Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau

•Enzyme activity and stoichiometry were studied along a climate and a vegetation type gradient in subalpine forests.•Climate has little impact on the enzyme activity and stoichiometry.•Vegetation type regulated enzyme activities and stoichiometry by affecting plant-associated microbial communities....

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 374; p. 114424
Main Authors He, Qingqing, Wu, Yanhong, Bing, Haijian, Zhou, Jun, Wang, Jipeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Enzyme activity and stoichiometry were studied along a climate and a vegetation type gradient in subalpine forests.•Climate has little impact on the enzyme activity and stoichiometry.•Vegetation type regulated enzyme activities and stoichiometry by affecting plant-associated microbial communities. Soil extracellular enzymes catalyze the rate limiting steps of organic matter decomposition, and enzyme stoichiometry has been used to reflect microbial resource acquisition strategies. However, the patterns and key driving factors of soil enzyme activities and stoichiometry in subalpine forests, which are areas sensitive to global changes, remain unclear. In this study, rhizosphere and bulk soils along two environmental gradients in the subalpine forests of Gongga Mountain, in the eastern Tibetan Plateau, including (1) a horizontal chronosequence with different vegetation types but a similar climate and (2) a vertical elevation gradient with the same vegetation type but different climates, were sampled during the growing and nongrowing seasons. The activities and stoichiometry of soil enzymes related to the microbial acquisition of carbon (C) (β-1,4-glucosidase, BG), nitrogen (N) (β-1,4-N-acetylglucosaminidase, NAG) and phosphorus (P) (acid phosphomonoesterase, AP) were analyzed to reveal their responses to environmental gradients. The results showed that enzyme activities and stoichiometry varied significantly among vegetation types, but were less affected by climate and root proximity. BG activity and ratios of BG to nutrient-acquiring enzymes were significantly higher in broadleaf forests than in coniferous forests. The differences in enzyme stoichiometry between vegetation types were weakly related to the microbial nutrient status (represented by the ratio of soil to microbial element stoichiometry) but might be explained by the higher proportion of ectomycorrhizal fungi in coniferous forests compared to broadleaf forests. The results of this study indicate that vegetation type was a major factor regulating soil enzyme activities and stoichiometry in the subalpine forests, possibly via its influences on plant-associated microbial communities.
AbstractList Soil extracellular enzymes catalyze the rate limiting steps of organic matter decomposition, and enzyme stoichiometry has been used to reflect microbial resource acquisition strategies. However, the patterns and key driving factors of soil enzyme activities and stoichiometry in subalpine forests, which are areas sensitive to global changes, remain unclear. In this study, rhizosphere and bulk soils along two environmental gradients in the subalpine forests of Gongga Mountain, in the eastern Tibetan Plateau, including (1) a horizontal chronosequence with different vegetation types but a similar climate and (2) a vertical elevation gradient with the same vegetation type but different climates, were sampled during the growing and nongrowing seasons. The activities and stoichiometry of soil enzymes related to the microbial acquisition of carbon (C) (β-1,4-glucosidase, BG), nitrogen (N) (β-1,4-N-acetylglucosaminidase, NAG) and phosphorus (P) (acid phosphomonoesterase, AP) were analyzed to reveal their responses to environmental gradients. The results showed that enzyme activities and stoichiometry varied significantly among vegetation types, but were less affected by climate and root proximity. BG activity and ratios of BG to nutrient-acquiring enzymes were significantly higher in broadleaf forests than in coniferous forests. The differences in enzyme stoichiometry between vegetation types were weakly related to the microbial nutrient status (represented by the ratio of soil to microbial element stoichiometry) but might be explained by the higher proportion of ectomycorrhizal fungi in coniferous forests compared to broadleaf forests. The results of this study indicate that vegetation type was a major factor regulating soil enzyme activities and stoichiometry in the subalpine forests, possibly via its influences on plant-associated microbial communities.
•Enzyme activity and stoichiometry were studied along a climate and a vegetation type gradient in subalpine forests.•Climate has little impact on the enzyme activity and stoichiometry.•Vegetation type regulated enzyme activities and stoichiometry by affecting plant-associated microbial communities. Soil extracellular enzymes catalyze the rate limiting steps of organic matter decomposition, and enzyme stoichiometry has been used to reflect microbial resource acquisition strategies. However, the patterns and key driving factors of soil enzyme activities and stoichiometry in subalpine forests, which are areas sensitive to global changes, remain unclear. In this study, rhizosphere and bulk soils along two environmental gradients in the subalpine forests of Gongga Mountain, in the eastern Tibetan Plateau, including (1) a horizontal chronosequence with different vegetation types but a similar climate and (2) a vertical elevation gradient with the same vegetation type but different climates, were sampled during the growing and nongrowing seasons. The activities and stoichiometry of soil enzymes related to the microbial acquisition of carbon (C) (β-1,4-glucosidase, BG), nitrogen (N) (β-1,4-N-acetylglucosaminidase, NAG) and phosphorus (P) (acid phosphomonoesterase, AP) were analyzed to reveal their responses to environmental gradients. The results showed that enzyme activities and stoichiometry varied significantly among vegetation types, but were less affected by climate and root proximity. BG activity and ratios of BG to nutrient-acquiring enzymes were significantly higher in broadleaf forests than in coniferous forests. The differences in enzyme stoichiometry between vegetation types were weakly related to the microbial nutrient status (represented by the ratio of soil to microbial element stoichiometry) but might be explained by the higher proportion of ectomycorrhizal fungi in coniferous forests compared to broadleaf forests. The results of this study indicate that vegetation type was a major factor regulating soil enzyme activities and stoichiometry in the subalpine forests, possibly via its influences on plant-associated microbial communities.
ArticleNumber 114424
Author Wang, Jipeng
He, Qingqing
Zhou, Jun
Wu, Yanhong
Bing, Haijian
Author_xml – sequence: 1
  givenname: Qingqing
  surname: He
  fullname: He, Qingqing
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 2
  givenname: Yanhong
  surname: Wu
  fullname: Wu, Yanhong
  email: yhwu@imde.ac.cn
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 3
  givenname: Haijian
  surname: Bing
  fullname: Bing, Haijian
  email: hjbing@imde.ac.cn
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 4
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 5
  givenname: Jipeng
  surname: Wang
  fullname: Wang, Jipeng
  organization: College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
BookMark eNqFkc1u1DAUhS3USkxLXwF5ySaDf-JkLLEAVfxJlWDRdms5zk3njhJ7sJ2RhlfhZXEIbNh0ZfvoO9dX51yRCx88EPKasy1nvHl72D5B6CFOdiuYKCKva1G_IBu-a0XVCKUvyIYVsmpZw1-Sq5QO5dkWdkN-PcITZJsxeJrPR6DR5j1EmvfWUzfiZDPQKfTzWC6pyEBPNuJqQE9TwJGC_3megFqX8YQZC2d9T1MO6PYYJsjx_IedOzse0QMdQoSU0yIuE8GmDNHTe-zKLp5-Xz6z8ytyOdgxwc3f85o8fPp4f_uluvv2-evth7vKyVrlqtaK97LjHXAnW6maXc07JpzmPVdaDayToGW3K7pgtWW91ANXQtpGMy1bK6_Jm3XuMYYfc1nMTJgcjKP1EOZkhFJcc8UkL-i7FXUxpBRhMA7X9HK0OBrOzNKJOZh_nZilE7N2UuzNf_ZjLBHH8_PG96sRSg4nhGiSQ_AOeozgsukDPjfiN5hnr1w
CitedBy_id crossref_primary_10_3390_microorganisms13040729
crossref_primary_10_1016_j_foreco_2023_121360
crossref_primary_10_1016_j_soilbio_2020_107928
crossref_primary_10_3390_f13050692
crossref_primary_10_3390_f16010158
crossref_primary_10_1007_s11356_024_35041_8
crossref_primary_10_3390_agronomy13112744
crossref_primary_10_1016_j_apsoil_2023_104910
crossref_primary_10_1039_D1RA07628K
crossref_primary_10_3390_agronomy12102562
crossref_primary_10_1016_j_foreco_2021_119358
crossref_primary_10_1016_j_catena_2022_106243
crossref_primary_10_1016_j_jhazmat_2024_135438
crossref_primary_10_1016_j_soilbio_2025_109788
crossref_primary_10_1007_s42729_021_00551_8
crossref_primary_10_1016_j_catena_2021_106000
crossref_primary_10_1016_j_envres_2025_121320
crossref_primary_10_3389_fmicb_2023_974316
crossref_primary_10_1016_j_scitotenv_2022_152918
crossref_primary_10_1111_1365_2435_14297
crossref_primary_10_1088_1748_9326_ad5b75
crossref_primary_10_1007_s11104_023_06187_0
crossref_primary_10_3390_f14102070
crossref_primary_10_3389_ffgc_2024_1344784
crossref_primary_10_1007_s42729_023_01434_w
crossref_primary_10_3390_f13111943
crossref_primary_10_1016_j_apsoil_2023_104862
crossref_primary_10_3390_f14071315
crossref_primary_10_1016_j_catena_2022_106705
crossref_primary_10_1016_j_geoderma_2021_115376
crossref_primary_10_1007_s11104_023_05939_2
crossref_primary_10_1016_j_soilbio_2021_108429
crossref_primary_10_3390_f13060845
crossref_primary_10_1016_j_scitotenv_2023_161746
crossref_primary_10_3389_fmicb_2023_1160683
crossref_primary_10_1007_s11104_024_06511_2
crossref_primary_10_1007_s11104_022_05521_2
crossref_primary_10_1016_j_soilbio_2022_108885
crossref_primary_10_3390_f14112210
crossref_primary_10_3389_fenvs_2022_1041964
crossref_primary_10_1016_j_catena_2024_108211
crossref_primary_10_1016_j_catena_2021_105328
crossref_primary_10_1002_saj2_20682
crossref_primary_10_3390_f14030558
crossref_primary_10_3390_agronomy11081591
crossref_primary_10_1016_j_catena_2021_105849
crossref_primary_10_1016_j_apsoil_2022_104579
crossref_primary_10_3389_fenvs_2023_1298027
crossref_primary_10_1016_j_scitotenv_2023_162789
crossref_primary_10_1111_sum_70041
crossref_primary_10_1061__ASCE_EE_1943_7870_0002057
crossref_primary_10_1007_s11104_023_05971_2
crossref_primary_10_1016_j_eti_2024_103760
crossref_primary_10_1016_j_apsoil_2023_104817
crossref_primary_10_1016_j_soilbio_2021_108310
crossref_primary_10_1016_j_soilbio_2024_109368
crossref_primary_10_3390_min11030243
crossref_primary_10_1007_s10530_022_02841_3
crossref_primary_10_1016_j_catena_2023_107754
crossref_primary_10_1093_jpe_rtab073
crossref_primary_10_3390_f15101729
crossref_primary_10_1016_j_soilbio_2021_108150
crossref_primary_10_1016_j_apsoil_2024_105310
crossref_primary_10_1002_saj2_20655
crossref_primary_10_1016_j_foreco_2025_122543
crossref_primary_10_1002_jpln_202400242
crossref_primary_10_1016_j_scitotenv_2024_174783
crossref_primary_10_1007_s11104_024_07059_x
crossref_primary_10_1029_2024GB008174
crossref_primary_10_1016_j_foreco_2024_122129
crossref_primary_10_3390_agronomy13122972
crossref_primary_10_1016_j_apsoil_2021_103926
crossref_primary_10_3390_su13073768
crossref_primary_10_1016_j_apsoil_2024_105319
crossref_primary_10_1002_ldr_4034
crossref_primary_10_1007_s11368_021_03085_9
crossref_primary_10_1016_j_catena_2020_105083
crossref_primary_10_1016_j_geoderma_2023_116329
crossref_primary_10_3390_f15101815
crossref_primary_10_1016_j_ecolind_2023_111457
crossref_primary_10_1016_j_ejsobi_2023_103539
Cites_doi 10.1016/j.soilbio.2011.03.017
10.1016/j.chemosphere.2016.01.042
10.1146/annurev-ecolsys-071112-124414
10.1007/s10533-013-9849-x
10.1007/s11104-019-04329-x
10.1111/nph.12531
10.1016/j.soilbio.2012.11.009
10.1007/s10533-010-9482-x
10.1038/ismej.2016.184
10.1111/1365-2435.12677
10.1016/j.catena.2016.03.004
10.1016/j.soilbio.2016.07.005
10.1016/j.soilbio.2016.10.020
10.1111/j.1469-8137.2012.04225.x
10.1007/s003740000284
10.1038/ismej.2016.65
10.1007/s00374-019-01419-x
10.1016/j.soilbio.2004.09.014
10.1111/nph.13201
10.1007/s10021-016-9992-z
10.1007/s00374-016-1123-7
10.1016/j.geoderma.2012.12.010
10.1038/nclimate1580
10.1016/j.geoderma.2018.11.047
10.1111/1365-2745.13199
10.1007/s10533-007-9132-0
10.1007/s00442-004-1501-y
10.1016/j.ejsobi.2008.04.005
10.1007/s10533-013-9848-y
10.1073/pnas.1520582113
10.1111/j.1461-0248.2008.01245.x
10.1016/j.soilbio.2015.06.018
10.1016/S0038-0717(00)00034-1
10.1111/nph.14343
10.1007/s11629-013-2328-y
10.1016/j.geoderma.2018.12.023
10.1016/j.soilbio.2017.12.019
10.1016/j.ejsobi.2006.01.003
10.1016/j.soilbio.2016.04.008
10.1016/j.soilbio.2018.10.011
10.1093/aob/mcs262
10.1016/S1002-0160(17)60456-9
10.1038/nature08632
10.1016/j.soilbio.2011.03.006
10.1007/s11368-015-1200-9
10.1007/s00374-017-1245-6
10.1890/08-0127.1
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114424
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114424
S0016706119323948
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-4951d3b1be1c37356841b02c91d1595f0b3e93b8684204a0d39f1523a690937a3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 10:36:24 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subalpine forests
Gongga Mountain
Enzyme activity
Enzyme stoichiometry
Environmental gradient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-4951d3b1be1c37356841b02c91d1595f0b3e93b8684204a0d39f1523a690937a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551915031
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551915031
crossref_citationtrail_10_1016_j_geoderma_2020_114424
crossref_primary_10_1016_j_geoderma_2020_114424
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Manzoni, Taylor, Richter, Porporato, Ågren (b0105) 2012; 196
Sinsabaugh, Follstad Shah (b0140) 2011; 102
Wu, Li, Zhou, Cao (b0220) 2013; 10
Voroney, Brookes, Beyaert (b0185) 2008
Sinsabaugh, Shah (b0155) 2012; 43
Spohn, Treichel, Cormann, Schloter, Fischer (b0160) 2015; 89
Parham, Deng (b0270) 2000; 32
Waring, Weintraub, Sinsabaugh (b0210) 2014; 117
Carminati, Vetterlein (b0040) 2012; 112
Nannipieri, Trasar-Cepeda, Dick (b0115) 2018; 54
Bödeker, Lindahl, Olson, Clemmensen (b0025) 2016; 30
Göransson, Olde Venterink, Bååth (b0060) 2011; 43
Schmidt, Porazinska, Concienne, Darcy, King, Nemergut (b0135) 2016; 19
Menge, Chisholm, Davies, Abu Salim, Allen, Alvarez, Bourg, Brockelman, Bunyavejchewin, Butt (b0110) 2019; 107
Sinsabaugh, Lauber, Weintraub, Ahmed, Allison, Crenshaw, Contosta, Cusack, Frey, Gallo (b0150) 2008; 11
Bing, Wu, Zhou, Sun, Luo, Wang, Yu (b0015) 2016; 16
Wang, Wu, Zhou, Bing, Sun, Luo, Pu (b0205) 2020; 30
Yu (b0250) 1984; 15
Tabatabai (b0165) 1994
Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu (b0240) 2012; 2
Rosinger, Rousk, Sandén (b0130) 2019; 128
Xu, Yu, Zhang, He, Wang, Wang, Wang, Zhao, Jia, Wang (b0230) 2017; 104
Kyaschenko, Clemmensen, Hagenbo, Karltun, Lindahl (b0085) 2017; 11
Liang, Wang, Piao, Lu, Camarero, Zhu, Zhu, Ellison, Ciais, Penuelas (b0095) 2016; 113
Burns, DeForest, Marxsen, Sinsabaugh, Stromberger, Wallenstein, Weintraub, Zoppini (b0035) 2013; 58
Vitousek, Porder, Houlton, Chadwick (b0180) 2010; 20
Wang, Wu, Zhou, Bing, Sun (b0190) 2016; 52
Cui, Bing, Fang, Wu, Yu, Shen, Jiang, Wang, Zhang (b0055) 2019; 338
Bing, Wu, Zhou, Li, Wang (b0020) 2016; 148
Cheeke, Phillips, Brzostek, Rosling, Bever, Fransson (b0045) 2017; 214
Li, Xiong (b0090) 1995; 12
Zhang, Tian, He, Song, Ren, Jiang (b0255) 2008; 44
Wu, He, Wei, O'Donnell, Syers (b0215) 2000; 32
Cleveland, Liptzin (b0050) 2007; 85
Yoshitake, Sasaki, Uchida, Funatsu, Nakatsubo (b0245) 2007; 43
German, Weintraub, Grandy, Lauber, Rinkes, Allison (b0065) 2011; 43
Richardson, Peltzer, Allen, McGlone, Parfitt (b0125) 2004; 139
Bünemann, Augstburger, Frossard (b0030) 2016; 101
Wang, Huang, He, Bing, Chen, Zhang, Tian, Zhou, Wilcke, Wu (b0195) 2020; 56
Jiang, Lei, Qin, Korpelainen, Li (b0070) 2019; 338
Peng, Wang (b0120) 2016; 98
Wang, Wu, Zhou, Bing, Sun, He, Li, Wilcke (b0200) 2020; 446
Jiang, Lei, Yang, Korpelainen, Niinemets, Li (b0075) 2018; 118
Lindahl, Tunlid (b0100) 2015; 205
Zhou, Wu, Prietzel, Bing, Yu, Sun, Luo, Sun (b0265) 2013; 195
Sinsabaugh, Hill, Shah (b0145) 2009; 462
Allison, Vitousek (b0005) 2005; 37
Trivedi, Delgado-Baquerizo, Trivedi, Hu, Anderson, Jeffries, Zhou, Singh (b0170) 2016; 10
Bell, Carrillo, Boot, Rocca, Pendall, Wallenstein (b0010) 2014; 201
Turner, Wright (b0175) 2014; 117
Yang, Bing, Zhou, Wu, Sun, Luo, Sun, Wang (b0235) 2015; 52
Zhou, Wu, Bing, Yang, Wang, Sun, Sun, Luo (b0260) 2016; 142
Spohn (10.1016/j.geoderma.2020.114424_b0160) 2015; 89
Wu (10.1016/j.geoderma.2020.114424_b0220) 2013; 10
Cleveland (10.1016/j.geoderma.2020.114424_b0050) 2007; 85
Sinsabaugh (10.1016/j.geoderma.2020.114424_b0145) 2009; 462
Cheeke (10.1016/j.geoderma.2020.114424_b0045) 2017; 214
Bing (10.1016/j.geoderma.2020.114424_b0020) 2016; 148
Li (10.1016/j.geoderma.2020.114424_b0090) 1995; 12
Jiang (10.1016/j.geoderma.2020.114424_b0070) 2019; 338
Tabatabai (10.1016/j.geoderma.2020.114424_b0165) 1994
Bünemann (10.1016/j.geoderma.2020.114424_b0030) 2016; 101
Sinsabaugh (10.1016/j.geoderma.2020.114424_b0155) 2012; 43
Kyaschenko (10.1016/j.geoderma.2020.114424_b0085) 2017; 11
Allison (10.1016/j.geoderma.2020.114424_b0005) 2005; 37
Lindahl (10.1016/j.geoderma.2020.114424_b0100) 2015; 205
Carminati (10.1016/j.geoderma.2020.114424_b0040) 2012; 112
Wang (10.1016/j.geoderma.2020.114424_b0205) 2020; 30
Schmidt (10.1016/j.geoderma.2020.114424_b0135) 2016; 19
Sinsabaugh (10.1016/j.geoderma.2020.114424_b0150) 2008; 11
Bödeker (10.1016/j.geoderma.2020.114424_b0025) 2016; 30
German (10.1016/j.geoderma.2020.114424_b0065) 2011; 43
Trivedi (10.1016/j.geoderma.2020.114424_b0170) 2016; 10
Vitousek (10.1016/j.geoderma.2020.114424_b0180) 2010; 20
Bing (10.1016/j.geoderma.2020.114424_b0015) 2016; 16
Turner (10.1016/j.geoderma.2020.114424_b0175) 2014; 117
Yu (10.1016/j.geoderma.2020.114424_b0250) 1984; 15
Liang (10.1016/j.geoderma.2020.114424_b0095) 2016; 113
Wang (10.1016/j.geoderma.2020.114424_b0190) 2016; 52
Göransson (10.1016/j.geoderma.2020.114424_b0060) 2011; 43
Richardson (10.1016/j.geoderma.2020.114424_b0125) 2004; 139
Wang (10.1016/j.geoderma.2020.114424_b0195) 2020; 56
Cui (10.1016/j.geoderma.2020.114424_b0055) 2019; 338
Burns (10.1016/j.geoderma.2020.114424_b0035) 2013; 58
Jiang (10.1016/j.geoderma.2020.114424_b0075) 2018; 118
Zhang (10.1016/j.geoderma.2020.114424_b0255) 2008; 44
Parham (10.1016/j.geoderma.2020.114424_b0270) 2000; 32
Wu (10.1016/j.geoderma.2020.114424_b0215) 2000; 32
Sinsabaugh (10.1016/j.geoderma.2020.114424_b0140) 2011; 102
Yao (10.1016/j.geoderma.2020.114424_b0240) 2012; 2
Zhou (10.1016/j.geoderma.2020.114424_b0260) 2016; 142
Menge (10.1016/j.geoderma.2020.114424_b0110) 2019; 107
Bell (10.1016/j.geoderma.2020.114424_b0010) 2014; 201
Manzoni (10.1016/j.geoderma.2020.114424_b0105) 2012; 196
Zhou (10.1016/j.geoderma.2020.114424_b0265) 2013; 195
Yang (10.1016/j.geoderma.2020.114424_b0235) 2015; 52
Rosinger (10.1016/j.geoderma.2020.114424_b0130) 2019; 128
Wang (10.1016/j.geoderma.2020.114424_b0200) 2020; 446
Yoshitake (10.1016/j.geoderma.2020.114424_b0245) 2007; 43
Voroney (10.1016/j.geoderma.2020.114424_b0185) 2008
Peng (10.1016/j.geoderma.2020.114424_b0120) 2016; 98
Waring (10.1016/j.geoderma.2020.114424_b0210) 2014; 117
Xu (10.1016/j.geoderma.2020.114424_b0230) 2017; 104
Nannipieri (10.1016/j.geoderma.2020.114424_b0115) 2018; 54
References_xml – volume: 2
  start-page: 663
  year: 2012
  end-page: 667
  ident: b0240
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nature Clim. Change
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  ident: b0065
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 1183
  year: 2000
  end-page: 1190
  ident: b0270
  article-title: Detection, quantification and characterization of β-glucosaminidase activity in soil
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 500
  year: 2000
  end-page: 507
  ident: b0215
  article-title: Quantifying microbial biomass phosphorus in acid soils
  publication-title: Biol. Fertil. Soils
– volume: 446
  start-page: 259
  year: 2020
  end-page: 274
  ident: b0200
  article-title: Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants
  publication-title: Plant Soil
– volume: 16
  start-page: 405
  year: 2016
  end-page: 416
  ident: b0015
  article-title: Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau
  publication-title: J. Soils Sediments
– volume: 52
  start-page: 825
  year: 2016
  end-page: 839
  ident: b0190
  article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development
  publication-title: Biol. Fertil. Soils
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: b0050
  article-title: C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 113
  start-page: 4380
  year: 2016
  end-page: 4385
  ident: b0095
  article-title: Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 37
  start-page: 937
  year: 2005
  end-page: 944
  ident: b0005
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biol. Biochem.
– volume: 102
  start-page: 31
  year: 2011
  end-page: 43
  ident: b0140
  article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse
  publication-title: Biogeochemistry
– volume: 117
  start-page: 115
  year: 2014
  end-page: 130
  ident: b0175
  article-title: The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest
  publication-title: Biogeochemistry
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  ident: b0180
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol. Appl.
– volume: 128
  start-page: 115
  year: 2019
  end-page: 126
  ident: b0130
  article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 1333
  year: 2011
  end-page: 1340
  ident: b0060
  article-title: Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: b0155
  article-title: Ecoenzymatic Stoichiometry and Ecological Theory
  publication-title: Ann. Rev. Ecol., Evolut., Syst.
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  ident: b0210
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: b0145
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 118
  start-page: 207
  year: 2018
  end-page: 216
  ident: b0075
  article-title: Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence
  publication-title: Soil Biol. Biochem.
– volume: 112
  start-page: 277
  year: 2012
  end-page: 290
  ident: b0040
  article-title: Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources
  publication-title: Ann. Bot.
– start-page: 637
  year: 2008
  end-page: 652
  ident: b0185
  article-title: Soil microbial biomass C, N, P, and S
  publication-title: Soil sampling and methods of analysis
– volume: 11
  start-page: 863
  year: 2017
  end-page: 874
  ident: b0085
  article-title: Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands
  publication-title: ISME J.
– volume: 58
  start-page: 216
  year: 2013
  end-page: 234
  ident: b0035
  article-title: Soil enzymes in a changing environment: Current knowledge and future directions
  publication-title: Soil Biol. Biochem.
– volume: 338
  start-page: 118
  year: 2019
  end-page: 127
  ident: b0055
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
– volume: 54
  start-page: 11
  year: 2018
  end-page: 19
  ident: b0115
  article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis
  publication-title: Biol. Fertility Soils
– volume: 148
  start-page: 211
  year: 2016
  end-page: 219
  ident: b0020
  article-title: Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century
  publication-title: Chemosphere
– start-page: 775
  year: 1994
  end-page: 833
  ident: b0165
  article-title: Soil enzymes
  publication-title: Methods of soil analysis. Part 2 Microbiological and Biochemical Properties
– volume: 201
  start-page: 505
  year: 2014
  end-page: 517
  ident: b0010
  article-title: Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?
  publication-title: New Phytol.
– volume: 139
  start-page: 267
  year: 2004
  end-page: 276
  ident: b0125
  article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence
  publication-title: Oecologia
– volume: 30
  start-page: 272
  year: 2020
  end-page: 284
  ident: b0205
  article-title: Air-drying changes the distribution of Hedley phosphorus pools in forest soils
  publication-title: Pedosphere
– volume: 44
  start-page: 392
  year: 2008
  end-page: 399
  ident: b0255
  article-title: Effect of litter quality on its decomposition in broadleaf and coniferous forest
  publication-title: Eur. J. Soil Biol.
– volume: 338
  start-page: 313
  year: 2019
  end-page: 324
  ident: b0070
  article-title: Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield
  publication-title: Geoderma
– volume: 214
  start-page: 432
  year: 2017
  end-page: 442
  ident: b0045
  article-title: Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function
  publication-title: New Phytol.
– volume: 30
  start-page: 1967
  year: 2016
  end-page: 1978
  ident: b0025
  article-title: Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently
  publication-title: Funct. Ecol.
– volume: 205
  start-page: 1443
  year: 2015
  end-page: 1447
  ident: b0100
  article-title: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytol.
– volume: 98
  start-page: 74
  year: 2016
  end-page: 84
  ident: b0120
  article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China
  publication-title: Soil Biol. Biochem.
– volume: 10
  start-page: 370
  year: 2013
  end-page: 377
  ident: b0220
  article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades
  publication-title: J. Mountain Sci.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0245
  article-title: Carbon and nitrogen limitation to microbial respiration and biomass in an acidic solfatara field
  publication-title: Eur. J. Soil Biol.
– volume: 15
  start-page: 65
  year: 1984
  end-page: 68
  ident: b0250
  article-title: The vertical zonality and genesis of soil in Gongga Mt
  publication-title: J. Soil Sci.
– volume: 89
  start-page: 44
  year: 2015
  end-page: 51
  ident: b0160
  article-title: Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 109
  year: 1995
  end-page: 115
  ident: b0090
  article-title: Vegetation primary succession on glacier foreland in Hailuogou
  publication-title: Mt. Gongga. Mountain Res.
– volume: 142
  start-page: 102
  year: 2016
  end-page: 111
  ident: b0260
  article-title: Variations in soil phosphorus biogeochemistry across six vegetation types along an altitudinal gradient in SW China
  publication-title: CATENA
– volume: 10
  start-page: 2593
  year: 2016
  end-page: 2604
  ident: b0170
  article-title: Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships
  publication-title: ISME J.
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  ident: b0105
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: S Phytol.
– volume: 195
  start-page: 251
  year: 2013
  end-page: 259
  ident: b0265
  article-title: Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China)
  publication-title: Geoderma
– volume: 19
  start-page: 1164
  year: 2016
  end-page: 1177
  ident: b0135
  article-title: Biogeochemical Stoichiometry Reveals P and N Limitation Across the Post-glacial Landscape of Denali National Park, Alaska
  publication-title: Ecosystems
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  ident: b0150
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecol. Lett.
– volume: 56
  start-page: 281
  year: 2020
  end-page: 285
  ident: b0195
  article-title: Microplate fluorimetric assay of soil leucine aminopeptidase activity: alkalization is not needed before fluorescence reading
  publication-title: Biol. Fertil. Soils
– volume: 52
  start-page: 507
  year: 2015
  end-page: 516
  ident: b0235
  article-title: Variation of mineral composition along the soil chronosequence at the Hailuogou Glacier foreland of Gongga Mountain
  publication-title: Acta Pedologica Sinica
– volume: 107
  start-page: 2598
  year: 2019
  end-page: 2610
  ident: b0110
  article-title: Patterns of nitrogen-fixing tree abundance in forests across Asia and America
  publication-title: J. Ecol.
– volume: 104
  start-page: 152
  year: 2017
  end-page: 163
  ident: b0230
  article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)
  publication-title: Soil Biol. Biochem.
– volume: 101
  start-page: 85
  year: 2016
  end-page: 95
  ident: b0030
  article-title: Dominance of either physicochemical or biological phosphorus cycling processes in temperate forest soils of contrasting phosphate availability
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 1387
  issue: 7
  year: 2011
  ident: 10.1016/j.geoderma.2020.114424_b0065
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.03.017
– volume: 148
  start-page: 211
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0020
  article-title: Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.042
– volume: 43
  start-page: 313
  year: 2012
  ident: 10.1016/j.geoderma.2020.114424_b0155
  article-title: Ecoenzymatic Stoichiometry and Ecological Theory
  publication-title: Ann. Rev. Ecol., Evolut., Syst.
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 117
  start-page: 101
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2020.114424_b0210
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9849-x
– volume: 446
  start-page: 259
  year: 2020
  ident: 10.1016/j.geoderma.2020.114424_b0200
  article-title: Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04329-x
– volume: 201
  start-page: 505
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2020.114424_b0010
  article-title: Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?
  publication-title: New Phytol.
  doi: 10.1111/nph.12531
– volume: 58
  start-page: 216
  year: 2013
  ident: 10.1016/j.geoderma.2020.114424_b0035
  article-title: Soil enzymes in a changing environment: Current knowledge and future directions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.11.009
– volume: 102
  start-page: 31
  year: 2011
  ident: 10.1016/j.geoderma.2020.114424_b0140
  article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9482-x
– volume: 11
  start-page: 863
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2020.114424_b0085
  article-title: Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.184
– volume: 30
  start-page: 1967
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0025
  article-title: Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12677
– volume: 142
  start-page: 102
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0260
  article-title: Variations in soil phosphorus biogeochemistry across six vegetation types along an altitudinal gradient in SW China
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.03.004
– volume: 101
  start-page: 85
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0030
  article-title: Dominance of either physicochemical or biological phosphorus cycling processes in temperate forest soils of contrasting phosphate availability
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.005
– volume: 104
  start-page: 152
  year: 2017
  ident: 10.1016/j.geoderma.2020.114424_b0230
  article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.10.020
– volume: 196
  start-page: 79
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2020.114424_b0105
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: S Phytol.
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 32
  start-page: 500
  issue: 6
  year: 2000
  ident: 10.1016/j.geoderma.2020.114424_b0215
  article-title: Quantifying microbial biomass phosphorus in acid soils
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740000284
– volume: 15
  start-page: 65
  issue: 2
  year: 1984
  ident: 10.1016/j.geoderma.2020.114424_b0250
  article-title: The vertical zonality and genesis of soil in Gongga Mt
  publication-title: J. Soil Sci.
– start-page: 775
  year: 1994
  ident: 10.1016/j.geoderma.2020.114424_b0165
  article-title: Soil enzymes
– volume: 10
  start-page: 2593
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0170
  article-title: Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.65
– volume: 56
  start-page: 281
  year: 2020
  ident: 10.1016/j.geoderma.2020.114424_b0195
  article-title: Microplate fluorimetric assay of soil leucine aminopeptidase activity: alkalization is not needed before fluorescence reading
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-019-01419-x
– volume: 52
  start-page: 507
  issue: 3
  year: 2015
  ident: 10.1016/j.geoderma.2020.114424_b0235
  article-title: Variation of mineral composition along the soil chronosequence at the Hailuogou Glacier foreland of Gongga Mountain
  publication-title: Acta Pedologica Sinica
– volume: 37
  start-page: 937
  issue: 5
  year: 2005
  ident: 10.1016/j.geoderma.2020.114424_b0005
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.09.014
– volume: 205
  start-page: 1443
  year: 2015
  ident: 10.1016/j.geoderma.2020.114424_b0100
  article-title: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytol.
  doi: 10.1111/nph.13201
– volume: 19
  start-page: 1164
  issue: 7
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0135
  article-title: Biogeochemical Stoichiometry Reveals P and N Limitation Across the Post-glacial Landscape of Denali National Park, Alaska
  publication-title: Ecosystems
  doi: 10.1007/s10021-016-9992-z
– volume: 52
  start-page: 825
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0190
  article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1123-7
– volume: 195
  start-page: 251
  year: 2013
  ident: 10.1016/j.geoderma.2020.114424_b0265
  article-title: Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.12.010
– volume: 2
  start-page: 663
  issue: 9
  year: 2012
  ident: 10.1016/j.geoderma.2020.114424_b0240
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nature Clim. Change
  doi: 10.1038/nclimate1580
– volume: 338
  start-page: 118
  year: 2019
  ident: 10.1016/j.geoderma.2020.114424_b0055
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.047
– volume: 107
  start-page: 2598
  issue: 6
  year: 2019
  ident: 10.1016/j.geoderma.2020.114424_b0110
  article-title: Patterns of nitrogen-fixing tree abundance in forests across Asia and America
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13199
– volume: 85
  start-page: 235
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2020.114424_b0050
  article-title: C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 12
  start-page: 109
  issue: 2
  year: 1995
  ident: 10.1016/j.geoderma.2020.114424_b0090
  article-title: Vegetation primary succession on glacier foreland in Hailuogou
  publication-title: Mt. Gongga. Mountain Res.
– volume: 139
  start-page: 267
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2020.114424_b0125
  article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1501-y
– volume: 44
  start-page: 392
  year: 2008
  ident: 10.1016/j.geoderma.2020.114424_b0255
  article-title: Effect of litter quality on its decomposition in broadleaf and coniferous forest
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2008.04.005
– volume: 117
  start-page: 115
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2020.114424_b0175
  article-title: The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9848-y
– volume: 113
  start-page: 4380
  issue: 16
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0095
  article-title: Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1520582113
– volume: 11
  start-page: 1252
  issue: 11
  year: 2008
  ident: 10.1016/j.geoderma.2020.114424_b0150
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01245.x
– volume: 89
  start-page: 44
  year: 2015
  ident: 10.1016/j.geoderma.2020.114424_b0160
  article-title: Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.018
– volume: 32
  start-page: 1183
  issue: 8
  year: 2000
  ident: 10.1016/j.geoderma.2020.114424_b0270
  article-title: Detection, quantification and characterization of β-glucosaminidase activity in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00034-1
– volume: 214
  start-page: 432
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114424_b0045
  article-title: Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function
  publication-title: New Phytol.
  doi: 10.1111/nph.14343
– volume: 10
  start-page: 370
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2020.114424_b0220
  article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades
  publication-title: J. Mountain Sci.
  doi: 10.1007/s11629-013-2328-y
– volume: 338
  start-page: 313
  year: 2019
  ident: 10.1016/j.geoderma.2020.114424_b0070
  article-title: Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.023
– volume: 118
  start-page: 207
  year: 2018
  ident: 10.1016/j.geoderma.2020.114424_b0075
  article-title: Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.12.019
– volume: 43
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2020.114424_b0245
  article-title: Carbon and nitrogen limitation to microbial respiration and biomass in an acidic solfatara field
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2006.01.003
– volume: 98
  start-page: 74
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0120
  article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.04.008
– volume: 128
  start-page: 115
  year: 2019
  ident: 10.1016/j.geoderma.2020.114424_b0130
  article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.10.011
– volume: 112
  start-page: 277
  issue: 2
  year: 2012
  ident: 10.1016/j.geoderma.2020.114424_b0040
  article-title: Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs262
– volume: 30
  start-page: 272
  year: 2020
  ident: 10.1016/j.geoderma.2020.114424_b0205
  article-title: Air-drying changes the distribution of Hedley phosphorus pools in forest soils
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60456-9
– volume: 462
  start-page: 795
  issue: 7274
  year: 2009
  ident: 10.1016/j.geoderma.2020.114424_b0145
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– start-page: 637
  year: 2008
  ident: 10.1016/j.geoderma.2020.114424_b0185
  article-title: Soil microbial biomass C, N, P, and S
– volume: 43
  start-page: 1333
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2020.114424_b0060
  article-title: Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.03.006
– volume: 16
  start-page: 405
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2020.114424_b0015
  article-title: Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-015-1200-9
– volume: 54
  start-page: 11
  year: 2018
  ident: 10.1016/j.geoderma.2020.114424_b0115
  article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis
  publication-title: Biol. Fertility Soils
  doi: 10.1007/s00374-017-1245-6
– volume: 20
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2020.114424_b0180
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol. Appl.
  doi: 10.1890/08-0127.1
SSID ssj0017020
Score 2.5740921
Snippet •Enzyme activity and stoichiometry were studied along a climate and a vegetation type gradient in subalpine forests.•Climate has little impact on the enzyme...
Soil extracellular enzymes catalyze the rate limiting steps of organic matter decomposition, and enzyme stoichiometry has been used to reflect microbial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114424
SubjectTerms acid phosphatase
altitude
carbon
China
chronosequences
climate
ectomycorrhizae
Environmental gradient
Enzyme activity
Enzyme stoichiometry
Gongga Mountain
nitrogen
organic matter
phosphorus
rhizosphere
soil
soil enzymes
stoichiometry
Subalpine forests
Title Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau
URI https://dx.doi.org/10.1016/j.geoderma.2020.114424
https://www.proquest.com/docview/2551915031
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoED4inKozIS17Bx7LyOq4pqAani0KLeLD8mJdXWu8ruVioH_gh_lhnHqQAJ9cAxVsaxPJOZb-x5MPZOFB1Q3kFW1q7JlHOQmcLZrPHoC_imao2PUb4n1eJMfTovz_fY0ZQLQ2GVSfePOj1q6zQyS7s5W_c95fiKqkZzRBBEtooSfpWqScrf_7gN8xB1nkoziiqjt3_LEr5EHlHDsVh_qIhlc1Wh_mWg_lLV0f4cP2IPE3Dk83Ftj9kehCfswfxiSMUz4Cn7-RUuUvQgp6NVPkR4x-l0nLtlj-AU-NXKU8cu2OAw8Gt0lUeCPvDNql9yCN9vroBTvsN1rLbKTfAcIWLvvlGq_na4ie_urFmuEaJyRL243A0N0ozUCwiGwE97i2sJ_At9zOyesbPjD6dHiyw1X8icVOU2Q8dJeGmFBeFkLcuqUcLmhWuFRwRUdrmV0Erb0D1erkzuZdshFpAG3W2EPEY-Z_thFeAF467Kja1BFcIT_rGmsN65zkFXNQiwzAErpx3XLlUmpwYZSz2FoF3qiVOaOKVHTh2w2S3deqzNcSdFOzFU_yFlGg3InbRvJwnQ-AvSvYoJsNptNHpl6PWWqB5f_sf8r9h9ehrj116z_e2wgzcIeLb2MEr0Ibs3__h5cfILgQoD6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAcUHmJ8ihG4hptHOd5XFVU2wcrDlvUm-XHpKTaelfZ3Urlr_BnmUmcCiqhHrg6GcfyOONv7JlvGPsskhoo7yDKCltGqbUQ6cSaqHToC7gyr7Tronxn-fQ8PbnILnbY4ZALQ2GVwfb3Nr2z1qFlHGZzvGoayvEVeYHbEUEQWaXlI7ZL7FTZiO1Ojk-ns7vLhCIO7Iwij0jgj0ThK1QT1RzrKIiSjjk3TdJ_7VH3rHW3BR3tsWcBO_JJP7znbAf8C_Z0ctkG_gx4yX59h8sQQMjpdJW3HcLjdEDO7aJBfAr8eumoaBessRn4DXrLvUDj-XrZLDj4n7fXwCnl4aYjXOXaO44osbE_KFt_0952726NXqwQpXIEvjjcNTVSj1QOCFrP543BsXj-jT6mt6_Y-dGX-eE0CvUXIivTbBOh7yScNMKAsLKQWV6mwsSJrYRDEJTVsZFQSVPSVV6c6tjJqkY4IDV63Ih6tHzNRn7p4Q3jNo-1KSBNhCMIZHRinLW1hTovEWPpfZYNM65sICenGhkLNUShXalBU4o0pXpN7bPxndyqp-d4UKIaFKr-WmgK95AHZT8NK0DhX0hXK9rDcrtW6Jih45uhhXz7H_1_ZI-n869n6ux4dvqOPaEnfTjbezbatFv4gPhnYw7C-v4NWTUGnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+type+rather+than+climate+modulates+the+variation+in+soil+enzyme+activities+and+stoichiometry+in+subalpine+forests+in+the+eastern+Tibetan+Plateau&rft.jtitle=Geoderma&rft.au=He%2C+Qingqing&rft.au=Wu%2C+Yanhong&rft.au=Bing%2C+Haijian&rft.au=Zhou%2C+Jun&rft.date=2020-09-01&rft.issn=0016-7061&rft.volume=374+p.114424-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114424&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon