Capacity optimization and economic analysis of PV–hydrogen hybrid systems with physical solar power curve modeling

Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operatio...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 288; p. 117128
Main Authors Yang, Guoming, Zhang, Hao, Wang, Wenting, Liu, Bai, Lyu, Chao, Yang, Dazhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2023
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2023.117128

Cover

Loading…
Abstract Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems. •Sizing and economic analysis of PV–hydrogen hybrid systems are conducted.•The model involving the physical modeling of PV is verified in Heilongjiang, China.•Refined modeling of PV increases the annual profit by up to 38.9%.•The impact of government policy on equipment specs and economics is substantial.•The payback time of PV–hydrogen hybrid systems is ∼11 years.
AbstractList Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems. •Sizing and economic analysis of PV–hydrogen hybrid systems are conducted.•The model involving the physical modeling of PV is verified in Heilongjiang, China.•Refined modeling of PV increases the annual profit by up to 38.9%.•The impact of government policy on equipment specs and economics is substantial.•The payback time of PV–hydrogen hybrid systems is ∼11 years.
Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems.
ArticleNumber 117128
Author Yang, Dazhi
Zhang, Hao
Wang, Wenting
Liu, Bai
Yang, Guoming
Lyu, Chao
Author_xml – sequence: 1
  givenname: Guoming
  surname: Yang
  fullname: Yang, Guoming
– sequence: 2
  givenname: Hao
  orcidid: 0000-0001-7298-0229
  surname: Zhang
  fullname: Zhang, Hao
  email: zh_hit@hit.edu.cn
– sequence: 3
  givenname: Wenting
  surname: Wang
  fullname: Wang, Wenting
– sequence: 4
  givenname: Bai
  surname: Liu
  fullname: Liu, Bai
– sequence: 5
  givenname: Chao
  surname: Lyu
  fullname: Lyu, Chao
– sequence: 6
  givenname: Dazhi
  orcidid: 0000-0003-2162-6873
  surname: Yang
  fullname: Yang, Dazhi
BookMark eNqFkM1OGzEURi0UJELoK1RedjPBf_MnddEqKqUSUlkAW8ux7xBHM_bUdhJNV30H3rBPgiF00w2rqyt95yzOOZo57wChj5QsKaHV5XYJTns3KLdkhPElpTVlzQma06ZuC8ZYPUNzQtuqaFoiztB5jFtCCC9JNUdppUalbZqwH5Md7G-VrHdYOYMhS_1gdX5UP0Ubse_w7cPfP0-byQT_CA5vpnWwBscpJhgiPti0weMmb7XqcfS9Cnj0BwhY78Ie8OAN9NY9XqDTTvURPrzdBbq_-na3ui5ufn7_sfp6U2guylSItak6Q0XJRc2rltUlNaI2RAm6FsZwLpq64lCKluhuXTKiWds0NSUVQMYYX6BPR-8Y_K8dxCQHGzX0vXLgd1FyIogQZdbk6efjVAcfY4BO5iivLVJQtpeUyJfYciv_xZYvseUxdsar__Ax2EGF6X3wyxGE3GFvIciobV6CsQF0ksbb9xTPHwaiTg
CitedBy_id crossref_primary_10_1016_j_energy_2024_131243
crossref_primary_10_1016_j_ijhydene_2024_02_140
crossref_primary_10_1016_j_desal_2024_117475
crossref_primary_10_1016_j_rser_2023_113992
crossref_primary_10_1016_j_enconman_2024_118356
crossref_primary_10_1016_j_energy_2023_130078
crossref_primary_10_1016_j_solener_2024_112312
crossref_primary_10_1109_TPWRS_2024_3422173
crossref_primary_10_1007_s00376_024_4214_7
crossref_primary_10_1016_j_ijhydene_2024_12_079
crossref_primary_10_1016_j_ijhydene_2025_01_360
crossref_primary_10_1016_j_apenergy_2024_123914
crossref_primary_10_1016_j_decarb_2024_100050
crossref_primary_10_1016_j_energy_2025_135011
crossref_primary_10_1016_j_fuel_2024_131323
crossref_primary_10_1016_j_ecmx_2024_100553
crossref_primary_10_1016_j_renene_2024_120817
crossref_primary_10_1016_j_enconman_2024_119134
crossref_primary_10_1016_j_enconman_2024_118148
crossref_primary_10_1007_s11356_023_28858_2
crossref_primary_10_1016_j_enconman_2023_117752
crossref_primary_10_1016_j_energy_2025_134828
crossref_primary_10_1016_j_rser_2023_113549
crossref_primary_10_1016_j_egyr_2023_12_031
crossref_primary_10_1016_j_measurement_2024_114714
crossref_primary_10_1016_j_rser_2024_114655
crossref_primary_10_1016_j_ijhydene_2025_01_276
crossref_primary_10_1109_TIM_2024_3421431
crossref_primary_10_1016_j_solmat_2024_113106
crossref_primary_10_1016_j_renene_2025_122549
crossref_primary_10_1007_s00376_024_3164_4
crossref_primary_10_1016_j_ijhydene_2025_03_067
crossref_primary_10_1016_j_est_2024_115273
crossref_primary_10_1051_e3sconf_202458101022
crossref_primary_10_3390_en16166055
crossref_primary_10_1088_1742_6596_2774_1_012031
crossref_primary_10_1016_j_est_2023_109417
Cites_doi 10.1016/j.enpol.2022.112807
10.1016/j.ijhydene.2012.03.029
10.1016/j.enconman.2023.116772
10.1016/j.enconman.2022.115870
10.1016/j.rser.2022.112772
10.1016/j.solener.2020.03.109
10.1016/S0038-092X(00)00156-0
10.1002/we.2285
10.1016/j.solener.2005.06.010
10.1016/j.solener.2007.04.008
10.1016/j.renene.2018.01.102
10.1002/pip.1033
10.1016/j.solener.2016.06.062
10.1016/j.energy.2018.06.185
10.1016/j.enconman.2018.02.007
10.1016/j.enconman.2022.116285
10.4313/TEEM.2013.14.3.160
10.1016/j.ijhydene.2022.05.270
10.1016/j.ijhydene.2019.06.035
10.21105/joss.00884
10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2
10.1016/j.enconman.2018.08.065
10.1016/j.apenergy.2023.120762
10.1016/j.apenergy.2021.118274
10.1016/j.solmat.2003.11.018
10.1109/PVSC.2008.4922827
10.1016/0038-092X(90)90055-H
10.1016/j.rser.2022.112362
10.1016/j.rser.2018.03.003
10.1016/j.enconman.2022.116057
10.1016/j.rser.2019.109594
10.1063/5.0067997
10.1016/j.enconman.2023.116693
10.1016/j.rser.2022.112195
10.1016/j.apenergy.2023.120699
10.1016/j.rser.2022.112821
10.1016/j.ijhydene.2020.05.207
10.1016/j.enconman.2017.05.014
10.1016/j.ijhydene.2020.07.258
10.1016/j.asej.2021.101669
10.1016/0038-092X(60)90062-1
10.1016/0038-092X(88)90045-X
10.1109/TPWRS.2022.3200697
10.1016/j.rser.2021.111421
10.1016/j.solener.2003.12.003
10.1016/j.solener.2020.10.089
10.1109/JPHOTOV.2014.2364133
10.1016/j.apenergy.2019.113807
10.1016/j.esr.2018.12.003
10.1016/j.rser.2022.112364
10.1109/PVSC40753.2019.8980496
10.1016/j.rser.2022.112356
10.1016/j.renene.2014.08.027
10.1016/j.apenergy.2015.05.035
10.1016/j.rser.2016.10.022
10.1016/j.solener.2021.02.019
10.1016/j.solener.2021.05.023
10.1016/j.solener.2020.02.067
10.1016/j.apenergy.2016.11.048
10.1038/s41560-019-0326-1
10.1016/j.ijhydene.2021.11.211
10.1016/j.solener.2021.09.044
10.1016/j.solener.2015.10.010
10.1063/5.0100939
10.1016/j.ijhydene.2022.05.193
10.1016/j.enconman.2018.10.021
10.1016/j.jclepro.2021.129954
10.17775/CSEEJPES.2017.0007
10.1016/j.solener.2017.03.027
10.1016/j.renene.2022.01.045
10.1016/j.rser.2021.110735
10.1016/j.solener.2015.04.012
10.1016/j.ijhydene.2020.02.089
10.1016/S0927-0248(00)00408-6
10.1016/j.rser.2018.03.054
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2023.117128
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2023_117128
S0196890423004740
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-4bd6fd1453473692751d47d0a41b4dd3348763e5490cfb520c29887106eed1423
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri Sep 05 05:45:42 EDT 2025
Tue Jul 01 03:03:32 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Fri Feb 23 02:34:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TMY
Economic analysis
BHI
STC
DHI
HFC
Solar power curve
SPA
Hydrogen
PV
GHI
MPP
NREL
ECMWF
NPV
NOCT
HFV
NSRDB
DOE
PV–hydrogen hybrid systems
CEC
AST
POA
NIC
PSM
IMS
LCOE
MODIS
AR
LCOH
O&M
PEM
Model chain
API
BNI
GTI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-4bd6fd1453473692751d47d0a41b4dd3348763e5490cfb520c29887106eed1423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2162-6873
0000-0001-7298-0229
PQID 3040445487
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040445487
crossref_citationtrail_10_1016_j_enconman_2023_117128
crossref_primary_10_1016_j_enconman_2023_117128
elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Şevik (b18) 2022; 47
Liu, Chen, Hu (b41) 2022
Yang, van der Meer (b9) 2021; 140
Yang (b59) 2021; 13
Chen, Lin, Bu, Wang, Zhang (b2) 2022
International Energy Agency (b35) 2021
Yang, Jiang, You (b93) 2020; 45
Nord Pool (b85) 2022
International Energy Agency (b42) 2022
Sengupta, Xie, Lopez, Habte, Maclaurin, Shelby (b65) 2018; 89
US Environmental Protection Agency (b89) 2022
Manualzz (b69) 2015
Samy, Mosaad, Barakat (b19) 2021; 46
Al-Saqlawi, Madani, Mac Dowell (b5) 2018; 178
Reda, Andreas (b51) 2004; 76
Lawrence Berkeley National Laboratory (b92) 2021
Singh, Baredar, Gupta (b4) 2017; 145
Gueymard, Ruiz-Arias (b56) 2016; 128
Yang (b57) 2022; 159
.
Michalsky (b49) 1988; 40
Cai, Kong (b87) 2017; 3
Visser, Elsinga, AlSkaif, Van Sark (b29) 2022; 14
Mayer, Gróf (b34) 2020; 202
Pandit, Infield, Carroll (b21) 2019; 22
Gueymard (b60) 2008; 82
Santiago, Trillo-Montero, Moreno-Garcia, Pallarés-López, Luna-Rodríguez (b66) 2018; 90
Nasser, Hassan (b20) 2023; 278
Siemens Energy (b7) 2023
Falcone, Hiete, Sapio (b44) 2021; 31
Lorenz, Scheidsteger, Hurka, Heinemann, Kurz (b32) 2011; 19
International Energy Agency (b43) 2021
Luque, Antonanzas-Torres, Escobar (b97) 2018; 174
Huang, Zong, You, Træholt, Zheng, Wang, Zheng, Xiao (b15) 2023; 335
Dobos (b74) 2014
Martin, Ruiz (b75) 2001; 70
De Soto, Klein, Beckman (b72) 2006; 80
Dong, Wu, Xu, Liu, Guan (b86) 2022; 308
Deng, Jiang (b88) 2020; 45
Rodríguez-Gallegos, Yang, Gandhi, Bieri, Reindl, Panda (b82) 2018; 160
Markovics, Mayer (b23) 2021; 283
Holland N, Pang X, Herzberg W, Karalus S, Bor J, Lorenz E. Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC). 2019, p. 1609–14.
Wang, Yang, Huang, Lyu, Zhang, Han (b33) 2022; 161
Glenk, Reichelstein (b90) 2019; 4
Satyapal (b91) 2009
Pacudan (b37) 2018; 122
Heilongjiang Province People’s Government (b84) 2022
Kılıç, Kekezoğlu (b38) 2022; 13
Chin, Salam, Ishaque (b76) 2015; 154
Duffie, Beckman (b71) 2013
Jiang, Huang, Yang (b99) 2022; 47
Gilman (b28) 2015
Mayer (b26) 2021; 227
Brown, O’Sullivan (b83) 2020; 121
Matute, Yusta, Beyza, Monteiro (b12) 2022; 47
Mayer, Yang (b27) 2022; 168
Perez, Ineichen, Seals, Michalsky, Stewart (b64) 1990; 44
EnergySage (b81) 2012
Wang, Xue, Guo, Ma, Zhou, Liu, Yan (b6) 2022; 268
Markovics, Mayer (b22) 2022; 161
Fan, Zhang, Xu, Ren (b11) 2022; 8
Liu, Almansoori, Fowler, Elkamel (b46) 2012; 37
National Renewable Energy Laboratory (b94) 2022
Pal, Mukherjee (b16) 2021; 149
Mayer (b25) 2020
Kamphuis, Gueymard, Holtzapple, Duggleby, Annamalai (b63) 2020; 201
Che, Zhou, Chai (b39) 2022; 162
Sauer, Roessler, Hansen (b77) 2015; 5
Xie, Sengupta, Habte, Andreas (b70) 2022; 161
Hoadley (b52) 2021; 220
Gökçek, Kale (b45) 2018; 161
Roberts, Zevallos, Cassula (b96) 2017; 72
Blanco-Muriel, Alarcón-Padilla, López-Moratalla, Lara-Coira (b50) 2001; 70
Maxwell (b61) 1987
Zhang, Zhang, Yang, Shuai, Lougou, Pan, Wang (b36) 2023; 279
Yang (b62) 2016; 136
Holmgren, Hansen, Mikofski (b53) 2018; 3
Mayer (b24) 2022; 168
Jahangiri, Rezaei, Mostafaeipour, Goojani, Saghaei, Dehshiri, Dehshiri (b8) 2022; 186
Nasser, Megahed, Ookawara, Hassan (b3) 2022; 267
Wang, An, Zhao, Pan, Song, Hu, Tan (b14) 2023; 336
Amaro e Silva, Brito (b31) 2019; 255
Xu, Hu, Liu, Du, Huang, Chen (b10) 2022; 331
Øgaard, Aarseth, Skomedal, Riise, Sartori, Selj (b98) 2021; 223
Jiang, Deng, You (b48) 2019; 44
Jain, Kapoor (b78) 2004; 81
Kratochvil, Boyson, King (b68) 2004
Lawrence Berkeley National Laboratory (b95) 2021
Mayer, Gróf (b79) 2020; 202
Puranen, Kosonen, Ahola (b13) 2021; 213
Xu, Xu, Dong, Liu (b47) 2017; 196
Jahangiri, Haghani, Alidadi Shamsabadi, Mostafaeipour, Pomares (b17) 2019; 23
Heo (b67) 2013; 14
Driesse A, Jain P, Harrison S. Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters. In: 2008 33rd IEEE photovoltaic specialists conference. 2008, p. 1–6.
Anders, Qian, Zhao, Philipp, Liu (b100) 2021
Sun, yan Nie (b40) 2015; 74
Boland, Scott, Luther (b55) 2001; 12
Abraim, Salihi, El Alani, Hanrieder, Ghennioui, Ghennioui, El Ydrissi, Azouzoute (b1) 2022; 270
Liu, Jordan (b54) 1960; 4
Engerer (b58) 2015; 116
Marion (b73) 2017; 147
Mayer (10.1016/j.enconman.2023.117128_b34) 2020; 202
Matute (10.1016/j.enconman.2023.117128_b12) 2022; 47
Liu (10.1016/j.enconman.2023.117128_b41) 2022
Nasser (10.1016/j.enconman.2023.117128_b3) 2022; 267
Hoadley (10.1016/j.enconman.2023.117128_b52) 2021; 220
US Environmental Protection Agency (10.1016/j.enconman.2023.117128_b89) 2022
Che (10.1016/j.enconman.2023.117128_b39) 2022; 162
Reda (10.1016/j.enconman.2023.117128_b51) 2004; 76
Pal (10.1016/j.enconman.2023.117128_b16) 2021; 149
Brown (10.1016/j.enconman.2023.117128_b83) 2020; 121
10.1016/j.enconman.2023.117128_b80
Yang (10.1016/j.enconman.2023.117128_b57) 2022; 159
Gilman (10.1016/j.enconman.2023.117128_b28) 2015
Wang (10.1016/j.enconman.2023.117128_b33) 2022; 161
Maxwell (10.1016/j.enconman.2023.117128_b61) 1987
Manualzz (10.1016/j.enconman.2023.117128_b69) 2015
Markovics (10.1016/j.enconman.2023.117128_b22) 2022; 161
Yang (10.1016/j.enconman.2023.117128_b93) 2020; 45
Dong (10.1016/j.enconman.2023.117128_b86) 2022; 308
Santiago (10.1016/j.enconman.2023.117128_b66) 2018; 90
International Energy Agency (10.1016/j.enconman.2023.117128_b35) 2021
Falcone (10.1016/j.enconman.2023.117128_b44) 2021; 31
Heilongjiang Province People’s Government (10.1016/j.enconman.2023.117128_b84) 2022
Anders (10.1016/j.enconman.2023.117128_b100) 2021
International Energy Agency (10.1016/j.enconman.2023.117128_b43) 2021
Jiang (10.1016/j.enconman.2023.117128_b99) 2022; 47
National Renewable Energy Laboratory (10.1016/j.enconman.2023.117128_b94) 2022
Liu (10.1016/j.enconman.2023.117128_b46) 2012; 37
Jiang (10.1016/j.enconman.2023.117128_b48) 2019; 44
Xie (10.1016/j.enconman.2023.117128_b70) 2022; 161
Pacudan (10.1016/j.enconman.2023.117128_b37) 2018; 122
Xu (10.1016/j.enconman.2023.117128_b10) 2022; 331
Jahangiri (10.1016/j.enconman.2023.117128_b8) 2022; 186
Engerer (10.1016/j.enconman.2023.117128_b58) 2015; 116
Visser (10.1016/j.enconman.2023.117128_b29) 2022; 14
Liu (10.1016/j.enconman.2023.117128_b54) 1960; 4
Sengupta (10.1016/j.enconman.2023.117128_b65) 2018; 89
EnergySage (10.1016/j.enconman.2023.117128_b81) 2012
Wang (10.1016/j.enconman.2023.117128_b14) 2023; 336
Mayer (10.1016/j.enconman.2023.117128_b25) 2020
Puranen (10.1016/j.enconman.2023.117128_b13) 2021; 213
Dobos (10.1016/j.enconman.2023.117128_b74) 2014
Mayer (10.1016/j.enconman.2023.117128_b79) 2020; 202
Markovics (10.1016/j.enconman.2023.117128_b23) 2021; 283
Nord Pool (10.1016/j.enconman.2023.117128_b85) 2022
Al-Saqlawi (10.1016/j.enconman.2023.117128_b5) 2018; 178
Amaro e Silva (10.1016/j.enconman.2023.117128_b31) 2019; 255
Şevik (10.1016/j.enconman.2023.117128_b18) 2022; 47
De Soto (10.1016/j.enconman.2023.117128_b72) 2006; 80
Xu (10.1016/j.enconman.2023.117128_b47) 2017; 196
Gueymard (10.1016/j.enconman.2023.117128_b56) 2016; 128
Holmgren (10.1016/j.enconman.2023.117128_b53) 2018; 3
Lorenz (10.1016/j.enconman.2023.117128_b32) 2011; 19
Luque (10.1016/j.enconman.2023.117128_b97) 2018; 174
Mayer (10.1016/j.enconman.2023.117128_b26) 2021; 227
10.1016/j.enconman.2023.117128_b30
Singh (10.1016/j.enconman.2023.117128_b4) 2017; 145
Kılıç (10.1016/j.enconman.2023.117128_b38) 2022; 13
Pandit (10.1016/j.enconman.2023.117128_b21) 2019; 22
Jain (10.1016/j.enconman.2023.117128_b78) 2004; 81
Fan (10.1016/j.enconman.2023.117128_b11) 2022; 8
Zhang (10.1016/j.enconman.2023.117128_b36) 2023; 279
Siemens Energy (10.1016/j.enconman.2023.117128_b7) 2023
Perez (10.1016/j.enconman.2023.117128_b64) 1990; 44
Chen (10.1016/j.enconman.2023.117128_b2) 2022
Yang (10.1016/j.enconman.2023.117128_b9) 2021; 140
Lawrence Berkeley National Laboratory (10.1016/j.enconman.2023.117128_b95) 2021
Marion (10.1016/j.enconman.2023.117128_b73) 2017; 147
Wang (10.1016/j.enconman.2023.117128_b6) 2022; 268
Chin (10.1016/j.enconman.2023.117128_b76) 2015; 154
Satyapal (10.1016/j.enconman.2023.117128_b91) 2009
Roberts (10.1016/j.enconman.2023.117128_b96) 2017; 72
Blanco-Muriel (10.1016/j.enconman.2023.117128_b50) 2001; 70
Martin (10.1016/j.enconman.2023.117128_b75) 2001; 70
Boland (10.1016/j.enconman.2023.117128_b55) 2001; 12
Yang (10.1016/j.enconman.2023.117128_b62) 2016; 136
Deng (10.1016/j.enconman.2023.117128_b88) 2020; 45
Gueymard (10.1016/j.enconman.2023.117128_b60) 2008; 82
Samy (10.1016/j.enconman.2023.117128_b19) 2021; 46
Gökçek (10.1016/j.enconman.2023.117128_b45) 2018; 161
Kratochvil (10.1016/j.enconman.2023.117128_b68) 2004
Abraim (10.1016/j.enconman.2023.117128_b1) 2022; 270
Jahangiri (10.1016/j.enconman.2023.117128_b17) 2019; 23
Rodríguez-Gallegos (10.1016/j.enconman.2023.117128_b82) 2018; 160
Duffie (10.1016/j.enconman.2023.117128_b71) 2013
Lawrence Berkeley National Laboratory (10.1016/j.enconman.2023.117128_b92) 2021
Sun (10.1016/j.enconman.2023.117128_b40) 2015; 74
Mayer (10.1016/j.enconman.2023.117128_b24) 2022; 168
Øgaard (10.1016/j.enconman.2023.117128_b98) 2021; 223
Glenk (10.1016/j.enconman.2023.117128_b90) 2019; 4
Nasser (10.1016/j.enconman.2023.117128_b20) 2023; 278
Sauer (10.1016/j.enconman.2023.117128_b77) 2015; 5
Heo (10.1016/j.enconman.2023.117128_b67) 2013; 14
Michalsky (10.1016/j.enconman.2023.117128_b49) 1988; 40
Kamphuis (10.1016/j.enconman.2023.117128_b63) 2020; 201
Mayer (10.1016/j.enconman.2023.117128_b27) 2022; 168
Yang (10.1016/j.enconman.2023.117128_b59) 2021; 13
International Energy Agency (10.1016/j.enconman.2023.117128_b42) 2022
Huang (10.1016/j.enconman.2023.117128_b15) 2023; 335
Cai (10.1016/j.enconman.2023.117128_b87) 2017; 3
References_xml – volume: 201
  start-page: 8
  year: 2020
  end-page: 12
  ident: b63
  article-title: Perspectives on the origin, derivation, meaning, and significance of the isotropic sky model
  publication-title: Sol Energy
– volume: 154
  start-page: 500
  year: 2015
  end-page: 519
  ident: b76
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review
  publication-title: Appl Energy
– volume: 3
  start-page: 44
  year: 2017
  end-page: 52
  ident: b87
  article-title: Techno-economic analysis of wind curtailment/hydrogen production/fuel cell vehicle system with high wind penetration in China
  publication-title: CSEE J Power Energy Syst
– volume: 174
  start-page: 615
  year: 2018
  end-page: 625
  ident: b97
  article-title: Effect of soiling in bifacial PV modules and cleaning schedule optimization
  publication-title: Energy Convers Manage
– volume: 72
  start-page: 1104
  year: 2017
  end-page: 1123
  ident: b96
  article-title: Assessment of photovoltaic performance models for system simulation
  publication-title: Renew Sustain Energy Rev
– year: 2022
  ident: b41
  article-title: Consumer acceptance under hydrogen energy promotion policy: Evidence from Yangtze River Delta
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 20721
  year: 2020
  end-page: 20739
  ident: b93
  article-title: Planning and operation of a hydrogen supply chain network based on the off-grid wind-hydrogen coupling system
  publication-title: Int J Hydrogen Energy
– volume: 227
  start-page: 532
  year: 2021
  end-page: 540
  ident: b26
  article-title: Influence of design data availability on the accuracy of physical photovoltaic power forecasts
  publication-title: Sol Energy
– volume: 213
  start-page: 246
  year: 2021
  end-page: 259
  ident: b13
  article-title: Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates
  publication-title: Sol Energy
– volume: 283
  year: 2021
  ident: b23
  article-title: Extensive comparison of physical models for photovoltaic power forecasting
  publication-title: Appl Energy
– volume: 220
  start-page: 80
  year: 2021
  end-page: 87
  ident: b52
  article-title: Efficient calculation of solar position using rectangular coordinates
  publication-title: Sol Energy
– volume: 202
  start-page: 210
  year: 2020
  end-page: 226
  ident: b79
  article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model
  publication-title: Sol Energy
– volume: 268
  year: 2022
  ident: b6
  article-title: Multi-objective capacity programming and operation optimization of an integrated energy system considering hydrogen energy storage for collective energy communities
  publication-title: Energy Convers Manage
– volume: 331
  year: 2022
  ident: b10
  article-title: Robust energy management for an on-grid hybrid hydrogen refueling and battery swapping station based on renewable energy
  publication-title: J Clean Prod
– volume: 336
  year: 2023
  ident: b14
  article-title: Role of electrolytic hydrogen in smart city decarbonization in China
  publication-title: Appl Energy
– volume: 122
  start-page: 362
  year: 2018
  end-page: 374
  ident: b37
  article-title: Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam
  publication-title: Renew Energy
– reference: Holland N, Pang X, Herzberg W, Karalus S, Bor J, Lorenz E. Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC). 2019, p. 1609–14.
– volume: 13
  year: 2022
  ident: b38
  article-title: A review of solar photovoltaic incentives and policy: Selected countries and Turkey
  publication-title: Ain Shams Eng J
– year: 2014
  ident: b74
  article-title: PVWatts version 5 manual
– volume: 121
  start-page: 109594
  year: 2020
  ident: b83
  article-title: Spatial and temporal variation in the value of solar power across united states electricity markets
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b95
  article-title: API key signup
– year: 2022
  ident: b94
  article-title: National Solar Radiation Database—The NSRDB dataset can be accessed in a variety of ways
– volume: 186
  start-page: 889
  year: 2022
  end-page: 903
  ident: b8
  article-title: Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach
  publication-title: Renew Energy
– volume: 335
  year: 2023
  ident: b15
  article-title: Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities
  publication-title: Appl Energy
– volume: 74
  start-page: 255
  year: 2015
  end-page: 262
  ident: b40
  article-title: A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry
  publication-title: Renew Energy
– volume: 81
  start-page: 269
  year: 2004
  end-page: 277
  ident: b78
  article-title: Exact analytical solutions of the parameters of real solar cells using Lambert W-function
  publication-title: Sol Energy Mater Sol Cells
– volume: 159
  year: 2022
  ident: b57
  article-title: Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations
  publication-title: Renew Sustain Energy Rev
– volume: 202
  start-page: 210
  year: 2020
  end-page: 226
  ident: b34
  article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model
  publication-title: Sol Energy
– volume: 145
  start-page: 398
  year: 2017
  end-page: 414
  ident: b4
  article-title: Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building
  publication-title: Energy Convers Manage
– volume: 168
  year: 2022
  ident: b24
  article-title: Benefits of physical and machine learning hybridization for photovoltaic power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 161
  year: 2022
  ident: b33
  article-title: Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate
  publication-title: Renew Sustain Energy Rev
– start-page: 1
  year: 2022
  end-page: 14
  ident: b2
  article-title: Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism
  publication-title: IEEE Trans Power Syst
– volume: 80
  start-page: 78
  year: 2006
  end-page: 88
  ident: b72
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol Energy
– year: 2023
  ident: b7
  article-title: The Middle East’s first solar-driven hydrogen electrolysis facility
– volume: 3
  start-page: 884
  year: 2018
  ident: b53
  article-title: Pvlib python: A python package for modeling solar energy systems
  publication-title: J Open Sour Softw
– volume: 14
  year: 2022
  ident: b29
  article-title: Open-source quality control routine and multi-year power generation data of 175 PV systems
  publication-title: J Renew Sustain Energy
– volume: 8
  start-page: 369
  year: 2022
  end-page: 379
  ident: b11
  article-title: Robustly coordinated operation of an emission-free microgrid with hybrid hydrogen-battery energy storage
  publication-title: CSEE J Power Energy Syst
– volume: 45
  start-page: 11527
  year: 2020
  end-page: 11537
  ident: b88
  article-title: Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 25202
  year: 2022
  end-page: 25213
  ident: b12
  article-title: Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A spanish case study
  publication-title: Int J Hydrogen Energy
– year: 2012
  ident: b81
  article-title: TMEIC solar inverters
– volume: 40
  start-page: 227
  year: 1988
  end-page: 235
  ident: b49
  article-title: The Astronomical Almanac’s algorithm for approximate solar position (1950–2050)
  publication-title: Sol Energy
– year: 2022
  ident: b42
  article-title: Green innovation fund—METI funds hydrogen supply chain
– volume: 5
  start-page: 152
  year: 2015
  end-page: 158
  ident: b77
  article-title: Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst
  publication-title: IEEE J Photovolt
– volume: 279
  year: 2023
  ident: b36
  article-title: Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide
  publication-title: Energy Convers Manage
– volume: 136
  start-page: 288
  year: 2016
  end-page: 302
  ident: b62
  article-title: Solar radiation on inclined surfaces: Corrections and benchmarks
  publication-title: Sol Energy
– volume: 70
  start-page: 431
  year: 2001
  end-page: 441
  ident: b50
  article-title: Computing the solar vector
  publication-title: Sol Energy
– year: 2013
  ident: b71
  article-title: Solar engineering of thermal processes
– volume: 4
  start-page: 216
  year: 2019
  end-page: 222
  ident: b90
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
– volume: 44
  start-page: 271
  year: 1990
  end-page: 289
  ident: b64
  article-title: Modeling daylight availability and irradiance components from direct and global irradiance
  publication-title: Sol Energy
– volume: 23
  start-page: 23
  year: 2019
  end-page: 32
  ident: b17
  article-title: Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants
  publication-title: Energy Strategy Rev
– volume: 308
  year: 2022
  ident: b86
  article-title: Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage
  publication-title: Appl Energy
– volume: 255
  year: 2019
  ident: b31
  article-title: Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation
  publication-title: Appl Energy
– reference: Driesse A, Jain P, Harrison S. Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters. In: 2008 33rd IEEE photovoltaic specialists conference. 2008, p. 1–6.
– volume: 168
  year: 2022
  ident: b27
  article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains
  publication-title: Renew Sustain Energy Rev
– volume: 47
  start-page: 5720
  year: 2022
  end-page: 5732
  ident: b99
  article-title: Electrolysis plant size optimization and benefit analysis of a far offshore wind-hydrogen system based on information gap decision theory and chance constraints programming
  publication-title: Int J Hydrogen Energy
– volume: 12
  start-page: 103
  year: 2001
  end-page: 116
  ident: b55
  article-title: Modelling the diffuse fraction of global solar radiation on a horizontal surface
  publication-title: Environmetrics
– volume: 82
  start-page: 272
  year: 2008
  end-page: 285
  ident: b60
  article-title: REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset
  publication-title: Sol Energy
– volume: 161
  year: 2022
  ident: b70
  article-title: The “Fresnel equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS)
  publication-title: Renew Sustain Energy Rev
– volume: 13
  year: 2021
  ident: b59
  article-title: Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance
  publication-title: J Renew Sustain Energy
– volume: 278
  year: 2023
  ident: b20
  article-title: Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat
  publication-title: Energy Convers Manage
– volume: 223
  start-page: 238
  year: 2021
  end-page: 247
  ident: b98
  article-title: Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection
  publication-title: Sol Energy
– year: 1987
  ident: b61
  article-title: A quasi-physical model for converting hourly global horizontal to direct normal insolation
– volume: 160
  start-page: 410
  year: 2018
  end-page: 429
  ident: b82
  article-title: A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study
  publication-title: Energy
– volume: 161
  year: 2022
  ident: b22
  article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction
  publication-title: Renew Sustain Energy Rev
– volume: 47
  start-page: 23935
  year: 2022
  end-page: 23956
  ident: b18
  article-title: Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus
  publication-title: Int J Hydrogen Energy
– year: 2020
  ident: b25
  article-title: Design optimization and power forecasting of photovoltaic power plants
– volume: 37
  start-page: 8905
  year: 2012
  end-page: 8916
  ident: b46
  article-title: Analysis of Ontario’s hydrogen economy demands from hydrogen fuel cell vehicles
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 11217
  year: 2021
  end-page: 11231
  ident: b19
  article-title: Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique
  publication-title: Int J Hydrogen Energy
– volume: 128
  start-page: 1
  year: 2016
  end-page: 30
  ident: b56
  article-title: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
  publication-title: Sol Energy
– volume: 76
  start-page: 577
  year: 2004
  end-page: 589
  ident: b51
  article-title: Solar position algorithm for solar radiation applications
  publication-title: Sol Energy
– volume: 149
  year: 2021
  ident: b16
  article-title: Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in north-east India
  publication-title: Renew Sustain Energy Rev
– year: 2022
  ident: b89
  article-title: Compare fuel cell vehicles
– year: 2015
  ident: b69
  article-title: Yingli YL250P-29b data sheet
– volume: 178
  start-page: 322
  year: 2018
  end-page: 334
  ident: b5
  article-title: Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman
  publication-title: Energy Convers Manage
– year: 2009
  ident: b91
  article-title: Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs
– year: 2021
  ident: b92
  article-title: Tracking the sun, 2022 edition
– volume: 161
  start-page: 215
  year: 2018
  end-page: 224
  ident: b45
  article-title: Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system
  publication-title: Energy Convers Manage
– volume: 31
  year: 2021
  ident: b44
  article-title: Hydrogen economy and sustainable development goals: Review and policy insights
  publication-title: Curr Opin Green Sustain Chem
– year: 2004
  ident: b68
  article-title: Photovoltaic array performance model
– volume: 90
  start-page: 70
  year: 2018
  end-page: 89
  ident: b66
  article-title: Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain
  publication-title: Renew Sustain Energy Rev
– volume: 267
  year: 2022
  ident: b3
  article-title: Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic
  publication-title: Energy Convers Manage
– volume: 14
  start-page: 160
  year: 2013
  end-page: 163
  ident: b67
  article-title: Characterization of wavelength effect on photovoltaic property of poly-Si solar cell using photoconductive atomic force microscopy (PC-AFM)
  publication-title: Trans Electr Electron Mater
– volume: 19
  start-page: 757
  year: 2011
  end-page: 771
  ident: b32
  article-title: Regional PV power prediction for improved grid integration
  publication-title: Prog Photovolt, Res Appl
– volume: 70
  start-page: 25
  year: 2001
  end-page: 38
  ident: b75
  article-title: Calculation of the PV modules angular losses under field conditions by means of an analytical model
  publication-title: Sol Energy Mater Sol Cells
– volume: 196
  start-page: 229
  year: 2017
  end-page: 237
  ident: b47
  article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China
  publication-title: Appl Energy
– volume: 89
  start-page: 51
  year: 2018
  end-page: 60
  ident: b65
  article-title: The national solar radiation data base (NSRDB)
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b43
  article-title: Global hydrogen review 2021
– volume: 44
  start-page: 19658
  year: 2019
  end-page: 19666
  ident: b48
  article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions
  publication-title: Int J Hydrogen Energy
– volume: 116
  start-page: 215
  year: 2015
  end-page: 237
  ident: b58
  article-title: Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia
  publication-title: Sol Energy
– volume: 147
  start-page: 344
  year: 2017
  end-page: 348
  ident: b73
  article-title: Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules
  publication-title: Sol Energy
– volume: 140
  year: 2021
  ident: b9
  article-title: Post-processing in solar forecasting: Ten overarching thinking tools
  publication-title: Renew Sustain Energy Rev
– year: 2022
  ident: b84
  article-title: Implementation plan for the establishment and soundness of the green-low-carbon-cyclic development economic system in Heilongjiang Province
– year: 2015
  ident: b28
  article-title: SAM photovoltaic model technical reference
– volume: 22
  start-page: 302
  year: 2019
  end-page: 315
  ident: b21
  article-title: Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy
  publication-title: Wind Energy
– reference: .
– year: 2021
  ident: b35
  article-title: Trends in photovoltaic applications 2021
– year: 2022
  ident: b85
  article-title: Historical market data
– volume: 270
  year: 2022
  ident: b1
  article-title: Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco
  publication-title: Energy Convers Manage
– volume: 4
  start-page: 1
  year: 1960
  end-page: 19
  ident: b54
  article-title: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation
  publication-title: Sol Energy
– volume: 162
  year: 2022
  ident: b39
  article-title: Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China
  publication-title: Energy Policy
– year: 2021
  ident: b100
  article-title: China energy transition status report 2021, Sino-German energy transition project
– volume: 162
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b39
  article-title: Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2022.112807
– year: 1987
  ident: 10.1016/j.enconman.2023.117128_b61
– volume: 37
  start-page: 8905
  issue: 11
  year: 2012
  ident: 10.1016/j.enconman.2023.117128_b46
  article-title: Analysis of Ontario’s hydrogen economy demands from hydrogen fuel cell vehicles
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.029
– volume: 279
  year: 2023
  ident: 10.1016/j.enconman.2023.117128_b36
  article-title: Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.116772
– volume: 267
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b3
  article-title: Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2022.115870
– volume: 168
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b24
  article-title: Benefits of physical and machine learning hybridization for photovoltaic power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112772
– year: 2013
  ident: 10.1016/j.enconman.2023.117128_b71
– volume: 202
  start-page: 210
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b79
  article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.03.109
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b84
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b94
– volume: 70
  start-page: 431
  issue: 5
  year: 2001
  ident: 10.1016/j.enconman.2023.117128_b50
  article-title: Computing the solar vector
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(00)00156-0
– volume: 22
  start-page: 302
  issue: 2
  year: 2019
  ident: 10.1016/j.enconman.2023.117128_b21
  article-title: Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy
  publication-title: Wind Energy
  doi: 10.1002/we.2285
– year: 2014
  ident: 10.1016/j.enconman.2023.117128_b74
– volume: 80
  start-page: 78
  issue: 1
  year: 2006
  ident: 10.1016/j.enconman.2023.117128_b72
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2005.06.010
– year: 2023
  ident: 10.1016/j.enconman.2023.117128_b7
– year: 2021
  ident: 10.1016/j.enconman.2023.117128_b92
– volume: 82
  start-page: 272
  issue: 3
  year: 2008
  ident: 10.1016/j.enconman.2023.117128_b60
  article-title: REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2007.04.008
– volume: 122
  start-page: 362
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b37
  article-title: Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.01.102
– volume: 19
  start-page: 757
  issue: 7
  year: 2011
  ident: 10.1016/j.enconman.2023.117128_b32
  article-title: Regional PV power prediction for improved grid integration
  publication-title: Prog Photovolt, Res Appl
  doi: 10.1002/pip.1033
– year: 2021
  ident: 10.1016/j.enconman.2023.117128_b95
– volume: 136
  start-page: 288
  year: 2016
  ident: 10.1016/j.enconman.2023.117128_b62
  article-title: Solar radiation on inclined surfaces: Corrections and benchmarks
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.06.062
– volume: 160
  start-page: 410
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b82
  article-title: A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.185
– volume: 161
  start-page: 215
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b45
  article-title: Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.007
– volume: 270
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b1
  article-title: Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2022.116285
– volume: 14
  start-page: 160
  issue: 3
  year: 2013
  ident: 10.1016/j.enconman.2023.117128_b67
  article-title: Characterization of wavelength effect on photovoltaic property of poly-Si solar cell using photoconductive atomic force microscopy (PC-AFM)
  publication-title: Trans Electr Electron Mater
  doi: 10.4313/TEEM.2013.14.3.160
– volume: 47
  start-page: 25202
  issue: 60
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b12
  article-title: Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A spanish case study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.05.270
– volume: 44
  start-page: 19658
  issue: 36
  year: 2019
  ident: 10.1016/j.enconman.2023.117128_b48
  article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.035
– volume: 3
  start-page: 884
  issue: 29
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b53
  article-title: Pvlib python: A python package for modeling solar energy systems
  publication-title: J Open Sour Softw
  doi: 10.21105/joss.00884
– year: 2020
  ident: 10.1016/j.enconman.2023.117128_b25
– volume: 12
  start-page: 103
  issue: 2
  year: 2001
  ident: 10.1016/j.enconman.2023.117128_b55
  article-title: Modelling the diffuse fraction of global solar radiation on a horizontal surface
  publication-title: Environmetrics
  doi: 10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2
– year: 2004
  ident: 10.1016/j.enconman.2023.117128_b68
– volume: 174
  start-page: 615
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b97
  article-title: Effect of soiling in bifacial PV modules and cleaning schedule optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.08.065
– volume: 335
  year: 2023
  ident: 10.1016/j.enconman.2023.117128_b15
  article-title: Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120762
– volume: 308
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b86
  article-title: Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118274
– volume: 81
  start-page: 269
  issue: 2
  year: 2004
  ident: 10.1016/j.enconman.2023.117128_b78
  article-title: Exact analytical solutions of the parameters of real solar cells using Lambert W-function
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2003.11.018
– ident: 10.1016/j.enconman.2023.117128_b80
  doi: 10.1109/PVSC.2008.4922827
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b42
– volume: 44
  start-page: 271
  issue: 5
  year: 1990
  ident: 10.1016/j.enconman.2023.117128_b64
  article-title: Modeling daylight availability and irradiance components from direct and global irradiance
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(90)90055-H
– volume: 161
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b70
  article-title: The “Fresnel equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS)
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112362
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b85
– volume: 89
  start-page: 51
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b65
  article-title: The national solar radiation data base (NSRDB)
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.003
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b41
  article-title: Consumer acceptance under hydrogen energy promotion policy: Evidence from Yangtze River Delta
  publication-title: Int J Hydrogen Energy
– volume: 268
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b6
  article-title: Multi-objective capacity programming and operation optimization of an integrated energy system considering hydrogen energy storage for collective energy communities
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2022.116057
– volume: 121
  start-page: 109594
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b83
  article-title: Spatial and temporal variation in the value of solar power across united states electricity markets
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109594
– volume: 13
  issue: 5
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b59
  article-title: Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0067997
– year: 2022
  ident: 10.1016/j.enconman.2023.117128_b89
– volume: 278
  year: 2023
  ident: 10.1016/j.enconman.2023.117128_b20
  article-title: Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.116693
– volume: 159
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b57
  article-title: Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112195
– volume: 202
  start-page: 210
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b34
  article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.03.109
– volume: 336
  year: 2023
  ident: 10.1016/j.enconman.2023.117128_b14
  article-title: Role of electrolytic hydrogen in smart city decarbonization in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120699
– volume: 168
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b27
  article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112821
– year: 2012
  ident: 10.1016/j.enconman.2023.117128_b81
– volume: 45
  start-page: 20721
  issue: 41
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b93
  article-title: Planning and operation of a hydrogen supply chain network based on the off-grid wind-hydrogen coupling system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.207
– year: 2015
  ident: 10.1016/j.enconman.2023.117128_b69
– volume: 145
  start-page: 398
  year: 2017
  ident: 10.1016/j.enconman.2023.117128_b4
  article-title: Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.05.014
– year: 2021
  ident: 10.1016/j.enconman.2023.117128_b35
– volume: 46
  start-page: 11217
  issue: 20
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b19
  article-title: Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.258
– volume: 13
  issue: 5
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b38
  article-title: A review of solar photovoltaic incentives and policy: Selected countries and Turkey
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.101669
– volume: 4
  start-page: 1
  issue: 3
  year: 1960
  ident: 10.1016/j.enconman.2023.117128_b54
  article-title: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(60)90062-1
– volume: 40
  start-page: 227
  issue: 3
  year: 1988
  ident: 10.1016/j.enconman.2023.117128_b49
  article-title: The Astronomical Almanac’s algorithm for approximate solar position (1950–2050)
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(88)90045-X
– start-page: 1
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b2
  article-title: Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2022.3200697
– volume: 149
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b16
  article-title: Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in north-east India
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111421
– volume: 31
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b44
  article-title: Hydrogen economy and sustainable development goals: Review and policy insights
  publication-title: Curr Opin Green Sustain Chem
– year: 2021
  ident: 10.1016/j.enconman.2023.117128_b100
– volume: 76
  start-page: 577
  issue: 5
  year: 2004
  ident: 10.1016/j.enconman.2023.117128_b51
  article-title: Solar position algorithm for solar radiation applications
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2003.12.003
– year: 2015
  ident: 10.1016/j.enconman.2023.117128_b28
– volume: 213
  start-page: 246
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b13
  article-title: Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.10.089
– volume: 5
  start-page: 152
  issue: 1
  year: 2015
  ident: 10.1016/j.enconman.2023.117128_b77
  article-title: Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst
  publication-title: IEEE J Photovolt
  doi: 10.1109/JPHOTOV.2014.2364133
– volume: 255
  year: 2019
  ident: 10.1016/j.enconman.2023.117128_b31
  article-title: Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113807
– year: 2021
  ident: 10.1016/j.enconman.2023.117128_b43
– volume: 23
  start-page: 23
  year: 2019
  ident: 10.1016/j.enconman.2023.117128_b17
  article-title: Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants
  publication-title: Energy Strategy Rev
  doi: 10.1016/j.esr.2018.12.003
– volume: 8
  start-page: 369
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b11
  article-title: Robustly coordinated operation of an emission-free microgrid with hybrid hydrogen-battery energy storage
  publication-title: CSEE J Power Energy Syst
– volume: 161
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b22
  article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112364
– ident: 10.1016/j.enconman.2023.117128_b30
  doi: 10.1109/PVSC40753.2019.8980496
– volume: 161
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b33
  article-title: Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112356
– volume: 74
  start-page: 255
  year: 2015
  ident: 10.1016/j.enconman.2023.117128_b40
  article-title: A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.08.027
– volume: 154
  start-page: 500
  year: 2015
  ident: 10.1016/j.enconman.2023.117128_b76
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.035
– volume: 72
  start-page: 1104
  year: 2017
  ident: 10.1016/j.enconman.2023.117128_b96
  article-title: Assessment of photovoltaic performance models for system simulation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.10.022
– volume: 220
  start-page: 80
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b52
  article-title: Efficient calculation of solar position using rectangular coordinates
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.02.019
– volume: 223
  start-page: 238
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b98
  article-title: Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.05.023
– volume: 201
  start-page: 8
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b63
  article-title: Perspectives on the origin, derivation, meaning, and significance of the isotropic sky model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.02.067
– year: 2009
  ident: 10.1016/j.enconman.2023.117128_b91
– volume: 196
  start-page: 229
  year: 2017
  ident: 10.1016/j.enconman.2023.117128_b47
  article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.048
– volume: 4
  start-page: 216
  issue: 3
  year: 2019
  ident: 10.1016/j.enconman.2023.117128_b90
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0326-1
– volume: 47
  start-page: 5720
  issue: 9
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b99
  article-title: Electrolysis plant size optimization and benefit analysis of a far offshore wind-hydrogen system based on information gap decision theory and chance constraints programming
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.211
– volume: 227
  start-page: 532
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b26
  article-title: Influence of design data availability on the accuracy of physical photovoltaic power forecasts
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.09.044
– volume: 128
  start-page: 1
  year: 2016
  ident: 10.1016/j.enconman.2023.117128_b56
  article-title: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.10.010
– volume: 14
  issue: 4
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b29
  article-title: Open-source quality control routine and multi-year power generation data of 175 PV systems
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0100939
– volume: 47
  start-page: 23935
  issue: 57
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b18
  article-title: Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.05.193
– volume: 178
  start-page: 322
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b5
  article-title: Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.021
– volume: 331
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b10
  article-title: Robust energy management for an on-grid hybrid hydrogen refueling and battery swapping station based on renewable energy
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.129954
– volume: 3
  start-page: 44
  issue: 1
  year: 2017
  ident: 10.1016/j.enconman.2023.117128_b87
  article-title: Techno-economic analysis of wind curtailment/hydrogen production/fuel cell vehicle system with high wind penetration in China
  publication-title: CSEE J Power Energy Syst
  doi: 10.17775/CSEEJPES.2017.0007
– volume: 283
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b23
  article-title: Extensive comparison of physical models for photovoltaic power forecasting
  publication-title: Appl Energy
– volume: 147
  start-page: 344
  year: 2017
  ident: 10.1016/j.enconman.2023.117128_b73
  article-title: Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.03.027
– volume: 186
  start-page: 889
  year: 2022
  ident: 10.1016/j.enconman.2023.117128_b8
  article-title: Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.01.045
– volume: 140
  year: 2021
  ident: 10.1016/j.enconman.2023.117128_b9
  article-title: Post-processing in solar forecasting: Ten overarching thinking tools
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110735
– volume: 116
  start-page: 215
  year: 2015
  ident: 10.1016/j.enconman.2023.117128_b58
  article-title: Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.04.012
– volume: 45
  start-page: 11527
  issue: 20
  year: 2020
  ident: 10.1016/j.enconman.2023.117128_b88
  article-title: Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.089
– volume: 70
  start-page: 25
  issue: 1
  year: 2001
  ident: 10.1016/j.enconman.2023.117128_b75
  article-title: Calculation of the PV modules angular losses under field conditions by means of an analytical model
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(00)00408-6
– volume: 90
  start-page: 70
  year: 2018
  ident: 10.1016/j.enconman.2023.117128_b66
  article-title: Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.054
SSID ssj0003506
Score 2.5784936
Snippet Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117128
SubjectTerms administrative management
carbon
China
climate
Economic analysis
electricity
energy conversion
Hydrogen
hydrogen production
issues and policy
Model chain
PV–hydrogen hybrid systems
solar energy
solar farms
Solar power curve
Title Capacity optimization and economic analysis of PV–hydrogen hybrid systems with physical solar power curve modeling
URI https://dx.doi.org/10.1016/j.enconman.2023.117128
https://www.proquest.com/docview/3040445487
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKzrOA1bR6zTXIsxVIVi6CV3pYku0FFk9KH4EX8D_5Df4kzycYXQg-ewobdJOxsvpnZnfmGseMgtRPUZGCh6Zpa4OvEip00tJQrVEDVtoVNyckXg3Z_CGcjMaqxbpULQ2GVBvtLTC_Q2txpmdlsje_uWlfE7BKEFNdBlIdAfjvgFdd08-UrzMMTRX1N6mxR729ZwvdN4orMHiPiQXU9Or90qCr73wrqF1QX-qe3xlaN4cg75bets5rONtjKNzrBTTbrouZL0KzmOQLBo8mw5FGmuDb5x9goSUh4nvLLm_fXt9tnNclxFfHbZ0re4iW185TTBi0fGynyKXnAfEwl1XgynzxpXpTQwddusWHv5Lrbt0xVBSvxQMwsiFU7VQ4ID3yvHbq-cBT4yo7AiUEpysxFzNHoN9pJGgvXTtwQkQhdR1SnDs72NqtneaZ3GI8DEZG96dphClrZsQ5AoQPTjsEPbD_dZaKaSpkYynGqfPEgq9iye1mJQJIIZCmCXdb6HDcuSTcWjggrSckfy0eiZlg49qgSrcR_iw5Mokzn86n0EOEAyKfb-8fz99kytWhD2BEHrD6bzPUhWjKzuFEs1QZb6pye9wcfL371JA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7EHtSD-MT6XMFrzGu3SY6lWFq1RbCV3pYku8EWm5Q2FXrzP_gP_SXONBupInjwmMcmYWbyzczuzjeEXPmJFYMnYwaEronBPBUbkZ0EhnS49LHbNrewOLnTrbX67HbAB2ukUdbC4LZKjf0Fpi_RWp8xtTTNyXBoPiKzix_gvg6kPGSQt1eQnQqMvVJv37W6X4Ds8mWLTbzfwAErhcKja6SLTMchUqE6Li5h2tiY_Xcf9QOtly6ouUO2dexI68Xn7ZI1le6RrRVGwX2SN8D5xRBZ0wywYKyLLGmYSqp0CTIcFDwkNEvow9PH2_vzQk4zMCT6vMD6LVqwO88oztHSiVYknWESTCfYVY3G8-mrossuOvDaA9Jv3vQaLUM3VjBil_HcYJGsJdJm3AVx1QLH47ZknrRCZkdMSizOBdhRkDpacRJxx4qdAMAIskfwqDYI_JCsp1mqjgiNfB5iyOlYQcKUtCLlMwk5TC1inm95SZXwUpQi1qzj2PziRZTby0aiVIFAFYhCBVVifo2bFLwbf44ISk2JbxYkwDn8OfayVK2A3wvXTMJUZfOZcAHkGMO07vgfz78gG61e517ct7t3J2QTr-D8sM1PyXo-naszCGzy6Fwb7iePSPfV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacity+optimization+and+economic+analysis+of+PV%E2%80%93hydrogen+hybrid+systems+with+physical+solar+power+curve+modeling&rft.jtitle=Energy+conversion+and+management&rft.au=Yang%2C+Guoming&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Wenting&rft.au=Liu%2C+Bai&rft.date=2023-07-15&rft.issn=0196-8904&rft.volume=288+p.117128-&rft_id=info:doi/10.1016%2Fj.enconman.2023.117128&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon