NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion
Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention,...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 485 - 496 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature. |
---|---|
AbstractList | Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature. |
Author | Sun, Lian-Gang Zhao, Yan Chen, Xing |
Author_xml | – sequence: 1 givenname: Xing surname: Chen fullname: Chen, Xing email: xingchen@amss.ac.cn organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 2 givenname: Lian-Gang surname: Sun fullname: Sun, Lian-Gang organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 3 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: School of Information and Control Engineering, China University of Mining and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31927572$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd9K3EAUxodiUXf1pg8gASkUITr_J_Fu2ba2sKsg3g-TyYk7kmTiTALVq75D37BP0uy_G5FenY_D7zscvm-CDlrfAkKfCL4kOGdXhSuuiuKViPwDOiZcqZRjwQ_WWqpUcMmO0CTGJ4wpVhk5REeM5FQJRY-RuZ0v58uvs-ukcfe3s7-__5QugomQmBi9daZ3vk26AKWzG9mvgh8eV0kL7nFV-LDyvkysb2MfjGv7pDF9cL_GTdPVsHacoI-VqSOc7uYUPXz_9jD_kS7ubn7OZ4vUMi76lFvBKytKoDlXlSgsFyUmWcakMKWgGeUWEygUVFQxAoTKCgPkrJSSSs7YFH3Znu2Cfx4g9rpx0UJdmxb8EDVlTGGZj4mM6Pkb9MkPoR2f01TQPJcZy-hIne2ooWig1F1wjQkvep_dCOAtYIOPMUClres3ea2jqDXBel2PHuvR23pGy8Uby_7qu_DnLeyH7n_cP2uOnto |
CitedBy_id | crossref_primary_10_1093_bib_bbad270 crossref_primary_10_3389_fmicb_2023_1170559 crossref_primary_10_1186_s12859_020_3426_9 crossref_primary_10_1007_s11704_023_3610_y crossref_primary_10_1093_bib_bbac463 crossref_primary_10_3389_fcell_2021_603758 crossref_primary_10_1093_bib_bbad276 crossref_primary_10_1093_bib_bbac340 crossref_primary_10_1111_jcmm_17412 crossref_primary_10_3390_biomedicines13010136 crossref_primary_10_3390_biology11050787 crossref_primary_10_1186_s12859_023_05152_z crossref_primary_10_3389_fgene_2021_720327 crossref_primary_10_3389_fgene_2022_979815 crossref_primary_10_1038_s41598_023_27483_w crossref_primary_10_1016_j_isci_2022_105299 crossref_primary_10_1016_j_compbiomed_2023_107165 crossref_primary_10_1109_TCBB_2021_3067338 crossref_primary_10_3389_fgene_2021_742992 crossref_primary_10_1155_2022_5154122 crossref_primary_10_3390_cells11243984 crossref_primary_10_1093_bib_bbac177 crossref_primary_10_2174_1574893618666230228112411 crossref_primary_10_1111_jcmm_18345 crossref_primary_10_2174_1566523223666230330091241 crossref_primary_10_1016_j_isci_2021_102455 crossref_primary_10_3389_fgene_2022_978975 crossref_primary_10_1089_cmb_2023_0084 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1016_j_compbiomed_2022_106464 crossref_primary_10_1093_bib_bbab479 crossref_primary_10_1109_JBHI_2022_3169542 crossref_primary_10_1007_s11427_023_2569_7 crossref_primary_10_1038_s41598_021_00677_w crossref_primary_10_1186_s12920_024_01894_8 crossref_primary_10_1093_bib_bbae627 crossref_primary_10_3389_fgene_2021_727744 crossref_primary_10_1007_s11704_023_2490_5 crossref_primary_10_1109_JBHI_2023_3260863 crossref_primary_10_1093_bib_bbac083 crossref_primary_10_1038_s41598_022_08082_7 crossref_primary_10_3390_biom12010064 crossref_primary_10_3389_fmicb_2022_1040252 crossref_primary_10_1007_s11390_021_0740_2 crossref_primary_10_1109_JBHI_2021_3088342 crossref_primary_10_1109_JBHI_2023_3336247 crossref_primary_10_1038_s41598_024_63582_y crossref_primary_10_1093_bib_bbad058 crossref_primary_10_1016_j_compbiomed_2023_107904 crossref_primary_10_1093_bib_bbab428 crossref_primary_10_1016_j_neucom_2020_09_032 crossref_primary_10_1186_s12859_023_05365_2 crossref_primary_10_1038_s41598_024_81213_4 crossref_primary_10_1093_bib_bbab543 crossref_primary_10_1093_bib_bbac358 crossref_primary_10_1016_j_knosys_2022_110044 crossref_primary_10_2174_1389203723666220721122240 crossref_primary_10_1186_s12859_023_05192_5 crossref_primary_10_1016_j_compbiolchem_2022_107729 crossref_primary_10_1186_s12859_022_05040_y crossref_primary_10_1109_ACCESS_2020_2990533 crossref_primary_10_1186_s12864_022_08854_5 crossref_primary_10_1007_s13721_021_00292_9 crossref_primary_10_1109_TCBB_2021_3109055 crossref_primary_10_1089_cmb_2023_0266 crossref_primary_10_1109_TCBB_2021_3127017 crossref_primary_10_1186_s12859_023_05275_3 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1016_j_compbiolchem_2024_108320 crossref_primary_10_3390_ijms21051557 crossref_primary_10_1186_s12864_022_08937_3 crossref_primary_10_1002_cnm_3809 crossref_primary_10_1093_bib_bbac104 crossref_primary_10_1038_s41598_022_25730_0 crossref_primary_10_1109_TCBB_2023_3305992 crossref_primary_10_1371_journal_pcbi_1009165 crossref_primary_10_18632_aging_202940 crossref_primary_10_1038_s42003_024_06734_0 crossref_primary_10_2174_1389201024666221025114500 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2022044042 crossref_primary_10_3389_fmicb_2021_694534 crossref_primary_10_1093_bib_bbae167 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1186_s12859_022_04719_6 crossref_primary_10_1021_acs_jcim_4c01757 crossref_primary_10_1186_s12859_022_04843_3 crossref_primary_10_1093_bib_bbac266 crossref_primary_10_1371_journal_pone_0278817 crossref_primary_10_32604_biocell_2022_019613 crossref_primary_10_1038_s41598_022_21243_y crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_1093_bib_bbac539 crossref_primary_10_3389_fgene_2020_00389 crossref_primary_10_1109_JBHI_2024_3397003 crossref_primary_10_1093_bib_bbad227 crossref_primary_10_1109_JBHI_2024_3438439 crossref_primary_10_1109_TCBB_2022_3187739 crossref_primary_10_1016_j_prp_2023_154618 crossref_primary_10_3389_fgene_2024_1356205 crossref_primary_10_1016_j_ab_2024_115554 crossref_primary_10_1038_s41598_022_25745_7 crossref_primary_10_1093_bib_bbac093 crossref_primary_10_1016_j_ymeth_2024_06_007 crossref_primary_10_1109_TCBB_2024_3373772 crossref_primary_10_3389_fmicb_2022_1093615 crossref_primary_10_3389_fgene_2022_838869 crossref_primary_10_3390_molecules27144443 crossref_primary_10_1109_JBHI_2022_3186534 crossref_primary_10_2139_ssrn_4194687 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1093_bib_bbab286 crossref_primary_10_1016_j_sigpro_2021_108312 crossref_primary_10_2174_0113892029308327240612110334 crossref_primary_10_1016_j_compbiomed_2021_104706 crossref_primary_10_1016_j_ymeth_2023_02_003 crossref_primary_10_1093_bib_bbac495 crossref_primary_10_1016_j_bspc_2023_104621 crossref_primary_10_1371_journal_pone_0254854 crossref_primary_10_1016_j_ab_2023_115297 crossref_primary_10_1109_JBHI_2020_2987034 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_1186_s12859_021_04092_w crossref_primary_10_1093_bib_bbac407 crossref_primary_10_1093_bib_bbac527 crossref_primary_10_1155_2021_9678747 crossref_primary_10_1016_j_knosys_2023_110295 crossref_primary_10_1093_bib_bbad093 crossref_primary_10_1007_s12539_022_00542_y crossref_primary_10_1093_bioinformatics_btac077 crossref_primary_10_1089_cmb_2021_0149 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1016_j_compbiomed_2022_105881 crossref_primary_10_3389_fgene_2022_936823 crossref_primary_10_3390_bioengineering11111132 crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_1093_bib_bbad524 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_2174_0115665232261931231006103234 crossref_primary_10_1109_TCBB_2022_3191972 crossref_primary_10_1186_s12859_022_04796_7 crossref_primary_10_1016_j_ab_2023_115431 crossref_primary_10_1109_ACCESS_2021_3084148 crossref_primary_10_1155_2021_6652948 crossref_primary_10_1016_j_health_2023_100215 crossref_primary_10_1093_bib_bbac399 crossref_primary_10_1093_bib_bbac155 crossref_primary_10_3390_biomedicines13030536 crossref_primary_10_1111_jcmm_17566 crossref_primary_10_1038_s41598_022_21050_5 crossref_primary_10_1155_2022_1544648 crossref_primary_10_2174_0929867328666210804090224 crossref_primary_10_1186_s12859_023_05148_9 crossref_primary_10_1155_2022_4433627 crossref_primary_10_3389_fgene_2022_1029300 crossref_primary_10_3389_fcell_2021_617569 |
Cites_doi | 10.1126/science.1121566 10.1002/jso.23064 10.18632/oncotarget.15061 10.1093/bioinformatics/btq241 10.1093/bib/bbx130 10.1038/srep21106 10.3322/canjclin.44.1.27 10.1038/srep27036 10.1111/j.1742-4658.2009.07383.x 10.1038/onc.2012.636 10.1371/journal.pcbi.1006418 10.1093/bioinformatics/bty327 10.1080/15476286.2017.1312226 10.1016/j.canlet.2010.10.006 10.1186/1471-2164-11-S4-S5 10.1038/nature06174 10.1093/bioinformatics/btu269 10.1371/journal.pone.0003420 10.1093/bioinformatics/btv039 10.1093/cvr/cvn156 10.1159/000350100 10.1038/nrc1997 10.1016/j.cell.2009.01.002 10.7150/thno.19168 10.1093/nar/gki200 10.1038/nrg.2016.134 10.1001/jamanetworkopen.2019.9292 10.1093/carcin/bgs259 10.1093/nar/gkn714 10.3389/fgene.2018.00234 10.1038/srep13877 10.1038/s41598-017-02800-2 10.1016/j.gpb.2017.02.002 10.1093/bioinformatics/btt677 10.1186/1752-0509-7-101 10.18632/oncotarget.11251 10.1158/1078-0432.CCR-16-0414 10.1093/bioinformatics/btx390 10.1016/S0140-6736(05)17706-X 10.1038/nrc1840 10.1038/onc.2010.237 10.1038/nature09783 10.1093/nar/gkt1023 10.1016/S0092-8674(01)00616-X 10.1016/j.critrevonc.2016.11.017 10.1093/bioinformatics/btr500 10.1371/journal.pone.0070204 10.1161/CIRCRESAHA.107.163147 10.1093/bioinformatics/bty503 10.1159/000490834 10.1038/srep05501 10.1093/bioinformatics/btw715 10.1016/S0092-8674(04)00045-5 10.1016/S0140-6736(05)66546-4 10.1039/c2mb25180a |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz159 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 496 |
ExternalDocumentID | 31927572 10_1093_bib_bbz159 10.1093/bib/bbz159 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c345t-4c54fc5de2947f5bc45d0188365ad52824c01eb7ef2731e126f0ee93d6626433 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 03:52:13 EDT 2025 Mon Jun 30 11:00:46 EDT 2025 Wed Feb 19 02:29:57 EST 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | microRNA association prediction disease matrix completion fast iterative shrinkage-thresholding algorithm neighborhood constraint |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-4c54fc5de2947f5bc45d0188365ad52824c01eb7ef2731e126f0ee93d6626433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31927572 |
PQID | 2529968382 |
PQPubID | 26846 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2337069467 proquest_journals_2529968382 pubmed_primary_31927572 crossref_citationtrail_10_1093_bib_bbz159 crossref_primary_10_1093_bib_bbz159 oup_primary_10_1093_bib_bbz159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Bartel (2021012203431344100_ref3) 2009; 136 Karp (2021012203431344100_ref5) 2005; 310 Chen (2021012203431344100_ref26) 2016; 7 Chen (2021012203431344100_ref30) 2017; 14 DeCosse (2021012203431344100_ref43) 1994; 44 Small (2021012203431344100_ref12) 2011; 469 Natarajan (2021012203431344100_ref35) 2014; 30 Bartel (2021012203431344100_ref2) 2004; 116 Chen (2021012203431344100_ref28) 2018; 9 Han (2021012203431344100_ref52) 2013; 31 Zhang (2021012203431344100_ref45) 2018; 47 Jiang (2021012203431344100_ref40) 2009; 37 Wang (2021012203431344100_ref48) 2012; 33 Xu (2021012203431344100_ref54) 2019; 2 Weitz (2021012203431344100_ref41) 2005; 365 Chen (2021012203431344100_ref24) 2012; 8 Xuan (2021012203431344100_ref21) 2013; 8 Kurashige (2021012203431344100_ref50) 2012; 106 Lu (2021012203431344100_ref62) 2008; 3 Lu (2021012203431344100_ref36) 2018; 34 Xiao (2021012203431344100_ref44) 2017; 7 van Laarhoven (2021012203431344100_ref59) 2011; 27 Chen (2021012203431344100_ref31) 2015; 5 Wang (2021012203431344100_ref58) 2010; 26 Lacombe (2021012203431344100_ref56) 2017; 109 Chen (2021012203431344100_ref60) 2017; 33 Liu (2021012203431344100_ref14) 2010; 29 Jiang (2021012203431344100_ref18) 2010; 4 Latronico (2021012203431344100_ref11) 2007; 101 Short (2021012203431344100_ref47) 2017; 95 Xuan (2021012203431344100_ref25) 2015; 31 Zhang (2021012203431344100_ref49) 2017; 23 Bracken (2021012203431344100_ref8) 2016; 17 Siegel (2021012203431344100_ref42) 2019 Cheng (2021012203431344100_ref4) 2005; 33 Kong (2021012203431344100_ref9) 2014; 33 Mork (2021012203431344100_ref19) 2014; 30 Chen (2021012203431344100_ref17) 2019; 20 Urbich (2021012203431344100_ref10) 2008; 79 Ma (2021012203431344100_ref13) 2007; 449 Chen (2021012203431344100_ref33) 2018; 34 Veronesi (2021012203431344100_ref51) 2005; 365 Akao (2021012203431344100_ref57) 2011; 300 Chen (2021012203431344100_ref27) 2018; 14 Ambros (2021012203431344100_ref1) 2001; 107 Pasquier (2021012203431344100_ref20) 2016; 6 Chen (2021012203431344100_ref22) 2016; 6 Patel (2021012203431344100_ref53) 2017; 7 Fan (2021012203431344100_ref61) 2018 Gao (2021012203431344100_ref15) 1802; 2019 Shi (2021012203431344100_ref23) 2013; 7 Yang (2021012203431344100_ref39) 2010; 11 Calin (2021012203431344100_ref16) 2006; 6 Ji (2021012203431344100_ref63) 2009 Chen (2021012203431344100_ref34) 2017 Huang (2021012203431344100_ref37) 2017; 33 Borralho (2021012203431344100_ref46) 2009; 276 Esquela-Kerscher (2021012203431344100_ref6) 2006; 6 Calin (2021012203431344100_ref7) 2006; 6 Li (2021012203431344100_ref32) 2017; 8 Li (2021012203431344100_ref38) 2013; 42 McGee (2021012203431344100_ref55) 2017; 15 Chen (2021012203431344100_ref29) 2014; 4 |
References_xml | – volume: 310 start-page: 1288 year: 2005 ident: 2021012203431344100_ref5 article-title: Encountering microRNAs in cell fate signaling publication-title: Science doi: 10.1126/science.1121566 – volume: 106 start-page: 188 year: 2012 ident: 2021012203431344100_ref50 article-title: Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma publication-title: J Surg Oncol doi: 10.1002/jso.23064 – volume: 8 start-page: 21187 year: 2017 ident: 2021012203431344100_ref32 article-title: MCMDA: matrix completion for MiRNA-disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.15061 – volume: 26 start-page: 1644 year: 2010 ident: 2021012203431344100_ref58 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – start-page: 457 volume-title: An accelerated gradient method for trace norm minimization. Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Quebec year: 2009 ident: 2021012203431344100_ref63 – volume: 20 start-page: 515 year: 2019 ident: 2021012203431344100_ref17 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbx130 – volume: 6 start-page: 21106 year: 2016 ident: 2021012203431344100_ref22 article-title: WBSMDA: within and between score for MiRNA-disease association prediction publication-title: Sci Rep doi: 10.1038/srep21106 – volume: 44 start-page: 27 year: 1994 ident: 2021012203431344100_ref43 article-title: Colorectal cancer: detection, treatment, and rehabilitation publication-title: CA Cancer J Clin doi: 10.3322/canjclin.44.1.27 – volume: 6 start-page: 27036 year: 2016 ident: 2021012203431344100_ref20 article-title: Prediction of miRNA-disease associations with a vector space model publication-title: Sci Rep doi: 10.1038/srep27036 – volume: 276 start-page: 6689 year: 2009 ident: 2021012203431344100_ref46 article-title: MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells publication-title: FEBS J doi: 10.1111/j.1742-4658.2009.07383.x – volume: 33 start-page: 679 year: 2014 ident: 2021012203431344100_ref9 article-title: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer publication-title: Oncogene doi: 10.1038/onc.2012.636 – volume: 14 start-page: e1006418 year: 2018 ident: 2021012203431344100_ref27 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006418 – volume: 34 start-page: 3357 year: 2018 ident: 2021012203431344100_ref36 article-title: Prediction of lncRNA-disease associations based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty327 – volume: 14 start-page: 952 year: 2017 ident: 2021012203431344100_ref30 article-title: Wu Q-F, Yan G-Y. RKNNMDA: ranking-based KNN for MiRNA-disease association prediction publication-title: RNA Biol doi: 10.1080/15476286.2017.1312226 – volume: 300 start-page: 197 year: 2011 ident: 2021012203431344100_ref57 article-title: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells publication-title: Cancer Lett doi: 10.1016/j.canlet.2010.10.006 – volume: 11 start-page: S5 year: 2010 ident: 2021012203431344100_ref39 article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers publication-title: BMC Genomics doi: 10.1186/1471-2164-11-S4-S5 – volume: 449 start-page: 682 year: 2007 ident: 2021012203431344100_ref13 article-title: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer publication-title: Nature doi: 10.1038/nature06174 – volume: 30 start-page: i60 year: 2014 ident: 2021012203431344100_ref35 article-title: Inductive matrix completion for predicting gene-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu269 – volume: 3 start-page: e3420 year: 2008 ident: 2021012203431344100_ref62 article-title: An analysis of human microRNA and disease associations publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – start-page: 348 volume-title: Neighborhood Constraint Matrix Completion for Drug-Target Interaction Prediction. Cham year: 2018 ident: 2021012203431344100_ref61 – volume: 31 start-page: 1805 year: 2015 ident: 2021012203431344100_ref25 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – volume: 4 issue: S2 year: 2010 ident: 2021012203431344100_ref18 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst Biol – volume: 79 start-page: 581 year: 2008 ident: 2021012203431344100_ref10 article-title: Role of microRNAs in vascular diseases, inflammation, and angiogenesis publication-title: Cardiovasc Res doi: 10.1093/cvr/cvn156 – volume: 31 start-page: 823 year: 2013 ident: 2021012203431344100_ref52 article-title: MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151 publication-title: Cell Physiol Biochem doi: 10.1159/000350100 – volume: 6 start-page: 857 year: 2006 ident: 2021012203431344100_ref7 article-title: MicroRNA signatures in human cancers publication-title: Nat Rev Cancer doi: 10.1038/nrc1997 – volume: 136 start-page: 215 year: 2009 ident: 2021012203431344100_ref3 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 7 start-page: 1901 year: 2017 ident: 2021012203431344100_ref44 article-title: Therapeutic inhibition of miR-4260 suppresses colorectal cancer via targeting MCC and SMAD4 publication-title: Theranostics doi: 10.7150/thno.19168 – volume: 33 start-page: 1290 year: 2005 ident: 2021012203431344100_ref4 article-title: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis publication-title: Nucleic Acids Res doi: 10.1093/nar/gki200 – volume: 17 start-page: 719 year: 2016 ident: 2021012203431344100_ref8 article-title: A network-biology perspective of microRNA function and dysfunction in cancer publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.134 – volume: 2 start-page: e1992e92 year: 2019 ident: 2021012203431344100_ref54 article-title: Association of Germline Variants in natural killer cells with tumor immune microenvironment subtypes, tumor-infiltrating lymphocytes, immunotherapy response, clinical outcomes, and cancer risk publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.9292 – volume: 33 start-page: 2147 year: 2012 ident: 2021012203431344100_ref48 article-title: MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis publication-title: Carcinogenesis doi: 10.1093/carcin/bgs259 – volume: 37 start-page: D98 year: 2009 ident: 2021012203431344100_ref40 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 9 start-page: 234 year: 2018 ident: 2021012203431344100_ref28 article-title: TLHNMDA: triple layer heterogeneous network based inference for MiRNA-disease association prediction publication-title: Front Genet doi: 10.3389/fgene.2018.00234 – volume: 5 start-page: 13877 year: 2015 ident: 2021012203431344100_ref31 article-title: RBMMMDA: predicting multiple types of disease-microRNA associations publication-title: Sci Rep doi: 10.1038/srep13877 – volume: 7 start-page: 4263 year: 2017 ident: 2021012203431344100_ref53 article-title: miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin publication-title: Sci Rep doi: 10.1038/s41598-017-02800-2 – volume: 2019 start-page: 10 year: 1802 ident: 2021012203431344100_ref15 article-title: Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction publication-title: Nat Commun – volume: 15 start-page: 121 year: 2017 ident: 2021012203431344100_ref55 article-title: Network analysis reveals a Signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2017.02.002 – volume: 95 start-page: 22 year: 2017 ident: 2021012203431344100_ref47 article-title: Esophageal cancer publication-title: Am Fam Physician – volume: 30 start-page: 392 year: 2014 ident: 2021012203431344100_ref19 article-title: Protein-driven inference of miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 7 start-page: 101 year: 2013 ident: 2021012203431344100_ref23 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-101 – volume: 7 start-page: 65257 year: 2016 ident: 2021012203431344100_ref26 article-title: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.11251 – volume: 23 start-page: 298 year: 2017 ident: 2021012203431344100_ref49 article-title: Downregulation of MicroRNA-644a promotes Esophageal squamous cell carcinoma aggressiveness and stem cell–like phenotype via Dysregulation of PITX2 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0414 – volume: 33 start-page: 3195 year: 2017 ident: 2021012203431344100_ref37 article-title: Matrix completion with side information and its applications in predicting the antigenicity of influenza viruses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx390 – volume: 365 start-page: 153 year: 2005 ident: 2021012203431344100_ref41 article-title: Colorectal cancer publication-title: Lancet doi: 10.1016/S0140-6736(05)17706-X – volume: 6 start-page: 259 year: 2006 ident: 2021012203431344100_ref6 article-title: Oncomirs—microRNAs with a role in cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc1840 – volume: 29 start-page: 4914 year: 2010 ident: 2021012203431344100_ref14 article-title: miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer publication-title: Oncogene doi: 10.1038/onc.2010.237 – volume: 469 start-page: 336 year: 2011 ident: 2021012203431344100_ref12 article-title: Pervasive roles of microRNAs in cardiovascular biology publication-title: Nature doi: 10.1038/nature09783 – start-page: 7 volume-title: Cancer statistics, 2019 year: 2019 ident: 2021012203431344100_ref42 – year: 2017 ident: 2021012203431344100_ref34 article-title: A flexible and robust multi-source learning algorithm for drug repositioning publication-title: In: Acm International Conference on Bioinformatics – volume: 6 start-page: 857 year: 2006 ident: 2021012203431344100_ref16 article-title: MicroRNA signatures in human cancers publication-title: Nat Rev Cancer doi: 10.1038/nrc1997 – volume: 42 start-page: D1070 year: 2013 ident: 2021012203431344100_ref38 article-title: Tu J et al. HMDD v2. 0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1023 – volume: 107 start-page: 823 year: 2001 ident: 2021012203431344100_ref1 article-title: microRNAs: tiny regulators with great potential publication-title: Cell doi: 10.1016/S0092-8674(01)00616-X – volume: 109 start-page: 69 year: 2017 ident: 2021012203431344100_ref56 article-title: Emergence of miR-34a in radiation therapy publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2016.11.017 – volume: 27 start-page: 3036 year: 2011 ident: 2021012203431344100_ref59 article-title: Gaussian interaction profile kernels for predicting drug-target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 8 start-page: e70204 year: 2013 ident: 2021012203431344100_ref21 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PLoS One doi: 10.1371/journal.pone.0070204 – volume: 101 start-page: 1225 year: 2007 ident: 2021012203431344100_ref11 article-title: Emerging role of MicroRNAs in cardiovascular biology publication-title: Circ Res doi: 10.1161/CIRCRESAHA.107.163147 – volume: 34 start-page: 4256 year: 2018 ident: 2021012203431344100_ref33 article-title: Predicting miRNA-disease association based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – volume: 47 start-page: 1432 year: 2018 ident: 2021012203431344100_ref45 article-title: Knockdown of MiR-20a enhances sensitivity of colorectal cancer cells to Cisplatin by increasing ASK1 expression publication-title: Cell Physiol Biochem doi: 10.1159/000490834 – volume: 4 start-page: 5501 year: 2014 ident: 2021012203431344100_ref29 article-title: Semi-supervised learning for potential human microRNA-disease associations inference publication-title: Sci Rep doi: 10.1038/srep05501 – volume: 33 start-page: 733 year: 2017 ident: 2021012203431344100_ref60 article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw715 – volume: 116 start-page: 281 year: 2004 ident: 2021012203431344100_ref2 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 365 start-page: 1727 year: 2005 ident: 2021012203431344100_ref51 article-title: Breast cancer publication-title: Lancet doi: 10.1016/S0140-6736(05)66546-4 – volume: 8 start-page: 2792 year: 2012 ident: 2021012203431344100_ref24 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Mol Biosyst doi: 10.1039/c2mb25180a |
SSID | ssj0020781 |
Score | 2.629221 |
Snippet | Abstract
Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human... Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases.... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 485 |
SubjectTerms | Algorithms Biological activity Biomarkers Breast Breast cancer Case studies Colon Colorectal cancer Computer applications Constraint modelling Disease Esophageal cancer Esophagus Information processing Iterative methods Mathematical models MicroRNAs miRNA Neighborhoods Neoplasms Optimization Predictions Reliability analysis Similarity Therapeutic targets Tumors |
Title | NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31927572 https://www.proquest.com/docview/2529968382 https://www.proquest.com/docview/2337069467 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIb6u1rOjFw2KTfSXeSlVEaAWp0FvY7G5A0ChtCurJ_-A_9Jc4k6SVYtFLCGSWDTO7O8_9hpATgak5EC6LVWiZCLRjxijFtEtjY8H_cA5DA72-ur4XN0M5rItoxgtS-DE_Sx_SszR9B70LJy08ESF_cDucuVUIV1PdIdIMwd2nIKRzQ-fUztxVtl8WZalZrtbJWm0S0k4lww2y5PNNslI1iXzbIqbf7XV7F51z-vRw1-98fXzWSRVqflhLX0aYcSlf69Y7NMeoJ4gYgYupRTsQ20EU9AlR-V9pWUzuccQ2GVxdDrrXrG6MwCwXsmDCSpFZ6XwYC53J1Arp2kEUcSWNk-BECdsOfKp9BsZJ4INQZW3vY-4UuC-C8x2ynD_nfo9QIzMjBQehRE4oKw3PMCwaG-_Bj5JRg5xO2ZbYGjQcf_YxqZLXPAEWJxWLG-R4RvtSQWUspGoB9_8kaE4Fk9T7aZyEEtSmingUNsjR7DPsBExvmNw_T4CGc43XeJVukN1KoLNp4KAJtdTh_n-zH5DVEKtW2gELoiZZLkYTfwhmR5G2ylX3DddA1dg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NCMCMDA%3A+miRNA-disease+association+prediction+through+neighborhood+constraint+matrix+completion&rft.jtitle=Briefings+in+bioinformatics&rft.au=Chen%2C+Xing&rft.au=Sun%2C+Lian-Gang&rft.au=Zhao%2C+Yan&rft.date=2021-01-18&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=485&rft_id=info:doi/10.1093%2Fbib%2Fbbz159&rft_id=info%3Apmid%2F31927572&rft.externalDocID=31927572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |