Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading
•Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The p...
Saved in:
Published in | Engineering structures Vol. 79; pp. 58 - 69 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The probability of failure and structural reliabilities of monopile and jackets are obtained.
Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the MRPs associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported OWTs at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions. |
---|---|
AbstractList | •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The probability of failure and structural reliabilities of monopile and jackets are obtained.
Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the MRPs associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported OWTs at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions. |
Author | Wei, Kai Myers, Andrew T. Arwade, Sanjay R. |
Author_xml | – sequence: 1 givenname: Kai surname: Wei fullname: Wei, Kai email: kaiwei@umass.edu organization: Department of Civil and Environmental Engineering, University of Massachusetts Amherst, United States – sequence: 2 givenname: Sanjay R. surname: Arwade fullname: Arwade, Sanjay R. organization: Department of Civil and Environmental Engineering, University of Massachusetts Amherst, United States – sequence: 3 givenname: Andrew T. surname: Myers fullname: Myers, Andrew T. organization: Department of Civil and Environmental Engineering, Northeastern University, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28888103$$DView record in Pascal Francis |
BookMark | eNqNkMFO3DAQhq0KpC7QZ6gvHJOO401iDhwQKi0SEhc4W7P2BLwKdmR7oStevg6L9sAFTh75__4Z6TtiBz54YuyngFqA6H6ta_IPKceNyXUDYlmDqkHAN7YQqpdVLxt5wBYlEBU0Z913dpTSGgAapWDBXq-9ifREPuPIX5y31Qs-E0eP4za5xMPA8yPx3f5NLJDBCY3L2zkKw5AeQ6S3Ji_5yvkCb6YpxLwvUeIbbyly-pfnW3wMaJ1_OGGHA46Jfry_x-z-6vfd5d_q5vbP9eXFTWXkss3Vsu07KVtrGlyZs9bKoUxlUN3KGmmkxWbZQitsh0bJHhrZGbmyogE7_5E8Zqe7vRMmg-MQ0RuX9BTdE8atLiKUEiAL1-84E0NKkYY9IkDPrvVa713r2bUGpYvr0jz_0CyGMLvgc0Q3fqF_setT0fDsKOpkHHlD1kUqrA3u0x3_AfWip2g |
CODEN | ENSTDF |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114657 crossref_primary_10_1016_j_rser_2016_01_109 crossref_primary_10_1016_j_engstruct_2016_01_001 crossref_primary_10_1016_j_apor_2025_104421 crossref_primary_10_3390_en14227536 crossref_primary_10_1016_j_apenergy_2021_117947 crossref_primary_10_1080_17445302_2018_1522738 crossref_primary_10_1155_2018_3054851 crossref_primary_10_1061__ASCE_ST_1943_541X_0002242 crossref_primary_10_1016_j_oceaneng_2024_119671 crossref_primary_10_1016_j_marstruc_2023_103372 crossref_primary_10_1177_13694332211067831 crossref_primary_10_1177_1369433219880446 crossref_primary_10_3390_app10030860 crossref_primary_10_1007_s13344_023_0020_8 crossref_primary_10_1016_j_apor_2023_103683 crossref_primary_10_3390_ma16124383 crossref_primary_10_1142_S1793431121500068 crossref_primary_10_1002_er_3430 crossref_primary_10_1016_j_oceaneng_2020_107284 crossref_primary_10_1016_j_oceaneng_2019_04_089 crossref_primary_10_1016_j_engstruct_2024_117464 crossref_primary_10_1016_j_jweia_2022_105030 crossref_primary_10_1016_j_oceaneng_2023_115596 crossref_primary_10_1016_j_oceaneng_2024_117751 crossref_primary_10_1016_j_rser_2024_114799 crossref_primary_10_1016_j_engstruct_2019_109287 crossref_primary_10_1016_j_conbuildmat_2024_138317 crossref_primary_10_1016_j_renene_2019_09_043 crossref_primary_10_1061__ASCE_BE_1943_5592_0001308 crossref_primary_10_1016_j_oceaneng_2022_110710 crossref_primary_10_1016_j_renene_2020_10_015 crossref_primary_10_1061__ASCE_AS_1943_5525_0001083 crossref_primary_10_1016_j_oceaneng_2023_114816 crossref_primary_10_1016_j_oceaneng_2024_118718 crossref_primary_10_1590_2318_0331_252020190140 crossref_primary_10_1016_j_oceaneng_2023_116659 crossref_primary_10_26748_KSOE_2021_058 crossref_primary_10_1098_rsta_2014_0228 crossref_primary_10_1016_j_oceaneng_2023_115444 crossref_primary_10_1049_rpg2_12741 crossref_primary_10_1016_j_oceaneng_2020_106967 crossref_primary_10_1080_17445302_2016_1181027 crossref_primary_10_1016_j_engstruct_2017_03_074 crossref_primary_10_1016_j_engstruct_2021_113308 crossref_primary_10_1016_j_engstruct_2022_114885 crossref_primary_10_1016_j_jtte_2021_03_006 crossref_primary_10_1016_j_rser_2019_01_012 crossref_primary_10_1016_j_oceaneng_2024_120120 crossref_primary_10_1016_j_istruc_2020_11_019 crossref_primary_10_1016_j_renene_2016_06_028 crossref_primary_10_1016_j_renene_2020_10_068 crossref_primary_10_1061__ASCE_BE_1943_5592_0001517 crossref_primary_10_1186_s43251_020_00020_9 crossref_primary_10_1002_we_2006 crossref_primary_10_5194_wes_5_89_2020 crossref_primary_10_1016_j_oceaneng_2021_109168 crossref_primary_10_1016_j_renene_2018_02_049 crossref_primary_10_1016_j_marstruc_2025_103797 crossref_primary_10_3390_en10122099 crossref_primary_10_1016_j_renene_2021_06_044 crossref_primary_10_5194_wes_5_171_2020 crossref_primary_10_1016_j_engstruct_2019_05_013 crossref_primary_10_1007_s11804_020_00165_z crossref_primary_10_1016_j_apenergy_2022_120027 crossref_primary_10_1016_j_engstruct_2019_109388 crossref_primary_10_1016_j_coastaleng_2022_104221 crossref_primary_10_1115_1_4047029 crossref_primary_10_1016_j_renene_2021_10_092 crossref_primary_10_1016_j_engstruct_2019_109903 crossref_primary_10_1177_1369433218781423 crossref_primary_10_1016_j_oceaneng_2021_110159 crossref_primary_10_1061__ASCE_BE_1943_5592_0001846 crossref_primary_10_1002_we_2315 crossref_primary_10_1016_j_psep_2020_10_016 crossref_primary_10_1155_2019_7381852 crossref_primary_10_1016_j_engstruct_2015_10_016 crossref_primary_10_1016_j_oceaneng_2020_107691 |
Cites_doi | 10.1201/b16387-34 10.1016/j.oceaneng.2011.10.003 10.2172/1067926 10.1016/j.egypro.2013.07.177 10.1073/pnas.1111769109 10.1002/we.1561 10.1016/0141-1187(81)90081-X 10.4031/002533207787442088 10.1016/j.renene.2011.04.020 10.1016/j.engstruct.2013.03.016 10.1098/rsta.2003.1286 10.2172/947422 10.1016/j.jcsr.2006.11.006 10.1016/j.jcsr.2011.04.008 10.1016/0378-3839(79)90020-6 10.1029/TR039i005p00885 10.1115/1.4004273 10.1016/j.engstruct.2009.04.002 10.2118/950149-G 10.1080/15732470701270132 10.1016/j.engfailanal.2010.09.008 10.1016/0951-8339(95)00023-2 10.1016/j.jcsr.2013.01.013 10.1016/j.renene.2012.08.008 10.1002/we.82 10.1016/j.energy.2012.02.054 10.1016/S0951-8320(00)00095-8 10.1016/j.paerosci.2006.10.002 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.engstruct.2014.08.010 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7323 |
EndPage | 69 |
ExternalDocumentID | 28888103 10_1016_j_engstruct_2014_08_010 S0141029614004751 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 ABTAH IQODW UAO |
ID | FETCH-LOGICAL-c345t-4576335dc2abc95d3fc2ac9586bdc3c3da245051d6ac8370236c3bd120d1d6ae3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Apr 02 07:18:33 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Tue Jul 01 03:01:45 EDT 2025 Fri Feb 23 02:27:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extreme loading Wind energy Incremental wind-wave analysis Mean return period Offshore wind turbine Support structure Structural capacity Reliability Pushover Probability of failure Structural reliability Probability Turbine Support(construction) Wind generator Capacity Extreme value Example Wind wave Wind load Offshore structure Computing method Structural analysis Damaging |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-4576335dc2abc95d3fc2ac9586bdc3c3da245051d6ac8370236c3bd120d1d6ae3 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_28888103 crossref_primary_10_1016_j_engstruct_2014_08_010 crossref_citationtrail_10_1016_j_engstruct_2014_08_010 elsevier_sciencedirect_doi_10_1016_j_engstruct_2014_08_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-15 |
PublicationDateYYYYMMDD | 2014-11-15 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Shi, Park, Chung, Baek, Kim, Kim (b0040) 2013; 54 Musial (b0030) 2007; 41 Mardfekri, Gardoni (b0085) 2013; 52 Shyam Sunder, Connor (b0200) 1981; 3 Fenton (b0195) 1990; 9 Wilson EL. SAP2000: integrated finite element analysis and desing of structures. Analysis reference, Computers and Structures, Inc.; 1997. Seidel M, Von Mutius M, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the offshore wind conference, Copenhagen, Denmark; 2005. Sun, Huang, Wu (b0015) 2012; 41 Borgman (b0180) 1958; 39 Henderson, Morgan, Smith, Sørensen, Barthelmie, Boesmans (b0010) 2003; 6 Sigurdsson G, Skallerud B, Skjong R, Amdahl J. Probabilistic collapse analysis of jackets. In: Proceedings of the international conference on offshore mechanics and arctic engineering; 1994. p. 367–380. Onoufriou, Forbes (b0095) 2001; 71 Hezarjaribi, Bahaari, Bagheri, Ebrahimian (b0170) 2013; 83 Golafshani, Bagheri, Ebrahimian, Holmas (b0130) 2011; 67 Valamanesh V, Myers A, Hajjar J, Arwade S. Probabilistic modeling of joint hurricane-induced wind and wave hazards to offshore wind farms on the atlantic coast. In: Proceedings of ICOSSAR 2013, New York; 2013. Commission IE. Wind turbines-part 3: design requirements for offshore wind turbines. Tech. rep. IEC 61400-3; 2009. Gudmestad, Moe (b0175) 1996; 9 Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. Standard, American Petroleum Institute; 2005. Ronalds, Trench, Pinna (b0120) 2007; 63 Jonkman JM, Buhl Jr ML. Fast user’s guide. Tech. rep. NREL/TP-500-29798. National Renewable Energy Laboratory: Golden, Colorado; 2005. Byrne, Houlsby (b0050) 2003; 361 Chou, Tu (b0060) 2011; 18 Saha, Gao, Moan, Naess (b0090) 2014; 17 Hansen, Sørensen, Voutsinas, Sørensen, Madsen (b0140) 2006; 42 Loch K. The effects of wave induced vertical deck loads on ultimate limit state static pushover analyses results. Tech. rep., Marine Technology & Management Group, Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA; 1994. Veritas DN. Modelling and analysis of marine operations. Tech. rep., DNV-RP-H103. Det Norske Veritas; 2011. Ishihara T, Yamaguchi A, Takahara K, Mekaru T, Matsuura S. An analysis of damaged wind turbines by typhoon maemi in 2003. In: Proceedings of the sixth asia-pacific conference on wind engineering; 2005. p. 1413–28. Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep. NREL/TP-500-38060, National Renewable Energy Laboratory Colorado, United States; 2009. U.S. Department of Energy. 20% Wind energy by 2030: increasing wind energy contribution to US electricity supply, Washington, DC; 2008. Agarwal, Manuel (b0070) 2009; 31 Hansen K, Gudmestad OT. Reassessment of jacket type of platforms subject to wave-in-deck forces: current practice and future development. In: Proceedings of the 11th international offshore and polar engineering conference; 2001. p. 482–9. Sørensen, Friss-Hansen, Nielsen (b0125) 2008; 4 Myers AT, Arwade SR, Manwell JF. Consideration of hurricanes and tropical cyclones in the design of offshore wind turbines. In: Proceedings of European Wind Energy Association 2013; 2013. Haselbach, Natarajan, Jiwinangun, Branner (b0080) 2013; 35 Lozano-Minguez, Kolios, Brennan (b0035) 2011; 36 Jha A, Dolan D, Gur T, Soyoz S, Alpdogan C. Comparison of API & IEC standards for offshore wind turbine applications in the US Atlantic Ocean: Phase II. Tech. rep. NREL/SR-5000-49688. National Renewable Energy Laboratory: Golden, Colorado; 2013. Manwell, McGowan, Rogers (b0005) 2002 Jensen, Olsen, Mansour (b0075) 2011; 38 Vemula NK, DeVries W, Fischer T, Cordle A, Schmidt B. Design solution for the upwind reference offshore support structure. Tech. rep., Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany; 2010. Rose, Jaramillo, Small, Grossmann, Apt (b0045) 2012; 109 Simiu (b0210) 2011 Arwade, Lackner, Grigoriu (b0025) 2011; 133 Chen, Sohal (b0225) 1995 Morison, O’Brien, Johnson, Schaaf (b0165) 1950; 2 Chaplin (b0190) 1979; 3 Saha (10.1016/j.engstruct.2014.08.010_b0090) 2014; 17 Simiu (10.1016/j.engstruct.2014.08.010_b0210) 2011 Manwell (10.1016/j.engstruct.2014.08.010_b0005) 2002 Arwade (10.1016/j.engstruct.2014.08.010_b0025) 2011; 133 Henderson (10.1016/j.engstruct.2014.08.010_b0010) 2003; 6 Gudmestad (10.1016/j.engstruct.2014.08.010_b0175) 1996; 9 10.1016/j.engstruct.2014.08.010_b0145 Morison (10.1016/j.engstruct.2014.08.010_b0165) 1950; 2 Agarwal (10.1016/j.engstruct.2014.08.010_b0070) 2009; 31 Onoufriou (10.1016/j.engstruct.2014.08.010_b0095) 2001; 71 10.1016/j.engstruct.2014.08.010_b0205 10.1016/j.engstruct.2014.08.010_b0105 Chaplin (10.1016/j.engstruct.2014.08.010_b0190) 1979; 3 Hansen (10.1016/j.engstruct.2014.08.010_b0140) 2006; 42 Hezarjaribi (10.1016/j.engstruct.2014.08.010_b0170) 2013; 83 10.1016/j.engstruct.2014.08.010_b0150 10.1016/j.engstruct.2014.08.010_b0155 10.1016/j.engstruct.2014.08.010_b0055 10.1016/j.engstruct.2014.08.010_b0110 Rose (10.1016/j.engstruct.2014.08.010_b0045) 2012; 109 Lozano-Minguez (10.1016/j.engstruct.2014.08.010_b0035) 2011; 36 Ronalds (10.1016/j.engstruct.2014.08.010_b0120) 2007; 63 Borgman (10.1016/j.engstruct.2014.08.010_b0180) 1958; 39 Sun (10.1016/j.engstruct.2014.08.010_b0015) 2012; 41 Fenton (10.1016/j.engstruct.2014.08.010_b0195) 1990; 9 Sørensen (10.1016/j.engstruct.2014.08.010_b0125) 2008; 4 10.1016/j.engstruct.2014.08.010_b0135 10.1016/j.engstruct.2014.08.010_b0115 10.1016/j.engstruct.2014.08.010_b0215 10.1016/j.engstruct.2014.08.010_b0160 Musial (10.1016/j.engstruct.2014.08.010_b0030) 2007; 41 10.1016/j.engstruct.2014.08.010_b0065 10.1016/j.engstruct.2014.08.010_b0020 10.1016/j.engstruct.2014.08.010_b0185 Chen (10.1016/j.engstruct.2014.08.010_b0225) 1995 10.1016/j.engstruct.2014.08.010_b0100 Shi (10.1016/j.engstruct.2014.08.010_b0040) 2013; 54 Haselbach (10.1016/j.engstruct.2014.08.010_b0080) 2013; 35 Shyam Sunder (10.1016/j.engstruct.2014.08.010_b0200) 1981; 3 10.1016/j.engstruct.2014.08.010_b0220 Byrne (10.1016/j.engstruct.2014.08.010_b0050) 2003; 361 Jensen (10.1016/j.engstruct.2014.08.010_b0075) 2011; 38 Golafshani (10.1016/j.engstruct.2014.08.010_b0130) 2011; 67 Chou (10.1016/j.engstruct.2014.08.010_b0060) 2011; 18 Mardfekri (10.1016/j.engstruct.2014.08.010_b0085) 2013; 52 |
References_xml | – volume: 67 start-page: 1649 year: 2011 end-page: 1657 ident: b0130 article-title: Incremental wave analysis and its application to performance-based assessment of jacket platforms publication-title: J Construct Steel Res – reference: Jonkman JM, Buhl Jr ML. Fast user’s guide. Tech. rep. NREL/TP-500-29798. National Renewable Energy Laboratory: Golden, Colorado; 2005. – volume: 42 start-page: 285 year: 2006 end-page: 330 ident: b0140 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog Aerospace Sci – reference: U.S. Department of Energy. 20% Wind energy by 2030: increasing wind energy contribution to US electricity supply, Washington, DC; 2008. – reference: Hansen K, Gudmestad OT. Reassessment of jacket type of platforms subject to wave-in-deck forces: current practice and future development. In: Proceedings of the 11th international offshore and polar engineering conference; 2001. p. 482–9. – volume: 109 start-page: 3247 year: 2012 end-page: 3252 ident: b0045 article-title: Quantifying the hurricane risk to offshore wind turbines publication-title: Proc Natl Acad Sci – volume: 2 start-page: 149 year: 1950 end-page: 154 ident: b0165 article-title: The force exerted by surface waves on piles publication-title: J Petroleum Technol – reference: Myers AT, Arwade SR, Manwell JF. Consideration of hurricanes and tropical cyclones in the design of offshore wind turbines. In: Proceedings of European Wind Energy Association 2013; 2013. – volume: 35 start-page: 244 year: 2013 end-page: 252 ident: b0080 article-title: Comparison of coupled and uncoupled load simulations on a jacket support structure publication-title: Energy Proc – volume: 38 start-page: 2244 year: 2011 end-page: 2253 ident: b0075 article-title: Extreme wave and wind response predictions publication-title: Ocean Eng – reference: Wilson EL. SAP2000: integrated finite element analysis and desing of structures. Analysis reference, Computers and Structures, Inc.; 1997. – reference: Loch K. The effects of wave induced vertical deck loads on ultimate limit state static pushover analyses results. Tech. rep., Marine Technology & Management Group, Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA; 1994. – volume: 3 start-page: 13 year: 1981 end-page: 26 ident: b0200 article-title: Sensitivity analyses for steel jacket offshore platforms publication-title: Appl Ocean Res – volume: 4 start-page: 393 year: 2008 end-page: 398 ident: b0125 article-title: Reliability analysis of offshore jacket structures with wave load on deck using the model correction factor method publication-title: Struct Infrastruct Eng – reference: Valamanesh V, Myers A, Hajjar J, Arwade S. Probabilistic modeling of joint hurricane-induced wind and wave hazards to offshore wind farms on the atlantic coast. In: Proceedings of ICOSSAR 2013, New York; 2013. – reference: Jha A, Dolan D, Gur T, Soyoz S, Alpdogan C. Comparison of API & IEC standards for offshore wind turbine applications in the US Atlantic Ocean: Phase II. Tech. rep. NREL/SR-5000-49688. National Renewable Energy Laboratory: Golden, Colorado; 2013. – volume: 18 start-page: 295 year: 2011 end-page: 313 ident: b0060 article-title: Failure analysis and risk management of a collapsed large wind turbine tower publication-title: Eng Failure Anal – volume: 54 start-page: 201 year: 2013 end-page: 210 ident: b0040 article-title: Load analysis and comparison of different jacket foundations publication-title: Renew Energy – volume: 71 start-page: 189 year: 2001 end-page: 199 ident: b0095 article-title: Developments in structural system reliability assessments of fixed steel offshore platforms publication-title: Reliab Eng Syst Safety – reference: Veritas DN. Modelling and analysis of marine operations. Tech. rep., DNV-RP-H103. Det Norske Veritas; 2011. – reference: Commission IE. Wind turbines-part 3: design requirements for offshore wind turbines. Tech. rep. IEC 61400-3; 2009. – volume: 39 start-page: 885 year: 1958 end-page: 888 ident: b0180 article-title: Computation of the ocean-wave forces on inclined cylinders publication-title: Trans Am Geophys Union – volume: 17 start-page: 87 year: 2014 end-page: 104 ident: b0090 article-title: Short-term extreme response analysis of a jacket supporting an offshore wind turbine publication-title: Wind Energy – volume: 9 start-page: 3 year: 1990 end-page: 25 ident: b0195 article-title: Nonlinear wave theories publication-title: Sea – volume: 83 start-page: 147 year: 2013 end-page: 155 ident: b0170 article-title: Sensitivity analysis of jacket-type offshore platforms under extreme waves publication-title: J Construct Steel Res – volume: 6 start-page: 35 year: 2003 end-page: 52 ident: b0010 article-title: Offshore wind energy in Europe – a review of the state-of-the-art publication-title: Wind Energy – reference: Ishihara T, Yamaguchi A, Takahara K, Mekaru T, Matsuura S. An analysis of damaged wind turbines by typhoon maemi in 2003. In: Proceedings of the sixth asia-pacific conference on wind engineering; 2005. p. 1413–28. – reference: Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. Standard, American Petroleum Institute; 2005. – reference: Sigurdsson G, Skallerud B, Skjong R, Amdahl J. Probabilistic collapse analysis of jackets. In: Proceedings of the international conference on offshore mechanics and arctic engineering; 1994. p. 367–380. – year: 2002 ident: b0005 article-title: Wind energy explained: theory, design and application – volume: 133 start-page: 041006 year: 2011 ident: b0025 article-title: Probabilistic models for wind turbine and wind farm performance publication-title: J Solar Energy Eng – Trans ASME – volume: 3 start-page: 179 year: 1979 end-page: 205 ident: b0190 article-title: Developments of stream-function wave theory publication-title: Coastal Eng – reference: Vemula NK, DeVries W, Fischer T, Cordle A, Schmidt B. Design solution for the upwind reference offshore support structure. Tech. rep., Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany; 2010. – reference: Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep. NREL/TP-500-38060, National Renewable Energy Laboratory Colorado, United States; 2009. – reference: Seidel M, Von Mutius M, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the offshore wind conference, Copenhagen, Denmark; 2005. – volume: 52 start-page: 478 year: 2013 end-page: 487 ident: b0085 article-title: Probabilistic demand models and fragility estimates for offshore wind turbine support structures publication-title: Eng Struct – volume: 31 start-page: 2236 year: 2009 end-page: 2246 ident: b0070 article-title: Simulation of offshore wind turbine response for long-term extreme load prediction publication-title: Eng Struct – volume: 9 start-page: 745 year: 1996 end-page: 758 ident: b0175 article-title: Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures publication-title: Marine Struct – volume: 41 start-page: 298 year: 2012 end-page: 312 ident: b0015 article-title: The current state of offshore wind energy technology development publication-title: Energy – year: 1995 ident: b0225 article-title: Plastic design and second-order analysis of steel frames – volume: 361 start-page: 2909 year: 2003 end-page: 2930 ident: b0050 article-title: Foundations for offshore wind turbines publication-title: Philos Trans Roy Soc Lond, Ser A: Math Phys Eng Sci – year: 2011 ident: b0210 article-title: Design of tall buildings for wind: a guide for ASCE 7–10 standard users and designers of special structures – volume: 36 start-page: 2831 year: 2011 end-page: 2837 ident: b0035 article-title: Multi-criteria assessment of offshore wind turbine support structures publication-title: Renew Energy – volume: 41 start-page: 32 year: 2007 end-page: 43 ident: b0030 article-title: Offshore wind electricity: a viable energy option for the coastal united states publication-title: Marine Technol Soc J – volume: 63 start-page: 1016 year: 2007 end-page: 1023 ident: b0120 article-title: On the relationship between platform topology, topside weight and structural reliability under storm overload publication-title: J Construct Steel Res – ident: 10.1016/j.engstruct.2014.08.010_b0215 – ident: 10.1016/j.engstruct.2014.08.010_b0135 doi: 10.1201/b16387-34 – volume: 38 start-page: 2244 issue: 17–18 year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0075 article-title: Extreme wave and wind response predictions publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2011.10.003 – ident: 10.1016/j.engstruct.2014.08.010_b0155 doi: 10.2172/1067926 – ident: 10.1016/j.engstruct.2014.08.010_b0110 – ident: 10.1016/j.engstruct.2014.08.010_b0020 – volume: 35 start-page: 244 issue: 0 year: 2013 ident: 10.1016/j.engstruct.2014.08.010_b0080 article-title: Comparison of coupled and uncoupled load simulations on a jacket support structure publication-title: Energy Proc doi: 10.1016/j.egypro.2013.07.177 – ident: 10.1016/j.engstruct.2014.08.010_b0150 – year: 2002 ident: 10.1016/j.engstruct.2014.08.010_b0005 – volume: 109 start-page: 3247 issue: 9 year: 2012 ident: 10.1016/j.engstruct.2014.08.010_b0045 article-title: Quantifying the hurricane risk to offshore wind turbines publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1111769109 – volume: 17 start-page: 87 issue: 1 year: 2014 ident: 10.1016/j.engstruct.2014.08.010_b0090 article-title: Short-term extreme response analysis of a jacket supporting an offshore wind turbine publication-title: Wind Energy doi: 10.1002/we.1561 – volume: 3 start-page: 13 issue: 1 year: 1981 ident: 10.1016/j.engstruct.2014.08.010_b0200 article-title: Sensitivity analyses for steel jacket offshore platforms publication-title: Appl Ocean Res doi: 10.1016/0141-1187(81)90081-X – volume: 41 start-page: 32 issue: 3 year: 2007 ident: 10.1016/j.engstruct.2014.08.010_b0030 article-title: Offshore wind electricity: a viable energy option for the coastal united states publication-title: Marine Technol Soc J doi: 10.4031/002533207787442088 – volume: 36 start-page: 2831 issue: 11 year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0035 article-title: Multi-criteria assessment of offshore wind turbine support structures publication-title: Renew Energy doi: 10.1016/j.renene.2011.04.020 – year: 1995 ident: 10.1016/j.engstruct.2014.08.010_b0225 – ident: 10.1016/j.engstruct.2014.08.010_b0100 – volume: 52 start-page: 478 issue: 0 year: 2013 ident: 10.1016/j.engstruct.2014.08.010_b0085 article-title: Probabilistic demand models and fragility estimates for offshore wind turbine support structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.03.016 – volume: 361 start-page: 2909 issue: 1813 year: 2003 ident: 10.1016/j.engstruct.2014.08.010_b0050 article-title: Foundations for offshore wind turbines publication-title: Philos Trans Roy Soc Lond, Ser A: Math Phys Eng Sci doi: 10.1098/rsta.2003.1286 – ident: 10.1016/j.engstruct.2014.08.010_b0205 doi: 10.2172/947422 – volume: 63 start-page: 1016 issue: 8 year: 2007 ident: 10.1016/j.engstruct.2014.08.010_b0120 article-title: On the relationship between platform topology, topside weight and structural reliability under storm overload publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2006.11.006 – volume: 67 start-page: 1649 issue: 10 year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0130 article-title: Incremental wave analysis and its application to performance-based assessment of jacket platforms publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2011.04.008 – volume: 3 start-page: 179 issue: 0 year: 1979 ident: 10.1016/j.engstruct.2014.08.010_b0190 article-title: Developments of stream-function wave theory publication-title: Coastal Eng doi: 10.1016/0378-3839(79)90020-6 – volume: 39 start-page: 885 issue: 5 year: 1958 ident: 10.1016/j.engstruct.2014.08.010_b0180 article-title: Computation of the ocean-wave forces on inclined cylinders publication-title: Trans Am Geophys Union doi: 10.1029/TR039i005p00885 – ident: 10.1016/j.engstruct.2014.08.010_b0220 – volume: 133 start-page: 041006 issue: 4 year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0025 article-title: Probabilistic models for wind turbine and wind farm performance publication-title: J Solar Energy Eng – Trans ASME doi: 10.1115/1.4004273 – volume: 31 start-page: 2236 issue: 10 year: 2009 ident: 10.1016/j.engstruct.2014.08.010_b0070 article-title: Simulation of offshore wind turbine response for long-term extreme load prediction publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.04.002 – volume: 2 start-page: 149 issue: 5 year: 1950 ident: 10.1016/j.engstruct.2014.08.010_b0165 article-title: The force exerted by surface waves on piles publication-title: J Petroleum Technol doi: 10.2118/950149-G – year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0210 – ident: 10.1016/j.engstruct.2014.08.010_b0115 – volume: 4 start-page: 393 issue: 5 year: 2008 ident: 10.1016/j.engstruct.2014.08.010_b0125 article-title: Reliability analysis of offshore jacket structures with wave load on deck using the model correction factor method publication-title: Struct Infrastruct Eng doi: 10.1080/15732470701270132 – volume: 18 start-page: 295 issue: 1 year: 2011 ident: 10.1016/j.engstruct.2014.08.010_b0060 article-title: Failure analysis and risk management of a collapsed large wind turbine tower publication-title: Eng Failure Anal doi: 10.1016/j.engfailanal.2010.09.008 – volume: 9 start-page: 745 issue: 8 year: 1996 ident: 10.1016/j.engstruct.2014.08.010_b0175 article-title: Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures publication-title: Marine Struct doi: 10.1016/0951-8339(95)00023-2 – volume: 83 start-page: 147 issue: 0 year: 2013 ident: 10.1016/j.engstruct.2014.08.010_b0170 article-title: Sensitivity analysis of jacket-type offshore platforms under extreme waves publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2013.01.013 – ident: 10.1016/j.engstruct.2014.08.010_b0055 – ident: 10.1016/j.engstruct.2014.08.010_b0065 – volume: 54 start-page: 201 issue: 0 year: 2013 ident: 10.1016/j.engstruct.2014.08.010_b0040 article-title: Load analysis and comparison of different jacket foundations publication-title: Renew Energy doi: 10.1016/j.renene.2012.08.008 – volume: 9 start-page: 3 issue: 1 year: 1990 ident: 10.1016/j.engstruct.2014.08.010_b0195 article-title: Nonlinear wave theories publication-title: Sea – ident: 10.1016/j.engstruct.2014.08.010_b0185 – volume: 6 start-page: 35 issue: 1 year: 2003 ident: 10.1016/j.engstruct.2014.08.010_b0010 article-title: Offshore wind energy in Europe – a review of the state-of-the-art publication-title: Wind Energy doi: 10.1002/we.82 – volume: 41 start-page: 298 issue: 1 year: 2012 ident: 10.1016/j.engstruct.2014.08.010_b0015 article-title: The current state of offshore wind energy technology development publication-title: Energy doi: 10.1016/j.energy.2012.02.054 – volume: 71 start-page: 189 issue: 2 year: 2001 ident: 10.1016/j.engstruct.2014.08.010_b0095 article-title: Developments in structural system reliability assessments of fixed steel offshore platforms publication-title: Reliab Eng Syst Safety doi: 10.1016/S0951-8320(00)00095-8 – volume: 42 start-page: 285 issue: 4 year: 2006 ident: 10.1016/j.engstruct.2014.08.010_b0140 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog Aerospace Sci doi: 10.1016/j.paerosci.2006.10.002 – ident: 10.1016/j.engstruct.2014.08.010_b0145 – ident: 10.1016/j.engstruct.2014.08.010_b0105 – ident: 10.1016/j.engstruct.2014.08.010_b0160 |
SSID | ssj0002880 |
Score | 2.4044507 |
Snippet | •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 58 |
SubjectTerms | Applied sciences Buildings. Public works Climatology and bioclimatics for buildings Exact sciences and technology Extreme loading Hydraulic constructions Incremental wind-wave analysis Mean return period Offshore structure (platforms, tanks, etc.) Offshore wind turbine Probability of failure Pushover Reliability Stresses. Safety Structural analysis. Stresses Structural capacity Support structure Wind energy |
Title | Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading |
URI | https://dx.doi.org/10.1016/j.engstruct.2014.08.010 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXhQRn1gfZQ9eY5Psbpp4K8VSFXvRQm9hd7PRSklCW-1B8Lc7k5ctCD1422xmsmFnM48w8w0h10rrwHccZnERCwhQlLQk7wgr8GXsdZQywsdC4aehNxjxh7EYN0ivqoXBtMpS9xc6PdfW5Uy73M12Npm0n_MURTcA-4KQh3kZNecdPOU3379pHq6fd09DYgup13K8TPJawLRijhfPsTyxlPZvC7WXyTnsW1w0vFixQv0Dsl-6j7RbvOEhaZjkiOyugAoeky_45IuffkC4hJDbWspPQ2WJPkLTmILTR4s3QtANqsFgavDG8VYax_O3dGZyTgr3IXIG4o8M_fSaycwpFp_NKKh2XItO0zwX_4SM-ncvvYFVtliwNONiARIC_cJEpF2pdCAiFsMIBr6nIs00i6TLwUdyIk9qhMlxmaeZihzXjnDOsFOylaSJOSNUK7BsDos9LhiPwLHREN0whYD0EBIpv0m8altDXeKPYxuMaVglmr2HtTxClEeIDTIdu0nsmjErIDg2s9xWcgvXTlMIhmIzc2tN0vWicJR837HZ-X-efkF28ArLGR1xSbaAwFyBX7NQrfzgtsh29_5xMPwBtwn8xg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG1VVX2q9EE9dI0gsR2SbggVQXksBYktsh2npUIJAlqG_vneJSEqUiWGbpZ9l1g-5x7R3XeEPCqtfc-2mcVFJCBAUdKSvCks35OR21TKCA8LhYcjtzvhL1MxLZH2thYG0ypz3Z_p9FRb5zP1_DTri9ms_pqmKDo-2BeEPMQy6gqiU4kyqbR6_e6oUMiOlzZQQ3oLGXbSvEz8liG1YpoXT-E8sZr2byN1vJArOLoo63nxyxB1TslJ7kHSVrbJM1Iy8Tk5-oUreEG-4avP_vsB4QaibmsjvwyVOQAJTSIKfh_NdoS4G1SDzdTgkONSEkWr92RpUk4K6xA8A_HnAl31gsmsKNafLSlod3wXnSdpOv4lmXSex-2ulXdZsDTjYg1CAhXDRKgdqbQvQhbBCAaeq0LNNAulw8FNskNXakTKcZirmQptpxHinGFXpBwnsbkmVCswbjaLXC4YD8G30RDgMIWY9BAVKa9K3O2xBjqHIMdOGPNgm2v2ERTyCFAeAfbItBtV0igYFxkKx36Wp63cgp0LFYCt2M9c25F08VK4Sp5nN9jNf57-QA664-EgGPRG_VtyiCtY3WiLO1IGYnMPbs5a1fJr_ANRJf93 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+wind-wave+analysis+of+the+structural+capacity+of+offshore+wind+turbine+support+structures+under+extreme+loading&rft.jtitle=Engineering+structures&rft.au=Wei%2C+Kai&rft.au=Arwade%2C+Sanjay+R.&rft.au=Myers%2C+Andrew+T.&rft.date=2014-11-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=79&rft.spage=58&rft.epage=69&rft_id=info:doi/10.1016%2Fj.engstruct.2014.08.010&rft.externalDocID=S0141029614004751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |