Capacity optimization and economic analysis of PV–hydrogen hybrid systems with physical solar power curve modeling
Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operatio...
Saved in:
Published in | Energy conversion and management Vol. 288; p. 117128 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0196-8904 1879-2227 |
DOI | 10.1016/j.enconman.2023.117128 |
Cover
Loading…
Abstract | Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems.
•Sizing and economic analysis of PV–hydrogen hybrid systems are conducted.•The model involving the physical modeling of PV is verified in Heilongjiang, China.•Refined modeling of PV increases the annual profit by up to 38.9%.•The impact of government policy on equipment specs and economics is substantial.•The payback time of PV–hydrogen hybrid systems is ∼11 years. |
---|---|
AbstractList | Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems.
•Sizing and economic analysis of PV–hydrogen hybrid systems are conducted.•The model involving the physical modeling of PV is verified in Heilongjiang, China.•Refined modeling of PV increases the annual profit by up to 38.9%.•The impact of government policy on equipment specs and economics is substantial.•The payback time of PV–hydrogen hybrid systems is ∼11 years. Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this century. An indispensable initial step in commissioning PV–hydrogen hybrid systems involves analyzing in-depth its capacity configuration, operation strategy, and economic benefits. With the objective of maximizing the annual profit of such systems, this work formulates a capacity optimization model and performs related economic analysis, with pre-determined installed capacity and plant layout. Two aspects distinguish this work from its predecessors: (1) The physical (i.e., model chain) modeling of PV is employed to narrate the behavior of the PV plant in a more refined fashion, and (2) the impact of government support on the configuration and economics of PV–hydrogen hybrid systems is analyzed by incorporating into the objective function environmental benefits subsidized by the government. Besides, sensitivity analysis is conducted for numerous parameters that can affect the configuration outcome. The proposed model is applied under the climate regime of Heilongjiang Province, China, and the veracity and validity of the proposed model are verified via case studies. The results reveal that a 1-MW PV plant requires a transformer of 226.9 kW, electrolyzers of 366.8 kW, and 3 compressors, when the physical modeling of PV is utilized. The exorbitant investment cost of hydrogen tanks and hydrogen fuel cells renders these devices unsuitable for use in PV–hydrogen hybrid systems. The advantages of physical modeling of PV enable an increase of 38.9% in the annual profit of the hybrid systems, compared to the conventional modeling of PV using only surrogate equations. Furthermore, it is found that government subsidy policy, various prices and costs, and the utilization rate of PV power are among the most influencing factors affecting the optimal capacity and economics of the hybrid systems. In solar-rich areas of Heilongjiang, it is preferable to equip electrolyzers with a larger capacity and to install a transformer with a smaller rating power, to achieve a higher annual profit. The levelized cost of electricity of PV–hydrogen hybrid systems is 0.03 $/kWh, the levelized cost of hydrogen is 2.9 $/kg, and the payback time is ∼11 years. These results could serve as a benchmark for future PV–hydrogen hybrid system development, and offer information that is of interest to policymakers, operators, and investors, thereby contributing to the realization of zero-carbon energy systems. |
ArticleNumber | 117128 |
Author | Yang, Dazhi Zhang, Hao Wang, Wenting Liu, Bai Yang, Guoming Lyu, Chao |
Author_xml | – sequence: 1 givenname: Guoming surname: Yang fullname: Yang, Guoming – sequence: 2 givenname: Hao orcidid: 0000-0001-7298-0229 surname: Zhang fullname: Zhang, Hao email: zh_hit@hit.edu.cn – sequence: 3 givenname: Wenting surname: Wang fullname: Wang, Wenting – sequence: 4 givenname: Bai surname: Liu fullname: Liu, Bai – sequence: 5 givenname: Chao surname: Lyu fullname: Lyu, Chao – sequence: 6 givenname: Dazhi orcidid: 0000-0003-2162-6873 surname: Yang fullname: Yang, Dazhi |
BookMark | eNqFkM1OGzEURi0UJELoK1RedjPBf_MnddEqKqUSUlkAW8ux7xBHM_bUdhJNV30H3rBPgiF00w2rqyt95yzOOZo57wChj5QsKaHV5XYJTns3KLdkhPElpTVlzQma06ZuC8ZYPUNzQtuqaFoiztB5jFtCCC9JNUdppUalbZqwH5Md7G-VrHdYOYMhS_1gdX5UP0Ubse_w7cPfP0-byQT_CA5vpnWwBscpJhgiPti0weMmb7XqcfS9Cnj0BwhY78Ie8OAN9NY9XqDTTvURPrzdBbq_-na3ui5ufn7_sfp6U2guylSItak6Q0XJRc2rltUlNaI2RAm6FsZwLpq64lCKluhuXTKiWds0NSUVQMYYX6BPR-8Y_K8dxCQHGzX0vXLgd1FyIogQZdbk6efjVAcfY4BO5iivLVJQtpeUyJfYciv_xZYvseUxdsar__Ax2EGF6X3wyxGE3GFvIciobV6CsQF0ksbb9xTPHwaiTg |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_131243 crossref_primary_10_1016_j_ijhydene_2024_02_140 crossref_primary_10_1016_j_desal_2024_117475 crossref_primary_10_1016_j_rser_2023_113992 crossref_primary_10_1016_j_enconman_2024_118356 crossref_primary_10_1016_j_energy_2023_130078 crossref_primary_10_1016_j_solener_2024_112312 crossref_primary_10_1109_TPWRS_2024_3422173 crossref_primary_10_1007_s00376_024_4214_7 crossref_primary_10_1016_j_ijhydene_2024_12_079 crossref_primary_10_1016_j_ijhydene_2025_01_360 crossref_primary_10_1016_j_apenergy_2024_123914 crossref_primary_10_1016_j_decarb_2024_100050 crossref_primary_10_1016_j_energy_2025_135011 crossref_primary_10_1016_j_fuel_2024_131323 crossref_primary_10_1016_j_ecmx_2024_100553 crossref_primary_10_1016_j_renene_2024_120817 crossref_primary_10_1016_j_enconman_2024_119134 crossref_primary_10_1016_j_enconman_2024_118148 crossref_primary_10_1007_s11356_023_28858_2 crossref_primary_10_1016_j_enconman_2023_117752 crossref_primary_10_1016_j_energy_2025_134828 crossref_primary_10_1016_j_rser_2023_113549 crossref_primary_10_1016_j_egyr_2023_12_031 crossref_primary_10_1016_j_measurement_2024_114714 crossref_primary_10_1016_j_rser_2024_114655 crossref_primary_10_1016_j_ijhydene_2025_01_276 crossref_primary_10_1109_TIM_2024_3421431 crossref_primary_10_1016_j_solmat_2024_113106 crossref_primary_10_1016_j_renene_2025_122549 crossref_primary_10_1007_s00376_024_3164_4 crossref_primary_10_1016_j_ijhydene_2025_03_067 crossref_primary_10_1016_j_est_2024_115273 crossref_primary_10_1051_e3sconf_202458101022 crossref_primary_10_3390_en16166055 crossref_primary_10_1088_1742_6596_2774_1_012031 crossref_primary_10_1016_j_est_2023_109417 |
Cites_doi | 10.1016/j.enpol.2022.112807 10.1016/j.ijhydene.2012.03.029 10.1016/j.enconman.2023.116772 10.1016/j.enconman.2022.115870 10.1016/j.rser.2022.112772 10.1016/j.solener.2020.03.109 10.1016/S0038-092X(00)00156-0 10.1002/we.2285 10.1016/j.solener.2005.06.010 10.1016/j.solener.2007.04.008 10.1016/j.renene.2018.01.102 10.1002/pip.1033 10.1016/j.solener.2016.06.062 10.1016/j.energy.2018.06.185 10.1016/j.enconman.2018.02.007 10.1016/j.enconman.2022.116285 10.4313/TEEM.2013.14.3.160 10.1016/j.ijhydene.2022.05.270 10.1016/j.ijhydene.2019.06.035 10.21105/joss.00884 10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2 10.1016/j.enconman.2018.08.065 10.1016/j.apenergy.2023.120762 10.1016/j.apenergy.2021.118274 10.1016/j.solmat.2003.11.018 10.1109/PVSC.2008.4922827 10.1016/0038-092X(90)90055-H 10.1016/j.rser.2022.112362 10.1016/j.rser.2018.03.003 10.1016/j.enconman.2022.116057 10.1016/j.rser.2019.109594 10.1063/5.0067997 10.1016/j.enconman.2023.116693 10.1016/j.rser.2022.112195 10.1016/j.apenergy.2023.120699 10.1016/j.rser.2022.112821 10.1016/j.ijhydene.2020.05.207 10.1016/j.enconman.2017.05.014 10.1016/j.ijhydene.2020.07.258 10.1016/j.asej.2021.101669 10.1016/0038-092X(60)90062-1 10.1016/0038-092X(88)90045-X 10.1109/TPWRS.2022.3200697 10.1016/j.rser.2021.111421 10.1016/j.solener.2003.12.003 10.1016/j.solener.2020.10.089 10.1109/JPHOTOV.2014.2364133 10.1016/j.apenergy.2019.113807 10.1016/j.esr.2018.12.003 10.1016/j.rser.2022.112364 10.1109/PVSC40753.2019.8980496 10.1016/j.rser.2022.112356 10.1016/j.renene.2014.08.027 10.1016/j.apenergy.2015.05.035 10.1016/j.rser.2016.10.022 10.1016/j.solener.2021.02.019 10.1016/j.solener.2021.05.023 10.1016/j.solener.2020.02.067 10.1016/j.apenergy.2016.11.048 10.1038/s41560-019-0326-1 10.1016/j.ijhydene.2021.11.211 10.1016/j.solener.2021.09.044 10.1016/j.solener.2015.10.010 10.1063/5.0100939 10.1016/j.ijhydene.2022.05.193 10.1016/j.enconman.2018.10.021 10.1016/j.jclepro.2021.129954 10.17775/CSEEJPES.2017.0007 10.1016/j.solener.2017.03.027 10.1016/j.renene.2022.01.045 10.1016/j.rser.2021.110735 10.1016/j.solener.2015.04.012 10.1016/j.ijhydene.2020.02.089 10.1016/S0927-0248(00)00408-6 10.1016/j.rser.2018.03.054 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enconman.2023.117128 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
ExternalDocumentID | 10_1016_j_enconman_2023_117128 S0196890423004740 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-4bd6fd1453473692751d47d0a41b4dd3348763e5490cfb520c29887106eed1423 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Fri Sep 05 05:45:42 EDT 2025 Tue Jul 01 03:03:32 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:34:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TMY Economic analysis BHI STC DHI HFC Solar power curve SPA Hydrogen PV GHI MPP NREL ECMWF NPV NOCT HFV NSRDB DOE PV–hydrogen hybrid systems CEC AST POA NIC PSM IMS LCOE MODIS AR LCOH O&M PEM Model chain API BNI GTI |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-4bd6fd1453473692751d47d0a41b4dd3348763e5490cfb520c29887106eed1423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2162-6873 0000-0001-7298-0229 |
PQID | 3040445487 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040445487 crossref_citationtrail_10_1016_j_enconman_2023_117128 crossref_primary_10_1016_j_enconman_2023_117128 elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-15 |
PublicationDateYYYYMMDD | 2023-07-15 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy conversion and management |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Şevik (b18) 2022; 47 Liu, Chen, Hu (b41) 2022 Yang, van der Meer (b9) 2021; 140 Yang (b59) 2021; 13 Chen, Lin, Bu, Wang, Zhang (b2) 2022 International Energy Agency (b35) 2021 Yang, Jiang, You (b93) 2020; 45 Nord Pool (b85) 2022 International Energy Agency (b42) 2022 Sengupta, Xie, Lopez, Habte, Maclaurin, Shelby (b65) 2018; 89 US Environmental Protection Agency (b89) 2022 Manualzz (b69) 2015 Samy, Mosaad, Barakat (b19) 2021; 46 Al-Saqlawi, Madani, Mac Dowell (b5) 2018; 178 Reda, Andreas (b51) 2004; 76 Lawrence Berkeley National Laboratory (b92) 2021 Singh, Baredar, Gupta (b4) 2017; 145 Gueymard, Ruiz-Arias (b56) 2016; 128 Yang (b57) 2022; 159 . Michalsky (b49) 1988; 40 Cai, Kong (b87) 2017; 3 Visser, Elsinga, AlSkaif, Van Sark (b29) 2022; 14 Mayer, Gróf (b34) 2020; 202 Pandit, Infield, Carroll (b21) 2019; 22 Gueymard (b60) 2008; 82 Santiago, Trillo-Montero, Moreno-Garcia, Pallarés-López, Luna-Rodríguez (b66) 2018; 90 Nasser, Hassan (b20) 2023; 278 Siemens Energy (b7) 2023 Falcone, Hiete, Sapio (b44) 2021; 31 Lorenz, Scheidsteger, Hurka, Heinemann, Kurz (b32) 2011; 19 International Energy Agency (b43) 2021 Luque, Antonanzas-Torres, Escobar (b97) 2018; 174 Huang, Zong, You, Træholt, Zheng, Wang, Zheng, Xiao (b15) 2023; 335 Dobos (b74) 2014 Martin, Ruiz (b75) 2001; 70 De Soto, Klein, Beckman (b72) 2006; 80 Dong, Wu, Xu, Liu, Guan (b86) 2022; 308 Deng, Jiang (b88) 2020; 45 Rodríguez-Gallegos, Yang, Gandhi, Bieri, Reindl, Panda (b82) 2018; 160 Markovics, Mayer (b23) 2021; 283 Holland N, Pang X, Herzberg W, Karalus S, Bor J, Lorenz E. Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC). 2019, p. 1609–14. Wang, Yang, Huang, Lyu, Zhang, Han (b33) 2022; 161 Glenk, Reichelstein (b90) 2019; 4 Satyapal (b91) 2009 Pacudan (b37) 2018; 122 Heilongjiang Province People’s Government (b84) 2022 Kılıç, Kekezoğlu (b38) 2022; 13 Chin, Salam, Ishaque (b76) 2015; 154 Duffie, Beckman (b71) 2013 Jiang, Huang, Yang (b99) 2022; 47 Gilman (b28) 2015 Mayer (b26) 2021; 227 Brown, O’Sullivan (b83) 2020; 121 Matute, Yusta, Beyza, Monteiro (b12) 2022; 47 Mayer, Yang (b27) 2022; 168 Perez, Ineichen, Seals, Michalsky, Stewart (b64) 1990; 44 EnergySage (b81) 2012 Wang, Xue, Guo, Ma, Zhou, Liu, Yan (b6) 2022; 268 Markovics, Mayer (b22) 2022; 161 Fan, Zhang, Xu, Ren (b11) 2022; 8 Liu, Almansoori, Fowler, Elkamel (b46) 2012; 37 National Renewable Energy Laboratory (b94) 2022 Pal, Mukherjee (b16) 2021; 149 Mayer (b25) 2020 Kamphuis, Gueymard, Holtzapple, Duggleby, Annamalai (b63) 2020; 201 Che, Zhou, Chai (b39) 2022; 162 Sauer, Roessler, Hansen (b77) 2015; 5 Xie, Sengupta, Habte, Andreas (b70) 2022; 161 Hoadley (b52) 2021; 220 Gökçek, Kale (b45) 2018; 161 Roberts, Zevallos, Cassula (b96) 2017; 72 Blanco-Muriel, Alarcón-Padilla, López-Moratalla, Lara-Coira (b50) 2001; 70 Maxwell (b61) 1987 Zhang, Zhang, Yang, Shuai, Lougou, Pan, Wang (b36) 2023; 279 Yang (b62) 2016; 136 Holmgren, Hansen, Mikofski (b53) 2018; 3 Mayer (b24) 2022; 168 Jahangiri, Rezaei, Mostafaeipour, Goojani, Saghaei, Dehshiri, Dehshiri (b8) 2022; 186 Nasser, Megahed, Ookawara, Hassan (b3) 2022; 267 Wang, An, Zhao, Pan, Song, Hu, Tan (b14) 2023; 336 Amaro e Silva, Brito (b31) 2019; 255 Xu, Hu, Liu, Du, Huang, Chen (b10) 2022; 331 Øgaard, Aarseth, Skomedal, Riise, Sartori, Selj (b98) 2021; 223 Jiang, Deng, You (b48) 2019; 44 Jain, Kapoor (b78) 2004; 81 Kratochvil, Boyson, King (b68) 2004 Lawrence Berkeley National Laboratory (b95) 2021 Mayer, Gróf (b79) 2020; 202 Puranen, Kosonen, Ahola (b13) 2021; 213 Xu, Xu, Dong, Liu (b47) 2017; 196 Jahangiri, Haghani, Alidadi Shamsabadi, Mostafaeipour, Pomares (b17) 2019; 23 Heo (b67) 2013; 14 Driesse A, Jain P, Harrison S. Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters. In: 2008 33rd IEEE photovoltaic specialists conference. 2008, p. 1–6. Anders, Qian, Zhao, Philipp, Liu (b100) 2021 Sun, yan Nie (b40) 2015; 74 Boland, Scott, Luther (b55) 2001; 12 Abraim, Salihi, El Alani, Hanrieder, Ghennioui, Ghennioui, El Ydrissi, Azouzoute (b1) 2022; 270 Liu, Jordan (b54) 1960; 4 Engerer (b58) 2015; 116 Marion (b73) 2017; 147 Mayer (10.1016/j.enconman.2023.117128_b34) 2020; 202 Matute (10.1016/j.enconman.2023.117128_b12) 2022; 47 Liu (10.1016/j.enconman.2023.117128_b41) 2022 Nasser (10.1016/j.enconman.2023.117128_b3) 2022; 267 Hoadley (10.1016/j.enconman.2023.117128_b52) 2021; 220 US Environmental Protection Agency (10.1016/j.enconman.2023.117128_b89) 2022 Che (10.1016/j.enconman.2023.117128_b39) 2022; 162 Reda (10.1016/j.enconman.2023.117128_b51) 2004; 76 Pal (10.1016/j.enconman.2023.117128_b16) 2021; 149 Brown (10.1016/j.enconman.2023.117128_b83) 2020; 121 10.1016/j.enconman.2023.117128_b80 Yang (10.1016/j.enconman.2023.117128_b57) 2022; 159 Gilman (10.1016/j.enconman.2023.117128_b28) 2015 Wang (10.1016/j.enconman.2023.117128_b33) 2022; 161 Maxwell (10.1016/j.enconman.2023.117128_b61) 1987 Manualzz (10.1016/j.enconman.2023.117128_b69) 2015 Markovics (10.1016/j.enconman.2023.117128_b22) 2022; 161 Yang (10.1016/j.enconman.2023.117128_b93) 2020; 45 Dong (10.1016/j.enconman.2023.117128_b86) 2022; 308 Santiago (10.1016/j.enconman.2023.117128_b66) 2018; 90 International Energy Agency (10.1016/j.enconman.2023.117128_b35) 2021 Falcone (10.1016/j.enconman.2023.117128_b44) 2021; 31 Heilongjiang Province People’s Government (10.1016/j.enconman.2023.117128_b84) 2022 Anders (10.1016/j.enconman.2023.117128_b100) 2021 International Energy Agency (10.1016/j.enconman.2023.117128_b43) 2021 Jiang (10.1016/j.enconman.2023.117128_b99) 2022; 47 National Renewable Energy Laboratory (10.1016/j.enconman.2023.117128_b94) 2022 Liu (10.1016/j.enconman.2023.117128_b46) 2012; 37 Jiang (10.1016/j.enconman.2023.117128_b48) 2019; 44 Xie (10.1016/j.enconman.2023.117128_b70) 2022; 161 Pacudan (10.1016/j.enconman.2023.117128_b37) 2018; 122 Xu (10.1016/j.enconman.2023.117128_b10) 2022; 331 Jahangiri (10.1016/j.enconman.2023.117128_b8) 2022; 186 Engerer (10.1016/j.enconman.2023.117128_b58) 2015; 116 Visser (10.1016/j.enconman.2023.117128_b29) 2022; 14 Liu (10.1016/j.enconman.2023.117128_b54) 1960; 4 Sengupta (10.1016/j.enconman.2023.117128_b65) 2018; 89 EnergySage (10.1016/j.enconman.2023.117128_b81) 2012 Wang (10.1016/j.enconman.2023.117128_b14) 2023; 336 Mayer (10.1016/j.enconman.2023.117128_b25) 2020 Puranen (10.1016/j.enconman.2023.117128_b13) 2021; 213 Dobos (10.1016/j.enconman.2023.117128_b74) 2014 Mayer (10.1016/j.enconman.2023.117128_b79) 2020; 202 Markovics (10.1016/j.enconman.2023.117128_b23) 2021; 283 Nord Pool (10.1016/j.enconman.2023.117128_b85) 2022 Al-Saqlawi (10.1016/j.enconman.2023.117128_b5) 2018; 178 Amaro e Silva (10.1016/j.enconman.2023.117128_b31) 2019; 255 Şevik (10.1016/j.enconman.2023.117128_b18) 2022; 47 De Soto (10.1016/j.enconman.2023.117128_b72) 2006; 80 Xu (10.1016/j.enconman.2023.117128_b47) 2017; 196 Gueymard (10.1016/j.enconman.2023.117128_b56) 2016; 128 Holmgren (10.1016/j.enconman.2023.117128_b53) 2018; 3 Lorenz (10.1016/j.enconman.2023.117128_b32) 2011; 19 Luque (10.1016/j.enconman.2023.117128_b97) 2018; 174 Mayer (10.1016/j.enconman.2023.117128_b26) 2021; 227 10.1016/j.enconman.2023.117128_b30 Singh (10.1016/j.enconman.2023.117128_b4) 2017; 145 Kılıç (10.1016/j.enconman.2023.117128_b38) 2022; 13 Pandit (10.1016/j.enconman.2023.117128_b21) 2019; 22 Jain (10.1016/j.enconman.2023.117128_b78) 2004; 81 Fan (10.1016/j.enconman.2023.117128_b11) 2022; 8 Zhang (10.1016/j.enconman.2023.117128_b36) 2023; 279 Siemens Energy (10.1016/j.enconman.2023.117128_b7) 2023 Perez (10.1016/j.enconman.2023.117128_b64) 1990; 44 Chen (10.1016/j.enconman.2023.117128_b2) 2022 Yang (10.1016/j.enconman.2023.117128_b9) 2021; 140 Lawrence Berkeley National Laboratory (10.1016/j.enconman.2023.117128_b95) 2021 Marion (10.1016/j.enconman.2023.117128_b73) 2017; 147 Wang (10.1016/j.enconman.2023.117128_b6) 2022; 268 Chin (10.1016/j.enconman.2023.117128_b76) 2015; 154 Satyapal (10.1016/j.enconman.2023.117128_b91) 2009 Roberts (10.1016/j.enconman.2023.117128_b96) 2017; 72 Blanco-Muriel (10.1016/j.enconman.2023.117128_b50) 2001; 70 Martin (10.1016/j.enconman.2023.117128_b75) 2001; 70 Boland (10.1016/j.enconman.2023.117128_b55) 2001; 12 Yang (10.1016/j.enconman.2023.117128_b62) 2016; 136 Deng (10.1016/j.enconman.2023.117128_b88) 2020; 45 Gueymard (10.1016/j.enconman.2023.117128_b60) 2008; 82 Samy (10.1016/j.enconman.2023.117128_b19) 2021; 46 Gökçek (10.1016/j.enconman.2023.117128_b45) 2018; 161 Kratochvil (10.1016/j.enconman.2023.117128_b68) 2004 Abraim (10.1016/j.enconman.2023.117128_b1) 2022; 270 Jahangiri (10.1016/j.enconman.2023.117128_b17) 2019; 23 Rodríguez-Gallegos (10.1016/j.enconman.2023.117128_b82) 2018; 160 Duffie (10.1016/j.enconman.2023.117128_b71) 2013 Lawrence Berkeley National Laboratory (10.1016/j.enconman.2023.117128_b92) 2021 Sun (10.1016/j.enconman.2023.117128_b40) 2015; 74 Mayer (10.1016/j.enconman.2023.117128_b24) 2022; 168 Øgaard (10.1016/j.enconman.2023.117128_b98) 2021; 223 Glenk (10.1016/j.enconman.2023.117128_b90) 2019; 4 Nasser (10.1016/j.enconman.2023.117128_b20) 2023; 278 Sauer (10.1016/j.enconman.2023.117128_b77) 2015; 5 Heo (10.1016/j.enconman.2023.117128_b67) 2013; 14 Michalsky (10.1016/j.enconman.2023.117128_b49) 1988; 40 Kamphuis (10.1016/j.enconman.2023.117128_b63) 2020; 201 Mayer (10.1016/j.enconman.2023.117128_b27) 2022; 168 Yang (10.1016/j.enconman.2023.117128_b59) 2021; 13 International Energy Agency (10.1016/j.enconman.2023.117128_b42) 2022 Huang (10.1016/j.enconman.2023.117128_b15) 2023; 335 Cai (10.1016/j.enconman.2023.117128_b87) 2017; 3 |
References_xml | – volume: 201 start-page: 8 year: 2020 end-page: 12 ident: b63 article-title: Perspectives on the origin, derivation, meaning, and significance of the isotropic sky model publication-title: Sol Energy – volume: 154 start-page: 500 year: 2015 end-page: 519 ident: b76 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl Energy – volume: 3 start-page: 44 year: 2017 end-page: 52 ident: b87 article-title: Techno-economic analysis of wind curtailment/hydrogen production/fuel cell vehicle system with high wind penetration in China publication-title: CSEE J Power Energy Syst – volume: 174 start-page: 615 year: 2018 end-page: 625 ident: b97 article-title: Effect of soiling in bifacial PV modules and cleaning schedule optimization publication-title: Energy Convers Manage – volume: 72 start-page: 1104 year: 2017 end-page: 1123 ident: b96 article-title: Assessment of photovoltaic performance models for system simulation publication-title: Renew Sustain Energy Rev – year: 2022 ident: b41 article-title: Consumer acceptance under hydrogen energy promotion policy: Evidence from Yangtze River Delta publication-title: Int J Hydrogen Energy – volume: 45 start-page: 20721 year: 2020 end-page: 20739 ident: b93 article-title: Planning and operation of a hydrogen supply chain network based on the off-grid wind-hydrogen coupling system publication-title: Int J Hydrogen Energy – volume: 227 start-page: 532 year: 2021 end-page: 540 ident: b26 article-title: Influence of design data availability on the accuracy of physical photovoltaic power forecasts publication-title: Sol Energy – volume: 213 start-page: 246 year: 2021 end-page: 259 ident: b13 article-title: Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates publication-title: Sol Energy – volume: 283 year: 2021 ident: b23 article-title: Extensive comparison of physical models for photovoltaic power forecasting publication-title: Appl Energy – volume: 220 start-page: 80 year: 2021 end-page: 87 ident: b52 article-title: Efficient calculation of solar position using rectangular coordinates publication-title: Sol Energy – volume: 202 start-page: 210 year: 2020 end-page: 226 ident: b79 article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model publication-title: Sol Energy – volume: 268 year: 2022 ident: b6 article-title: Multi-objective capacity programming and operation optimization of an integrated energy system considering hydrogen energy storage for collective energy communities publication-title: Energy Convers Manage – volume: 331 year: 2022 ident: b10 article-title: Robust energy management for an on-grid hybrid hydrogen refueling and battery swapping station based on renewable energy publication-title: J Clean Prod – volume: 336 year: 2023 ident: b14 article-title: Role of electrolytic hydrogen in smart city decarbonization in China publication-title: Appl Energy – volume: 122 start-page: 362 year: 2018 end-page: 374 ident: b37 article-title: Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam publication-title: Renew Energy – reference: Holland N, Pang X, Herzberg W, Karalus S, Bor J, Lorenz E. Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC). 2019, p. 1609–14. – volume: 13 year: 2022 ident: b38 article-title: A review of solar photovoltaic incentives and policy: Selected countries and Turkey publication-title: Ain Shams Eng J – year: 2014 ident: b74 article-title: PVWatts version 5 manual – volume: 121 start-page: 109594 year: 2020 ident: b83 article-title: Spatial and temporal variation in the value of solar power across united states electricity markets publication-title: Renew Sustain Energy Rev – year: 2021 ident: b95 article-title: API key signup – year: 2022 ident: b94 article-title: National Solar Radiation Database—The NSRDB dataset can be accessed in a variety of ways – volume: 186 start-page: 889 year: 2022 end-page: 903 ident: b8 article-title: Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach publication-title: Renew Energy – volume: 335 year: 2023 ident: b15 article-title: Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities publication-title: Appl Energy – volume: 74 start-page: 255 year: 2015 end-page: 262 ident: b40 article-title: A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry publication-title: Renew Energy – volume: 81 start-page: 269 year: 2004 end-page: 277 ident: b78 article-title: Exact analytical solutions of the parameters of real solar cells using Lambert W-function publication-title: Sol Energy Mater Sol Cells – volume: 159 year: 2022 ident: b57 article-title: Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations publication-title: Renew Sustain Energy Rev – volume: 202 start-page: 210 year: 2020 end-page: 226 ident: b34 article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model publication-title: Sol Energy – volume: 145 start-page: 398 year: 2017 end-page: 414 ident: b4 article-title: Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building publication-title: Energy Convers Manage – volume: 168 year: 2022 ident: b24 article-title: Benefits of physical and machine learning hybridization for photovoltaic power forecasting publication-title: Renew Sustain Energy Rev – volume: 161 year: 2022 ident: b33 article-title: Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate publication-title: Renew Sustain Energy Rev – start-page: 1 year: 2022 end-page: 14 ident: b2 article-title: Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism publication-title: IEEE Trans Power Syst – volume: 80 start-page: 78 year: 2006 end-page: 88 ident: b72 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol Energy – year: 2023 ident: b7 article-title: The Middle East’s first solar-driven hydrogen electrolysis facility – volume: 3 start-page: 884 year: 2018 ident: b53 article-title: Pvlib python: A python package for modeling solar energy systems publication-title: J Open Sour Softw – volume: 14 year: 2022 ident: b29 article-title: Open-source quality control routine and multi-year power generation data of 175 PV systems publication-title: J Renew Sustain Energy – volume: 8 start-page: 369 year: 2022 end-page: 379 ident: b11 article-title: Robustly coordinated operation of an emission-free microgrid with hybrid hydrogen-battery energy storage publication-title: CSEE J Power Energy Syst – volume: 45 start-page: 11527 year: 2020 end-page: 11537 ident: b88 article-title: Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes publication-title: Int J Hydrogen Energy – volume: 47 start-page: 25202 year: 2022 end-page: 25213 ident: b12 article-title: Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A spanish case study publication-title: Int J Hydrogen Energy – year: 2012 ident: b81 article-title: TMEIC solar inverters – volume: 40 start-page: 227 year: 1988 end-page: 235 ident: b49 article-title: The Astronomical Almanac’s algorithm for approximate solar position (1950–2050) publication-title: Sol Energy – year: 2022 ident: b42 article-title: Green innovation fund—METI funds hydrogen supply chain – volume: 5 start-page: 152 year: 2015 end-page: 158 ident: b77 article-title: Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst publication-title: IEEE J Photovolt – volume: 279 year: 2023 ident: b36 article-title: Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide publication-title: Energy Convers Manage – volume: 136 start-page: 288 year: 2016 end-page: 302 ident: b62 article-title: Solar radiation on inclined surfaces: Corrections and benchmarks publication-title: Sol Energy – volume: 70 start-page: 431 year: 2001 end-page: 441 ident: b50 article-title: Computing the solar vector publication-title: Sol Energy – year: 2013 ident: b71 article-title: Solar engineering of thermal processes – volume: 4 start-page: 216 year: 2019 end-page: 222 ident: b90 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy – volume: 44 start-page: 271 year: 1990 end-page: 289 ident: b64 article-title: Modeling daylight availability and irradiance components from direct and global irradiance publication-title: Sol Energy – volume: 23 start-page: 23 year: 2019 end-page: 32 ident: b17 article-title: Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants publication-title: Energy Strategy Rev – volume: 308 year: 2022 ident: b86 article-title: Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage publication-title: Appl Energy – volume: 255 year: 2019 ident: b31 article-title: Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation publication-title: Appl Energy – reference: Driesse A, Jain P, Harrison S. Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters. In: 2008 33rd IEEE photovoltaic specialists conference. 2008, p. 1–6. – volume: 168 year: 2022 ident: b27 article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains publication-title: Renew Sustain Energy Rev – volume: 47 start-page: 5720 year: 2022 end-page: 5732 ident: b99 article-title: Electrolysis plant size optimization and benefit analysis of a far offshore wind-hydrogen system based on information gap decision theory and chance constraints programming publication-title: Int J Hydrogen Energy – volume: 12 start-page: 103 year: 2001 end-page: 116 ident: b55 article-title: Modelling the diffuse fraction of global solar radiation on a horizontal surface publication-title: Environmetrics – volume: 82 start-page: 272 year: 2008 end-page: 285 ident: b60 article-title: REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset publication-title: Sol Energy – volume: 161 year: 2022 ident: b70 article-title: The “Fresnel equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS) publication-title: Renew Sustain Energy Rev – volume: 13 year: 2021 ident: b59 article-title: Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance publication-title: J Renew Sustain Energy – volume: 278 year: 2023 ident: b20 article-title: Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat publication-title: Energy Convers Manage – volume: 223 start-page: 238 year: 2021 end-page: 247 ident: b98 article-title: Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection publication-title: Sol Energy – year: 1987 ident: b61 article-title: A quasi-physical model for converting hourly global horizontal to direct normal insolation – volume: 160 start-page: 410 year: 2018 end-page: 429 ident: b82 article-title: A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study publication-title: Energy – volume: 161 year: 2022 ident: b22 article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction publication-title: Renew Sustain Energy Rev – volume: 47 start-page: 23935 year: 2022 end-page: 23956 ident: b18 article-title: Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus publication-title: Int J Hydrogen Energy – year: 2020 ident: b25 article-title: Design optimization and power forecasting of photovoltaic power plants – volume: 37 start-page: 8905 year: 2012 end-page: 8916 ident: b46 article-title: Analysis of Ontario’s hydrogen economy demands from hydrogen fuel cell vehicles publication-title: Int J Hydrogen Energy – volume: 46 start-page: 11217 year: 2021 end-page: 11231 ident: b19 article-title: Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique publication-title: Int J Hydrogen Energy – volume: 128 start-page: 1 year: 2016 end-page: 30 ident: b56 article-title: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance publication-title: Sol Energy – volume: 76 start-page: 577 year: 2004 end-page: 589 ident: b51 article-title: Solar position algorithm for solar radiation applications publication-title: Sol Energy – volume: 149 year: 2021 ident: b16 article-title: Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in north-east India publication-title: Renew Sustain Energy Rev – year: 2022 ident: b89 article-title: Compare fuel cell vehicles – year: 2015 ident: b69 article-title: Yingli YL250P-29b data sheet – volume: 178 start-page: 322 year: 2018 end-page: 334 ident: b5 article-title: Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman publication-title: Energy Convers Manage – year: 2009 ident: b91 article-title: Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs – year: 2021 ident: b92 article-title: Tracking the sun, 2022 edition – volume: 161 start-page: 215 year: 2018 end-page: 224 ident: b45 article-title: Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system publication-title: Energy Convers Manage – volume: 31 year: 2021 ident: b44 article-title: Hydrogen economy and sustainable development goals: Review and policy insights publication-title: Curr Opin Green Sustain Chem – year: 2004 ident: b68 article-title: Photovoltaic array performance model – volume: 90 start-page: 70 year: 2018 end-page: 89 ident: b66 article-title: Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain publication-title: Renew Sustain Energy Rev – volume: 267 year: 2022 ident: b3 article-title: Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic publication-title: Energy Convers Manage – volume: 14 start-page: 160 year: 2013 end-page: 163 ident: b67 article-title: Characterization of wavelength effect on photovoltaic property of poly-Si solar cell using photoconductive atomic force microscopy (PC-AFM) publication-title: Trans Electr Electron Mater – volume: 19 start-page: 757 year: 2011 end-page: 771 ident: b32 article-title: Regional PV power prediction for improved grid integration publication-title: Prog Photovolt, Res Appl – volume: 70 start-page: 25 year: 2001 end-page: 38 ident: b75 article-title: Calculation of the PV modules angular losses under field conditions by means of an analytical model publication-title: Sol Energy Mater Sol Cells – volume: 196 start-page: 229 year: 2017 end-page: 237 ident: b47 article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China publication-title: Appl Energy – volume: 89 start-page: 51 year: 2018 end-page: 60 ident: b65 article-title: The national solar radiation data base (NSRDB) publication-title: Renew Sustain Energy Rev – year: 2021 ident: b43 article-title: Global hydrogen review 2021 – volume: 44 start-page: 19658 year: 2019 end-page: 19666 ident: b48 article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions publication-title: Int J Hydrogen Energy – volume: 116 start-page: 215 year: 2015 end-page: 237 ident: b58 article-title: Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia publication-title: Sol Energy – volume: 147 start-page: 344 year: 2017 end-page: 348 ident: b73 article-title: Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules publication-title: Sol Energy – volume: 140 year: 2021 ident: b9 article-title: Post-processing in solar forecasting: Ten overarching thinking tools publication-title: Renew Sustain Energy Rev – year: 2022 ident: b84 article-title: Implementation plan for the establishment and soundness of the green-low-carbon-cyclic development economic system in Heilongjiang Province – year: 2015 ident: b28 article-title: SAM photovoltaic model technical reference – volume: 22 start-page: 302 year: 2019 end-page: 315 ident: b21 article-title: Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy publication-title: Wind Energy – reference: . – year: 2021 ident: b35 article-title: Trends in photovoltaic applications 2021 – year: 2022 ident: b85 article-title: Historical market data – volume: 270 year: 2022 ident: b1 article-title: Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco publication-title: Energy Convers Manage – volume: 4 start-page: 1 year: 1960 end-page: 19 ident: b54 article-title: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation publication-title: Sol Energy – volume: 162 year: 2022 ident: b39 article-title: Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China publication-title: Energy Policy – year: 2021 ident: b100 article-title: China energy transition status report 2021, Sino-German energy transition project – volume: 162 year: 2022 ident: 10.1016/j.enconman.2023.117128_b39 article-title: Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China publication-title: Energy Policy doi: 10.1016/j.enpol.2022.112807 – year: 1987 ident: 10.1016/j.enconman.2023.117128_b61 – volume: 37 start-page: 8905 issue: 11 year: 2012 ident: 10.1016/j.enconman.2023.117128_b46 article-title: Analysis of Ontario’s hydrogen economy demands from hydrogen fuel cell vehicles publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.029 – volume: 279 year: 2023 ident: 10.1016/j.enconman.2023.117128_b36 article-title: Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2023.116772 – volume: 267 year: 2022 ident: 10.1016/j.enconman.2023.117128_b3 article-title: Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2022.115870 – volume: 168 year: 2022 ident: 10.1016/j.enconman.2023.117128_b24 article-title: Benefits of physical and machine learning hybridization for photovoltaic power forecasting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112772 – year: 2013 ident: 10.1016/j.enconman.2023.117128_b71 – volume: 202 start-page: 210 year: 2020 ident: 10.1016/j.enconman.2023.117128_b79 article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model publication-title: Sol Energy doi: 10.1016/j.solener.2020.03.109 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b84 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b94 – volume: 70 start-page: 431 issue: 5 year: 2001 ident: 10.1016/j.enconman.2023.117128_b50 article-title: Computing the solar vector publication-title: Sol Energy doi: 10.1016/S0038-092X(00)00156-0 – volume: 22 start-page: 302 issue: 2 year: 2019 ident: 10.1016/j.enconman.2023.117128_b21 article-title: Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy publication-title: Wind Energy doi: 10.1002/we.2285 – year: 2014 ident: 10.1016/j.enconman.2023.117128_b74 – volume: 80 start-page: 78 issue: 1 year: 2006 ident: 10.1016/j.enconman.2023.117128_b72 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol Energy doi: 10.1016/j.solener.2005.06.010 – year: 2023 ident: 10.1016/j.enconman.2023.117128_b7 – year: 2021 ident: 10.1016/j.enconman.2023.117128_b92 – volume: 82 start-page: 272 issue: 3 year: 2008 ident: 10.1016/j.enconman.2023.117128_b60 article-title: REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset publication-title: Sol Energy doi: 10.1016/j.solener.2007.04.008 – volume: 122 start-page: 362 year: 2018 ident: 10.1016/j.enconman.2023.117128_b37 article-title: Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam publication-title: Renew Energy doi: 10.1016/j.renene.2018.01.102 – volume: 19 start-page: 757 issue: 7 year: 2011 ident: 10.1016/j.enconman.2023.117128_b32 article-title: Regional PV power prediction for improved grid integration publication-title: Prog Photovolt, Res Appl doi: 10.1002/pip.1033 – year: 2021 ident: 10.1016/j.enconman.2023.117128_b95 – volume: 136 start-page: 288 year: 2016 ident: 10.1016/j.enconman.2023.117128_b62 article-title: Solar radiation on inclined surfaces: Corrections and benchmarks publication-title: Sol Energy doi: 10.1016/j.solener.2016.06.062 – volume: 160 start-page: 410 year: 2018 ident: 10.1016/j.enconman.2023.117128_b82 article-title: A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study publication-title: Energy doi: 10.1016/j.energy.2018.06.185 – volume: 161 start-page: 215 year: 2018 ident: 10.1016/j.enconman.2023.117128_b45 article-title: Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.02.007 – volume: 270 year: 2022 ident: 10.1016/j.enconman.2023.117128_b1 article-title: Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2022.116285 – volume: 14 start-page: 160 issue: 3 year: 2013 ident: 10.1016/j.enconman.2023.117128_b67 article-title: Characterization of wavelength effect on photovoltaic property of poly-Si solar cell using photoconductive atomic force microscopy (PC-AFM) publication-title: Trans Electr Electron Mater doi: 10.4313/TEEM.2013.14.3.160 – volume: 47 start-page: 25202 issue: 60 year: 2022 ident: 10.1016/j.enconman.2023.117128_b12 article-title: Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A spanish case study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.270 – volume: 44 start-page: 19658 issue: 36 year: 2019 ident: 10.1016/j.enconman.2023.117128_b48 article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.035 – volume: 3 start-page: 884 issue: 29 year: 2018 ident: 10.1016/j.enconman.2023.117128_b53 article-title: Pvlib python: A python package for modeling solar energy systems publication-title: J Open Sour Softw doi: 10.21105/joss.00884 – year: 2020 ident: 10.1016/j.enconman.2023.117128_b25 – volume: 12 start-page: 103 issue: 2 year: 2001 ident: 10.1016/j.enconman.2023.117128_b55 article-title: Modelling the diffuse fraction of global solar radiation on a horizontal surface publication-title: Environmetrics doi: 10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2 – year: 2004 ident: 10.1016/j.enconman.2023.117128_b68 – volume: 174 start-page: 615 year: 2018 ident: 10.1016/j.enconman.2023.117128_b97 article-title: Effect of soiling in bifacial PV modules and cleaning schedule optimization publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.08.065 – volume: 335 year: 2023 ident: 10.1016/j.enconman.2023.117128_b15 article-title: Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120762 – volume: 308 year: 2022 ident: 10.1016/j.enconman.2023.117128_b86 article-title: Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118274 – volume: 81 start-page: 269 issue: 2 year: 2004 ident: 10.1016/j.enconman.2023.117128_b78 article-title: Exact analytical solutions of the parameters of real solar cells using Lambert W-function publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2003.11.018 – ident: 10.1016/j.enconman.2023.117128_b80 doi: 10.1109/PVSC.2008.4922827 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b42 – volume: 44 start-page: 271 issue: 5 year: 1990 ident: 10.1016/j.enconman.2023.117128_b64 article-title: Modeling daylight availability and irradiance components from direct and global irradiance publication-title: Sol Energy doi: 10.1016/0038-092X(90)90055-H – volume: 161 year: 2022 ident: 10.1016/j.enconman.2023.117128_b70 article-title: The “Fresnel equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS) publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112362 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b85 – volume: 89 start-page: 51 year: 2018 ident: 10.1016/j.enconman.2023.117128_b65 article-title: The national solar radiation data base (NSRDB) publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.003 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b41 article-title: Consumer acceptance under hydrogen energy promotion policy: Evidence from Yangtze River Delta publication-title: Int J Hydrogen Energy – volume: 268 year: 2022 ident: 10.1016/j.enconman.2023.117128_b6 article-title: Multi-objective capacity programming and operation optimization of an integrated energy system considering hydrogen energy storage for collective energy communities publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2022.116057 – volume: 121 start-page: 109594 year: 2020 ident: 10.1016/j.enconman.2023.117128_b83 article-title: Spatial and temporal variation in the value of solar power across united states electricity markets publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109594 – volume: 13 issue: 5 year: 2021 ident: 10.1016/j.enconman.2023.117128_b59 article-title: Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance publication-title: J Renew Sustain Energy doi: 10.1063/5.0067997 – year: 2022 ident: 10.1016/j.enconman.2023.117128_b89 – volume: 278 year: 2023 ident: 10.1016/j.enconman.2023.117128_b20 article-title: Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2023.116693 – volume: 159 year: 2022 ident: 10.1016/j.enconman.2023.117128_b57 article-title: Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112195 – volume: 202 start-page: 210 year: 2020 ident: 10.1016/j.enconman.2023.117128_b34 article-title: Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model publication-title: Sol Energy doi: 10.1016/j.solener.2020.03.109 – volume: 336 year: 2023 ident: 10.1016/j.enconman.2023.117128_b14 article-title: Role of electrolytic hydrogen in smart city decarbonization in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120699 – volume: 168 year: 2022 ident: 10.1016/j.enconman.2023.117128_b27 article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112821 – year: 2012 ident: 10.1016/j.enconman.2023.117128_b81 – volume: 45 start-page: 20721 issue: 41 year: 2020 ident: 10.1016/j.enconman.2023.117128_b93 article-title: Planning and operation of a hydrogen supply chain network based on the off-grid wind-hydrogen coupling system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.207 – year: 2015 ident: 10.1016/j.enconman.2023.117128_b69 – volume: 145 start-page: 398 year: 2017 ident: 10.1016/j.enconman.2023.117128_b4 article-title: Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.05.014 – year: 2021 ident: 10.1016/j.enconman.2023.117128_b35 – volume: 46 start-page: 11217 issue: 20 year: 2021 ident: 10.1016/j.enconman.2023.117128_b19 article-title: Optimal economic study of hybrid PV-wind-fuel cell system integrated to unreliable electric utility using hybrid search optimization technique publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.258 – volume: 13 issue: 5 year: 2022 ident: 10.1016/j.enconman.2023.117128_b38 article-title: A review of solar photovoltaic incentives and policy: Selected countries and Turkey publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.101669 – volume: 4 start-page: 1 issue: 3 year: 1960 ident: 10.1016/j.enconman.2023.117128_b54 article-title: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation publication-title: Sol Energy doi: 10.1016/0038-092X(60)90062-1 – volume: 40 start-page: 227 issue: 3 year: 1988 ident: 10.1016/j.enconman.2023.117128_b49 article-title: The Astronomical Almanac’s algorithm for approximate solar position (1950–2050) publication-title: Sol Energy doi: 10.1016/0038-092X(88)90045-X – start-page: 1 year: 2022 ident: 10.1016/j.enconman.2023.117128_b2 article-title: Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2022.3200697 – volume: 149 year: 2021 ident: 10.1016/j.enconman.2023.117128_b16 article-title: Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in north-east India publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111421 – volume: 31 year: 2021 ident: 10.1016/j.enconman.2023.117128_b44 article-title: Hydrogen economy and sustainable development goals: Review and policy insights publication-title: Curr Opin Green Sustain Chem – year: 2021 ident: 10.1016/j.enconman.2023.117128_b100 – volume: 76 start-page: 577 issue: 5 year: 2004 ident: 10.1016/j.enconman.2023.117128_b51 article-title: Solar position algorithm for solar radiation applications publication-title: Sol Energy doi: 10.1016/j.solener.2003.12.003 – year: 2015 ident: 10.1016/j.enconman.2023.117128_b28 – volume: 213 start-page: 246 year: 2021 ident: 10.1016/j.enconman.2023.117128_b13 article-title: Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates publication-title: Sol Energy doi: 10.1016/j.solener.2020.10.089 – volume: 5 start-page: 152 issue: 1 year: 2015 ident: 10.1016/j.enconman.2023.117128_b77 article-title: Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2014.2364133 – volume: 255 year: 2019 ident: 10.1016/j.enconman.2023.117128_b31 article-title: Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113807 – year: 2021 ident: 10.1016/j.enconman.2023.117128_b43 – volume: 23 start-page: 23 year: 2019 ident: 10.1016/j.enconman.2023.117128_b17 article-title: Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants publication-title: Energy Strategy Rev doi: 10.1016/j.esr.2018.12.003 – volume: 8 start-page: 369 year: 2022 ident: 10.1016/j.enconman.2023.117128_b11 article-title: Robustly coordinated operation of an emission-free microgrid with hybrid hydrogen-battery energy storage publication-title: CSEE J Power Energy Syst – volume: 161 year: 2022 ident: 10.1016/j.enconman.2023.117128_b22 article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112364 – ident: 10.1016/j.enconman.2023.117128_b30 doi: 10.1109/PVSC40753.2019.8980496 – volume: 161 year: 2022 ident: 10.1016/j.enconman.2023.117128_b33 article-title: Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112356 – volume: 74 start-page: 255 year: 2015 ident: 10.1016/j.enconman.2023.117128_b40 article-title: A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry publication-title: Renew Energy doi: 10.1016/j.renene.2014.08.027 – volume: 154 start-page: 500 year: 2015 ident: 10.1016/j.enconman.2023.117128_b76 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.035 – volume: 72 start-page: 1104 year: 2017 ident: 10.1016/j.enconman.2023.117128_b96 article-title: Assessment of photovoltaic performance models for system simulation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.10.022 – volume: 220 start-page: 80 year: 2021 ident: 10.1016/j.enconman.2023.117128_b52 article-title: Efficient calculation of solar position using rectangular coordinates publication-title: Sol Energy doi: 10.1016/j.solener.2021.02.019 – volume: 223 start-page: 238 year: 2021 ident: 10.1016/j.enconman.2023.117128_b98 article-title: Identifying snow in photovoltaic monitoring data for improved snow loss modeling and snow detection publication-title: Sol Energy doi: 10.1016/j.solener.2021.05.023 – volume: 201 start-page: 8 year: 2020 ident: 10.1016/j.enconman.2023.117128_b63 article-title: Perspectives on the origin, derivation, meaning, and significance of the isotropic sky model publication-title: Sol Energy doi: 10.1016/j.solener.2020.02.067 – year: 2009 ident: 10.1016/j.enconman.2023.117128_b91 – volume: 196 start-page: 229 year: 2017 ident: 10.1016/j.enconman.2023.117128_b47 article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.048 – volume: 4 start-page: 216 issue: 3 year: 2019 ident: 10.1016/j.enconman.2023.117128_b90 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy doi: 10.1038/s41560-019-0326-1 – volume: 47 start-page: 5720 issue: 9 year: 2022 ident: 10.1016/j.enconman.2023.117128_b99 article-title: Electrolysis plant size optimization and benefit analysis of a far offshore wind-hydrogen system based on information gap decision theory and chance constraints programming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.211 – volume: 227 start-page: 532 year: 2021 ident: 10.1016/j.enconman.2023.117128_b26 article-title: Influence of design data availability on the accuracy of physical photovoltaic power forecasts publication-title: Sol Energy doi: 10.1016/j.solener.2021.09.044 – volume: 128 start-page: 1 year: 2016 ident: 10.1016/j.enconman.2023.117128_b56 article-title: Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance publication-title: Sol Energy doi: 10.1016/j.solener.2015.10.010 – volume: 14 issue: 4 year: 2022 ident: 10.1016/j.enconman.2023.117128_b29 article-title: Open-source quality control routine and multi-year power generation data of 175 PV systems publication-title: J Renew Sustain Energy doi: 10.1063/5.0100939 – volume: 47 start-page: 23935 issue: 57 year: 2022 ident: 10.1016/j.enconman.2023.117128_b18 article-title: Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.193 – volume: 178 start-page: 322 year: 2018 ident: 10.1016/j.enconman.2023.117128_b5 article-title: Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.021 – volume: 331 year: 2022 ident: 10.1016/j.enconman.2023.117128_b10 article-title: Robust energy management for an on-grid hybrid hydrogen refueling and battery swapping station based on renewable energy publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.129954 – volume: 3 start-page: 44 issue: 1 year: 2017 ident: 10.1016/j.enconman.2023.117128_b87 article-title: Techno-economic analysis of wind curtailment/hydrogen production/fuel cell vehicle system with high wind penetration in China publication-title: CSEE J Power Energy Syst doi: 10.17775/CSEEJPES.2017.0007 – volume: 283 year: 2021 ident: 10.1016/j.enconman.2023.117128_b23 article-title: Extensive comparison of physical models for photovoltaic power forecasting publication-title: Appl Energy – volume: 147 start-page: 344 year: 2017 ident: 10.1016/j.enconman.2023.117128_b73 article-title: Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules publication-title: Sol Energy doi: 10.1016/j.solener.2017.03.027 – volume: 186 start-page: 889 year: 2022 ident: 10.1016/j.enconman.2023.117128_b8 article-title: Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach publication-title: Renew Energy doi: 10.1016/j.renene.2022.01.045 – volume: 140 year: 2021 ident: 10.1016/j.enconman.2023.117128_b9 article-title: Post-processing in solar forecasting: Ten overarching thinking tools publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110735 – volume: 116 start-page: 215 year: 2015 ident: 10.1016/j.enconman.2023.117128_b58 article-title: Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia publication-title: Sol Energy doi: 10.1016/j.solener.2015.04.012 – volume: 45 start-page: 11527 issue: 20 year: 2020 ident: 10.1016/j.enconman.2023.117128_b88 article-title: Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.089 – volume: 70 start-page: 25 issue: 1 year: 2001 ident: 10.1016/j.enconman.2023.117128_b75 article-title: Calculation of the PV modules angular losses under field conditions by means of an analytical model publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(00)00408-6 – volume: 90 start-page: 70 year: 2018 ident: 10.1016/j.enconman.2023.117128_b66 article-title: Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.054 |
SSID | ssj0003506 |
Score | 2.5784936 |
Snippet | Using photovoltaic (PV) power for hydrogen production presents an alluring prospect under humanity’s ongoing pursuit of carbon neutrality by mid of this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117128 |
SubjectTerms | administrative management carbon China climate Economic analysis electricity energy conversion Hydrogen hydrogen production issues and policy Model chain PV–hydrogen hybrid systems solar energy solar farms Solar power curve |
Title | Capacity optimization and economic analysis of PV–hydrogen hybrid systems with physical solar power curve modeling |
URI | https://dx.doi.org/10.1016/j.enconman.2023.117128 https://www.proquest.com/docview/3040445487 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKzrOA1bR6zTXIsxVIVi6CV3pYku0FFk9KH4EX8D_5Df4kzycYXQg-ewobdJOxsvpnZnfmGseMgtRPUZGCh6Zpa4OvEip00tJQrVEDVtoVNyckXg3Z_CGcjMaqxbpULQ2GVBvtLTC_Q2txpmdlsje_uWlfE7BKEFNdBlIdAfjvgFdd08-UrzMMTRX1N6mxR729ZwvdN4orMHiPiQXU9Or90qCr73wrqF1QX-qe3xlaN4cg75bets5rONtjKNzrBTTbrouZL0KzmOQLBo8mw5FGmuDb5x9goSUh4nvLLm_fXt9tnNclxFfHbZ0re4iW185TTBi0fGynyKXnAfEwl1XgynzxpXpTQwddusWHv5Lrbt0xVBSvxQMwsiFU7VQ4ID3yvHbq-cBT4yo7AiUEpysxFzNHoN9pJGgvXTtwQkQhdR1SnDs72NqtneaZ3GI8DEZG96dphClrZsQ5AoQPTjsEPbD_dZaKaSpkYynGqfPEgq9iye1mJQJIIZCmCXdb6HDcuSTcWjggrSckfy0eiZlg49qgSrcR_iw5Mokzn86n0EOEAyKfb-8fz99kytWhD2BEHrD6bzPUhWjKzuFEs1QZb6pye9wcfL371JA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7EHtSD-MT6XMFrzGu3SY6lWFq1RbCV3pYku8EWm5Q2FXrzP_gP_SXONBupInjwmMcmYWbyzczuzjeEXPmJFYMnYwaEronBPBUbkZ0EhnS49LHbNrewOLnTrbX67HbAB2ukUdbC4LZKjf0Fpi_RWp8xtTTNyXBoPiKzix_gvg6kPGSQt1eQnQqMvVJv37W6X4Ds8mWLTbzfwAErhcKja6SLTMchUqE6Li5h2tiY_Xcf9QOtly6ouUO2dexI68Xn7ZI1le6RrRVGwX2SN8D5xRBZ0wywYKyLLGmYSqp0CTIcFDwkNEvow9PH2_vzQk4zMCT6vMD6LVqwO88oztHSiVYknWESTCfYVY3G8-mrossuOvDaA9Jv3vQaLUM3VjBil_HcYJGsJdJm3AVx1QLH47ZknrRCZkdMSizOBdhRkDpacRJxx4qdAMAIskfwqDYI_JCsp1mqjgiNfB5iyOlYQcKUtCLlMwk5TC1inm95SZXwUpQi1qzj2PziRZTby0aiVIFAFYhCBVVifo2bFLwbf44ISk2JbxYkwDn8OfayVK2A3wvXTMJUZfOZcAHkGMO07vgfz78gG61e517ct7t3J2QTr-D8sM1PyXo-naszCGzy6Fwb7iePSPfV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacity+optimization+and+economic+analysis+of+PV%E2%80%93hydrogen+hybrid+systems+with+physical+solar+power+curve+modeling&rft.jtitle=Energy+conversion+and+management&rft.au=Yang%2C+Guoming&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Wenting&rft.au=Liu%2C+Bai&rft.date=2023-07-15&rft.issn=0196-8904&rft.volume=288+p.117128-&rft_id=info:doi/10.1016%2Fj.enconman.2023.117128&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |