Experiments and Finite Element Simulations of Composite Laminates Following Low Velocity On-Edge Impact Damage

Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact may have a great contribution in terms of the compression strength loss of composites, but the influence remains unclear. This paper present...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 9; p. 1744
Main Authors Xu, Wenjun, Liu, Longquan, Xu, Wu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact may have a great contribution in terms of the compression strength loss of composites, but the influence remains unclear. This paper presents experiments and simulations of carbon-fiber-reinforced plastic (CFRP) materials with on-edge impact and compression after edge impact (CAEI). On-edge impact damage was introduced to the composite laminates through the drop weight method with 4, 6, 8 and 10 J impact energies, respectively. A special guide-rail-type fixture was used in the compression tests in which strain–force and load–displacement relationships were obtained. A continuous-step finite element model was proposed to simulate impact and compression. Continuum shell elements and Hashin failure criteria were used to simulate in-ply damage, and interlaminar damage was modelled by cohesive elements. The model was validated by correlating the experimental and numerical results. The investigation results revealed the relationships of the damage size and residual strength with the different impact energies. The crack length and delaminated area grow with the increase in impact energy. The residual compressive strength follows a downward trend with increasing impact energy.
AbstractList Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact may have a great contribution in terms of the compression strength loss of composites, but the influence remains unclear. This paper presents experiments and simulations of carbon-fiber-reinforced plastic (CFRP) materials with on-edge impact and compression after edge impact (CAEI). On-edge impact damage was introduced to the composite laminates through the drop weight method with 4, 6, 8 and 10 J impact energies, respectively. A special guide-rail-type fixture was used in the compression tests in which strain–force and load–displacement relationships were obtained. A continuous-step finite element model was proposed to simulate impact and compression. Continuum shell elements and Hashin failure criteria were used to simulate in-ply damage, and interlaminar damage was modelled by cohesive elements. The model was validated by correlating the experimental and numerical results. The investigation results revealed the relationships of the damage size and residual strength with the different impact energies. The crack length and delaminated area grow with the increase in impact energy. The residual compressive strength follows a downward trend with increasing impact energy.
Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact may have a great contribution in terms of the compression strength loss of composites, but the influence remains unclear. This paper presents experiments and simulations of carbon-fiber-reinforced plastic (CFRP) materials with on-edge impact and compression after edge impact (CAEI). On-edge impact damage was introduced to the composite laminates through the drop weight method with 4, 6, 8 and 10 J impact energies, respectively. A special guide-rail-type fixture was used in the compression tests in which strain-force and load-displacement relationships were obtained. A continuous-step finite element model was proposed to simulate impact and compression. Continuum shell elements and Hashin failure criteria were used to simulate in-ply damage, and interlaminar damage was modelled by cohesive elements. The model was validated by correlating the experimental and numerical results. The investigation results revealed the relationships of the damage size and residual strength with the different impact energies. The crack length and delaminated area grow with the increase in impact energy. The residual compressive strength follows a downward trend with increasing impact energy.Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact may have a great contribution in terms of the compression strength loss of composites, but the influence remains unclear. This paper presents experiments and simulations of carbon-fiber-reinforced plastic (CFRP) materials with on-edge impact and compression after edge impact (CAEI). On-edge impact damage was introduced to the composite laminates through the drop weight method with 4, 6, 8 and 10 J impact energies, respectively. A special guide-rail-type fixture was used in the compression tests in which strain-force and load-displacement relationships were obtained. A continuous-step finite element model was proposed to simulate impact and compression. Continuum shell elements and Hashin failure criteria were used to simulate in-ply damage, and interlaminar damage was modelled by cohesive elements. The model was validated by correlating the experimental and numerical results. The investigation results revealed the relationships of the damage size and residual strength with the different impact energies. The crack length and delaminated area grow with the increase in impact energy. The residual compressive strength follows a downward trend with increasing impact energy.
Author Xu, Wu
Liu, Longquan
Xu, Wenjun
AuthorAffiliation Laboratory of Aircraft Structure and Strength, Shanghai Jiao Tong University, Shanghai 20024, China; xuwenjun@sjtu.edu.cn (W.X.); xuwu@sjtu.edu.cn (W.X.)
AuthorAffiliation_xml – name: Laboratory of Aircraft Structure and Strength, Shanghai Jiao Tong University, Shanghai 20024, China; xuwenjun@sjtu.edu.cn (W.X.); xuwu@sjtu.edu.cn (W.X.)
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0002-1150-1156
  surname: Xu
  fullname: Xu, Wenjun
– sequence: 2
  givenname: Longquan
  orcidid: 0000-0002-9151-0828
  surname: Liu
  fullname: Liu, Longquan
– sequence: 3
  givenname: Wu
  surname: Xu
  fullname: Xu, Wu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35566913$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9vFCEUx4mpsXXt0ash8eJlFBaGYS4mZt3VJpv04I8recO8XWkYGAfGuv-9rK1N20QuvPA-fHlfvs_JSYgBCXnJ2VshWvZujP4wcMla3kj5hJwtWSMqKRQ7uVefkvOUrlhZslaKN8_IqahL1XJxRsL694iTGzDkRCH0dOOCy0jXHo9n9IsbZg_ZxZBo3NFVHMaYjsAWBhcgY6Kb6H28dmFPt_GafkcfrcsHehmqdb9HejGMYDP9CAPs8QV5ugOf8Px2X5Bvm_XX1edqe_npYvVhW1kh61zJGqDlFhh2tdbclrrmutWyA612WiEDWze2Bd7Jlkndq96iElzIfom6Y2JB3t_ojnM3YGmGPIE3Y3EK08FEcOZhJ7gfZh9_mZYzJqQuAm9uBab4c8aUzeCSRe8hYJyTWSolNePL8uaCvH6EXsV5CsXekRJFsOFNoV7dn-hulH9RFKC6AewUU5pwd4dwZo5pmwdpF1484su3_02qGHL-P7f-AI7ur1c
CitedBy_id crossref_primary_10_3390_polym15112484
crossref_primary_10_3390_polym14204279
crossref_primary_10_1007_s10443_023_10194_w
crossref_primary_10_1177_00219983241311359
Cites_doi 10.1016/j.compositesb.2016.11.043
10.1016/j.compstruct.2017.11.084
10.1177/0021998320987605
10.1115/1.3153664
10.1016/j.compositesb.2011.04.017
10.1016/j.compstruct.2021.114887
10.1177/0021998314537325
10.1098/rsta.2011.0441
10.1016/j.compstruct.2020.112018
10.1016/j.compstruct.2015.11.060
10.1016/0010-4361(91)90549-V
10.1016/j.compstruct.2016.12.004
10.1016/j.ijimpeng.2019.103430
10.1007/s10704-005-4729-6
10.1007/s10853-008-2863-z
10.1016/j.compositesa.2009.10.024
10.1016/j.compstruct.2019.03.021
10.1016/j.tws.2020.107157
10.1007/s10853-006-0208-3
10.1016/j.compstruct.2016.05.068
10.1016/j.compstruct.2016.06.041
10.1016/j.compstruct.2018.06.094
10.1016/j.compstruct.2022.115371
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym14091744
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC9100348
35566913
10_3390_polym14091744
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52075326
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
NPM
PQGLB
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c345t-45aa91ca0eb5881c91c518984ba86f86e0ac57c9a1b49048d6dce63134d2e8b03
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:06:43 EDT 2025
Fri Jul 11 13:20:49 EDT 2025
Fri Jul 25 11:55:35 EDT 2025
Mon Jul 21 05:57:45 EDT 2025
Tue Jul 01 02:20:29 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords finite element simulation
compression after edge impact
composite materials
on-edge impact
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-45aa91ca0eb5881c91c518984ba86f86e0ac57c9a1b49048d6dce63134d2e8b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9151-0828
0000-0002-1150-1156
OpenAccessLink https://www.proquest.com/docview/2663100717?pq-origsite=%requestingapplication%
PMID 35566913
PQID 2663100717
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9100348
proquest_miscellaneous_2664801231
proquest_journals_2663100717
pubmed_primary_35566913
crossref_primary_10_3390_polym14091744
crossref_citationtrail_10_3390_polym14091744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220425
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 4
  year: 2022
  text: 20220425
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ghelli (ref_1) 2011; 42
Malhotra (ref_8) 2008; 43
Bouvet (ref_16) 2016; 152
Bouvet (ref_15) 2015; 49
Breen (ref_7) 2006; 41
Umair (ref_3) 2021; 55
Zangana (ref_5) 2021; 158
Arteiro (ref_18) 2020; 240
Li (ref_13) 2017; 110
Zangana (ref_6) 2020; 137
Thorsson (ref_10) 2018; 186
Hussain (ref_4) 2022; 288
Thorsson (ref_11) 2018; 203
Hashin (ref_22) 1980; 47
ref_21
ref_20
Li (ref_14) 2017; 162
Rhead (ref_9) 2010; 41
Yang (ref_23) 2005; 133
Bouvet (ref_17) 2016; 153
Liu (ref_19) 2022; 280
Cantwell (ref_25) 1991; 22
ref_26
Shah (ref_2) 2019; 217
Li (ref_12) 2016; 138
Wisnom (ref_24) 2012; 370
References_xml – volume: 110
  start-page: 402
  year: 2017
  ident: ref_13
  article-title: Prediction of Compression-After-Edge-Impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2016.11.043
– volume: 186
  start-page: 335
  year: 2018
  ident: ref_10
  article-title: Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.084
– ident: ref_26
– volume: 55
  start-page: 2179
  year: 2021
  ident: ref_3
  article-title: Effect of weave architecture and glass microspheres percentage on the low velocity impact response of hemp/green epoxy composites
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998320987605
– volume: 47
  start-page: 329
  year: 1980
  ident: ref_22
  article-title: Failure criteria for unidirectional fiber composites
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3153664
– volume: 42
  start-page: 2067
  year: 2011
  ident: ref_1
  article-title: Low velocity impact and compression after impact tests on thin carbon/epoxy laminates
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2011.04.017
– volume: 280
  start-page: 114887
  year: 2022
  ident: ref_19
  article-title: Experimental and numerical simulation study on Near-edge/On-edge Low-Velocity impact and residual compressive strength of T300/69 laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114887
– volume: 49
  start-page: 1599
  year: 2015
  ident: ref_15
  article-title: Edge impact damage scenario on stiffened composite structure
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998314537325
– volume: 370
  start-page: 1850
  year: 2012
  ident: ref_24
  article-title: The role of delamination in failure of fibre-reinforced composites
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2011.0441
– volume: 240
  start-page: 112018
  year: 2020
  ident: ref_18
  article-title: Simulation of edge impact and compression after edge impact in CFRP laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112018
– volume: 138
  start-page: 134
  year: 2016
  ident: ref_12
  article-title: Experimental investigation on edge impact damage and Compression-After-Impact (CAI) behavior of stiffened composite panels
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.11.060
– volume: 22
  start-page: 347
  year: 1991
  ident: ref_25
  article-title: The impact resistance of composite materials—A review
  publication-title: Composites
  doi: 10.1016/0010-4361(91)90549-V
– ident: ref_21
– volume: 162
  start-page: 210
  year: 2017
  ident: ref_14
  article-title: Failure prediction of T-stiffened composite panels subjected to compression after edge impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.12.004
– volume: 137
  start-page: 103430
  year: 2020
  ident: ref_6
  article-title: A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres—Investigation under low-velocity impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.103430
– volume: 133
  start-page: 107
  year: 2005
  ident: ref_23
  article-title: Cohesive models for damage evolution in laminated composites
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-005-4729-6
– volume: 43
  start-page: 6661
  year: 2008
  ident: ref_8
  article-title: Edge impact to composite laminates: Experiments and simulations
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2863-z
– volume: 41
  start-page: 1056
  year: 2010
  ident: ref_9
  article-title: Compressive strength of composite laminates following free edge impact
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2009.10.024
– volume: 217
  start-page: 100
  year: 2019
  ident: ref_2
  article-title: Impact resistance and damage tolerance of fiber reinforced composites: A review
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.03.021
– volume: 158
  start-page: 107157
  year: 2021
  ident: ref_5
  article-title: Behaviour of continuous fibre composite sandwich core under low-velocity impact
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.107157
– volume: 41
  start-page: 6718
  year: 2006
  ident: ref_7
  article-title: Impact damage to thick carbon fibre reinforced plastic composite laminates
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0208-3
– volume: 152
  start-page: 767
  year: 2016
  ident: ref_16
  article-title: Experimental analysis of CFRP laminates subjected to compression after edge impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.05.068
– volume: 153
  start-page: 478
  year: 2016
  ident: ref_17
  article-title: Finite element analysis of CFRP laminates subjected to compression after edge impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.06.041
– ident: ref_20
– volume: 203
  start-page: 648
  year: 2018
  ident: ref_11
  article-title: Numerical investigation of composite laminates subject to low-velocity edge-on impact and compression after impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.06.094
– volume: 288
  start-page: 115371
  year: 2022
  ident: ref_4
  article-title: Effect of matrix and hybrid reinforcement on fibre metal laminates under low–velocity impact loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115371
SSID ssj0000456617
Score 2.302794
Snippet Composites are widely used in aircraft structures that have free edges and are vulnerable to impact events during manufacturing and maintenance. On-edge impact...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1744
SubjectTerms Aircraft structures
Carbon fiber reinforced plastics
Composite materials
Compression tests
Compressive strength
Crack initiation
Energy
Experiments
Finite element method
Guide rails
Impact damage
Impact tests
Laminates
Mathematical models
Numerical analysis
Propagation
Residual energy
Residual strength
Shear strength
Simulation
Velocity
Title Experiments and Finite Element Simulations of Composite Laminates Following Low Velocity On-Edge Impact Damage
URI https://www.ncbi.nlm.nih.gov/pubmed/35566913
https://www.proquest.com/docview/2663100717
https://www.proquest.com/docview/2664801231
https://pubmed.ncbi.nlm.nih.gov/PMC9100348
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QEuqLwDpTIS6gmr8StxTlUpSVvUFgQU7S2yEwdW6iYLu1XVf8944w0sqNwSZaQkY3vmm_H4G4DXLG6YQz9Eec1TDFBETDOVSWpTxo2wKW-EP418dp4cX8j3YzUOCbd5KKtc2cSloa67yufI99CR-Fw0Rh_7sx_Ud43yu6uhhcYGbKIJ1noEm2_z84-fhiyLByzoo3tyTYHx_d6su7yZepYnhOJy3Rn9gzD_LpT8w_MUW3A_QEZy0I_xA7jj2odw93DVqe0RtPlA0z8npq1JMfFIkuR9aTj5PJmGJl1z0jXEmwBfquXIqfGFMAg2SYHTobtGN0ZOu2vy1aGLQ3hOPrQ0r785crI8S0nemSman8dwUeRfDo9p6KNAKyHVgkplTMYqEzurtGYVXiumMy2t0UmjExebSqVVZpiVGa7oOsEfRm0LWXOnbSyewKjtWvcMiLGai8rZJKkbKbjJhEgbbdIGkZ-SwkbwZqXQsgok477XxWWJwYbXf7mm_wh2B_FZz65xm-D2anTKsMjm5e8pEcGr4THq3u95mNZ1V0sZT5CDKDaCp_1gDm9CqJUkGRMRpGvDPAh46u31J-3k-5KCG0FWLKR-_v_PegH3uD8tEUvK1TaMFj-v3EvEMAu7Axu6ONoJ0xXvjsbsF2R69is
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVN7pA4wEnIia2E7iHFCF2g27dFsOtKi31E4cWKmbbNmtVv1T_EZm8oIFwa23SB4l0cx45ht7HgCvfK_wLfohl-c8wgBFeG4cxNI1kc-1MBEvBFUjH5-EwzP58Tw4X4MfXS0MpVV2NrE21HmV0Rn5HjoSOovG6GN_duXS1Ci6Xe1GaDRqcWRvlhiyzd-NDlG-rzlPBqcHQ7edKuBmQgYLVwZax36mPWsCpfwMnwNfxUoarcJChdbTWRBlsfaNjFG_8zDPLH5byJxbZTyB770Dd6VAT06V6cmH_kyH4BEigqaVJ657e7Pq8mZKPaUQ-MtV1_cXnv0zLfM3P5dswv0WoLL3jUY9gDVbPoSNg24u3CMoB_1QgDnTZc6SCeFWNmgS0dnnybQdCTZnVcHI4FBimGVjTWk3CG1ZgspXLdFpsnG1ZF8sOlQMBtin0h3kXy0b1ZWb7FBP0dg9hrNb4e8TWC-r0j4Dpo3iIrMmDPNCCq5jIaJC6ahAnBlIYRx42zE0zdqW5jRZ4zLF0Ib4n67w34E3Pfms6eXxL8KdTjppu6Xn6S8FdOBlv4y8pxsWXdrquqahdjyImR142giz_xICuzCMfeFAtCLmnoAafa-ulJNvdcNvhHSekGrr_7_1AjaGp8fjdDw6OdqGe5zqNDzp8mAH1hffr-0uoqeFeV6rLIOL294jPwFYay-v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEnLBi767t9QEhaBw1NIQKaNWb2bXXbaTGDiRV1L_Gr2MmfkBAcOvN0o5sa2Z25pvdeQA8973Ct-iHXJ7zCAMU4blxEEvXRD7XwkS8EFSN_GES7h3K98fB8Rb8aGthKK2ytYlrQ51XGZ2R99GR0Fk0Rh_9okmLOBgM38y_uTRBim5a23EatYrs24sVhm-L16MByvoF58Pky-6e20wYcDMhg6UrA61jP9OeNYFSfobPga9iJY1WYaFC6-ksiLJY-0bGqOt5mGcW_0PInFtlPIHvvQLbEUVFPdh-l0wOPnUnPASWEB_UjT2FiL3-vDq7mFGHKQwD5KYj_Avd_pmk-ZvXG96EGw1cZW9r_boFW7a8Ddd22ylxd6BMuhEBC6bLnA2nhGJZUqels8_TWTMgbMGqgpH5oTQxy8aaknAQ6LIhqmK1QhfKxtWKHVl0rxgasI-lm-Qnlo3WdZxsoGdo-u7C4aVw-B70yqq0D4Bpo7jIrAnDvJCC61iIqFA6KhB1BlIYB161DE2zpsE5zdk4SzHQIf6nG_x34GVHPq87e_yLcKeVTtps8EX6Sx0deNYtI-_pvkWXtjpf01BzHkTQDtyvhdl9CWFeGMa-cCDaEHNHQG2_N1fK6em6_TcCPE9I9fD_v_UUruL-SMejyf4juM6paMOTLg92oLf8fm4fI5RamieNzjL4etnb5Cc8KzVB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experiments+and+Finite+Element+Simulations+of+Composite+Laminates+Following+Low+Velocity+On-Edge+Impact+Damage&rft.jtitle=Polymers&rft.au=Xu%2C+Wenjun&rft.au=Liu%2C+Longquan&rft.au=Xu%2C+Wu&rft.date=2022-04-25&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=14&rft.issue=9&rft_id=info:doi/10.3390%2Fpolym14091744&rft_id=info%3Apmid%2F35566913&rft.externalDocID=PMC9100348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon