N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest

•Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 375; p. 114470
Main Authors Fan, Yuexin, Yang, Liuming, Zhong, Xiaojian, Yang, Zhijie, Lin, Yanyu, Guo, Jianfen, Chen, Guangshui, Yang, Yusheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing fungal biomass. Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha−1y−1) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition.
AbstractList •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased organic P.•Nitrogen addition increased fungal biomass and acid phosphatase activity.•Soil P availability influenced amino sugars through increasing fungal biomass. Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha−1y−1) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition.
Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the proportion of microbial residual C in soils with limited nitrogen (N). However, how microbial residual C responds to N deposition and their mechanisms in subtropical forest soil with low phosphorus (P) availability remains poorly understood. To fill this knowledge gap, an experiment with 5.5 consecutive years of N addition (control, 40 and 80 kg N ha⁻¹y⁻¹) to a Castanopsis carlesii forest in Fujian, China was performed. Soil properties (e.g., soil C, N, P, and pH), amino sugars (biomarkers of microbial residual C), phospholipid fatty acids (PLFAs), and enzyme activities were investigated. We found that N application and soil depths had significant interactive effects on amino sugars, the PLFAs, and soil enzyme activities. N addition significantly increased the contents of amino sugars and their proportions to soil C in the 0–10 cm soil layer but not the 10–20 cm soil layer (P > 0.05). In addition, glucosamine (GluN), which was mostly derived from fungal cell walls, accounted for 64.9–73.9% of the total amino sugars across three treatments, and the proportion of GluN to total C also increased after N addition in the 0–10 cm layer. These results indicate that N addition elevated the contribution of amino sugars, especially GluN, to soil C sequestration of the 0–10 cm soil layer but not 10–20 cm soil layer. Moreover, N addition significantly enhanced the biomass of fungi and ectomycorrhizal fungi (EMF) and the activities of phosphatase (ACP), phosphodiesterase (PD), N-acetyl glucosaminidase (NAG), acid phenol oxidase (PhOx), and peroxidase (Perox), while it significantly decreased soil organic P (OP) in the 0–10 cm soil layer. These results implied that changes in N:P ratio caused by N addition contributed to the increases of EMF and fungi, which have high P acquisition ability, this in turn enhanced soil P availability. The increased microbial biomass of EMF and fungi likely attributed to the increased contribution of amino sugars to SOC accumulation in the studied forest soil. Our study revealed a novel mechanism of soil C sequestration in subtropical forest ecosystems with low soil P under ongoing N deposition.
ArticleNumber 114470
Author Guo, Jianfen
Chen, Guangshui
Fan, Yuexin
Zhong, Xiaojian
Yang, Yusheng
Yang, Liuming
Yang, Zhijie
Lin, Yanyu
Author_xml – sequence: 1
  givenname: Yuexin
  surname: Fan
  fullname: Fan, Yuexin
  email: yxfan@fjnu.edu.cn
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 2
  givenname: Liuming
  surname: Yang
  fullname: Yang, Liuming
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 3
  givenname: Xiaojian
  surname: Zhong
  fullname: Zhong, Xiaojian
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 4
  givenname: Zhijie
  surname: Yang
  fullname: Yang, Zhijie
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 5
  givenname: Yanyu
  surname: Lin
  fullname: Lin, Yanyu
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 6
  givenname: Jianfen
  surname: Guo
  fullname: Guo, Jianfen
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 7
  givenname: Guangshui
  surname: Chen
  fullname: Chen, Guangshui
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
– sequence: 8
  givenname: Yusheng
  surname: Yang
  fullname: Yang, Yusheng
  email: geoyys@fjnu.edu.cn
  organization: State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China
BookMark eNqFkM1qGzEQx0VJoE7aVyg69rKupP2QDT20mKYJhLaH9CxG0mwYsyttJTmQd-hDV8YNhFxykjT_j0G_C3YWYkDGPkixlkIOn_bre4we0wxrJVQdyq7T4g1byY1WzaD67RlbiepstBjkW3aR874-dfWu2N8fHLynQjFwCi4hZPR8JpeiJZh4wkz-UC8Okq0e-8hhKpgo3PMcaeK_ODwATWBpolLF8Dzt4rzE_NTOgeeDLSku5Kq4g1wgxCVT5mOsi8o7dj7ClPH9__OS_b76dre7bm5_fr_Zfb1tXNv1penbEYdW2o2UW6_bVox20NB61YEbNh1Y0H6o2mgdoNNSeN0rZ4et2vZWd7K9ZB9PvUuKfw51sZkpO5wmCBgP2ai-V0JoqdpqHU7W-qWcE45mSTRDejRSmCN-szdP-M0Rvznhr8HPL4KOChxJlFR5vR7_copj5fBAmEx2hMGhp4SuGB_ptYp_Y9qqqw
CitedBy_id crossref_primary_10_1016_j_apsoil_2023_105169
crossref_primary_10_1007_s11104_024_06687_7
crossref_primary_10_1016_j_jes_2024_09_022
crossref_primary_10_1016_j_jclepro_2023_140120
crossref_primary_10_1016_j_still_2024_106441
crossref_primary_10_1007_s11104_022_05670_4
crossref_primary_10_1016_j_geoderma_2021_115309
crossref_primary_10_1007_s00248_022_02103_8
crossref_primary_10_1016_j_soilbio_2023_109025
crossref_primary_10_1016_j_soilbio_2023_109223
crossref_primary_10_1002_ldr_5513
crossref_primary_10_1016_j_soilbio_2024_109383
crossref_primary_10_1016_j_watres_2025_123552
crossref_primary_10_1016_j_catena_2024_108385
crossref_primary_10_1111_1365_2435_14178
crossref_primary_10_1111_gcb_16588
crossref_primary_10_1016_j_apsoil_2023_105052
crossref_primary_10_1007_s11368_024_03794_x
crossref_primary_10_1016_j_envres_2022_114981
crossref_primary_10_1016_j_soilbio_2022_108607
crossref_primary_10_3389_fpls_2022_834184
crossref_primary_10_1016_j_envres_2022_114708
crossref_primary_10_1016_j_catena_2024_108536
crossref_primary_10_1007_s11104_024_06788_3
crossref_primary_10_1016_j_eja_2024_127144
crossref_primary_10_1016_j_soilbio_2021_108500
crossref_primary_10_1016_j_scitotenv_2020_141583
crossref_primary_10_1016_j_bamboo_2022_100005
crossref_primary_10_1016_j_catena_2024_108693
crossref_primary_10_1111_gcb_17543
crossref_primary_10_3389_fpls_2024_1333505
crossref_primary_10_1002_ldr_4494
crossref_primary_10_1016_j_scitotenv_2024_172554
crossref_primary_10_3390_f15091483
crossref_primary_10_1007_s11104_023_06014_6
crossref_primary_10_1016_j_fecs_2024_100192
crossref_primary_10_3390_f14050928
crossref_primary_10_1007_s11104_024_07004_y
crossref_primary_10_1007_s42729_022_00773_4
crossref_primary_10_1007_s11104_022_05389_2
crossref_primary_10_1016_j_ejsobi_2021_103364
crossref_primary_10_1007_s42729_022_01063_9
crossref_primary_10_1016_j_foreco_2022_120165
crossref_primary_10_1016_j_soilbio_2023_109042
crossref_primary_10_1016_j_scitotenv_2022_157645
crossref_primary_10_3389_fevo_2023_1220111
crossref_primary_10_1111_gcb_17210
crossref_primary_10_1016_j_chemosphere_2023_139045
crossref_primary_10_1111_gfs_12693
crossref_primary_10_1080_03650340_2023_2169915
crossref_primary_10_1016_j_foreco_2023_121074
crossref_primary_10_1016_j_scitotenv_2024_171752
crossref_primary_10_1016_j_catena_2021_105459
crossref_primary_10_1016_j_apsoil_2024_105555
crossref_primary_10_1016_j_apsoil_2025_106023
crossref_primary_10_1016_j_jenvman_2023_118536
crossref_primary_10_1016_j_jenvman_2024_120059
crossref_primary_10_1007_s10661_022_10229_y
crossref_primary_10_1016_j_geoderma_2021_115675
crossref_primary_10_1007_s11104_022_05836_0
crossref_primary_10_1111_1365_2745_14448
crossref_primary_10_1016_j_catena_2022_106293
crossref_primary_10_1111_gcb_17247
crossref_primary_10_3390_f13101560
crossref_primary_10_1016_j_apsoil_2021_104253
crossref_primary_10_1016_j_foreco_2022_120074
crossref_primary_10_1016_j_catena_2021_105622
crossref_primary_10_1016_j_biortech_2024_131258
Cites_doi 10.1111/gcb.12904
10.1073/pnas.0604666104
10.1007/s11104-011-0950-4
10.1007/s11284-011-0805-8
10.1016/j.soilbio.2003.10.013
10.1007/s00374-017-1251-8
10.1021/es071217x
10.1016/j.soilbio.2011.02.002
10.1111/gcb.13480
10.1038/nature08632
10.1016/S0929-1393(98)00136-X
10.1007/s00374-017-1183-3
10.1111/gcb.12374
10.1007/s00374-014-0964-1
10.1016/0016-7061(76)90066-5
10.1007/s11104-017-3391-x
10.1016/j.soilbio.2018.05.013
10.1016/j.soilbio.2009.10.014
10.1016/j.soilbio.2009.01.014
10.1111/j.1365-2389.1955.tb00849.x
10.1038/ngeo339
10.1007/s10533-017-0398-6
10.1128/AEM.00560-10
10.1139/o59-099
10.1111/j.1461-0248.2008.01230.x
10.1111/nph.15066
10.1080/00103628409367568
10.1111/j.1365-2486.2007.01503.x
10.1890/08-0127.1
10.1111/j.1365-2486.2005.001007.x
10.2136/sssaj2012.0128
10.1007/s10533-008-9264-x
10.1016/j.geoderma.2018.09.028
10.1016/j.soilbio.2015.02.015
10.1007/s00248-014-0383-8
10.1007/s00374-017-1179-z
10.1038/nmicrobiol.2017.105
10.1016/j.soilbio.2012.09.006
10.1016/j.soilbio.2016.03.019
10.1016/j.geoderma.2018.07.017
10.1111/1365-2435.12936
10.1016/j.envexpbot.2016.10.014
10.1016/j.soilbio.2010.11.021
10.1016/j.funeco.2016.05.011
10.1016/j.geoderma.2014.03.005
10.1016/j.envpol.2010.08.002
10.1007/s00374-011-0545-5
10.1111/gcb.13125
10.1007/s00374-018-1288-3
10.1016/j.still.2013.02.001
10.1016/j.geoderma.2009.09.005
10.3390/f10050435
10.1016/j.foreco.2004.03.018
10.1088/1748-9326/10/2/024019
10.1007/s11676-017-0522-4
10.1007/s11104-016-3037-4
10.1016/S0038-0717(02)00074-3
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114470
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114470
S0016706119320816
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-53fe631b8119d7330fb67a3d24ac684aba7d6119fbcaec710d752cb69295b7413
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 00:12:14 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Tue Jul 01 04:04:53 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fungi
Organic phosphorus
Amino sugars
Acid phosphatase
Carbon sequestration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-53fe631b8119d7330fb67a3d24ac684aba7d6119fbcaec710d752cb69295b7413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552007123
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552007123
crossref_primary_10_1016_j_geoderma_2020_114470
crossref_citationtrail_10_1016_j_geoderma_2020_114470
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Turner, Yavitt, Harms, Garcia, Romero, Wright (b0245) 2013; 77
John, Dalling, Harms, Yavitt, Stallard, Mirabello, Hubbell, Valencia, Navarrete, Vallejo, Foster (b0095) 2007; 104
Liang, Duncan, Balser, Tiedje, Jackson (b0125) 2013; 57
Ma, Zhang, Zhang, Wang, Chen, Fu, Fang, Sun, Lei (b0150) 2018; 29
Frostegård, Tunlid, Bååth (b0055) 2011; 43
Sradnick, Oltmanns, Raupp, Joergensen (b0220) 2014; 226–227
Murugan, Loges, Taube, Sradnick, Joergensen (b0180) 2014; 67
Glaser, Turrión, Alef (b0070) 2004; 36
Moritz, Liang, Wagai, Kitayama, Balser (b0170) 2009; 92
Treseder (b0235) 2008; 11
Bligh, Dyer (b0010) 1959; 37
Henry, Juarez, Field, Vitousek (b0085) 2005; 11
Zhang, Cui, Lu, Bai, He, Xie, Liang, Zhang (b0285) 2016; 97
Bowman, Cleveland, Halada, Hreško, Baron (b0005) 2008; 1
Luo, Ling, Nannipieri, Chen, Raza, Wang, Guo, Shen (b0145) 2017; 53
Saunders, Williams (b0200) 1955; 6
Frey, Knorr, Parrent, Simpson (b0050) 2004; 196
Morrison, Frey, Sadowsky, van Diepen, Thomas, Pringle (b0175) 2016; 23
Liang, Schimel, Jastrow (b0130) 2017; 2
Sinsabaugh (b0210) 2010; 42
Saiya-Cork, Sinsabaugh, Zak (b0195) 2002; 34
Simpson, Simpson, Smith, Kelleher (b0205) 2007; 41
Zak, Freedman, Upchurch, Steffens, Kögel-Knabner (b0270) 2017; 23
Li, Li, Wang, Zou, Chen, Zhao, Mo, Li, Li, Xia (b0110) 2015; 51
Griepentrog, Bodé, Boeckx, Hagedorn, Heim, Schmidt (b0075) 2014; 20
Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (b0190) 2011; 349
Zhang, Yang, Zhang, Niu, Yang, Yu, Wang, Blagodatskaya, Kuzyakov, Tian, Tang, Liu, Sun, Luo (b0295) 2018; 32
Tian, Niu (b0230) 2015; 10
Joergensen (b0100) 2018; 54
Fan, Zhong, Lin, Liu, Yang, Wang, Chen, Chen, Yang (b0040) 2019; 337
Mehlich (b0160) 1984; 15
Zhan, Wang, Zhu, Li, Bai (b0275) 2017; 134
Maaroufi, Nordin, Hasselquist, Bach, Palmqvist, Gundale (b0155) 2015; 21
Parsons (b0185) 1981; 5
Swallow, Quideau, MacKenzie, Kishchuk (b0225) 2009; 41
Liang, Balser (b0120) 2010; 9
Indorf, Dyckmans, Khan, Joergensen (b0090) 2011; 47
Zhang, Xie, Lyu, Xiong, Wang, Chen, Li, Wang, Yang (b0280) 2016; 411
Kou, Jiang, Fu, Dai, Wang, Li (b0105) 2018; 218
Carter, Gregorich (b0015) 2008
Zhang, Amelung, Yuan, Samson-Liebig, Brown, Zech (b0290) 1999; 11
Fujita, Kunito, Moro, Toda, Otsuka, Nagaoka (b0060) 2017; 136
Turner (b0240) 2010; 76
Fan, Lin, Yang, Zhong, Wang, Zhou, Chen, Yang (b0035) 2018; 54
Zhou, Liu, Xie, Lyu, Zheng, You, Fan, Lin, Chen, Chen, Yang (b0300) 2019; 10
Ding, Liang, Zhang, Yuan, Han (b0025) 2015; 84
Li, Niu, Yu (b0115) 2016; 22
Ding, Qiao, Filley, Wang, Lü, Zhang, Wang (b0030) 2017; 53
Liu, Duan, Mo, Du, Shen, Lu, Zhang, Zhou, He, Zhang (b0135) 2011; 159
Vitousek, Porder, Houlton, Chadwick (b0250) 2010; 20
George, Giles, Menezes-Blackburn, Condron, Gama-Rodrigues, Jaisi, Lang, Neal, Stutter, Almeida, Bol, Cabugao, Celi, Cotner, Feng, Goll, Hallama, Krueger, Plassard, Rosling, Darch, Fraser, Giesler, Richardson, Tamburini, Shand, Lumsdon, Zhang, Blackwell, Wearing, Mezeli, Almås, Audette, Bertrand, Beyhaut, Boitt, Bradshaw, Brearley, Bruulsema, Ciais, Cozzolino, Duran, Mora, de Menezes, Dodd, Dunfield, Engl, Frazão, Garland, González Jiménez, Graca, Granger, Harrison, Heuck, Hou, Johnes, Kaiser, Kjær, Klumpp, Lamb, Macintosh, Mackay, McGrath, McIntyre, McLaren, Mészáros, Missong, Mooshammer, Negrón, Nelson, Pfahler, Poblete-Grant, Randall, Seguel, Seth, Smith, Smits, Sobarzo, Spohn, Tawaraya, Tibbett, Voroney, Wallander, Wang, Wasaki, Haygarth (b0065) 2018; 427
Liu, Zhou, Hu, Shao, He, Zhang, Zhang, Li (b0140) 2019; 333
Sinsabaugh, Hill, Follstad Shah (b0215) 2009; 462
He, Zhang, Zhang, Xie, Zhuang (b0080) 2011; 43
Ding, Han, Zhang, Qiao (b0020) 2013; 130
Feng, Wu, Zhang, Zhang, Li, Long, Yang, Chen, Cheng (b0045) 2018; 123
Mo, Zhang, Zhu, Gundersen, Fang, Li, Wang (b0165) 2008; 14
Walker, Syers (b0255) 1976; 15
Wang, Han, Jia, Feng, Guo, Tian (b0260) 2011; 26
Wisawapipat, Kheoruenromne, Suddhiprakarn, Gilkes (b0265) 2009; 153
Li (10.1016/j.geoderma.2020.114470_b0110) 2015; 51
Zhang (10.1016/j.geoderma.2020.114470_b0280) 2016; 411
Sinsabaugh (10.1016/j.geoderma.2020.114470_b0210) 2010; 42
Henry (10.1016/j.geoderma.2020.114470_b0085) 2005; 11
Wang (10.1016/j.geoderma.2020.114470_b0260) 2011; 26
Sinsabaugh (10.1016/j.geoderma.2020.114470_b0215) 2009; 462
Treseder (10.1016/j.geoderma.2020.114470_b0235) 2008; 11
Bowman (10.1016/j.geoderma.2020.114470_b0005) 2008; 1
Maaroufi (10.1016/j.geoderma.2020.114470_b0155) 2015; 21
Tian (10.1016/j.geoderma.2020.114470_b0230) 2015; 10
Sradnick (10.1016/j.geoderma.2020.114470_b0220) 2014; 226–227
Vitousek (10.1016/j.geoderma.2020.114470_b0250) 2010; 20
Mo (10.1016/j.geoderma.2020.114470_b0165) 2008; 14
Murugan (10.1016/j.geoderma.2020.114470_b0180) 2014; 67
Liu (10.1016/j.geoderma.2020.114470_b0135) 2011; 159
Frostegård (10.1016/j.geoderma.2020.114470_b0055) 2011; 43
Saunders (10.1016/j.geoderma.2020.114470_b0200) 1955; 6
Zak (10.1016/j.geoderma.2020.114470_b0270) 2017; 23
George (10.1016/j.geoderma.2020.114470_b0065) 2018; 427
Zhang (10.1016/j.geoderma.2020.114470_b0290) 1999; 11
Liang (10.1016/j.geoderma.2020.114470_b0120) 2010; 9
Turner (10.1016/j.geoderma.2020.114470_b0245) 2013; 77
Zhan (10.1016/j.geoderma.2020.114470_b0275) 2017; 134
Luo (10.1016/j.geoderma.2020.114470_b0145) 2017; 53
Joergensen (10.1016/j.geoderma.2020.114470_b0100) 2018; 54
Wisawapipat (10.1016/j.geoderma.2020.114470_b0265) 2009; 153
Liang (10.1016/j.geoderma.2020.114470_b0125) 2013; 57
Ma (10.1016/j.geoderma.2020.114470_b0150) 2018; 29
Mehlich (10.1016/j.geoderma.2020.114470_b0160) 1984; 15
Bligh (10.1016/j.geoderma.2020.114470_b0010) 1959; 37
Parsons (10.1016/j.geoderma.2020.114470_b0185) 1981; 5
Zhou (10.1016/j.geoderma.2020.114470_b0300) 2019; 10
Turner (10.1016/j.geoderma.2020.114470_b0240) 2010; 76
John (10.1016/j.geoderma.2020.114470_b0095) 2007; 104
Griepentrog (10.1016/j.geoderma.2020.114470_b0075) 2014; 20
Fan (10.1016/j.geoderma.2020.114470_b0035) 2018; 54
Fan (10.1016/j.geoderma.2020.114470_b0040) 2019; 337
Ding (10.1016/j.geoderma.2020.114470_b0030) 2017; 53
Frey (10.1016/j.geoderma.2020.114470_b0050) 2004; 196
Liang (10.1016/j.geoderma.2020.114470_b0130) 2017; 2
Richardson (10.1016/j.geoderma.2020.114470_b0190) 2011; 349
Carter (10.1016/j.geoderma.2020.114470_b0015) 2008
Swallow (10.1016/j.geoderma.2020.114470_b0225) 2009; 41
Ding (10.1016/j.geoderma.2020.114470_b0025) 2015; 84
Zhang (10.1016/j.geoderma.2020.114470_b0295) 2018; 32
Ding (10.1016/j.geoderma.2020.114470_b0020) 2013; 130
Indorf (10.1016/j.geoderma.2020.114470_b0090) 2011; 47
Walker (10.1016/j.geoderma.2020.114470_b0255) 1976; 15
Li (10.1016/j.geoderma.2020.114470_b0115) 2016; 22
Morrison (10.1016/j.geoderma.2020.114470_b0175) 2016; 23
Feng (10.1016/j.geoderma.2020.114470_b0045) 2018; 123
Zhang (10.1016/j.geoderma.2020.114470_b0285) 2016; 97
Glaser (10.1016/j.geoderma.2020.114470_b0070) 2004; 36
He (10.1016/j.geoderma.2020.114470_b0080) 2011; 43
Liu (10.1016/j.geoderma.2020.114470_b0140) 2019; 333
Moritz (10.1016/j.geoderma.2020.114470_b0170) 2009; 92
Kou (10.1016/j.geoderma.2020.114470_b0105) 2018; 218
Saiya-Cork (10.1016/j.geoderma.2020.114470_b0195) 2002; 34
Simpson (10.1016/j.geoderma.2020.114470_b0205) 2007; 41
Fujita (10.1016/j.geoderma.2020.114470_b0060) 2017; 136
References_xml – volume: 15
  start-page: 1409
  year: 1984
  end-page: 1416
  ident: b0160
  article-title: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant
  publication-title: Commun. Soil. Sci. Plan.
– volume: 11
  start-page: 1111
  year: 2008
  end-page: 1120
  ident: b0235
  article-title: Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies
  publication-title: Ecol. Lett.
– volume: 76
  start-page: 6485
  year: 2010
  end-page: 6493
  ident: b0240
  article-title: Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils
  publication-title: Appl. Environ. Microbiol.
– volume: 36
  start-page: 399
  year: 2004
  end-page: 407
  ident: b0070
  article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis
  publication-title: Soil Biol. Biochem.
– volume: 23
  start-page: 933
  year: 2017
  end-page: 944
  ident: b0270
  article-title: Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition
  publication-title: Glob. Change Biol.
– volume: 130
  start-page: 13
  year: 2013
  end-page: 17
  ident: b0020
  article-title: Effects of contrasting agricultural management on microbial residues in a Mollisol in China
  publication-title: Soil. Till. Res.
– volume: 54
  start-page: 149
  year: 2018
  end-page: 161
  ident: b0035
  article-title: Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem
  publication-title: Biol. Fert. Soils.
– volume: 47
  start-page: 387
  year: 2011
  end-page: 396
  ident: b0090
  article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates
  publication-title: Biol. Fert. Soils.
– volume: 1
  start-page: 767
  year: 2008
  end-page: 770
  ident: b0005
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nat. Geosci.
– volume: 21
  start-page: 3169
  year: 2015
  end-page: 3180
  ident: b0155
  article-title: Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils
  publication-title: Glob. Change Biol.
– volume: 226–227
  start-page: 79
  year: 2014
  end-page: 84
  ident: b0220
  article-title: Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil
  publication-title: Geoderma
– volume: 32
  start-page: 106
  year: 2018
  end-page: 116
  ident: b0295
  article-title: Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils
  publication-title: Funct. Ecol.
– volume: 333
  start-page: 35
  year: 2019
  end-page: 42
  ident: b0140
  article-title: Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching
  publication-title: Geoderma
– volume: 2
  start-page: 17105
  year: 2017
  ident: b0130
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 134
  start-page: 21
  year: 2017
  end-page: 32
  ident: b0275
  article-title: Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem
  publication-title: Environ. Exp. Bot.
– volume: 53
  start-page: 281
  year: 2017
  end-page: 286
  ident: b0030
  article-title: Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol
  publication-title: Biol. Fert. Soils.
– volume: 159
  start-page: 2251
  year: 2011
  ident: b0135
  article-title: Nitrogen deposition and its ecological impact in China: an overview
  publication-title: Environ. Pollut.
– volume: 29
  start-page: 953
  year: 2018
  end-page: 962
  ident: b0150
  article-title: Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions
  publication-title: J. Forestry. Res.
– volume: 42
  start-page: 391
  year: 2010
  end-page: 404
  ident: b0210
  article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil
  publication-title: Soil Biol. Biochem.
– volume: 14
  start-page: 403
  year: 2008
  end-page: 412
  ident: b0165
  article-title: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China
  publication-title: Glob. Change Biol.
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: b0190
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
– volume: 218
  start-page: 1450
  year: 2018
  end-page: 1461
  ident: b0105
  article-title: Nitrogen deposition increases root production and turnover but slows root decomposition in
  publication-title: New Phytol.
– volume: 337
  start-page: 246
  year: 2019
  end-page: 255
  ident: b0040
  article-title: Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots
  publication-title: Geoderma
– volume: 54
  start-page: 559
  year: 2018
  end-page: 568
  ident: b0100
  article-title: Amino sugars as specific indices for fungal and bacterial residues in soil
  publication-title: Biol. Fert. Soils.
– volume: 92
  start-page: 83
  year: 2009
  end-page: 94
  ident: b0170
  article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials
  publication-title: Biogeochemistry
– volume: 10
  year: 2015
  ident: b0230
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: b0010
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
– volume: 104
  start-page: 864
  year: 2007
  end-page: 869
  ident: b0095
  article-title: Soil nutrients influence spatial distributions of tropical tree species
  publication-title: Proc. Natl. Acad. Sci. U S A.
– volume: 11
  start-page: 1808
  year: 2005
  end-page: 1815
  ident: b0085
  article-title: Interactive effects of elevated CO
  publication-title: Glob. Change Biol.
– volume: 84
  start-page: 137
  year: 2015
  end-page: 146
  ident: b0025
  article-title: Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil
  publication-title: Soil Biol. Biochem.
– volume: 22
  start-page: 934
  year: 2016
  end-page: 943
  ident: b0115
  article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis
  publication-title: Glob. Change Biol.
– volume: 6
  start-page: 254
  year: 1955
  end-page: 267
  ident: b0200
  article-title: Observations on the determination of total organic phosphorus in soils
  publication-title: J. Soil Sci.
– volume: 411
  start-page: 395
  year: 2016
  end-page: 407
  ident: b0280
  article-title: Short-term effects of soil warming and nitrogen addition on the N: P stoichiometry of
  publication-title: Plant Soil
– volume: 41
  start-page: 770
  year: 2009
  end-page: 777
  ident: b0225
  article-title: Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta
  publication-title: Soil Biol. Biochem.
– volume: 97
  start-page: 211
  year: 2016
  end-page: 214
  ident: b0285
  article-title: High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem
  publication-title: Soil Biol. Biochem.
– start-page: 589
  year: 2008
  end-page: 712
  ident: b0015
  article-title: Soil Sampling and Methods of Analysis, (Second ed)
  publication-title: Soil organic matter analyses
– volume: 196
  start-page: 159
  year: 2004
  end-page: 171
  ident: b0050
  article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests
  publication-title: Forest. Ecol. Manage.
– volume: 43
  start-page: 1155
  year: 2011
  end-page: 1161
  ident: b0080
  article-title: Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 8070
  year: 2007
  end-page: 8076
  ident: b0205
  article-title: Microbially derived inputs to soil organic matter: are current estimates too low?
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 207
  year: 2015
  end-page: 215
  ident: b0110
  article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
  publication-title: Biol. Fert. Soils.
– volume: 53
  start-page: 375
  year: 2017
  end-page: 388
  ident: b0145
  article-title: Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions
  publication-title: Biol. Fert. Soils.
– volume: 136
  start-page: 325
  year: 2017
  end-page: 339
  ident: b0060
  article-title: Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils
  publication-title: Biogeochemistry
– volume: 9
  year: 2010
  ident: b0120
  article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy
  publication-title: Nat. Rev. Microbiol.
– volume: 5
  start-page: 197
  year: 1981
  ident: b0185
  article-title: Chemistry and distribution of amino sugars in soils and soil organisms
  publication-title: Soil. Biochem.
– volume: 10
  start-page: 435
  year: 2019
  ident: b0300
  article-title: Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest
  publication-title: Forests
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  ident: b0250
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol. Appl.
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  ident: b0195
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an
  publication-title: Soil Biol. Biochem.
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  ident: b0255
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 153
  start-page: 408
  year: 2009
  end-page: 415
  ident: b0265
  article-title: Phosphate sorption and desorption by Thai upland soils
  publication-title: Geoderma
– volume: 20
  start-page: 327
  year: 2014
  end-page: 340
  ident: b0075
  article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions
  publication-title: Glob. Change Biol.
– volume: 57
  start-page: 939
  year: 2013
  end-page: 942
  ident: b0125
  article-title: Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin
  publication-title: USA. Soil. Biol. Biochem.
– volume: 11
  start-page: 271
  year: 1999
  end-page: 275
  ident: b0290
  article-title: Land-use effects on amino sugars in particle size fractions of an Argiudoll
  publication-title: Appl. Soil Ecol.
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: b0215
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 26
  start-page: 505
  year: 2011
  end-page: 513
  ident: b0260
  article-title: Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest
  publication-title: Ecol. Res.
– volume: 123
  start-page: 136
  year: 2018
  end-page: 144
  ident: b0045
  article-title: Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China
  publication-title: Soil Biol. Biochem.
– volume: 427
  start-page: 191
  year: 2018
  end-page: 208
  ident: b0065
  article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities
  publication-title: Plant Soil
– volume: 43
  start-page: 1621
  year: 2011
  end-page: 1625
  ident: b0055
  article-title: Use and misuse of PLFA measurements in soils
  publication-title: Soil Biol. Biochem.
– volume: 77
  start-page: 1357
  year: 2013
  end-page: 1369
  ident: b0245
  article-title: Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest
  publication-title: Soil Sci. Soc. Am. J.
– volume: 67
  start-page: 907
  year: 2014
  end-page: 918
  ident: b0180
  article-title: Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland
  publication-title: Microb. Ecol.
– volume: 23
  start-page: 48
  year: 2016
  end-page: 57
  ident: b0175
  article-title: Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest
  publication-title: Funct. Ecol.
– volume: 21
  start-page: 3169
  year: 2015
  ident: 10.1016/j.geoderma.2020.114470_b0155
  article-title: Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12904
– volume: 104
  start-page: 864
  year: 2007
  ident: 10.1016/j.geoderma.2020.114470_b0095
  article-title: Soil nutrients influence spatial distributions of tropical tree species
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0604666104
– volume: 349
  start-page: 121
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0190
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 26
  start-page: 505
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0260
  article-title: Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-011-0805-8
– volume: 36
  start-page: 399
  year: 2004
  ident: 10.1016/j.geoderma.2020.114470_b0070
  article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.10.013
– volume: 54
  start-page: 149
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0035
  article-title: Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-017-1251-8
– volume: 41
  start-page: 8070
  year: 2007
  ident: 10.1016/j.geoderma.2020.114470_b0205
  article-title: Microbially derived inputs to soil organic matter: are current estimates too low?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071217x
– volume: 43
  start-page: 1155
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0080
  article-title: Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.002
– volume: 23
  start-page: 933
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0270
  article-title: Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13480
– volume: 462
  start-page: 795
  year: 2009
  ident: 10.1016/j.geoderma.2020.114470_b0215
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 9
  year: 2010
  ident: 10.1016/j.geoderma.2020.114470_b0120
  article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy
  publication-title: Nat. Rev. Microbiol.
– volume: 11
  start-page: 271
  year: 1999
  ident: 10.1016/j.geoderma.2020.114470_b0290
  article-title: Land-use effects on amino sugars in particle size fractions of an Argiudoll
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(98)00136-X
– volume: 53
  start-page: 375
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0145
  article-title: Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-017-1183-3
– volume: 20
  start-page: 327
  year: 2014
  ident: 10.1016/j.geoderma.2020.114470_b0075
  article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12374
– volume: 51
  start-page: 207
  year: 2015
  ident: 10.1016/j.geoderma.2020.114470_b0110
  article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-014-0964-1
– volume: 15
  start-page: 1
  year: 1976
  ident: 10.1016/j.geoderma.2020.114470_b0255
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 427
  start-page: 191
  issue: 1–2
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0065
  article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3391-x
– volume: 123
  start-page: 136
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0045
  article-title: Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.05.013
– volume: 42
  start-page: 391
  year: 2010
  ident: 10.1016/j.geoderma.2020.114470_b0210
  article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.10.014
– volume: 41
  start-page: 770
  year: 2009
  ident: 10.1016/j.geoderma.2020.114470_b0225
  article-title: Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.01.014
– volume: 6
  start-page: 254
  year: 1955
  ident: 10.1016/j.geoderma.2020.114470_b0200
  article-title: Observations on the determination of total organic phosphorus in soils
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1955.tb00849.x
– volume: 1
  start-page: 767
  year: 2008
  ident: 10.1016/j.geoderma.2020.114470_b0005
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo339
– volume: 136
  start-page: 325
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0060
  article-title: Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0398-6
– volume: 76
  start-page: 6485
  year: 2010
  ident: 10.1016/j.geoderma.2020.114470_b0240
  article-title: Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00560-10
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.geoderma.2020.114470_b0010
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o59-099
– volume: 11
  start-page: 1111
  year: 2008
  ident: 10.1016/j.geoderma.2020.114470_b0235
  article-title: Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01230.x
– volume: 218
  start-page: 1450
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0105
  article-title: Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations
  publication-title: New Phytol.
  doi: 10.1111/nph.15066
– volume: 15
  start-page: 1409
  year: 1984
  ident: 10.1016/j.geoderma.2020.114470_b0160
  article-title: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant
  publication-title: Commun. Soil. Sci. Plan.
  doi: 10.1080/00103628409367568
– volume: 14
  start-page: 403
  year: 2008
  ident: 10.1016/j.geoderma.2020.114470_b0165
  article-title: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01503.x
– volume: 20
  start-page: 5
  year: 2010
  ident: 10.1016/j.geoderma.2020.114470_b0250
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol. Appl.
  doi: 10.1890/08-0127.1
– volume: 11
  start-page: 1808
  year: 2005
  ident: 10.1016/j.geoderma.2020.114470_b0085
  article-title: Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.001007.x
– volume: 77
  start-page: 1357
  year: 2013
  ident: 10.1016/j.geoderma.2020.114470_b0245
  article-title: Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0128
– volume: 92
  start-page: 83
  year: 2009
  ident: 10.1016/j.geoderma.2020.114470_b0170
  article-title: Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9264-x
– volume: 337
  start-page: 246
  year: 2019
  ident: 10.1016/j.geoderma.2020.114470_b0040
  article-title: Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.028
– volume: 84
  start-page: 137
  year: 2015
  ident: 10.1016/j.geoderma.2020.114470_b0025
  article-title: Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.015
– volume: 67
  start-page: 907
  year: 2014
  ident: 10.1016/j.geoderma.2020.114470_b0180
  article-title: Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0383-8
– volume: 53
  start-page: 281
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0030
  article-title: Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-017-1179-z
– volume: 2
  start-page: 17105
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0130
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 57
  start-page: 939
  year: 2013
  ident: 10.1016/j.geoderma.2020.114470_b0125
  article-title: Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin
  publication-title: USA. Soil. Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.09.006
– volume: 5
  start-page: 197
  year: 1981
  ident: 10.1016/j.geoderma.2020.114470_b0185
  article-title: Chemistry and distribution of amino sugars in soils and soil organisms
  publication-title: Soil. Biochem.
– volume: 97
  start-page: 211
  year: 2016
  ident: 10.1016/j.geoderma.2020.114470_b0285
  article-title: High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.019
– volume: 333
  start-page: 35
  year: 2019
  ident: 10.1016/j.geoderma.2020.114470_b0140
  article-title: Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.017
– volume: 32
  start-page: 106
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0295
  article-title: Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12936
– volume: 134
  start-page: 21
  year: 2017
  ident: 10.1016/j.geoderma.2020.114470_b0275
  article-title: Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.10.014
– volume: 43
  start-page: 1621
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0055
  article-title: Use and misuse of PLFA measurements in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.11.021
– volume: 23
  start-page: 48
  year: 2016
  ident: 10.1016/j.geoderma.2020.114470_b0175
  article-title: Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest
  publication-title: Funct. Ecol.
  doi: 10.1016/j.funeco.2016.05.011
– volume: 226–227
  start-page: 79
  year: 2014
  ident: 10.1016/j.geoderma.2020.114470_b0220
  article-title: Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.005
– volume: 159
  start-page: 2251
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0135
  article-title: Nitrogen deposition and its ecological impact in China: an overview
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.08.002
– volume: 47
  start-page: 387
  year: 2011
  ident: 10.1016/j.geoderma.2020.114470_b0090
  article-title: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-011-0545-5
– volume: 22
  start-page: 934
  year: 2016
  ident: 10.1016/j.geoderma.2020.114470_b0115
  article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13125
– volume: 54
  start-page: 559
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0100
  article-title: Amino sugars as specific indices for fungal and bacterial residues in soil
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/s00374-018-1288-3
– volume: 130
  start-page: 13
  year: 2013
  ident: 10.1016/j.geoderma.2020.114470_b0020
  article-title: Effects of contrasting agricultural management on microbial residues in a Mollisol in China
  publication-title: Soil. Till. Res.
  doi: 10.1016/j.still.2013.02.001
– volume: 153
  start-page: 408
  year: 2009
  ident: 10.1016/j.geoderma.2020.114470_b0265
  article-title: Phosphate sorption and desorption by Thai upland soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.09.005
– volume: 10
  start-page: 435
  year: 2019
  ident: 10.1016/j.geoderma.2020.114470_b0300
  article-title: Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest
  publication-title: Forests
  doi: 10.3390/f10050435
– volume: 196
  start-page: 159
  year: 2004
  ident: 10.1016/j.geoderma.2020.114470_b0050
  article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests
  publication-title: Forest. Ecol. Manage.
  doi: 10.1016/j.foreco.2004.03.018
– volume: 10
  year: 2015
  ident: 10.1016/j.geoderma.2020.114470_b0230
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– volume: 29
  start-page: 953
  year: 2018
  ident: 10.1016/j.geoderma.2020.114470_b0150
  article-title: Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions
  publication-title: J. Forestry. Res.
  doi: 10.1007/s11676-017-0522-4
– start-page: 589
  year: 2008
  ident: 10.1016/j.geoderma.2020.114470_b0015
  article-title: Soil Sampling and Methods of Analysis, (Second ed)
– volume: 411
  start-page: 395
  year: 2016
  ident: 10.1016/j.geoderma.2020.114470_b0280
  article-title: Short-term effects of soil warming and nitrogen addition on the N: P stoichiometry of Cunninghamia lanceolata in subtropical regions
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3037-4
– volume: 34
  start-page: 1309
  year: 2002
  ident: 10.1016/j.geoderma.2020.114470_b0195
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00074-3
SSID ssj0017020
Score 2.568473
Snippet •Nitrogen addition significantly increased amino sugars and their contribution to SOC.•Nitrogen addition significantly increased Mehlich-P but decreased...
Microbial residual carbon (C) plays a crucial role in soil organic C (SOC) stabilization, and exogenous nutrients have frequently been observed to increase the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114470
SubjectTerms Acid phosphatase
Amino sugars
biomarkers
Carbon sequestration
Castanopsis
China
ectomycorrhizae
forest soils
Fungi
glucosamine
microbial biomass
monophenol monooxygenase
nitrogen
Organic phosphorus
Perox
peroxidase
phospholipid fatty acids
soil enzymes
soil organic carbon
soil organic phosphorus
tropical forests
Title N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest
URI https://dx.doi.org/10.1016/j.geoderma.2020.114470
https://www.proquest.com/docview/2552007123
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GBG81n00TbrjGI6pODw42C0kbSodsx1rJ3jxL_CP9r02HVOEHTy2zQvhvSTvl-a93yPkJjReFEYRZiwrOKBwwR0_gIUXuT1mDDJoKTwoPo35aMIept60RgZVLgyGVdq9v9zTi93avmlZbbYWcYw5vh0uwB0hBMHyEZjBzgTO8tvPdZhHR7QtNWOHO9h6I0t4BjbCgmMF_1C3oM1lWLT4bwf1a6su_M_wgOxb4Ej75dgOSc0kR2Sv_7q05BnmmHyNKYYHoappnCAczExI3-KCawlk4WRdpF7RQC01tNEftLgsB-9FszSe02eq3lU8L6m74WOyKY3B5zbCC3qnimYrnS_TBVqZDhSizHSRxRkFGAzjPyGT4d3LYOTYagtO4DIvdzw3MtztaB8UGgrXbUeaC-WGXaYC7jOllQhR2ZEOlAkAmITC6waaA77yNOAS95TUkzQxZ4TqLhOK-yLSyjDFARJoxJEsBCEOXTaIV6lYBpaKHCtizGUVczaTlWkkmkaWpmmQ1lpuUZJxbJXoVRaUP6aVBI-xVfa6MrmENYcXKSox6SqTcAzDX7zg9M__0f8F2cWnMjLwktTz5cpcAcLJdbOYwk2y079_HI2_AZ2p_ho
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcEPShLq-6UntMt0kcezlwQDy0W5ZVDyDtzbUTp8pqSVabXRAXfgH_hj_ITOKgBVXiUHGNM6PIY3u-iWe-AfiW2ChN0pQqljUGKEIKrxPjxkvDPW4tMWhpChTPBqJ7wX8No-ES3De1MJRW6c7--kyvTmv3pO1msz3JMqrx9YVEd0QQhNpHuMzKU3tzjXFbud87QiN_D4KT4_PDrudaC3hxyKOZF4WpFaFvOiidSIzpUyOkDpOA61h0uDZaJqQ5NbG2MXrhREZBbASCicigEw5R7xtY4XhcUNuEH7ePeSW-_Om4IH3h0ectlCWPcFFQh7OK8CioeHo5dUn-t0d85hsqh3eyDmsOqbKDejI2YMnm72H14O_UsXXYD3A3YJSPRLZlWU74s7QJu8wqcieUxVC-qvVisZ4afMfcsOp2Ht0lK4tszH4zfaWzcc0VjoP5ojRlu7uUMtTONCvnZjYtJrSs2KEmWFtMyqxkiLvx-z_CxavY4BMs50VuPwMzAZdadGRqtOVaIAYxBFx5gkICVbYgaqZYxY77nFpwjFWT5DZSjWkUmUbVpmlB-1FuUrN_vCix11hQPVnHCl3Ui7JfG5Mr3OR0c6NzW8xLhXEf_VNGlLH5H_q_wNvu-Vlf9XuD0y14RyN1WuI2LM-mc7uD8GpmdqvlzODPa--fBzi4OX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N+addition+increased+microbial+residual+carbon+by+altering+soil+P+availability+and+microbial+composition+in+a+subtropical+Castanopsis+forest&rft.jtitle=Geoderma&rft.au=Fan%2C+Yuexin&rft.au=Yang%2C+Liuming&rft.au=Zhong%2C+Xiaojian&rft.au=Yang%2C+Zhijie&rft.date=2020-10-01&rft.issn=0016-7061&rft.volume=375&rft.spage=114470&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon