite images – volume: 15 start-page: 507 year: 2015 end-page: 512 ident: bb0130 article-title: Soil salinity prediction, monitoring and mapping using modern technologies publication-title: Procedia Earth and Planetary Science – volume: 130 start-page: 191 year: 2006 end-page: 206 ident: bb0100 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma – volume: 74 start-page: 384 year: 2017 end-page: 391 ident: bb0135 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. – volume: 24 start-page: 775 issue: 4 year: 2003 ident: 10.1016/j.geoderma.2018.08.006_bb0065 article-title: Image-derived spectral endmembers as indicators of salinisation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110107635 – volume: 169 start-page: 335 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0230 article-title: Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.026 – volume: 83 start-page: 195 issue: 1–2 year: 2002 ident: 10.1016/j.geoderma.2018.08.006_bb0155 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 76 start-page: 173 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2018.08.006_bb0200 article-title: Modeling soil moisture-reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00198-X – volume: 7 start-page: 4442 issue: 11 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0275 article-title: Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2360411 – volume: 29 start-page: 1745 issue: 6 year: 2008 ident: 10.1016/j.geoderma.2018.08.006_bb0025 article-title: Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701395195 – volume: 39 start-page: 3891 year: 2018 ident: 10.1016/j.geoderma.2018.08.006_bb0175 article-title: Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1441565 – volume: 130 start-page: 191 issue: 3–4 year: 2006 ident: 10.1016/j.geoderma.2018.08.006_bb0100 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.003 – volume: 52 start-page: 32 year: 2016 ident: 10.1016/j.geoderma.2018.08.006_bb0090 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.05.009 – volume: 217 start-page: 45 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0180 article-title: Predicting salt abundance in slightly saline soils from Landsat ETM plus imagery using spectral mixture analysis and soil spectrometry publication-title: Geoderma doi: 10.1016/j.geoderma.2013.10.027 – volume: 34 start-page: 259 issue: 3 year: 2008 ident: 10.1016/j.geoderma.2018.08.006_bb0265 article-title: Soil salt content estimation in the Yellow River delta with satellite hyperspectral data publication-title: Can. J. Remote. Sens. doi: 10.5589/m08-017 – volume: 19 start-page: 50 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2018.08.006_bb0060 article-title: Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(07)60008-4 – volume: 15 start-page: 507 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0130 article-title: Soil salinity prediction, monitoring and mapping using modern technologies publication-title: Procedia Earth and Planetary Science doi: 10.1016/j.proeps.2015.08.062 – volume: 152 start-page: 94 year: 2016 ident: 10.1016/j.geoderma.2018.08.006_bb0215 article-title: Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.04.015 – volume: 235–236 start-page: 316 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0075 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.028 – volume: 20 start-page: 2953 issue: 9 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0255 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12569 – volume: 25 start-page: 753 issue: 7 year: 2006 ident: 10.1016/j.geoderma.2018.08.006_bb0235 article-title: Land use change and its ecological effects in the ecotone of Southern Xinjiang Uyghur Autonomous Region: a case study of Akesu City area publication-title: Chinese Journal of Ecology – volume: 39 start-page: 291 issue: 12 year: 2003 ident: 10.1016/j.geoderma.2018.08.006_bb0110 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 77 start-page: 96 issue: 1–3 year: 2005 ident: 10.1016/j.geoderma.2018.08.006_bb0160 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2004.09.038 – volume: 230 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0035 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.025 – volume: 14 start-page: 29 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2018.08.006_bb0015 article-title: Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach publication-title: Egypt. J. Remote Sens. Space. Sci. – volume: 39 start-page: 2795 issue: 19–20 year: 2008 ident: 10.1016/j.geoderma.2018.08.006_bb0040 article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620802432717 – volume: 22 start-page: 193 year: 2006 ident: 10.1016/j.geoderma.2018.08.006_bb0260 article-title: Present situation, existing problem and control countermeasures of Tarim river basin ecological environment – volume: 50 start-page: 64 year: 2016 ident: 10.1016/j.geoderma.2018.08.006_bb0140 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.03.008 – volume: 26 start-page: 156 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0240 article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2013.06.002 – volume: 45 start-page: 1161 year: 1981 ident: 10.1016/j.geoderma.2018.08.006_bb0245 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500060031x – volume: 163 start-page: 55 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2018.08.006_bb0020 article-title: Environmental factors of spatial distribution of soil salinity on flat irrigated terrain publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.001 – volume: 38 start-page: 261 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0095 article-title: Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.01.018 – volume: 31 start-page: 22 year: 2008 ident: 10.1016/j.geoderma.2018.08.006_bb0250 article-title: Distribution and characteristics of salinized soil in the south region of Xinjiang publication-title: Environ. Sci. Technol. – start-page: 2632 year: 2007 ident: 10.1016/j.geoderma.2018.08.006_bb0005 article-title: Using remote sensing techniques for appraisal of irrigated soil salinity – volume: 8 start-page: 3823 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0045 article-title: Soil salinity characterization using polarimetric InSAR coherence: case studies in Tunisia and Morocco publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2333535 – volume: 343 start-page: 795 issue: 11−12 year: 2011 ident: 10.1016/j.geoderma.2018.08.006_bb0050 article-title: Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil publication-title: Compt. Rendus Geosci. doi: 10.1016/j.crte.2011.09.003 – volume: 23 start-page: 1 year: 2009 ident: 10.1016/j.geoderma.2018.08.006_bb0055 article-title: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2009GB003506 – volume: 52 start-page: 480 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0285 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.01.004 – volume: 200 start-page: 378 year: 2017 ident: 10.1016/j.geoderma.2018.08.006_bb0170 article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effect of systematic anomalies removed publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.023 – volume: 55–57 start-page: 43 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2018.08.006_bb0010 article-title: Characterizing soil salinity in irrigated agriculture using a remote sensing approach publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2010.12.004 – volume: 175 start-page: 271 year: 2016 ident: 10.1016/j.geoderma.2018.08.006_bb0290 article-title: The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.002 – volume: 237-238 start-page: 71 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0165 article-title: Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.008 – volume: 351 start-page: 309 year: 1973 ident: 10.1016/j.geoderma.2018.08.006_bb0220 article-title: Monitoring vegetation systems in the great plains with ERTS – volume: 87 start-page: 47 issue: 1–2 year: 1998 ident: 10.1016/j.geoderma.2018.08.006_bb0125 article-title: The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt) publication-title: Geoderma doi: 10.1016/S0016-7061(98)00069-X – volume: 10 start-page: 309 issue: 4 year: 1994 ident: 10.1016/j.geoderma.2018.08.006_bb0120 article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR publication-title: Remote Sens. Rev. doi: 10.1080/02757259409532252 – volume: 110 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2018.08.006_bb0105 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.005 – volume: 74 start-page: 384 year: 2017 ident: 10.1016/j.geoderma.2018.08.006_bb0135 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.11.043 – volume: 44 start-page: 122 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2018.08.006_bb0210 article-title: Influence of grid cell size and flow routing algorithm on soil-landform modeling publication-title: Journal of the Korean Geographical Society – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10.1016/j.geoderma.2018.08.006_bb0150 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 11 start-page: 1552 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2018.08.006_bb0280 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2011.03.025 – volume: 58 start-page: 289 issue: 3 year: 1996 ident: 10.1016/j.geoderma.2018.08.006_bb0115 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 – volume: 124 start-page: 383 issue: 3–4 year: 2005 ident: 10.1016/j.geoderma.2018.08.006_bb0145 article-title: Australia-wide predictions of soil properties using, decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – volume: 134 start-page: 217 issue: 1–2 year: 2006 ident: 10.1016/j.geoderma.2018.08.006_bb0080 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.10.009 – volume: 5 start-page: 3 year: 1991 ident: 10.1016/j.geoderma.2018.08.006_bb0195 article-title: Digital terrain modeling - a review of hydrological, geomorpholgical, and biological applications publication-title: Hydrol. Process. doi: 10.1002/hyp.3360050103 – volume: 6 start-page: 10813 issue: 11 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0205 article-title: Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS) publication-title: Remote Sens. doi: 10.3390/rs61110813 – volume: 213 start-page: 15 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0185 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 7 start-page: 488 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2018.08.006_bb0085 article-title: Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression publication-title: Remote Sens. doi: 10.3390/rs70100488 – volume: 2-3 start-page: 82 year: 2014 ident: 10.1016/j.geoderma.2018.08.006_bb0225 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.10.004 – volume: 30 start-page: 46 year: 2010 ident: 10.1016/j.geoderma.2018.08.006_bb1000 article-title: Temporal variations of natural soil salinity in an arid environment using satellite images – volume: 20 start-page: 378 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2018.08.006_bb0270 article-title: A spectral index for estimating soil salinity in the Yellow River Delta Region of China using EO-1 Hyperion data publication-title: Pedosphere doi: 10.1016/S1002-0160(10)60027-6 – volume: 35 start-page: 1600 year: 2013 ident: 10.1016/j.geoderma.2018.08.006_bb0070 article-title: Ecological operation in the Tarim River basin based on rational allocation of water resource publication-title: J. Glaciol. Geocryol. – volume: 85 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2018.08.006_bb0190 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 |
SSID | ssj0017020 |
Score | 2.6596546 |
Snippet | Soil salinization is one of the main reasons for soil health and ecosystem deterioration in most degraded arid and semiarid areas. To monitor its spatial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1309 |
SubjectTerms | arid zones calibration China Cubist data collection Digital soil mapping ecosystems electrical conductivity field experimentation landscapes least squares Partial least squares regression Remote sensing salinity satellites semiarid zones soil quality soil salinity Soil salinization soil sampling soil water content vegetation |
Title | Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.08.006 https://www.proquest.com/docview/2116876393 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1CcmkOJWkamk-20GNVS95PHU2wcVpqemjAt2VHuzI2QQ6Wc8glvz0zshSSEPAhJyGxK8TMaGa1evMeYz-yPmDd8SaRJuaJlIVOIHiVqGDKINJoDNA-5N-JHt_I31M13WFXXS8MwSrb3L_J6U22bq_0Wmv27uZz6vHNtMFylBlBjCnECSqloSj_9fgM88hM2lIzZjqh0S-6hBfoIxIca_iHMttQeZLy0fsF6k2qburP6IB9bheOfLB5tkO2E6svbH8wW7XkGfGIwRDfV1qBVjNeL-e3vPbU97h-4NREwlcR3RJ5TZB1HOGrwNGoJBHBCSfK8VgvG8B7xafzaoGBM-P_mi2HIv7kjdL2V3YzGv6_GiethkJSCKnWibJR-FJ5rOSgbeohzw2AsqmQ6JNQmhCUFToCSOEDiCx6Y70Gn2sLfQBxzHarZRW_MW7LUvV1yKKNhSyhBLBK4mgJOo99aU-Y6gznipZgnHQubl2HJFu4zuCODO5IADPVJ6z3PO9uQ7GxdUbe-cW9ChaHdWDr3O-dIx2-SfR7xFdxeV87_BTWxM-Xi9MP3P-MfcKzfANTO2e769V9vMB1yxoum8C8ZHuD6z_jyRPvuvB0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5S55D2UJqmpekrW-gxwpL3qaMJCc7L5JCAb8uOdmVsghws59B_3xl5FdpQyKEngbQjxMzszGp35vsY-1mMAPOON5k0scykrHQGwatMBVMHkUdjgPYhr6d6cicvZmq2w076Xhgqq0yxfxvTu2id7gyTNocPiwX1-BbaYDoqjCDEFPmK7RI6lRqw3fH55WT6dJhg8oTOWOiMBP5oFF6imYhzrIMgKmyH5knkR__OUc-idZeCzt6xt2ntyMfbz9tnO7F5z96M5-uEnxEPGJzilKVFaDPn7Wpxz1tPrY-bX5z6SPg6omUib6lqHUf4JnDUK7FEcCoV5XhtV13Ne8Nni2aJvjPnN92uQxWPeUe2_YHdnZ3enkyyRKOQVUKqTaZsFL5WHpM5aJt7KEsDoGwuJJol1CYEZYWOAFL4AKKI3livwZfawghAfGSDZtXET4zbulYjHYpoYyVrqAGskjhagi7jSNpDpnrFuSphjBPVxb3ri8mWrle4I4U74sDM9SEbPsk9bFE2XpQoe7u4v_zFYSp4UfZHb0iHk4lOSHwTV4-tw79hTRB9pfj8H-8_YnuT2-srd3U-vfzCXuOTclu19pUNNuvH-A2XMRv4ntz0NybY8yU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+soil+salinity+from+remote+sensing+and+terrain+data+in+southern+Xinjiang+Province%2C+China&rft.jtitle=Geoderma&rft.au=Peng%2C+Jie&rft.au=Biswas%2C+Asim&rft.au=Jiang%2C+Qingsong&rft.au=Zhao%2C+Ruiying&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337&rft.spage=1309&rft.epage=1319&rft_id=info:doi/10.1016%2Fj.geoderma.2018.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_08_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |