N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest
•Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing...
Saved in:
Published in | Geoderma Vol. 375; p. 114470 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing fungal biomass.
Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha−1y−1) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition. |
---|---|
AbstractList | •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing fungal biomass.
Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha−1y−1) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition. Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha⁻¹y⁻¹) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition. |
ArticleNumber | 114470 |
Author | Guo, Jianfen Chen, Guangshui Fan, Yuexin Zhong, Xiaojian Yang, Yusheng Yang, Liuming Yang, Zhijie Lin, Yanyu |
Author_xml | – sequence: 1 givenname: Yuexin surname: Fan fullname: Fan, Yuexin email: yxfan@fjnu.edu.cn organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 2 givenname: Liuming surname: Yang fullname: Yang, Liuming organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 3 givenname: Xiaojian surname: Zhong fullname: Zhong, Xiaojian organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 4 givenname: Zhijie surname: Yang fullname: Yang, Zhijie organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 5 givenname: Yanyu surname: Lin fullname: Lin, Yanyu organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 6 givenname: Jianfen surname: Guo fullname: Guo, Jianfen organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 7 givenname: Guangshui surname: Chen fullname: Chen, Guangshui organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China – sequence: 8 givenname: Yusheng surname: Yang fullname: Yang, Yusheng email: geoyys@fjnu.edu.cn organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China |
BookMark | eNqFkM1qGzEQx0VJoE7aVyg69rKupP2QDT20mKYJhLaH9CxG0mwYsyttJTmQd-hDV8YNhFxykjT_j0G_C3YWYkDGPkixlkIOn_bre4we0wxrJVQdyq7T4g1byY1WzaD67RlbiepstBjkW3aR874-dfWu2N8fHLynQjFwCi4hZPR8JpeiJZh4wkz-UC8Okq0e-8hhKpgo3PMcaeK_ODwATWBpolLF8Dzt4rzE_NTOgeeDLSku5Kq4g1wgxCVT5mOsi8o7dj7ClPH9__OS_b76dre7bm5_fr_Zfb1tXNv1penbEYdW2o2UW6_bVox20NB61YEbNh1Y0H6o2mgdoNNSeN0rZ4et2vZWd7K9ZB9PvUuKfw51sZkpO5wmCBgP2ai-V0JoqdpqHU7W-qWcE45mSTRDejRSmCN-szdP-M0Rvznhr8HPL4KOChxJlFR5vR7_copj5fBAmEx2hMGhp4SuGB_ptYp_Y9qqqw |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2023_105169 crossref_primary_10_1007_s11104_024_06687_7 crossref_primary_10_1016_j_jes_2024_09_022 crossref_primary_10_1016_j_jclepro_2023_140120 crossref_primary_10_1016_j_still_2024_106441 crossref_primary_10_1007_s11104_022_05670_4 crossref_primary_10_1016_j_geoderma_2021_115309 crossref_primary_10_1007_s00248_022_02103_8 crossref_primary_10_1016_j_soilbio_2023_109025 crossref_primary_10_1016_j_soilbio_2023_109223 crossref_primary_10_1002_ldr_5513 crossref_primary_10_1016_j_soilbio_2024_109383 crossref_primary_10_1016_j_watres_2025_123552 crossref_primary_10_1016_j_catena_2024_108385 crossref_primary_10_1111_1365_2435_14178 crossref_primary_10_1111_gcb_16588 crossref_primary_10_1016_j_apsoil_2023_105052 crossref_primary_10_1007_s11368_024_03794_x crossref_primary_10_1016_j_envres_2022_114981 crossref_primary_10_1016_j_soilbio_2022_108607 crossref_primary_10_3389_fpls_2022_834184 crossref_primary_10_1016_j_envres_2022_114708 crossref_primary_10_1016_j_catena_2024_108536 crossref_primary_10_1007_s11104_024_06788_3 crossref_primary_10_1016_j_eja_2024_127144 crossref_primary_10_1016_j_soilbio_2021_108500 crossref_primary_10_1016_j_scitotenv_2020_141583 crossref_primary_10_1016_j_bamboo_2022_100005 crossref_primary_10_1016_j_catena_2024_108693 crossref_primary_10_1111_gcb_17543 crossref_primary_10_3389_fpls_2024_1333505 crossref_primary_10_1002_ldr_4494 crossref_primary_10_1016_j_scitotenv_2024_172554 crossref_primary_10_3390_f15091483 crossref_primary_10_1007_s11104_023_06014_6 crossref_primary_10_1016_j_fecs_2024_100192 crossref_primary_10_3390_f14050928 crossref_primary_10_1007_s11104_024_07004_y crossref_primary_10_1007_s42729_022_00773_4 crossref_primary_10_1007_s11104_022_05389_2 crossref_primary_10_1016_j_ejsobi_2021_103364 crossref_primary_10_1007_s42729_022_01063_9 crossref_primary_10_1016_j_foreco_2022_120165 crossref_primary_10_1016_j_soilbio_2023_109042 crossref_primary_10_1016_j_scitotenv_2022_157645 crossref_primary_10_3389_fevo_2023_1220111 crossref_primary_10_1111_gcb_17210 crossref_primary_10_1016_j_chemosphere_2023_139045 crossref_primary_10_1111_gfs_12693 crossref_primary_10_1080_03650340_2023_2169915 crossref_primary_10_1016_j_foreco_2023_121074 crossref_primary_10_1016_j_scitotenv_2024_171752 crossref_primary_10_1016_j_catena_2021_105459 crossref_primary_10_1016_j_apsoil_2024_105555 crossref_primary_10_1016_j_apsoil_2025_106023 crossref_primary_10_1016_j_jenvman_2023_118536 crossref_primary_10_1016_j_jenvman_2024_120059 crossref_primary_10_1007_s10661_022_10229_y crossref_primary_10_1016_j_geoderma_2021_115675 crossref_primary_10_1007_s11104_022_05836_0 crossref_primary_10_1111_1365_2745_14448 crossref_primary_10_1016_j_catena_2022_106293 crossref_primary_10_1111_gcb_17247 crossref_primary_10_3390_f13101560 crossref_primary_10_1016_j_apsoil_2021_104253 crossref_primary_10_1016_j_foreco_2022_120074 crossref_primary_10_1016_j_catena_2021_105622 crossref_primary_10_1016_j_biortech_2024_131258 |
Cites_doi | 10.1111/gcb.12904 10.1073/pnas.0604666104 10.1007/s11104-011-0950-4 10.1007/s11284-011-0805-8 10.1016/j.soilbio.2003.10.013 10.1007/s00374-017-1251-8 10.1021/es071217x 10.1016/j.soilbio.2011.02.002 10.1111/gcb.13480 10.1038/nature08632 10.1016/S0929-1393(98)00136-X 10.1007/s00374-017-1183-3 10.1111/gcb.12374 10.1007/s00374-014-0964-1 10.1016/0016-7061(76)90066-5 10.1007/s11104-017-3391-x 10.1016/j.soilbio.2018.05.013 10.1016/j.soilbio.2009.10.014 10.1016/j.soilbio.2009.01.014 10.1111/j.1365-2389.1955.tb00849.x 10.1038/ngeo339 10.1007/s10533-017-0398-6 10.1128/AEM.00560-10 10.1139/o59-099 10.1111/j.1461-0248.2008.01230.x 10.1111/nph.15066 10.1080/00103628409367568 10.1111/j.1365-2486.2007.01503.x 10.1890/08-0127.1 10.1111/j.1365-2486.2005.001007.x 10.2136/sssaj2012.0128 10.1007/s10533-008-9264-x 10.1016/j.geoderma.2018.09.028 10.1016/j.soilbio.2015.02.015 10.1007/s00248-014-0383-8 10.1007/s00374-017-1179-z 10.1038/nmicrobiol.2017.105 10.1016/j.soilbio.2012.09.006 10.1016/j.soilbio.2016.03.019 10.1016/j.geoderma.2018.07.017 10.1111/1365-2435.12936 10.1016/j.envexpbot.2016.10.014 10.1016/j.soilbio.2010.11.021 10.1016/j.funeco.2016.05.011 10.1016/j.geoderma.2014.03.005 10.1016/j.envpol.2010.08.002 10.1007/s00374-011-0545-5 10.1111/gcb.13125 10.1007/s00374-018-1288-3 10.1016/j.still.2013.02.001 10.1016/j.geoderma.2009.09.005 10.3390/f10050435 10.1016/j.foreco.2004.03.018 10.1088/1748-9326/10/2/024019 10.1007/s11676-017-0522-4 10.1007/s11104-016-3037-4 10.1016/S0038-0717(02)00074-3 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114470 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114470 S0016706119320816 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-53fe631b8119d7330fb67a3d24ac684aba7d6119fbcaec710d752cb69295b7413 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 00:12:14 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Tue Jul 01 04:04:53 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fungi Organic phosphorus Amino sugars Acid phosphatase Carbon sequestration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-53fe631b8119d7330fb67a3d24ac684aba7d6119fbcaec710d752cb69295b7413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2552007123 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552007123 crossref_primary_10_1016_j_geoderma_2020_114470 crossref_citationtrail_10_1016_j_geoderma_2020_114470 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Turner, Yavitt, Harms, Garcia, Romero, Wright (b0245) 2013; 77 John, Dalling, Harms, Yavitt, Stallard, Mirabello, Hubbell, Valencia, Navarrete, Vallejo, Foster (b0095) 2007; 104 Liang, Duncan, Balser, Tiedje, Jackson (b0125) 2013; 57 Ma, Zhang, Zhang, Wang, Chen, Fu, Fang, Sun, Lei (b0150) 2018; 29 Frostegård, Tunlid, Bååth (b0055) 2011; 43 Sradnick, Oltmanns, Raupp, Joergensen (b0220) 2014; 226–227 Murugan, Loges, Taube, Sradnick, Joergensen (b0180) 2014; 67 Glaser, Turrión, Alef (b0070) 2004; 36 Moritz, Liang, Wagai, Kitayama, Balser (b0170) 2009; 92 Treseder (b0235) 2008; 11 Bligh, Dyer (b0010) 1959; 37 Henry, Juarez, Field, Vitousek (b0085) 2005; 11 Zhang, Cui, Lu, Bai, He, Xie, Liang, Zhang (b0285) 2016; 97 Bowman, Cleveland, Halada, Hreško, Baron (b0005) 2008; 1 Luo, Ling, Nannipieri, Chen, Raza, Wang, Guo, Shen (b0145) 2017; 53 Saunders, Williams (b0200) 1955; 6 Frey, Knorr, Parrent, Simpson (b0050) 2004; 196 Morrison, Frey, Sadowsky, van Diepen, Thomas, Pringle (b0175) 2016; 23 Liang, Schimel, Jastrow (b0130) 2017; 2 Sinsabaugh (b0210) 2010; 42 Saiya-Cork, Sinsabaugh, Zak (b0195) 2002; 34 Simpson, Simpson, Smith, Kelleher (b0205) 2007; 41 Zak, Freedman, Upchurch, Steffens, Kögel-Knabner (b0270) 2017; 23 Li, Li, Wang, Zou, Chen, Zhao, Mo, Li, Li, Xia (b0110) 2015; 51 Griepentrog, Bodé, Boeckx, Hagedorn, Heim, Schmidt (b0075) 2014; 20 Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (b0190) 2011; 349 Zhang, Yang, Zhang, Niu, Yang, Yu, Wang, Blagodatskaya, Kuzyakov, Tian, Tang, Liu, Sun, Luo (b0295) 2018; 32 Tian, Niu (b0230) 2015; 10 Joergensen (b0100) 2018; 54 Fan, Zhong, Lin, Liu, Yang, Wang, Chen, Chen, Yang (b0040) 2019; 337 Mehlich (b0160) 1984; 15 Zhan, Wang, Zhu, Li, Bai (b0275) 2017; 134 Maaroufi, Nordin, Hasselquist, Bach, Palmqvist, Gundale (b0155) 2015; 21 Parsons (b0185) 1981; 5 Swallow, Quideau, MacKenzie, Kishchuk (b0225) 2009; 41 Liang, Balser (b0120) 2010; 9 Indorf, Dyckmans, Khan, Joergensen (b0090) 2011; 47 Zhang, Xie, Lyu, Xiong, Wang, Chen, Li, Wang, Yang (b0280) 2016; 411 Kou, Jiang, Fu, Dai, Wang, Li (b0105) 2018; 218 Carter, Gregorich (b0015) 2008 Zhang, Amelung, Yuan, Samson-Liebig, Brown, Zech (b0290) 1999; 11 Fujita, Kunito, Moro, Toda, Otsuka, Nagaoka (b0060) 2017; 136 Turner (b0240) 2010; 76 Fan, Lin, Yang, Zhong, Wang, Zhou, Chen, Yang (b0035) 2018; 54 Zhou, Liu, Xie, Lyu, Zheng, You, Fan, Lin, Chen, Chen, Yang (b0300) 2019; 10 Ding, Liang, Zhang, Yuan, Han (b0025) 2015; 84 Li, Niu, Yu (b0115) 2016; 22 Ding, Qiao, Filley, Wang, Lü, Zhang, Wang (b0030) 2017; 53 Liu, Duan, Mo, Du, Shen, Lu, Zhang, Zhou, He, Zhang (b0135) 2011; 159 Vitousek, Porder, Houlton, Chadwick (b0250) 2010; 20 George, Giles, Menezes-Blackburn, Condron, Gama-Rodrigues, Jaisi, Lang, Neal, Stutter, Almeida, Bol, Cabugao, Celi, Cotner, Feng, Goll, Hallama, Krueger, Plassard, Rosling, Darch, Fraser, Giesler, Richardson, Tamburini, Shand, Lumsdon, Zhang, Blackwell, Wearing, Mezeli, Almås, Audette, Bertrand, Beyhaut, Boitt, Bradshaw, Brearley, Bruulsema, Ciais, Cozzolino, Duran, Mora, de Menezes, Dodd, Dunfield, Engl, Frazão, Garland, González Jiménez, Graca, Granger, Harrison, Heuck, Hou, Johnes, Kaiser, Kjær, Klumpp, Lamb, Macintosh, Mackay, McGrath, McIntyre, McLaren, Mészáros, Missong, Mooshammer, Negrón, Nelson, Pfahler, Poblete-Grant, Randall, Seguel, Seth, Smith, Smits, Sobarzo, Spohn, Tawaraya, Tibbett, Voroney, Wallander, Wang, Wasaki, Haygarth (b0065) 2018; 427 Liu, Zhou, Hu, Shao, He, Zhang, Zhang, Li (b0140) 2019; 333 Sinsabaugh, Hill, Follstad Shah (b0215) 2009; 462 He, Zhang, Zhang, Xie, Zhuang (b0080) 2011; 43 Ding, Han, Zhang, Qiao (b0020) 2013; 130 Feng, Wu, Zhang, Zhang, Li, Long, Yang, Chen, Cheng (b0045) 2018; 123 Mo, Zhang, Zhu, Gundersen, Fang, Li, Wang (b0165) 2008; 14 Walker, Syers (b0255) 1976; 15 Wang, Han, Jia, Feng, Guo, Tian (b0260) 2011; 26 Wisawapipat, Kheoruenromne, Suddhiprakarn, Gilkes (b0265) 2009; 153 Li (10.1016/j.geoderma.2020.114470_b0110) 2015; 51 Zhang (10.1016/j.geoderma.2020.114470_b0280) 2016; 411 Sinsabaugh (10.1016/j.geoderma.2020.114470_b0210) 2010; 42 Henry (10.1016/j.geoderma.2020.114470_b0085) 2005; 11 Wang (10.1016/j.geoderma.2020.114470_b0260) 2011; 26 Sinsabaugh (10.1016/j.geoderma.2020.114470_b0215) 2009; 462 Treseder (10.1016/j.geoderma.2020.114470_b0235) 2008; 11 Bowman (10.1016/j.geoderma.2020.114470_b0005) 2008; 1 Maaroufi (10.1016/j.geoderma.2020.114470_b0155) 2015; 21 Tian (10.1016/j.geoderma.2020.114470_b0230) 2015; 10 Sradnick (10.1016/j.geoderma.2020.114470_b0220) 2014; 226–227 Vitousek (10.1016/j.geoderma.2020.114470_b0250) 2010; 20 Mo (10.1016/j.geoderma.2020.114470_b0165) 2008; 14 Murugan (10.1016/j.geoderma.2020.114470_b0180) 2014; 67 Liu (10.1016/j.geoderma.2020.114470_b0135) 2011; 159 Frostegård (10.1016/j.geoderma.2020.114470_b0055) 2011; 43 Saunders (10.1016/j.geoderma.2020.114470_b0200) 1955; 6 Zak (10.1016/j.geoderma.2020.114470_b0270) 2017; 23 George (10.1016/j.geoderma.2020.114470_b0065) 2018; 427 Zhang (10.1016/j.geoderma.2020.114470_b0290) 1999; 11 Liang (10.1016/j.geoderma.2020.114470_b0120) 2010; 9 Turner (10.1016/j.geoderma.2020.114470_b0245) 2013; 77 Zhan (10.1016/j.geoderma.2020.114470_b0275) 2017; 134 Luo (10.1016/j.geoderma.2020.114470_b0145) 2017; 53 Joergensen (10.1016/j.geoderma.2020.114470_b0100) 2018; 54 Wisawapipat (10.1016/j.geoderma.2020.114470_b0265) 2009; 153 Liang (10.1016/j.geoderma.2020.114470_b0125) 2013; 57 Ma (10.1016/j.geoderma.2020.114470_b0150) 2018; 29 Mehlich (10.1016/j.geoderma.2020.114470_b0160) 1984; 15 Bligh (10.1016/j.geoderma.2020.114470_b0010) 1959; 37 Parsons (10.1016/j.geoderma.2020.114470_b0185) 1981; 5 Zhou (10.1016/j.geoderma.2020.114470_b0300) 2019; 10 Turner (10.1016/j.geoderma.2020.114470_b0240) 2010; 76 John (10.1016/j.geoderma.2020.114470_b0095) 2007; 104 Griepentrog (10.1016/j.geoderma.2020.114470_b0075) 2014; 20 Fan (10.1016/j.geoderma.2020.114470_b0035) 2018; 54 Fan (10.1016/j.geoderma.2020.114470_b0040) 2019; 337 Ding (10.1016/j.geoderma.2020.114470_b0030) 2017; 53 Frey (10.1016/j.geoderma.2020.114470_b0050) 2004; 196 Liang (10.1016/j.geoderma.2020.114470_b0130) 2017; 2 Richardson (10.1016/j.geoderma.2020.114470_b0190) 2011; 349 Carter (10.1016/j.geoderma.2020.114470_b0015) 2008 Swallow (10.1016/j.geoderma.2020.114470_b0225) 2009; 41 Ding (10.1016/j.geoderma.2020.114470_b0025) 2015; 84 Zhang (10.1016/j.geoderma.2020.114470_b0295) 2018; 32 Ding (10.1016/j.geoderma.2020.114470_b0020) 2013; 130 Indorf (10.1016/j.geoderma.2020.114470_b0090) 2011; 47 Walker (10.1016/j.geoderma.2020.114470_b0255) 1976; 15 Li (10.1016/j.geoderma.2020.114470_b0115) 2016; 22 Morrison (10.1016/j.geoderma.2020.114470_b0175) 2016; 23 Feng (10.1016/j.geoderma.2020.114470_b0045) 2018; 123 Zhang (10.1016/j.geoderma.2020.114470_b0285) 2016; 97 Glaser (10.1016/j.geoderma.2020.114470_b0070) 2004; 36 He (10.1016/j.geoderma.2020.114470_b0080) 2011; 43 Liu (10.1016/j.geoderma.2020.114470_b0140) 2019; 333 Moritz (10.1016/j.geoderma.2020.114470_b0170) 2009; 92 Kou (10.1016/j.geoderma.2020.114470_b0105) 2018; 218 Saiya-Cork (10.1016/j.geoderma.2020.114470_b0195) 2002; 34 Simpson (10.1016/j.geoderma.2020.114470_b0205) 2007; 41 Fujita (10.1016/j.geoderma.2020.114470_b0060) 2017; 136 |
References_xml | – volume: 15 start-page: 1409 year: 1984 end-page: 1416 ident: b0160 article-title: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant publication-title: Commun. Soil. Sci. Plan. – volume: 11 start-page: 1111 year: 2008 end-page: 1120 ident: b0235 article-title: Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies publication-title: Ecol. Lett. – volume: 76 start-page: 6485 year: 2010 end-page: 6493 ident: b0240 article-title: Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils publication-title: Appl. Environ. Microbiol. – volume: 36 start-page: 399 year: 2004 end-page: 407 ident: b0070 article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. – volume: 23 start-page: 933 year: 2017 end-page: 944 ident: b0270 article-title: Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition publication-title: Glob. Change Biol. – volume: 130 start-page: 13 year: 2013 end-page: 17 ident: b0020 article-title: Effects of contrasting agricultural management on microbial residues in a Mollisol in China publication-title: Soil. Till. Res. – volume: 54 start-page: 149 year: 2018 end-page: 161 ident: b0035 article-title: Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem publication-title: Biol. Fert. Soils. – volume: 47 start-page: 387 year: 2011 end-page: 396 ident: b0090 article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates publication-title: Biol. Fert. Soils. – volume: 1 start-page: 767 year: 2008 end-page: 770 ident: b0005 article-title: Negative impact of nitrogen deposition on soil buffering capacity publication-title: Nat. Geosci. – volume: 21 start-page: 3169 year: 2015 end-page: 3180 ident: b0155 article-title: Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils publication-title: Glob. Change Biol. – volume: 226–227 start-page: 79 year: 2014 end-page: 84 ident: b0220 article-title: Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil publication-title: Geoderma – volume: 32 start-page: 106 year: 2018 end-page: 116 ident: b0295 article-title: Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils publication-title: Funct. Ecol. – volume: 333 start-page: 35 year: 2019 end-page: 42 ident: b0140 article-title: Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching publication-title: Geoderma – volume: 2 start-page: 17105 year: 2017 ident: b0130 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 134 start-page: 21 year: 2017 end-page: 32 ident: b0275 article-title: Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem publication-title: Environ. Exp. Bot. – volume: 53 start-page: 281 year: 2017 end-page: 286 ident: b0030 article-title: Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol publication-title: Biol. Fert. Soils. – volume: 159 start-page: 2251 year: 2011 ident: b0135 article-title: Nitrogen deposition and its ecological impact in China: an overview publication-title: Environ. Pollut. – volume: 29 start-page: 953 year: 2018 end-page: 962 ident: b0150 article-title: Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions publication-title: J. Forestry. Res. – volume: 42 start-page: 391 year: 2010 end-page: 404 ident: b0210 article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil publication-title: Soil Biol. Biochem. – volume: 14 start-page: 403 year: 2008 end-page: 412 ident: b0165 article-title: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China publication-title: Glob. Change Biol. – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: b0190 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil – volume: 218 start-page: 1450 year: 2018 end-page: 1461 ident: b0105 article-title: Nitrogen deposition increases root production and turnover but slows root decomposition in publication-title: New Phytol. – volume: 337 start-page: 246 year: 2019 end-page: 255 ident: b0040 article-title: Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots publication-title: Geoderma – volume: 54 start-page: 559 year: 2018 end-page: 568 ident: b0100 article-title: Amino sugars as specific indices for fungal and bacterial residues in soil publication-title: Biol. Fert. Soils. – volume: 92 start-page: 83 year: 2009 end-page: 94 ident: b0170 article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials publication-title: Biogeochemistry – volume: 10 year: 2015 ident: b0230 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: b0010 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 104 start-page: 864 year: 2007 end-page: 869 ident: b0095 article-title: Soil nutrients influence spatial distributions of tropical tree species publication-title: Proc. Natl. Acad. Sci. U S A. – volume: 11 start-page: 1808 year: 2005 end-page: 1815 ident: b0085 article-title: Interactive effects of elevated CO publication-title: Glob. Change Biol. – volume: 84 start-page: 137 year: 2015 end-page: 146 ident: b0025 article-title: Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil publication-title: Soil Biol. Biochem. – volume: 22 start-page: 934 year: 2016 end-page: 943 ident: b0115 article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis publication-title: Glob. Change Biol. – volume: 6 start-page: 254 year: 1955 end-page: 267 ident: b0200 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J. Soil Sci. – volume: 411 start-page: 395 year: 2016 end-page: 407 ident: b0280 article-title: Short-term effects of soil warming and nitrogen addition on the N: P stoichiometry of publication-title: Plant Soil – volume: 41 start-page: 770 year: 2009 end-page: 777 ident: b0225 article-title: Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta publication-title: Soil Biol. Biochem. – volume: 97 start-page: 211 year: 2016 end-page: 214 ident: b0285 article-title: High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem publication-title: Soil Biol. Biochem. – start-page: 589 year: 2008 end-page: 712 ident: b0015 article-title: Soil Sampling and Methods of Analysis, (Second ed) publication-title: Soil organic matter analyses – volume: 196 start-page: 159 year: 2004 end-page: 171 ident: b0050 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: Forest. Ecol. Manage. – volume: 43 start-page: 1155 year: 2011 end-page: 1161 ident: b0080 article-title: Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation publication-title: Soil Biol. Biochem. – volume: 41 start-page: 8070 year: 2007 end-page: 8076 ident: b0205 article-title: Microbially derived inputs to soil organic matter: are current estimates too low? publication-title: Environ. Sci. Technol. – volume: 51 start-page: 207 year: 2015 end-page: 215 ident: b0110 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fert. Soils. – volume: 53 start-page: 375 year: 2017 end-page: 388 ident: b0145 article-title: Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions publication-title: Biol. Fert. Soils. – volume: 136 start-page: 325 year: 2017 end-page: 339 ident: b0060 article-title: Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils publication-title: Biogeochemistry – volume: 9 year: 2010 ident: b0120 article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy publication-title: Nat. Rev. Microbiol. – volume: 5 start-page: 197 year: 1981 ident: b0185 article-title: Chemistry and distribution of amino sugars in soils and soil organisms publication-title: Soil. Biochem. – volume: 10 start-page: 435 year: 2019 ident: b0300 article-title: Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest publication-title: Forests – volume: 20 start-page: 5 year: 2010 end-page: 15 ident: b0250 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions publication-title: Ecol. Appl. – volume: 34 start-page: 1309 year: 2002 end-page: 1315 ident: b0195 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an publication-title: Soil Biol. Biochem. – volume: 15 start-page: 1 year: 1976 end-page: 19 ident: b0255 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 153 start-page: 408 year: 2009 end-page: 415 ident: b0265 article-title: Phosphate sorption and desorption by Thai upland soils publication-title: Geoderma – volume: 20 start-page: 327 year: 2014 end-page: 340 ident: b0075 article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions publication-title: Glob. Change Biol. – volume: 57 start-page: 939 year: 2013 end-page: 942 ident: b0125 article-title: Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin publication-title: USA. Soil. Biol. Biochem. – volume: 11 start-page: 271 year: 1999 end-page: 275 ident: b0290 article-title: Land-use effects on amino sugars in particle size fractions of an Argiudoll publication-title: Appl. Soil Ecol. – volume: 462 start-page: 795 year: 2009 end-page: 798 ident: b0215 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – volume: 26 start-page: 505 year: 2011 end-page: 513 ident: b0260 article-title: Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest publication-title: Ecol. Res. – volume: 123 start-page: 136 year: 2018 end-page: 144 ident: b0045 article-title: Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China publication-title: Soil Biol. Biochem. – volume: 427 start-page: 191 year: 2018 end-page: 208 ident: b0065 article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities publication-title: Plant Soil – volume: 43 start-page: 1621 year: 2011 end-page: 1625 ident: b0055 article-title: Use and misuse of PLFA measurements in soils publication-title: Soil Biol. Biochem. – volume: 77 start-page: 1357 year: 2013 end-page: 1369 ident: b0245 article-title: Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest publication-title: Soil Sci. Soc. Am. J. – volume: 67 start-page: 907 year: 2014 end-page: 918 ident: b0180 article-title: Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland publication-title: Microb. Ecol. – volume: 23 start-page: 48 year: 2016 end-page: 57 ident: b0175 article-title: Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest publication-title: Funct. Ecol. – volume: 21 start-page: 3169 year: 2015 ident: 10.1016/j.geoderma.2020.114470_b0155 article-title: Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.12904 – volume: 104 start-page: 864 year: 2007 ident: 10.1016/j.geoderma.2020.114470_b0095 article-title: Soil nutrients influence spatial distributions of tropical tree species publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.0604666104 – volume: 349 start-page: 121 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0190 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 26 start-page: 505 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0260 article-title: Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest publication-title: Ecol. Res. doi: 10.1007/s11284-011-0805-8 – volume: 36 start-page: 399 year: 2004 ident: 10.1016/j.geoderma.2020.114470_b0070 article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.10.013 – volume: 54 start-page: 149 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0035 article-title: Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-017-1251-8 – volume: 41 start-page: 8070 year: 2007 ident: 10.1016/j.geoderma.2020.114470_b0205 article-title: Microbially derived inputs to soil organic matter: are current estimates too low? publication-title: Environ. Sci. Technol. doi: 10.1021/es071217x – volume: 43 start-page: 1155 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0080 article-title: Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.002 – volume: 23 start-page: 933 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0270 article-title: Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition publication-title: Glob. Change Biol. doi: 10.1111/gcb.13480 – volume: 462 start-page: 795 year: 2009 ident: 10.1016/j.geoderma.2020.114470_b0215 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature doi: 10.1038/nature08632 – volume: 9 year: 2010 ident: 10.1016/j.geoderma.2020.114470_b0120 article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy publication-title: Nat. Rev. Microbiol. – volume: 11 start-page: 271 year: 1999 ident: 10.1016/j.geoderma.2020.114470_b0290 article-title: Land-use effects on amino sugars in particle size fractions of an Argiudoll publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(98)00136-X – volume: 53 start-page: 375 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0145 article-title: Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-017-1183-3 – volume: 20 start-page: 327 year: 2014 ident: 10.1016/j.geoderma.2020.114470_b0075 article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions publication-title: Glob. Change Biol. doi: 10.1111/gcb.12374 – volume: 51 start-page: 207 year: 2015 ident: 10.1016/j.geoderma.2020.114470_b0110 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-014-0964-1 – volume: 15 start-page: 1 year: 1976 ident: 10.1016/j.geoderma.2020.114470_b0255 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 427 start-page: 191 issue: 1–2 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0065 article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities publication-title: Plant Soil doi: 10.1007/s11104-017-3391-x – volume: 123 start-page: 136 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0045 article-title: Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.05.013 – volume: 42 start-page: 391 year: 2010 ident: 10.1016/j.geoderma.2020.114470_b0210 article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.10.014 – volume: 41 start-page: 770 year: 2009 ident: 10.1016/j.geoderma.2020.114470_b0225 article-title: Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.01.014 – volume: 6 start-page: 254 year: 1955 ident: 10.1016/j.geoderma.2020.114470_b0200 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1955.tb00849.x – volume: 1 start-page: 767 year: 2008 ident: 10.1016/j.geoderma.2020.114470_b0005 article-title: Negative impact of nitrogen deposition on soil buffering capacity publication-title: Nat. Geosci. doi: 10.1038/ngeo339 – volume: 136 start-page: 325 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0060 article-title: Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils publication-title: Biogeochemistry doi: 10.1007/s10533-017-0398-6 – volume: 76 start-page: 6485 year: 2010 ident: 10.1016/j.geoderma.2020.114470_b0240 article-title: Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00560-10 – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.geoderma.2020.114470_b0010 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o59-099 – volume: 11 start-page: 1111 year: 2008 ident: 10.1016/j.geoderma.2020.114470_b0235 article-title: Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01230.x – volume: 218 start-page: 1450 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0105 article-title: Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations publication-title: New Phytol. doi: 10.1111/nph.15066 – volume: 15 start-page: 1409 year: 1984 ident: 10.1016/j.geoderma.2020.114470_b0160 article-title: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant publication-title: Commun. Soil. Sci. Plan. doi: 10.1080/00103628409367568 – volume: 14 start-page: 403 year: 2008 ident: 10.1016/j.geoderma.2020.114470_b0165 article-title: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01503.x – volume: 20 start-page: 5 year: 2010 ident: 10.1016/j.geoderma.2020.114470_b0250 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions publication-title: Ecol. Appl. doi: 10.1890/08-0127.1 – volume: 11 start-page: 1808 year: 2005 ident: 10.1016/j.geoderma.2020.114470_b0085 article-title: Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.001007.x – volume: 77 start-page: 1357 year: 2013 ident: 10.1016/j.geoderma.2020.114470_b0245 article-title: Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0128 – volume: 92 start-page: 83 year: 2009 ident: 10.1016/j.geoderma.2020.114470_b0170 article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials publication-title: Biogeochemistry doi: 10.1007/s10533-008-9264-x – volume: 337 start-page: 246 year: 2019 ident: 10.1016/j.geoderma.2020.114470_b0040 article-title: Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.028 – volume: 84 start-page: 137 year: 2015 ident: 10.1016/j.geoderma.2020.114470_b0025 article-title: Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.015 – volume: 67 start-page: 907 year: 2014 ident: 10.1016/j.geoderma.2020.114470_b0180 article-title: Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland publication-title: Microb. Ecol. doi: 10.1007/s00248-014-0383-8 – volume: 53 start-page: 281 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0030 article-title: Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-017-1179-z – volume: 2 start-page: 17105 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0130 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 57 start-page: 939 year: 2013 ident: 10.1016/j.geoderma.2020.114470_b0125 article-title: Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin publication-title: USA. Soil. Biol. Biochem. doi: 10.1016/j.soilbio.2012.09.006 – volume: 5 start-page: 197 year: 1981 ident: 10.1016/j.geoderma.2020.114470_b0185 article-title: Chemistry and distribution of amino sugars in soils and soil organisms publication-title: Soil. Biochem. – volume: 97 start-page: 211 year: 2016 ident: 10.1016/j.geoderma.2020.114470_b0285 article-title: High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.019 – volume: 333 start-page: 35 year: 2019 ident: 10.1016/j.geoderma.2020.114470_b0140 article-title: Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.017 – volume: 32 start-page: 106 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0295 article-title: Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12936 – volume: 134 start-page: 21 year: 2017 ident: 10.1016/j.geoderma.2020.114470_b0275 article-title: Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.10.014 – volume: 43 start-page: 1621 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0055 article-title: Use and misuse of PLFA measurements in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.11.021 – volume: 23 start-page: 48 year: 2016 ident: 10.1016/j.geoderma.2020.114470_b0175 article-title: Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest publication-title: Funct. Ecol. doi: 10.1016/j.funeco.2016.05.011 – volume: 226–227 start-page: 79 year: 2014 ident: 10.1016/j.geoderma.2020.114470_b0220 article-title: Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.005 – volume: 159 start-page: 2251 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0135 article-title: Nitrogen deposition and its ecological impact in China: an overview publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.08.002 – volume: 47 start-page: 387 year: 2011 ident: 10.1016/j.geoderma.2020.114470_b0090 article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-011-0545-5 – volume: 22 start-page: 934 year: 2016 ident: 10.1016/j.geoderma.2020.114470_b0115 article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis publication-title: Glob. Change Biol. doi: 10.1111/gcb.13125 – volume: 54 start-page: 559 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0100 article-title: Amino sugars as specific indices for fungal and bacterial residues in soil publication-title: Biol. Fert. Soils. doi: 10.1007/s00374-018-1288-3 – volume: 130 start-page: 13 year: 2013 ident: 10.1016/j.geoderma.2020.114470_b0020 article-title: Effects of contrasting agricultural management on microbial residues in a Mollisol in China publication-title: Soil. Till. Res. doi: 10.1016/j.still.2013.02.001 – volume: 153 start-page: 408 year: 2009 ident: 10.1016/j.geoderma.2020.114470_b0265 article-title: Phosphate sorption and desorption by Thai upland soils publication-title: Geoderma doi: 10.1016/j.geoderma.2009.09.005 – volume: 10 start-page: 435 year: 2019 ident: 10.1016/j.geoderma.2020.114470_b0300 article-title: Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest publication-title: Forests doi: 10.3390/f10050435 – volume: 196 start-page: 159 year: 2004 ident: 10.1016/j.geoderma.2020.114470_b0050 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: Forest. Ecol. Manage. doi: 10.1016/j.foreco.2004.03.018 – volume: 10 year: 2015 ident: 10.1016/j.geoderma.2020.114470_b0230 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/2/024019 – volume: 29 start-page: 953 year: 2018 ident: 10.1016/j.geoderma.2020.114470_b0150 article-title: Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions publication-title: J. Forestry. Res. doi: 10.1007/s11676-017-0522-4 – start-page: 589 year: 2008 ident: 10.1016/j.geoderma.2020.114470_b0015 article-title: Soil Sampling and Methods of Analysis, (Second ed) – volume: 411 start-page: 395 year: 2016 ident: 10.1016/j.geoderma.2020.114470_b0280 article-title: Short-term effects of soil warming and nitrogen addition on the N: P stoichiometry of Cunninghamia lanceolata in subtropical regions publication-title: Plant Soil doi: 10.1007/s11104-016-3037-4 – volume: 34 start-page: 1309 year: 2002 ident: 10.1016/j.geoderma.2020.114470_b0195 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00074-3 |
SSID | ssj0017020 |
Score | 2.568473 |
Snippet | •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased... Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114470 |
SubjectTerms | Acid phosphatase Amino sugars biomarkers Carbon sequestration Castanopsis China ectomycorrhizae forest soils Fungi glucosamine microbial biomass monophenol monooxygenase nitrogen Organic phosphorus Perox peroxidase phospholipid fatty acids soil enzymes soil organic carbon soil organic phosphorus tropical forests |
Title | N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114470 https://www.proquest.com/docview/2552007123 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GBG81n00TbrjGI6pODw42C0kbSodsx1rJ3jxL_CP9r02HVOEHTy2zQvhvSTvl-a93yPkJjReFEYRZiwrOKBwwR0_gIUXuT1mDDJoKTwoPo35aMIept60RgZVLgyGVdq9v9zTi93avmlZbbYWcYw5vh0uwB0hBMHyEZjBzgTO8tvPdZhHR7QtNWOHO9h6I0t4BjbCgmMF_1C3oM1lWLT4bwf1a6su_M_wgOxb4Ej75dgOSc0kR2Sv_7q05BnmmHyNKYYHoappnCAczExI3-KCawlk4WRdpF7RQC01tNEftLgsB-9FszSe02eq3lU8L6m74WOyKY3B5zbCC3qnimYrnS_TBVqZDhSizHSRxRkFGAzjPyGT4d3LYOTYagtO4DIvdzw3MtztaB8UGgrXbUeaC-WGXaYC7jOllQhR2ZEOlAkAmITC6waaA77yNOAS95TUkzQxZ4TqLhOK-yLSyjDFARJoxJEsBCEOXTaIV6lYBpaKHCtizGUVczaTlWkkmkaWpmmQ1lpuUZJxbJXoVRaUP6aVBI-xVfa6MrmENYcXKSox6SqTcAzDX7zg9M__0f8F2cWnMjLwktTz5cpcAcLJdbOYwk2y079_HI2_AZ2p_ho |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcEPShLq-6UntMt0kcezlwQDy0W5ZVDyDtzbUTp8pqSVabXRAXfgH_hj_ITOKgBVXiUHGNM6PIY3u-iWe-AfiW2ChN0pQqljUGKEIKrxPjxkvDPW4tMWhpChTPBqJ7wX8No-ES3De1MJRW6c7--kyvTmv3pO1msz3JMqrx9YVEd0QQhNpHuMzKU3tzjXFbud87QiN_D4KT4_PDrudaC3hxyKOZF4WpFaFvOiidSIzpUyOkDpOA61h0uDZaJqQ5NbG2MXrhREZBbASCicigEw5R7xtY4XhcUNuEH7ePeSW-_Om4IH3h0ectlCWPcFFQh7OK8CioeHo5dUn-t0d85hsqh3eyDmsOqbKDejI2YMnm72H14O_UsXXYD3A3YJSPRLZlWU74s7QJu8wqcieUxVC-qvVisZ4afMfcsOp2Ht0lK4tszH4zfaWzcc0VjoP5ojRlu7uUMtTONCvnZjYtJrSs2KEmWFtMyqxkiLvx-z_CxavY4BMs50VuPwMzAZdadGRqtOVaIAYxBFx5gkICVbYgaqZYxY77nFpwjFWT5DZSjWkUmUbVpmlB-1FuUrN_vCix11hQPVnHCl3Ui7JfG5Mr3OR0c6NzW8xLhXEf_VNGlLH5H_q_wNvu-Vlf9XuD0y14RyN1WuI2LM-mc7uD8GpmdqvlzODPa--fBzi4OX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N+addition+increased+microbial+residual+carbon+by+altering+soil+P+availability+and+microbial+composition+in+a+subtropical+Castanopsis+forest&rft.jtitle=Geoderma&rft.au=Fan%2C+Yuexin&rft.au=Yang%2C+Liuming&rft.au=Zhong%2C+Xiaojian&rft.au=Yang%2C+Zhijie&rft.date=2020-10-01&rft.issn=0016-7061&rft.volume=375&rft.spage=114470&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |