Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading

•Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The p...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 79; pp. 58 - 69
Main Authors Wei, Kai, Arwade, Sanjay R., Myers, Andrew T.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The probability of failure and structural reliabilities of monopile and jackets are obtained. Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the MRPs associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported OWTs at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions.
AbstractList •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and joint loading intensities of wind and wave.•IWWA calculations of OWT monopile and jacket Examples at Atlantic marine sites are performed.•The probability of failure and structural reliabilities of monopile and jackets are obtained. Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the MRPs associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported OWTs at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions.
Author Wei, Kai
Myers, Andrew T.
Arwade, Sanjay R.
Author_xml – sequence: 1
  givenname: Kai
  surname: Wei
  fullname: Wei, Kai
  email: kaiwei@umass.edu
  organization: Department of Civil and Environmental Engineering, University of Massachusetts Amherst, United States
– sequence: 2
  givenname: Sanjay R.
  surname: Arwade
  fullname: Arwade, Sanjay R.
  organization: Department of Civil and Environmental Engineering, University of Massachusetts Amherst, United States
– sequence: 3
  givenname: Andrew T.
  surname: Myers
  fullname: Myers, Andrew T.
  organization: Department of Civil and Environmental Engineering, Northeastern University, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28888103$$DView record in Pascal Francis
BookMark eNqNkMFO3DAQhq0KpC7QZ6gvHJOO401iDhwQKi0SEhc4W7P2BLwKdmR7oStevg6L9sAFTh75__4Z6TtiBz54YuyngFqA6H6ta_IPKceNyXUDYlmDqkHAN7YQqpdVLxt5wBYlEBU0Z913dpTSGgAapWDBXq-9ifREPuPIX5y31Qs-E0eP4za5xMPA8yPx3f5NLJDBCY3L2zkKw5AeQ6S3Ji_5yvkCb6YpxLwvUeIbbyly-pfnW3wMaJ1_OGGHA46Jfry_x-z-6vfd5d_q5vbP9eXFTWXkss3Vsu07KVtrGlyZs9bKoUxlUN3KGmmkxWbZQitsh0bJHhrZGbmyogE7_5E8Zqe7vRMmg-MQ0RuX9BTdE8atLiKUEiAL1-84E0NKkYY9IkDPrvVa713r2bUGpYvr0jz_0CyGMLvgc0Q3fqF_setT0fDsKOpkHHlD1kUqrA3u0x3_AfWip2g
CODEN ENSTDF
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_114657
crossref_primary_10_1016_j_rser_2016_01_109
crossref_primary_10_1016_j_engstruct_2016_01_001
crossref_primary_10_1016_j_apor_2025_104421
crossref_primary_10_3390_en14227536
crossref_primary_10_1016_j_apenergy_2021_117947
crossref_primary_10_1080_17445302_2018_1522738
crossref_primary_10_1155_2018_3054851
crossref_primary_10_1061__ASCE_ST_1943_541X_0002242
crossref_primary_10_1016_j_oceaneng_2024_119671
crossref_primary_10_1016_j_marstruc_2023_103372
crossref_primary_10_1177_13694332211067831
crossref_primary_10_1177_1369433219880446
crossref_primary_10_3390_app10030860
crossref_primary_10_1007_s13344_023_0020_8
crossref_primary_10_1016_j_apor_2023_103683
crossref_primary_10_3390_ma16124383
crossref_primary_10_1142_S1793431121500068
crossref_primary_10_1002_er_3430
crossref_primary_10_1016_j_oceaneng_2020_107284
crossref_primary_10_1016_j_oceaneng_2019_04_089
crossref_primary_10_1016_j_engstruct_2024_117464
crossref_primary_10_1016_j_jweia_2022_105030
crossref_primary_10_1016_j_oceaneng_2023_115596
crossref_primary_10_1016_j_oceaneng_2024_117751
crossref_primary_10_1016_j_rser_2024_114799
crossref_primary_10_1016_j_engstruct_2019_109287
crossref_primary_10_1016_j_conbuildmat_2024_138317
crossref_primary_10_1016_j_renene_2019_09_043
crossref_primary_10_1061__ASCE_BE_1943_5592_0001308
crossref_primary_10_1016_j_oceaneng_2022_110710
crossref_primary_10_1016_j_renene_2020_10_015
crossref_primary_10_1061__ASCE_AS_1943_5525_0001083
crossref_primary_10_1016_j_oceaneng_2023_114816
crossref_primary_10_1016_j_oceaneng_2024_118718
crossref_primary_10_1590_2318_0331_252020190140
crossref_primary_10_1016_j_oceaneng_2023_116659
crossref_primary_10_26748_KSOE_2021_058
crossref_primary_10_1098_rsta_2014_0228
crossref_primary_10_1016_j_oceaneng_2023_115444
crossref_primary_10_1049_rpg2_12741
crossref_primary_10_1016_j_oceaneng_2020_106967
crossref_primary_10_1080_17445302_2016_1181027
crossref_primary_10_1016_j_engstruct_2017_03_074
crossref_primary_10_1016_j_engstruct_2021_113308
crossref_primary_10_1016_j_engstruct_2022_114885
crossref_primary_10_1016_j_jtte_2021_03_006
crossref_primary_10_1016_j_rser_2019_01_012
crossref_primary_10_1016_j_oceaneng_2024_120120
crossref_primary_10_1016_j_istruc_2020_11_019
crossref_primary_10_1016_j_renene_2016_06_028
crossref_primary_10_1016_j_renene_2020_10_068
crossref_primary_10_1061__ASCE_BE_1943_5592_0001517
crossref_primary_10_1186_s43251_020_00020_9
crossref_primary_10_1002_we_2006
crossref_primary_10_5194_wes_5_89_2020
crossref_primary_10_1016_j_oceaneng_2021_109168
crossref_primary_10_1016_j_renene_2018_02_049
crossref_primary_10_1016_j_marstruc_2025_103797
crossref_primary_10_3390_en10122099
crossref_primary_10_1016_j_renene_2021_06_044
crossref_primary_10_5194_wes_5_171_2020
crossref_primary_10_1016_j_engstruct_2019_05_013
crossref_primary_10_1007_s11804_020_00165_z
crossref_primary_10_1016_j_apenergy_2022_120027
crossref_primary_10_1016_j_engstruct_2019_109388
crossref_primary_10_1016_j_coastaleng_2022_104221
crossref_primary_10_1115_1_4047029
crossref_primary_10_1016_j_renene_2021_10_092
crossref_primary_10_1016_j_engstruct_2019_109903
crossref_primary_10_1177_1369433218781423
crossref_primary_10_1016_j_oceaneng_2021_110159
crossref_primary_10_1061__ASCE_BE_1943_5592_0001846
crossref_primary_10_1002_we_2315
crossref_primary_10_1016_j_psep_2020_10_016
crossref_primary_10_1155_2019_7381852
crossref_primary_10_1016_j_engstruct_2015_10_016
crossref_primary_10_1016_j_oceaneng_2020_107691
Cites_doi 10.1201/b16387-34
10.1016/j.oceaneng.2011.10.003
10.2172/1067926
10.1016/j.egypro.2013.07.177
10.1073/pnas.1111769109
10.1002/we.1561
10.1016/0141-1187(81)90081-X
10.4031/002533207787442088
10.1016/j.renene.2011.04.020
10.1016/j.engstruct.2013.03.016
10.1098/rsta.2003.1286
10.2172/947422
10.1016/j.jcsr.2006.11.006
10.1016/j.jcsr.2011.04.008
10.1016/0378-3839(79)90020-6
10.1029/TR039i005p00885
10.1115/1.4004273
10.1016/j.engstruct.2009.04.002
10.2118/950149-G
10.1080/15732470701270132
10.1016/j.engfailanal.2010.09.008
10.1016/0951-8339(95)00023-2
10.1016/j.jcsr.2013.01.013
10.1016/j.renene.2012.08.008
10.1002/we.82
10.1016/j.energy.2012.02.054
10.1016/S0951-8320(00)00095-8
10.1016/j.paerosci.2006.10.002
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.engstruct.2014.08.010
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7323
EndPage 69
ExternalDocumentID 28888103
10_1016_j_engstruct_2014_08_010
S0141029614004751
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
ABTAH
IQODW
UAO
ID FETCH-LOGICAL-c345t-4576335dc2abc95d3fc2ac9586bdc3c3da245051d6ac8370236c3bd120d1d6ae3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Apr 02 07:18:33 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Tue Jul 01 03:01:45 EDT 2025
Fri Feb 23 02:27:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extreme loading
Wind energy
Incremental wind-wave analysis
Mean return period
Offshore wind turbine
Support structure
Structural capacity
Reliability
Pushover
Probability of failure
Structural reliability
Probability
Turbine
Support(construction)
Wind generator
Capacity
Extreme value
Example
Wind wave
Wind load
Offshore structure
Computing method
Structural analysis
Damaging
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-4576335dc2abc95d3fc2ac9586bdc3c3da245051d6ac8370236c3bd120d1d6ae3
PageCount 12
ParticipantIDs pascalfrancis_primary_28888103
crossref_primary_10_1016_j_engstruct_2014_08_010
crossref_citationtrail_10_1016_j_engstruct_2014_08_010
elsevier_sciencedirect_doi_10_1016_j_engstruct_2014_08_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-15
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shi, Park, Chung, Baek, Kim, Kim (b0040) 2013; 54
Musial (b0030) 2007; 41
Mardfekri, Gardoni (b0085) 2013; 52
Shyam Sunder, Connor (b0200) 1981; 3
Fenton (b0195) 1990; 9
Wilson EL. SAP2000: integrated finite element analysis and desing of structures. Analysis reference, Computers and Structures, Inc.; 1997.
Seidel M, Von Mutius M, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the offshore wind conference, Copenhagen, Denmark; 2005.
Sun, Huang, Wu (b0015) 2012; 41
Borgman (b0180) 1958; 39
Henderson, Morgan, Smith, Sørensen, Barthelmie, Boesmans (b0010) 2003; 6
Sigurdsson G, Skallerud B, Skjong R, Amdahl J. Probabilistic collapse analysis of jackets. In: Proceedings of the international conference on offshore mechanics and arctic engineering; 1994. p. 367–380.
Onoufriou, Forbes (b0095) 2001; 71
Hezarjaribi, Bahaari, Bagheri, Ebrahimian (b0170) 2013; 83
Golafshani, Bagheri, Ebrahimian, Holmas (b0130) 2011; 67
Valamanesh V, Myers A, Hajjar J, Arwade S. Probabilistic modeling of joint hurricane-induced wind and wave hazards to offshore wind farms on the atlantic coast. In: Proceedings of ICOSSAR 2013, New York; 2013.
Commission IE. Wind turbines-part 3: design requirements for offshore wind turbines. Tech. rep. IEC 61400-3; 2009.
Gudmestad, Moe (b0175) 1996; 9
Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. Standard, American Petroleum Institute; 2005.
Ronalds, Trench, Pinna (b0120) 2007; 63
Jonkman JM, Buhl Jr ML. Fast user’s guide. Tech. rep. NREL/TP-500-29798. National Renewable Energy Laboratory: Golden, Colorado; 2005.
Byrne, Houlsby (b0050) 2003; 361
Chou, Tu (b0060) 2011; 18
Saha, Gao, Moan, Naess (b0090) 2014; 17
Hansen, Sørensen, Voutsinas, Sørensen, Madsen (b0140) 2006; 42
Loch K. The effects of wave induced vertical deck loads on ultimate limit state static pushover analyses results. Tech. rep., Marine Technology & Management Group, Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA; 1994.
Veritas DN. Modelling and analysis of marine operations. Tech. rep., DNV-RP-H103. Det Norske Veritas; 2011.
Ishihara T, Yamaguchi A, Takahara K, Mekaru T, Matsuura S. An analysis of damaged wind turbines by typhoon maemi in 2003. In: Proceedings of the sixth asia-pacific conference on wind engineering; 2005. p. 1413–28.
Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep. NREL/TP-500-38060, National Renewable Energy Laboratory Colorado, United States; 2009.
U.S. Department of Energy. 20% Wind energy by 2030: increasing wind energy contribution to US electricity supply, Washington, DC; 2008.
Agarwal, Manuel (b0070) 2009; 31
Hansen K, Gudmestad OT. Reassessment of jacket type of platforms subject to wave-in-deck forces: current practice and future development. In: Proceedings of the 11th international offshore and polar engineering conference; 2001. p. 482–9.
Sørensen, Friss-Hansen, Nielsen (b0125) 2008; 4
Myers AT, Arwade SR, Manwell JF. Consideration of hurricanes and tropical cyclones in the design of offshore wind turbines. In: Proceedings of European Wind Energy Association 2013; 2013.
Haselbach, Natarajan, Jiwinangun, Branner (b0080) 2013; 35
Lozano-Minguez, Kolios, Brennan (b0035) 2011; 36
Jha A, Dolan D, Gur T, Soyoz S, Alpdogan C. Comparison of API & IEC standards for offshore wind turbine applications in the US Atlantic Ocean: Phase II. Tech. rep. NREL/SR-5000-49688. National Renewable Energy Laboratory: Golden, Colorado; 2013.
Manwell, McGowan, Rogers (b0005) 2002
Jensen, Olsen, Mansour (b0075) 2011; 38
Vemula NK, DeVries W, Fischer T, Cordle A, Schmidt B. Design solution for the upwind reference offshore support structure. Tech. rep., Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany; 2010.
Rose, Jaramillo, Small, Grossmann, Apt (b0045) 2012; 109
Simiu (b0210) 2011
Arwade, Lackner, Grigoriu (b0025) 2011; 133
Chen, Sohal (b0225) 1995
Morison, O’Brien, Johnson, Schaaf (b0165) 1950; 2
Chaplin (b0190) 1979; 3
Saha (10.1016/j.engstruct.2014.08.010_b0090) 2014; 17
Simiu (10.1016/j.engstruct.2014.08.010_b0210) 2011
Manwell (10.1016/j.engstruct.2014.08.010_b0005) 2002
Arwade (10.1016/j.engstruct.2014.08.010_b0025) 2011; 133
Henderson (10.1016/j.engstruct.2014.08.010_b0010) 2003; 6
Gudmestad (10.1016/j.engstruct.2014.08.010_b0175) 1996; 9
10.1016/j.engstruct.2014.08.010_b0145
Morison (10.1016/j.engstruct.2014.08.010_b0165) 1950; 2
Agarwal (10.1016/j.engstruct.2014.08.010_b0070) 2009; 31
Onoufriou (10.1016/j.engstruct.2014.08.010_b0095) 2001; 71
10.1016/j.engstruct.2014.08.010_b0205
10.1016/j.engstruct.2014.08.010_b0105
Chaplin (10.1016/j.engstruct.2014.08.010_b0190) 1979; 3
Hansen (10.1016/j.engstruct.2014.08.010_b0140) 2006; 42
Hezarjaribi (10.1016/j.engstruct.2014.08.010_b0170) 2013; 83
10.1016/j.engstruct.2014.08.010_b0150
10.1016/j.engstruct.2014.08.010_b0155
10.1016/j.engstruct.2014.08.010_b0055
10.1016/j.engstruct.2014.08.010_b0110
Rose (10.1016/j.engstruct.2014.08.010_b0045) 2012; 109
Lozano-Minguez (10.1016/j.engstruct.2014.08.010_b0035) 2011; 36
Ronalds (10.1016/j.engstruct.2014.08.010_b0120) 2007; 63
Borgman (10.1016/j.engstruct.2014.08.010_b0180) 1958; 39
Sun (10.1016/j.engstruct.2014.08.010_b0015) 2012; 41
Fenton (10.1016/j.engstruct.2014.08.010_b0195) 1990; 9
Sørensen (10.1016/j.engstruct.2014.08.010_b0125) 2008; 4
10.1016/j.engstruct.2014.08.010_b0135
10.1016/j.engstruct.2014.08.010_b0115
10.1016/j.engstruct.2014.08.010_b0215
10.1016/j.engstruct.2014.08.010_b0160
Musial (10.1016/j.engstruct.2014.08.010_b0030) 2007; 41
10.1016/j.engstruct.2014.08.010_b0065
10.1016/j.engstruct.2014.08.010_b0020
10.1016/j.engstruct.2014.08.010_b0185
Chen (10.1016/j.engstruct.2014.08.010_b0225) 1995
10.1016/j.engstruct.2014.08.010_b0100
Shi (10.1016/j.engstruct.2014.08.010_b0040) 2013; 54
Haselbach (10.1016/j.engstruct.2014.08.010_b0080) 2013; 35
Shyam Sunder (10.1016/j.engstruct.2014.08.010_b0200) 1981; 3
10.1016/j.engstruct.2014.08.010_b0220
Byrne (10.1016/j.engstruct.2014.08.010_b0050) 2003; 361
Jensen (10.1016/j.engstruct.2014.08.010_b0075) 2011; 38
Golafshani (10.1016/j.engstruct.2014.08.010_b0130) 2011; 67
Chou (10.1016/j.engstruct.2014.08.010_b0060) 2011; 18
Mardfekri (10.1016/j.engstruct.2014.08.010_b0085) 2013; 52
References_xml – volume: 67
  start-page: 1649
  year: 2011
  end-page: 1657
  ident: b0130
  article-title: Incremental wave analysis and its application to performance-based assessment of jacket platforms
  publication-title: J Construct Steel Res
– reference: Jonkman JM, Buhl Jr ML. Fast user’s guide. Tech. rep. NREL/TP-500-29798. National Renewable Energy Laboratory: Golden, Colorado; 2005.
– volume: 42
  start-page: 285
  year: 2006
  end-page: 330
  ident: b0140
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog Aerospace Sci
– reference: U.S. Department of Energy. 20% Wind energy by 2030: increasing wind energy contribution to US electricity supply, Washington, DC; 2008.
– reference: Hansen K, Gudmestad OT. Reassessment of jacket type of platforms subject to wave-in-deck forces: current practice and future development. In: Proceedings of the 11th international offshore and polar engineering conference; 2001. p. 482–9.
– volume: 109
  start-page: 3247
  year: 2012
  end-page: 3252
  ident: b0045
  article-title: Quantifying the hurricane risk to offshore wind turbines
  publication-title: Proc Natl Acad Sci
– volume: 2
  start-page: 149
  year: 1950
  end-page: 154
  ident: b0165
  article-title: The force exerted by surface waves on piles
  publication-title: J Petroleum Technol
– reference: Myers AT, Arwade SR, Manwell JF. Consideration of hurricanes and tropical cyclones in the design of offshore wind turbines. In: Proceedings of European Wind Energy Association 2013; 2013.
– volume: 35
  start-page: 244
  year: 2013
  end-page: 252
  ident: b0080
  article-title: Comparison of coupled and uncoupled load simulations on a jacket support structure
  publication-title: Energy Proc
– volume: 38
  start-page: 2244
  year: 2011
  end-page: 2253
  ident: b0075
  article-title: Extreme wave and wind response predictions
  publication-title: Ocean Eng
– reference: Wilson EL. SAP2000: integrated finite element analysis and desing of structures. Analysis reference, Computers and Structures, Inc.; 1997.
– reference: Loch K. The effects of wave induced vertical deck loads on ultimate limit state static pushover analyses results. Tech. rep., Marine Technology & Management Group, Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA; 1994.
– volume: 3
  start-page: 13
  year: 1981
  end-page: 26
  ident: b0200
  article-title: Sensitivity analyses for steel jacket offshore platforms
  publication-title: Appl Ocean Res
– volume: 4
  start-page: 393
  year: 2008
  end-page: 398
  ident: b0125
  article-title: Reliability analysis of offshore jacket structures with wave load on deck using the model correction factor method
  publication-title: Struct Infrastruct Eng
– reference: Valamanesh V, Myers A, Hajjar J, Arwade S. Probabilistic modeling of joint hurricane-induced wind and wave hazards to offshore wind farms on the atlantic coast. In: Proceedings of ICOSSAR 2013, New York; 2013.
– reference: Jha A, Dolan D, Gur T, Soyoz S, Alpdogan C. Comparison of API & IEC standards for offshore wind turbine applications in the US Atlantic Ocean: Phase II. Tech. rep. NREL/SR-5000-49688. National Renewable Energy Laboratory: Golden, Colorado; 2013.
– volume: 18
  start-page: 295
  year: 2011
  end-page: 313
  ident: b0060
  article-title: Failure analysis and risk management of a collapsed large wind turbine tower
  publication-title: Eng Failure Anal
– volume: 54
  start-page: 201
  year: 2013
  end-page: 210
  ident: b0040
  article-title: Load analysis and comparison of different jacket foundations
  publication-title: Renew Energy
– volume: 71
  start-page: 189
  year: 2001
  end-page: 199
  ident: b0095
  article-title: Developments in structural system reliability assessments of fixed steel offshore platforms
  publication-title: Reliab Eng Syst Safety
– reference: Veritas DN. Modelling and analysis of marine operations. Tech. rep., DNV-RP-H103. Det Norske Veritas; 2011.
– reference: Commission IE. Wind turbines-part 3: design requirements for offshore wind turbines. Tech. rep. IEC 61400-3; 2009.
– volume: 39
  start-page: 885
  year: 1958
  end-page: 888
  ident: b0180
  article-title: Computation of the ocean-wave forces on inclined cylinders
  publication-title: Trans Am Geophys Union
– volume: 17
  start-page: 87
  year: 2014
  end-page: 104
  ident: b0090
  article-title: Short-term extreme response analysis of a jacket supporting an offshore wind turbine
  publication-title: Wind Energy
– volume: 9
  start-page: 3
  year: 1990
  end-page: 25
  ident: b0195
  article-title: Nonlinear wave theories
  publication-title: Sea
– volume: 83
  start-page: 147
  year: 2013
  end-page: 155
  ident: b0170
  article-title: Sensitivity analysis of jacket-type offshore platforms under extreme waves
  publication-title: J Construct Steel Res
– volume: 6
  start-page: 35
  year: 2003
  end-page: 52
  ident: b0010
  article-title: Offshore wind energy in Europe – a review of the state-of-the-art
  publication-title: Wind Energy
– reference: Ishihara T, Yamaguchi A, Takahara K, Mekaru T, Matsuura S. An analysis of damaged wind turbines by typhoon maemi in 2003. In: Proceedings of the sixth asia-pacific conference on wind engineering; 2005. p. 1413–28.
– reference: Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. Standard, American Petroleum Institute; 2005.
– reference: Sigurdsson G, Skallerud B, Skjong R, Amdahl J. Probabilistic collapse analysis of jackets. In: Proceedings of the international conference on offshore mechanics and arctic engineering; 1994. p. 367–380.
– year: 2002
  ident: b0005
  article-title: Wind energy explained: theory, design and application
– volume: 133
  start-page: 041006
  year: 2011
  ident: b0025
  article-title: Probabilistic models for wind turbine and wind farm performance
  publication-title: J Solar Energy Eng – Trans ASME
– volume: 3
  start-page: 179
  year: 1979
  end-page: 205
  ident: b0190
  article-title: Developments of stream-function wave theory
  publication-title: Coastal Eng
– reference: Vemula NK, DeVries W, Fischer T, Cordle A, Schmidt B. Design solution for the upwind reference offshore support structure. Tech. rep., Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany; 2010.
– reference: Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep. NREL/TP-500-38060, National Renewable Energy Laboratory Colorado, United States; 2009.
– reference: Seidel M, Von Mutius M, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the offshore wind conference, Copenhagen, Denmark; 2005.
– volume: 52
  start-page: 478
  year: 2013
  end-page: 487
  ident: b0085
  article-title: Probabilistic demand models and fragility estimates for offshore wind turbine support structures
  publication-title: Eng Struct
– volume: 31
  start-page: 2236
  year: 2009
  end-page: 2246
  ident: b0070
  article-title: Simulation of offshore wind turbine response for long-term extreme load prediction
  publication-title: Eng Struct
– volume: 9
  start-page: 745
  year: 1996
  end-page: 758
  ident: b0175
  article-title: Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures
  publication-title: Marine Struct
– volume: 41
  start-page: 298
  year: 2012
  end-page: 312
  ident: b0015
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
– year: 1995
  ident: b0225
  article-title: Plastic design and second-order analysis of steel frames
– volume: 361
  start-page: 2909
  year: 2003
  end-page: 2930
  ident: b0050
  article-title: Foundations for offshore wind turbines
  publication-title: Philos Trans Roy Soc Lond, Ser A: Math Phys Eng Sci
– year: 2011
  ident: b0210
  article-title: Design of tall buildings for wind: a guide for ASCE 7–10 standard users and designers of special structures
– volume: 36
  start-page: 2831
  year: 2011
  end-page: 2837
  ident: b0035
  article-title: Multi-criteria assessment of offshore wind turbine support structures
  publication-title: Renew Energy
– volume: 41
  start-page: 32
  year: 2007
  end-page: 43
  ident: b0030
  article-title: Offshore wind electricity: a viable energy option for the coastal united states
  publication-title: Marine Technol Soc J
– volume: 63
  start-page: 1016
  year: 2007
  end-page: 1023
  ident: b0120
  article-title: On the relationship between platform topology, topside weight and structural reliability under storm overload
  publication-title: J Construct Steel Res
– ident: 10.1016/j.engstruct.2014.08.010_b0215
– ident: 10.1016/j.engstruct.2014.08.010_b0135
  doi: 10.1201/b16387-34
– volume: 38
  start-page: 2244
  issue: 17–18
  year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0075
  article-title: Extreme wave and wind response predictions
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2011.10.003
– ident: 10.1016/j.engstruct.2014.08.010_b0155
  doi: 10.2172/1067926
– ident: 10.1016/j.engstruct.2014.08.010_b0110
– ident: 10.1016/j.engstruct.2014.08.010_b0020
– volume: 35
  start-page: 244
  issue: 0
  year: 2013
  ident: 10.1016/j.engstruct.2014.08.010_b0080
  article-title: Comparison of coupled and uncoupled load simulations on a jacket support structure
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2013.07.177
– ident: 10.1016/j.engstruct.2014.08.010_b0150
– year: 2002
  ident: 10.1016/j.engstruct.2014.08.010_b0005
– volume: 109
  start-page: 3247
  issue: 9
  year: 2012
  ident: 10.1016/j.engstruct.2014.08.010_b0045
  article-title: Quantifying the hurricane risk to offshore wind turbines
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1111769109
– volume: 17
  start-page: 87
  issue: 1
  year: 2014
  ident: 10.1016/j.engstruct.2014.08.010_b0090
  article-title: Short-term extreme response analysis of a jacket supporting an offshore wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.1561
– volume: 3
  start-page: 13
  issue: 1
  year: 1981
  ident: 10.1016/j.engstruct.2014.08.010_b0200
  article-title: Sensitivity analyses for steel jacket offshore platforms
  publication-title: Appl Ocean Res
  doi: 10.1016/0141-1187(81)90081-X
– volume: 41
  start-page: 32
  issue: 3
  year: 2007
  ident: 10.1016/j.engstruct.2014.08.010_b0030
  article-title: Offshore wind electricity: a viable energy option for the coastal united states
  publication-title: Marine Technol Soc J
  doi: 10.4031/002533207787442088
– volume: 36
  start-page: 2831
  issue: 11
  year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0035
  article-title: Multi-criteria assessment of offshore wind turbine support structures
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.04.020
– year: 1995
  ident: 10.1016/j.engstruct.2014.08.010_b0225
– ident: 10.1016/j.engstruct.2014.08.010_b0100
– volume: 52
  start-page: 478
  issue: 0
  year: 2013
  ident: 10.1016/j.engstruct.2014.08.010_b0085
  article-title: Probabilistic demand models and fragility estimates for offshore wind turbine support structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.03.016
– volume: 361
  start-page: 2909
  issue: 1813
  year: 2003
  ident: 10.1016/j.engstruct.2014.08.010_b0050
  article-title: Foundations for offshore wind turbines
  publication-title: Philos Trans Roy Soc Lond, Ser A: Math Phys Eng Sci
  doi: 10.1098/rsta.2003.1286
– ident: 10.1016/j.engstruct.2014.08.010_b0205
  doi: 10.2172/947422
– volume: 63
  start-page: 1016
  issue: 8
  year: 2007
  ident: 10.1016/j.engstruct.2014.08.010_b0120
  article-title: On the relationship between platform topology, topside weight and structural reliability under storm overload
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2006.11.006
– volume: 67
  start-page: 1649
  issue: 10
  year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0130
  article-title: Incremental wave analysis and its application to performance-based assessment of jacket platforms
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2011.04.008
– volume: 3
  start-page: 179
  issue: 0
  year: 1979
  ident: 10.1016/j.engstruct.2014.08.010_b0190
  article-title: Developments of stream-function wave theory
  publication-title: Coastal Eng
  doi: 10.1016/0378-3839(79)90020-6
– volume: 39
  start-page: 885
  issue: 5
  year: 1958
  ident: 10.1016/j.engstruct.2014.08.010_b0180
  article-title: Computation of the ocean-wave forces on inclined cylinders
  publication-title: Trans Am Geophys Union
  doi: 10.1029/TR039i005p00885
– ident: 10.1016/j.engstruct.2014.08.010_b0220
– volume: 133
  start-page: 041006
  issue: 4
  year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0025
  article-title: Probabilistic models for wind turbine and wind farm performance
  publication-title: J Solar Energy Eng – Trans ASME
  doi: 10.1115/1.4004273
– volume: 31
  start-page: 2236
  issue: 10
  year: 2009
  ident: 10.1016/j.engstruct.2014.08.010_b0070
  article-title: Simulation of offshore wind turbine response for long-term extreme load prediction
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.04.002
– volume: 2
  start-page: 149
  issue: 5
  year: 1950
  ident: 10.1016/j.engstruct.2014.08.010_b0165
  article-title: The force exerted by surface waves on piles
  publication-title: J Petroleum Technol
  doi: 10.2118/950149-G
– year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0210
– ident: 10.1016/j.engstruct.2014.08.010_b0115
– volume: 4
  start-page: 393
  issue: 5
  year: 2008
  ident: 10.1016/j.engstruct.2014.08.010_b0125
  article-title: Reliability analysis of offshore jacket structures with wave load on deck using the model correction factor method
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732470701270132
– volume: 18
  start-page: 295
  issue: 1
  year: 2011
  ident: 10.1016/j.engstruct.2014.08.010_b0060
  article-title: Failure analysis and risk management of a collapsed large wind turbine tower
  publication-title: Eng Failure Anal
  doi: 10.1016/j.engfailanal.2010.09.008
– volume: 9
  start-page: 745
  issue: 8
  year: 1996
  ident: 10.1016/j.engstruct.2014.08.010_b0175
  article-title: Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures
  publication-title: Marine Struct
  doi: 10.1016/0951-8339(95)00023-2
– volume: 83
  start-page: 147
  issue: 0
  year: 2013
  ident: 10.1016/j.engstruct.2014.08.010_b0170
  article-title: Sensitivity analysis of jacket-type offshore platforms under extreme waves
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2013.01.013
– ident: 10.1016/j.engstruct.2014.08.010_b0055
– ident: 10.1016/j.engstruct.2014.08.010_b0065
– volume: 54
  start-page: 201
  issue: 0
  year: 2013
  ident: 10.1016/j.engstruct.2014.08.010_b0040
  article-title: Load analysis and comparison of different jacket foundations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.08.008
– volume: 9
  start-page: 3
  issue: 1
  year: 1990
  ident: 10.1016/j.engstruct.2014.08.010_b0195
  article-title: Nonlinear wave theories
  publication-title: Sea
– ident: 10.1016/j.engstruct.2014.08.010_b0185
– volume: 6
  start-page: 35
  issue: 1
  year: 2003
  ident: 10.1016/j.engstruct.2014.08.010_b0010
  article-title: Offshore wind energy in Europe – a review of the state-of-the-art
  publication-title: Wind Energy
  doi: 10.1002/we.82
– volume: 41
  start-page: 298
  issue: 1
  year: 2012
  ident: 10.1016/j.engstruct.2014.08.010_b0015
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.054
– volume: 71
  start-page: 189
  issue: 2
  year: 2001
  ident: 10.1016/j.engstruct.2014.08.010_b0095
  article-title: Developments in structural system reliability assessments of fixed steel offshore platforms
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/S0951-8320(00)00095-8
– volume: 42
  start-page: 285
  issue: 4
  year: 2006
  ident: 10.1016/j.engstruct.2014.08.010_b0140
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog Aerospace Sci
  doi: 10.1016/j.paerosci.2006.10.002
– ident: 10.1016/j.engstruct.2014.08.010_b0145
– ident: 10.1016/j.engstruct.2014.08.010_b0105
– ident: 10.1016/j.engstruct.2014.08.010_b0160
SSID ssj0002880
Score 2.4044507
Snippet •Incremental wind-wave analysis approach for the capacity of OWT support structures is proposed.•Single- and two-parameter IWWA accounts for independent and...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 58
SubjectTerms Applied sciences
Buildings. Public works
Climatology and bioclimatics for buildings
Exact sciences and technology
Extreme loading
Hydraulic constructions
Incremental wind-wave analysis
Mean return period
Offshore structure (platforms, tanks, etc.)
Offshore wind turbine
Probability of failure
Pushover
Reliability
Stresses. Safety
Structural analysis. Stresses
Structural capacity
Support structure
Wind energy
Title Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading
URI https://dx.doi.org/10.1016/j.engstruct.2014.08.010
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXhQRn1gfZQ9eY5Psbpp4K8VSFXvRQm9hd7PRSklCW-1B8Lc7k5ctCD1422xmsmFnM48w8w0h10rrwHccZnERCwhQlLQk7wgr8GXsdZQywsdC4aehNxjxh7EYN0ivqoXBtMpS9xc6PdfW5Uy73M12Npm0n_MURTcA-4KQh3kZNecdPOU3379pHq6fd09DYgup13K8TPJawLRijhfPsTyxlPZvC7WXyTnsW1w0vFixQv0Dsl-6j7RbvOEhaZjkiOyugAoeky_45IuffkC4hJDbWspPQ2WJPkLTmILTR4s3QtANqsFgavDG8VYax_O3dGZyTgr3IXIG4o8M_fSaycwpFp_NKKh2XItO0zwX_4SM-ncvvYFVtliwNONiARIC_cJEpF2pdCAiFsMIBr6nIs00i6TLwUdyIk9qhMlxmaeZihzXjnDOsFOylaSJOSNUK7BsDos9LhiPwLHREN0whYD0EBIpv0m8altDXeKPYxuMaVglmr2HtTxClEeIDTIdu0nsmjErIDg2s9xWcgvXTlMIhmIzc2tN0vWicJR837HZ-X-efkF28ArLGR1xSbaAwFyBX7NQrfzgtsh29_5xMPwBtwn8xg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG1VVX2q9EE9dI0gsR2SbggVQXksBYktsh2npUIJAlqG_vneJSEqUiWGbpZ9l1g-5x7R3XeEPCqtfc-2mcVFJCBAUdKSvCks35OR21TKCA8LhYcjtzvhL1MxLZH2thYG0ypz3Z_p9FRb5zP1_DTri9ms_pqmKDo-2BeEPMQy6gqiU4kyqbR6_e6oUMiOlzZQQ3oLGXbSvEz8liG1YpoXT-E8sZr2byN1vJArOLoo63nxyxB1TslJ7kHSVrbJM1Iy8Tk5-oUreEG-4avP_vsB4QaibmsjvwyVOQAJTSIKfh_NdoS4G1SDzdTgkONSEkWr92RpUk4K6xA8A_HnAl31gsmsKNafLSlod3wXnSdpOv4lmXSex-2ulXdZsDTjYg1CAhXDRKgdqbQvQhbBCAaeq0LNNAulw8FNskNXakTKcZirmQptpxHinGFXpBwnsbkmVCswbjaLXC4YD8G30RDgMIWY9BAVKa9K3O2xBjqHIMdOGPNgm2v2ERTyCFAeAfbItBtV0igYFxkKx36Wp63cgp0LFYCt2M9c25F08VK4Sp5nN9jNf57-QA664-EgGPRG_VtyiCtY3WiLO1IGYnMPbs5a1fJr_ANRJf93
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+wind-wave+analysis+of+the+structural+capacity+of+offshore+wind+turbine+support+structures+under+extreme+loading&rft.jtitle=Engineering+structures&rft.au=Wei%2C+Kai&rft.au=Arwade%2C+Sanjay+R.&rft.au=Myers%2C+Andrew+T.&rft.date=2014-11-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=79&rft.spage=58&rft.epage=69&rft_id=info:doi/10.1016%2Fj.engstruct.2014.08.010&rft.externalDocID=S0141029614004751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon