NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion

Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention,...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 485 - 496
Main Authors Chen, Xing, Sun, Lian-Gang, Zhao, Yan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.
AbstractList Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.
Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.
Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.
Author Sun, Lian-Gang
Zhao, Yan
Chen, Xing
Author_xml – sequence: 1
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  email: xingchen@amss.ac.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 2
  givenname: Lian-Gang
  surname: Sun
  fullname: Sun, Lian-Gang
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 3
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: School of Information and Control Engineering, China University of Mining and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31927572$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9K3EAUxodiUXf1pg8gASkUITr_J_Fu2ba2sKsg3g-TyYk7kmTiTALVq75D37BP0uy_G5FenY_D7zscvm-CDlrfAkKfCL4kOGdXhSuuiuKViPwDOiZcqZRjwQ_WWqpUcMmO0CTGJ4wpVhk5REeM5FQJRY-RuZ0v58uvs-ukcfe3s7-__5QugomQmBi9daZ3vk26AKWzG9mvgh8eV0kL7nFV-LDyvkysb2MfjGv7pDF9cL_GTdPVsHacoI-VqSOc7uYUPXz_9jD_kS7ubn7OZ4vUMi76lFvBKytKoDlXlSgsFyUmWcakMKWgGeUWEygUVFQxAoTKCgPkrJSSSs7YFH3Znu2Cfx4g9rpx0UJdmxb8EDVlTGGZj4mM6Pkb9MkPoR2f01TQPJcZy-hIne2ooWig1F1wjQkvep_dCOAtYIOPMUClres3ea2jqDXBel2PHuvR23pGy8Uby_7qu_DnLeyH7n_cP2uOnto
CitedBy_id crossref_primary_10_1093_bib_bbad270
crossref_primary_10_3389_fmicb_2023_1170559
crossref_primary_10_1186_s12859_020_3426_9
crossref_primary_10_1007_s11704_023_3610_y
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_3389_fcell_2021_603758
crossref_primary_10_1093_bib_bbad276
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_1111_jcmm_17412
crossref_primary_10_3390_biomedicines13010136
crossref_primary_10_3390_biology11050787
crossref_primary_10_1186_s12859_023_05152_z
crossref_primary_10_3389_fgene_2021_720327
crossref_primary_10_3389_fgene_2022_979815
crossref_primary_10_1038_s41598_023_27483_w
crossref_primary_10_1016_j_isci_2022_105299
crossref_primary_10_1016_j_compbiomed_2023_107165
crossref_primary_10_1109_TCBB_2021_3067338
crossref_primary_10_3389_fgene_2021_742992
crossref_primary_10_1155_2022_5154122
crossref_primary_10_3390_cells11243984
crossref_primary_10_1093_bib_bbac177
crossref_primary_10_2174_1574893618666230228112411
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_2174_1566523223666230330091241
crossref_primary_10_1016_j_isci_2021_102455
crossref_primary_10_3389_fgene_2022_978975
crossref_primary_10_1089_cmb_2023_0084
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1016_j_compbiomed_2022_106464
crossref_primary_10_1093_bib_bbab479
crossref_primary_10_1109_JBHI_2022_3169542
crossref_primary_10_1007_s11427_023_2569_7
crossref_primary_10_1038_s41598_021_00677_w
crossref_primary_10_1186_s12920_024_01894_8
crossref_primary_10_1093_bib_bbae627
crossref_primary_10_3389_fgene_2021_727744
crossref_primary_10_1007_s11704_023_2490_5
crossref_primary_10_1109_JBHI_2023_3260863
crossref_primary_10_1093_bib_bbac083
crossref_primary_10_1038_s41598_022_08082_7
crossref_primary_10_3390_biom12010064
crossref_primary_10_3389_fmicb_2022_1040252
crossref_primary_10_1007_s11390_021_0740_2
crossref_primary_10_1109_JBHI_2021_3088342
crossref_primary_10_1109_JBHI_2023_3336247
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1093_bib_bbad058
crossref_primary_10_1016_j_compbiomed_2023_107904
crossref_primary_10_1093_bib_bbab428
crossref_primary_10_1016_j_neucom_2020_09_032
crossref_primary_10_1186_s12859_023_05365_2
crossref_primary_10_1038_s41598_024_81213_4
crossref_primary_10_1093_bib_bbab543
crossref_primary_10_1093_bib_bbac358
crossref_primary_10_1016_j_knosys_2022_110044
crossref_primary_10_2174_1389203723666220721122240
crossref_primary_10_1186_s12859_023_05192_5
crossref_primary_10_1016_j_compbiolchem_2022_107729
crossref_primary_10_1186_s12859_022_05040_y
crossref_primary_10_1109_ACCESS_2020_2990533
crossref_primary_10_1186_s12864_022_08854_5
crossref_primary_10_1007_s13721_021_00292_9
crossref_primary_10_1109_TCBB_2021_3109055
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_1109_TCBB_2021_3127017
crossref_primary_10_1186_s12859_023_05275_3
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_3390_ijms21051557
crossref_primary_10_1186_s12864_022_08937_3
crossref_primary_10_1002_cnm_3809
crossref_primary_10_1093_bib_bbac104
crossref_primary_10_1038_s41598_022_25730_0
crossref_primary_10_1109_TCBB_2023_3305992
crossref_primary_10_1371_journal_pcbi_1009165
crossref_primary_10_18632_aging_202940
crossref_primary_10_1038_s42003_024_06734_0
crossref_primary_10_2174_1389201024666221025114500
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2022044042
crossref_primary_10_3389_fmicb_2021_694534
crossref_primary_10_1093_bib_bbae167
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1186_s12859_022_04719_6
crossref_primary_10_1021_acs_jcim_4c01757
crossref_primary_10_1186_s12859_022_04843_3
crossref_primary_10_1093_bib_bbac266
crossref_primary_10_1371_journal_pone_0278817
crossref_primary_10_32604_biocell_2022_019613
crossref_primary_10_1038_s41598_022_21243_y
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_1093_bib_bbac539
crossref_primary_10_3389_fgene_2020_00389
crossref_primary_10_1109_JBHI_2024_3397003
crossref_primary_10_1093_bib_bbad227
crossref_primary_10_1109_JBHI_2024_3438439
crossref_primary_10_1109_TCBB_2022_3187739
crossref_primary_10_1016_j_prp_2023_154618
crossref_primary_10_3389_fgene_2024_1356205
crossref_primary_10_1016_j_ab_2024_115554
crossref_primary_10_1038_s41598_022_25745_7
crossref_primary_10_1093_bib_bbac093
crossref_primary_10_1016_j_ymeth_2024_06_007
crossref_primary_10_1109_TCBB_2024_3373772
crossref_primary_10_3389_fmicb_2022_1093615
crossref_primary_10_3389_fgene_2022_838869
crossref_primary_10_3390_molecules27144443
crossref_primary_10_1109_JBHI_2022_3186534
crossref_primary_10_2139_ssrn_4194687
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1093_bib_bbab286
crossref_primary_10_1016_j_sigpro_2021_108312
crossref_primary_10_2174_0113892029308327240612110334
crossref_primary_10_1016_j_compbiomed_2021_104706
crossref_primary_10_1016_j_ymeth_2023_02_003
crossref_primary_10_1093_bib_bbac495
crossref_primary_10_1016_j_bspc_2023_104621
crossref_primary_10_1371_journal_pone_0254854
crossref_primary_10_1016_j_ab_2023_115297
crossref_primary_10_1109_JBHI_2020_2987034
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1186_s12859_021_04092_w
crossref_primary_10_1093_bib_bbac407
crossref_primary_10_1093_bib_bbac527
crossref_primary_10_1155_2021_9678747
crossref_primary_10_1016_j_knosys_2023_110295
crossref_primary_10_1093_bib_bbad093
crossref_primary_10_1007_s12539_022_00542_y
crossref_primary_10_1093_bioinformatics_btac077
crossref_primary_10_1089_cmb_2021_0149
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1016_j_compbiomed_2022_105881
crossref_primary_10_3389_fgene_2022_936823
crossref_primary_10_3390_bioengineering11111132
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_1093_bib_bbad524
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_2174_0115665232261931231006103234
crossref_primary_10_1109_TCBB_2022_3191972
crossref_primary_10_1186_s12859_022_04796_7
crossref_primary_10_1016_j_ab_2023_115431
crossref_primary_10_1109_ACCESS_2021_3084148
crossref_primary_10_1155_2021_6652948
crossref_primary_10_1016_j_health_2023_100215
crossref_primary_10_1093_bib_bbac399
crossref_primary_10_1093_bib_bbac155
crossref_primary_10_3390_biomedicines13030536
crossref_primary_10_1111_jcmm_17566
crossref_primary_10_1038_s41598_022_21050_5
crossref_primary_10_1155_2022_1544648
crossref_primary_10_2174_0929867328666210804090224
crossref_primary_10_1186_s12859_023_05148_9
crossref_primary_10_1155_2022_4433627
crossref_primary_10_3389_fgene_2022_1029300
crossref_primary_10_3389_fcell_2021_617569
Cites_doi 10.1126/science.1121566
10.1002/jso.23064
10.18632/oncotarget.15061
10.1093/bioinformatics/btq241
10.1093/bib/bbx130
10.1038/srep21106
10.3322/canjclin.44.1.27
10.1038/srep27036
10.1111/j.1742-4658.2009.07383.x
10.1038/onc.2012.636
10.1371/journal.pcbi.1006418
10.1093/bioinformatics/bty327
10.1080/15476286.2017.1312226
10.1016/j.canlet.2010.10.006
10.1186/1471-2164-11-S4-S5
10.1038/nature06174
10.1093/bioinformatics/btu269
10.1371/journal.pone.0003420
10.1093/bioinformatics/btv039
10.1093/cvr/cvn156
10.1159/000350100
10.1038/nrc1997
10.1016/j.cell.2009.01.002
10.7150/thno.19168
10.1093/nar/gki200
10.1038/nrg.2016.134
10.1001/jamanetworkopen.2019.9292
10.1093/carcin/bgs259
10.1093/nar/gkn714
10.3389/fgene.2018.00234
10.1038/srep13877
10.1038/s41598-017-02800-2
10.1016/j.gpb.2017.02.002
10.1093/bioinformatics/btt677
10.1186/1752-0509-7-101
10.18632/oncotarget.11251
10.1158/1078-0432.CCR-16-0414
10.1093/bioinformatics/btx390
10.1016/S0140-6736(05)17706-X
10.1038/nrc1840
10.1038/onc.2010.237
10.1038/nature09783
10.1093/nar/gkt1023
10.1016/S0092-8674(01)00616-X
10.1016/j.critrevonc.2016.11.017
10.1093/bioinformatics/btr500
10.1371/journal.pone.0070204
10.1161/CIRCRESAHA.107.163147
10.1093/bioinformatics/bty503
10.1159/000490834
10.1038/srep05501
10.1093/bioinformatics/btw715
10.1016/S0092-8674(04)00045-5
10.1016/S0140-6736(05)66546-4
10.1039/c2mb25180a
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz159
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 496
ExternalDocumentID 31927572
10_1093_bib_bbz159
10.1093/bib/bbz159
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c345t-4c54fc5de2947f5bc45d0188365ad52824c01eb7ef2731e126f0ee93d6626433
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 03:52:13 EDT 2025
Mon Jun 30 11:00:46 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords microRNA
association prediction
disease
matrix completion
fast iterative shrinkage-thresholding algorithm
neighborhood constraint
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-4c54fc5de2947f5bc45d0188365ad52824c01eb7ef2731e126f0ee93d6626433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31927572
PQID 2529968382
PQPubID 26846
PageCount 12
ParticipantIDs proquest_miscellaneous_2337069467
proquest_journals_2529968382
pubmed_primary_31927572
crossref_citationtrail_10_1093_bib_bbz159
crossref_primary_10_1093_bib_bbz159
oup_primary_10_1093_bib_bbz159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Bartel (2021012203431344100_ref3) 2009; 136
Karp (2021012203431344100_ref5) 2005; 310
Chen (2021012203431344100_ref26) 2016; 7
Chen (2021012203431344100_ref30) 2017; 14
DeCosse (2021012203431344100_ref43) 1994; 44
Small (2021012203431344100_ref12) 2011; 469
Natarajan (2021012203431344100_ref35) 2014; 30
Bartel (2021012203431344100_ref2) 2004; 116
Chen (2021012203431344100_ref28) 2018; 9
Han (2021012203431344100_ref52) 2013; 31
Zhang (2021012203431344100_ref45) 2018; 47
Jiang (2021012203431344100_ref40) 2009; 37
Wang (2021012203431344100_ref48) 2012; 33
Xu (2021012203431344100_ref54) 2019; 2
Weitz (2021012203431344100_ref41) 2005; 365
Chen (2021012203431344100_ref24) 2012; 8
Xuan (2021012203431344100_ref21) 2013; 8
Kurashige (2021012203431344100_ref50) 2012; 106
Lu (2021012203431344100_ref62) 2008; 3
Lu (2021012203431344100_ref36) 2018; 34
Xiao (2021012203431344100_ref44) 2017; 7
van Laarhoven (2021012203431344100_ref59) 2011; 27
Chen (2021012203431344100_ref31) 2015; 5
Wang (2021012203431344100_ref58) 2010; 26
Lacombe (2021012203431344100_ref56) 2017; 109
Chen (2021012203431344100_ref60) 2017; 33
Liu (2021012203431344100_ref14) 2010; 29
Jiang (2021012203431344100_ref18) 2010; 4
Latronico (2021012203431344100_ref11) 2007; 101
Short (2021012203431344100_ref47) 2017; 95
Xuan (2021012203431344100_ref25) 2015; 31
Zhang (2021012203431344100_ref49) 2017; 23
Bracken (2021012203431344100_ref8) 2016; 17
Siegel (2021012203431344100_ref42) 2019
Cheng (2021012203431344100_ref4) 2005; 33
Kong (2021012203431344100_ref9) 2014; 33
Mork (2021012203431344100_ref19) 2014; 30
Chen (2021012203431344100_ref17) 2019; 20
Urbich (2021012203431344100_ref10) 2008; 79
Ma (2021012203431344100_ref13) 2007; 449
Chen (2021012203431344100_ref33) 2018; 34
Veronesi (2021012203431344100_ref51) 2005; 365
Akao (2021012203431344100_ref57) 2011; 300
Chen (2021012203431344100_ref27) 2018; 14
Ambros (2021012203431344100_ref1) 2001; 107
Pasquier (2021012203431344100_ref20) 2016; 6
Chen (2021012203431344100_ref22) 2016; 6
Patel (2021012203431344100_ref53) 2017; 7
Fan (2021012203431344100_ref61) 2018
Gao (2021012203431344100_ref15) 1802; 2019
Shi (2021012203431344100_ref23) 2013; 7
Yang (2021012203431344100_ref39) 2010; 11
Calin (2021012203431344100_ref16) 2006; 6
Ji (2021012203431344100_ref63) 2009
Chen (2021012203431344100_ref34) 2017
Huang (2021012203431344100_ref37) 2017; 33
Borralho (2021012203431344100_ref46) 2009; 276
Esquela-Kerscher (2021012203431344100_ref6) 2006; 6
Calin (2021012203431344100_ref7) 2006; 6
Li (2021012203431344100_ref32) 2017; 8
Li (2021012203431344100_ref38) 2013; 42
McGee (2021012203431344100_ref55) 2017; 15
Chen (2021012203431344100_ref29) 2014; 4
References_xml – volume: 310
  start-page: 1288
  year: 2005
  ident: 2021012203431344100_ref5
  article-title: Encountering microRNAs in cell fate signaling
  publication-title: Science
  doi: 10.1126/science.1121566
– volume: 106
  start-page: 188
  year: 2012
  ident: 2021012203431344100_ref50
  article-title: Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma
  publication-title: J Surg Oncol
  doi: 10.1002/jso.23064
– volume: 8
  start-page: 21187
  year: 2017
  ident: 2021012203431344100_ref32
  article-title: MCMDA: matrix completion for MiRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15061
– volume: 26
  start-page: 1644
  year: 2010
  ident: 2021012203431344100_ref58
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– start-page: 457
  volume-title: An accelerated gradient method for trace norm minimization. Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Quebec
  year: 2009
  ident: 2021012203431344100_ref63
– volume: 20
  start-page: 515
  year: 2019
  ident: 2021012203431344100_ref17
  article-title: MicroRNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx130
– volume: 6
  start-page: 21106
  year: 2016
  ident: 2021012203431344100_ref22
  article-title: WBSMDA: within and between score for MiRNA-disease association prediction
  publication-title: Sci Rep
  doi: 10.1038/srep21106
– volume: 44
  start-page: 27
  year: 1994
  ident: 2021012203431344100_ref43
  article-title: Colorectal cancer: detection, treatment, and rehabilitation
  publication-title: CA Cancer J Clin
  doi: 10.3322/canjclin.44.1.27
– volume: 6
  start-page: 27036
  year: 2016
  ident: 2021012203431344100_ref20
  article-title: Prediction of miRNA-disease associations with a vector space model
  publication-title: Sci Rep
  doi: 10.1038/srep27036
– volume: 276
  start-page: 6689
  year: 2009
  ident: 2021012203431344100_ref46
  article-title: MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2009.07383.x
– volume: 33
  start-page: 679
  year: 2014
  ident: 2021012203431344100_ref9
  article-title: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2012.636
– volume: 14
  start-page: e1006418
  year: 2018
  ident: 2021012203431344100_ref27
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006418
– volume: 34
  start-page: 3357
  year: 2018
  ident: 2021012203431344100_ref36
  article-title: Prediction of lncRNA-disease associations based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty327
– volume: 14
  start-page: 952
  year: 2017
  ident: 2021012203431344100_ref30
  article-title: Wu Q-F, Yan G-Y. RKNNMDA: ranking-based KNN for MiRNA-disease association prediction
  publication-title: RNA Biol
  doi: 10.1080/15476286.2017.1312226
– volume: 300
  start-page: 197
  year: 2011
  ident: 2021012203431344100_ref57
  article-title: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2010.10.006
– volume: 11
  start-page: S5
  year: 2010
  ident: 2021012203431344100_ref39
  article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-S4-S5
– volume: 449
  start-page: 682
  year: 2007
  ident: 2021012203431344100_ref13
  article-title: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer
  publication-title: Nature
  doi: 10.1038/nature06174
– volume: 30
  start-page: i60
  year: 2014
  ident: 2021012203431344100_ref35
  article-title: Inductive matrix completion for predicting gene-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu269
– volume: 3
  start-page: e3420
  year: 2008
  ident: 2021012203431344100_ref62
  article-title: An analysis of human microRNA and disease associations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– start-page: 348
  volume-title: Neighborhood Constraint Matrix Completion for Drug-Target Interaction Prediction. Cham
  year: 2018
  ident: 2021012203431344100_ref61
– volume: 31
  start-page: 1805
  year: 2015
  ident: 2021012203431344100_ref25
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– volume: 4
  issue: S2
  year: 2010
  ident: 2021012203431344100_ref18
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst Biol
– volume: 79
  start-page: 581
  year: 2008
  ident: 2021012203431344100_ref10
  article-title: Role of microRNAs in vascular diseases, inflammation, and angiogenesis
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvn156
– volume: 31
  start-page: 823
  year: 2013
  ident: 2021012203431344100_ref52
  article-title: MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000350100
– volume: 6
  start-page: 857
  year: 2006
  ident: 2021012203431344100_ref7
  article-title: MicroRNA signatures in human cancers
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1997
– volume: 136
  start-page: 215
  year: 2009
  ident: 2021012203431344100_ref3
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 7
  start-page: 1901
  year: 2017
  ident: 2021012203431344100_ref44
  article-title: Therapeutic inhibition of miR-4260 suppresses colorectal cancer via targeting MCC and SMAD4
  publication-title: Theranostics
  doi: 10.7150/thno.19168
– volume: 33
  start-page: 1290
  year: 2005
  ident: 2021012203431344100_ref4
  article-title: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki200
– volume: 17
  start-page: 719
  year: 2016
  ident: 2021012203431344100_ref8
  article-title: A network-biology perspective of microRNA function and dysfunction in cancer
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.134
– volume: 2
  start-page: e1992e92
  year: 2019
  ident: 2021012203431344100_ref54
  article-title: Association of Germline Variants in natural killer cells with tumor immune microenvironment subtypes, tumor-infiltrating lymphocytes, immunotherapy response, clinical outcomes, and cancer risk
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.9292
– volume: 33
  start-page: 2147
  year: 2012
  ident: 2021012203431344100_ref48
  article-title: MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs259
– volume: 37
  start-page: D98
  year: 2009
  ident: 2021012203431344100_ref40
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 9
  start-page: 234
  year: 2018
  ident: 2021012203431344100_ref28
  article-title: TLHNMDA: triple layer heterogeneous network based inference for MiRNA-disease association prediction
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00234
– volume: 5
  start-page: 13877
  year: 2015
  ident: 2021012203431344100_ref31
  article-title: RBMMMDA: predicting multiple types of disease-microRNA associations
  publication-title: Sci Rep
  doi: 10.1038/srep13877
– volume: 7
  start-page: 4263
  year: 2017
  ident: 2021012203431344100_ref53
  article-title: miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02800-2
– volume: 2019
  start-page: 10
  year: 1802
  ident: 2021012203431344100_ref15
  article-title: Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction
  publication-title: Nat Commun
– volume: 15
  start-page: 121
  year: 2017
  ident: 2021012203431344100_ref55
  article-title: Network analysis reveals a Signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2017.02.002
– volume: 95
  start-page: 22
  year: 2017
  ident: 2021012203431344100_ref47
  article-title: Esophageal cancer
  publication-title: Am Fam Physician
– volume: 30
  start-page: 392
  year: 2014
  ident: 2021012203431344100_ref19
  article-title: Protein-driven inference of miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 7
  start-page: 101
  year: 2013
  ident: 2021012203431344100_ref23
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-101
– volume: 7
  start-page: 65257
  year: 2016
  ident: 2021012203431344100_ref26
  article-title: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 23
  start-page: 298
  year: 2017
  ident: 2021012203431344100_ref49
  article-title: Downregulation of MicroRNA-644a promotes Esophageal squamous cell carcinoma aggressiveness and stem cell–like phenotype via Dysregulation of PITX2
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-0414
– volume: 33
  start-page: 3195
  year: 2017
  ident: 2021012203431344100_ref37
  article-title: Matrix completion with side information and its applications in predicting the antigenicity of influenza viruses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx390
– volume: 365
  start-page: 153
  year: 2005
  ident: 2021012203431344100_ref41
  article-title: Colorectal cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)17706-X
– volume: 6
  start-page: 259
  year: 2006
  ident: 2021012203431344100_ref6
  article-title: Oncomirs—microRNAs with a role in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1840
– volume: 29
  start-page: 4914
  year: 2010
  ident: 2021012203431344100_ref14
  article-title: miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2010.237
– volume: 469
  start-page: 336
  year: 2011
  ident: 2021012203431344100_ref12
  article-title: Pervasive roles of microRNAs in cardiovascular biology
  publication-title: Nature
  doi: 10.1038/nature09783
– start-page: 7
  volume-title: Cancer statistics, 2019
  year: 2019
  ident: 2021012203431344100_ref42
– year: 2017
  ident: 2021012203431344100_ref34
  article-title: A flexible and robust multi-source learning algorithm for drug repositioning
  publication-title: In: Acm International Conference on Bioinformatics
– volume: 6
  start-page: 857
  year: 2006
  ident: 2021012203431344100_ref16
  article-title: MicroRNA signatures in human cancers
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1997
– volume: 42
  start-page: D1070
  year: 2013
  ident: 2021012203431344100_ref38
  article-title: Tu J et al. HMDD v2. 0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1023
– volume: 107
  start-page: 823
  year: 2001
  ident: 2021012203431344100_ref1
  article-title: microRNAs: tiny regulators with great potential
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00616-X
– volume: 109
  start-page: 69
  year: 2017
  ident: 2021012203431344100_ref56
  article-title: Emergence of miR-34a in radiation therapy
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2016.11.017
– volume: 27
  start-page: 3036
  year: 2011
  ident: 2021012203431344100_ref59
  article-title: Gaussian interaction profile kernels for predicting drug-target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 8
  start-page: e70204
  year: 2013
  ident: 2021012203431344100_ref21
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070204
– volume: 101
  start-page: 1225
  year: 2007
  ident: 2021012203431344100_ref11
  article-title: Emerging role of MicroRNAs in cardiovascular biology
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.107.163147
– volume: 34
  start-page: 4256
  year: 2018
  ident: 2021012203431344100_ref33
  article-title: Predicting miRNA-disease association based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– volume: 47
  start-page: 1432
  year: 2018
  ident: 2021012203431344100_ref45
  article-title: Knockdown of MiR-20a enhances sensitivity of colorectal cancer cells to Cisplatin by increasing ASK1 expression
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000490834
– volume: 4
  start-page: 5501
  year: 2014
  ident: 2021012203431344100_ref29
  article-title: Semi-supervised learning for potential human microRNA-disease associations inference
  publication-title: Sci Rep
  doi: 10.1038/srep05501
– volume: 33
  start-page: 733
  year: 2017
  ident: 2021012203431344100_ref60
  article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw715
– volume: 116
  start-page: 281
  year: 2004
  ident: 2021012203431344100_ref2
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 365
  start-page: 1727
  year: 2005
  ident: 2021012203431344100_ref51
  article-title: Breast cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66546-4
– volume: 8
  start-page: 2792
  year: 2012
  ident: 2021012203431344100_ref24
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb25180a
SSID ssj0020781
Score 2.629221
Snippet Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human...
Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases....
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Algorithms
Biological activity
Biomarkers
Breast
Breast cancer
Case studies
Colon
Colorectal cancer
Computer applications
Constraint modelling
Disease
Esophageal cancer
Esophagus
Information processing
Iterative methods
Mathematical models
MicroRNAs
miRNA
Neighborhoods
Neoplasms
Optimization
Predictions
Reliability analysis
Similarity
Therapeutic targets
Tumors
Title NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion
URI https://www.ncbi.nlm.nih.gov/pubmed/31927572
https://www.proquest.com/docview/2529968382
https://www.proquest.com/docview/2337069467
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIb6u1rOjFw2KTfSXeSlVEaAWp0FvY7G5A0ChtCurJ_-A_9Jc4k6SVYtFLCGSWDTO7O8_9hpATgak5EC6LVWiZCLRjxijFtEtjY8H_cA5DA72-ur4XN0M5rItoxgtS-DE_Sx_SszR9B70LJy08ESF_cDucuVUIV1PdIdIMwd2nIKRzQ-fUztxVtl8WZalZrtbJWm0S0k4lww2y5PNNslI1iXzbIqbf7XV7F51z-vRw1-98fXzWSRVqflhLX0aYcSlf69Y7NMeoJ4gYgYupRTsQ20EU9AlR-V9pWUzuccQ2GVxdDrrXrG6MwCwXsmDCSpFZ6XwYC53J1Arp2kEUcSWNk-BECdsOfKp9BsZJ4INQZW3vY-4UuC-C8x2ynD_nfo9QIzMjBQehRE4oKw3PMCwaG-_Bj5JRg5xO2ZbYGjQcf_YxqZLXPAEWJxWLG-R4RvtSQWUspGoB9_8kaE4Fk9T7aZyEEtSmingUNsjR7DPsBExvmNw_T4CGc43XeJVukN1KoLNp4KAJtdTh_n-zH5DVEKtW2gELoiZZLkYTfwhmR5G2ylX3DddA1dg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NCMCMDA%3A+miRNA-disease+association+prediction+through+neighborhood+constraint+matrix+completion&rft.jtitle=Briefings+in+bioinformatics&rft.au=Chen%2C+Xing&rft.au=Sun%2C+Lian-Gang&rft.au=Zhao%2C+Yan&rft.date=2021-01-18&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=485&rft_id=info:doi/10.1093%2Fbib%2Fbbz159&rft_id=info%3Apmid%2F31927572&rft.externalDocID=31927572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon