A comprehensive review on electrochemical green ammonia synthesis: From conventional to distinctive strategies for efficient nitrogen fixation

Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 352; p. 121960
Main Authors Santhosh, C.R., Sankannavar, Ravi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production. [Display omitted] •Ammonia can be used as a potential carbon-free energy carrier and non-fossil fuel.•Industrial ammonia production using Haber process is energy-intensive and emits CO2•Green ammonia can be produced via electrochemical route powered by renewable energy.•eNRR is less competitive with Haber process due to its higher N2 activation energy.•Producing NH3 by coupling eNRR with water electrolysis contributes to green economy.
AbstractList Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production.
Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production. [Display omitted] •Ammonia can be used as a potential carbon-free energy carrier and non-fossil fuel.•Industrial ammonia production using Haber process is energy-intensive and emits CO2•Green ammonia can be produced via electrochemical route powered by renewable energy.•eNRR is less competitive with Haber process due to its higher N2 activation energy.•Producing NH3 by coupling eNRR with water electrolysis contributes to green economy.
ArticleNumber 121960
Author Sankannavar, Ravi
Santhosh, C.R.
Author_xml – sequence: 1
  givenname: C.R.
  surname: Santhosh
  fullname: Santhosh, C.R.
– sequence: 2
  givenname: Ravi
  orcidid: 0000-0002-1590-5609
  surname: Sankannavar
  fullname: Sankannavar, Ravi
  email: ravi.sankannavar@msrit.edu
BookMark eNqFkT1PHDEQhl0Qic-_ELlMc5exvbvxRSmCEAQkJBqoLeMd381p177Y5uD-BL853hw0NFRu3veZ8TPH7CDEgIx9FTAXILrv67ndYMC03M0lSDUXUiw6OGBHoKCbyU4sDtlxzmsAkELCEXs95y6Om4QrDJm2yBNuCZ95DBwHdCVFt8KRnB34MiEGbscxBrI870JZYab8k1-lOFZK2GIoFEONlsh7yoWCKxMzl2QLLgkz9zFx9J4c1TAPVAcsK9XTi526p-yLt0PGs7f3hD1cXd5fXM9u7_7cXJzfzpxq2jJrpLUtats3oIVX7Q_duqbtUQgrABpUXj8q62UrxKNTIDVaRO1s1wNqjaBO2Lc9d5Pi3yfMxYyUHQ6DDRifslGiVUKrhVQ1-msfdSnmnNAbR-X_svVXNBgBZlJv1uZdvZnUm736Wu8-1DeJRpt2nxd_74tYPdSbJJMnaQ57SvUwpo_0GeIfFAirTQ
CitedBy_id crossref_primary_10_1016_j_comptc_2025_115090
crossref_primary_10_1002_cctc_202401001
crossref_primary_10_1016_j_enconman_2024_118263
crossref_primary_10_1016_j_jece_2024_114034
crossref_primary_10_1016_j_jechem_2024_01_024
crossref_primary_10_1016_j_fuel_2024_133604
crossref_primary_10_1016_j_enconman_2024_119117
crossref_primary_10_1016_j_ceramint_2025_02_063
crossref_primary_10_3390_cryst14090818
crossref_primary_10_1021_acs_energyfuels_4c04626
crossref_primary_10_1016_j_seppur_2024_130202
crossref_primary_10_1016_j_jcis_2024_07_008
crossref_primary_10_3390_en17122963
crossref_primary_10_1016_j_jpowsour_2024_234971
crossref_primary_10_1016_j_apenergy_2024_123505
crossref_primary_10_1007_s11581_024_05578_2
crossref_primary_10_1039_D4YA00218K
crossref_primary_10_1016_j_cogsc_2024_100985
Cites_doi 10.1016/j.apcatb.2021.120667
10.1039/C8TA03974G
10.1021/acsami.0c22767
10.1021/acscatal.9b00366
10.1038/s41929-019-0280-0
10.1039/C8CC00657A
10.1016/j.apenergy.2023.121184
10.1038/s41467-018-04213-9
10.1021/acsenergylett.1c01568
10.1038/s41929-018-0092-7
10.1039/C8NR10401H
10.1021/acscentsci.8b00734
10.1039/D0TA08810B
10.1073/pnas.2204638119
10.1021/acs.chemrev.9b00659
10.1016/j.cej.2021.131843
10.1021/jacs.7b04393
10.1039/C4CP04838E
10.1016/j.fuel.2023.127779
10.1039/D1MA00243K
10.1038/s41929-019-0414-4
10.1039/C7TA10866D
10.1021/acssuschemeng.9b07679
10.1016/j.ijhydene.2020.10.192
10.1016/j.chempr.2021.01.009
10.1039/D0TA06576E
10.1039/C9TA05505C
10.1002/smtd.201800352
10.1002/cssc.201701975
10.1021/acsami.1c04458
10.1016/j.checat.2021.12.004
10.1021/acssuschemeng.9b01178
10.1016/j.fuel.2021.121303
10.1039/C8CC03627F
10.1039/C9TA04706A
10.1021/acscatal.8b02311
10.1016/j.ijhydene.2021.01.150
10.1021/acscatal.8b05134
10.1038/s41586-019-1260-x
10.1038/srep01145
10.1021/acs.inorgchem.1c01130
10.1039/C9TA06523G
10.1039/C9TA13135C
10.1002/smtd.201900356
10.1149/2.1091811jes
10.1002/smtd.201800204
10.1126/science.1254234
10.1016/j.ijhydene.2013.09.054
10.1007/s10098-020-01936-6
10.1039/D2CP00340F
10.1002/smtd.201800386
10.1021/acscatal.8b03802
10.1016/j.jechem.2021.01.018
10.1002/er.5355
10.1021/acsenergylett.0c02349
10.1038/s41467-018-05758-5
10.1016/j.rser.2022.112845
10.1016/j.enchem.2019.100011
10.1021/jacs.8b08379
10.1016/j.apcatb.2020.119746
10.1002/sus2.7
10.1016/j.nanoen.2018.04.039
10.1002/adma.201902709
10.1039/C7TA06139K
10.1039/C8TA10433F
10.1016/j.ijhydene.2011.10.004
10.1039/C9GC01338E
10.1002/aenm.201800369
10.1016/j.jpowsour.2008.02.097
10.1002/anie.202105536
10.1126/sciadv.1700336
10.1038/s41929-020-0455-8
10.1016/j.rser.2023.113197
10.1039/D2NJ02478K
10.1002/ange.201813174
10.1021/acssuschemeng.0c05764
10.1016/j.joule.2019.10.006
10.1039/D0TA03237A
10.1007/s12274-022-4568-z
10.1016/j.fuel.2021.120845
10.1039/C9NR03678D
10.1021/acsami.9b18027
10.1016/S1872-2067(21)63795-6
10.1039/D0NR08744K
10.1016/j.joule.2018.04.014
10.1016/j.nanoen.2020.104469
10.1007/s12274-018-1987-y
10.1039/D0TA07720H
10.1021/acsami.9b12675
10.1021/acscatal.9b02245
10.1002/smll.201803111
10.1002/ange.201811728
10.1039/C9TA04141A
10.1016/j.apenergy.2022.119463
10.1039/C8TA05627G
10.1126/sciadv.aar3208
10.1016/j.nanoen.2019.02.028
10.1002/eem2.12344
10.1016/j.joule.2019.02.003
10.1016/j.joule.2018.06.007
10.1016/j.apenergy.2019.114135
10.1021/acsenergylett.8b00487
10.1002/ange.201806386
10.1039/C9CY00907H
10.1021/acssuschemeng.0c03675
10.1039/C9TA09910G
10.1039/C9TA13485A
10.1016/j.cattod.2016.06.014
10.1039/C8TA11201K
10.1016/j.chempr.2018.10.010
10.1002/ange.201909831
10.1002/ange.202009217
10.1016/j.electacta.2005.03.023
10.1039/C9TA13026H
10.1126/science.abg2371
10.1149/2.0091708jes
10.1039/C8CC00459E
10.1002/ange.201801538
10.1039/C9CS00280D
10.1021/acssuschemeng.8b01438
10.1021/acssuschemeng.9b03141
10.1039/C9TA05016G
10.1021/acsaem.9b00102
10.1039/C7EE03639F
10.1016/j.ijhydene.2017.06.118
10.1016/j.jelechem.2021.115874
10.1007/s12274-019-2323-x
10.1002/cssc.202000670
10.1016/j.apenergy.2020.115185
10.1007/s10853-017-1176-5
10.1002/adma.201606550
10.1016/j.cej.2021.133752
10.1016/j.jcat.2019.10.029
10.1016/j.joule.2020.04.004
10.1039/C9TA10206J
10.1002/aenm.201801357
10.1039/D0SE00828A
10.1016/j.jcis.2021.11.087
10.1038/s42004-021-00449-7
10.1007/s41918-019-00061-3
10.1016/j.joule.2018.09.011
10.1039/D1QI00306B
10.1016/j.nanoen.2018.07.045
10.1021/acs.inorgchem.9b01707
10.1016/j.est.2022.105684
10.1007/s11814-016-0086-6
10.1002/er.6232
10.1016/j.coche.2020.100667
10.1039/C8QI01145A
10.1039/D0NR00412J
10.1039/D0NJ04244G
10.1021/acs.jpclett.2c00768
10.1039/D0RA05831A
10.1021/acsami.0c10991
10.1039/C7EE01126A
10.1016/j.chempr.2021.10.008
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.121960
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2023_121960
S0306261923013247
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAQXK
AATTM
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c345t-42aa5e8ad4081f35785c45de11a1004e3f8b3af2511bc3028eaee8ca6d0e88e03
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 05:46:56 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 04:01:18 EDT 2025
Sat Nov 09 16:00:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Green energy
Zero-carbon ammonia
Energy conversion and storage
Haber–Bosch process
Renewable energy
Nitrogen reduction reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-42aa5e8ad4081f35785c45de11a1004e3f8b3af2511bc3028eaee8ca6d0e88e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1590-5609
PQID 3153183923
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153183923
crossref_citationtrail_10_1016_j_apenergy_2023_121960
crossref_primary_10_1016_j_apenergy_2023_121960
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_121960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Nash, Anibal, Dunwell, Kattel, Stavitski, Attenkofer, Chen, Yan, Xu (b106) 2018; 140
Su, Chen, Chen, Si, Wu, Wu, Geng, Zhang, Zeng (b174) 2020; 132
Zhang, Du, Ma, Ji, Guo, Tian, Chen, Huang, Cui, Asiri (b171) 2019; 12
Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith III, Hamann (b186) 2020; 120
Zamfirescu, Dincer (b12) 2008; 185
Chen, Xia (b7) 2019; 7
Ren, Zhao, Wei, Ma, Guo, Liu, Wang, Cui, Asiri, Li (b167) 2018; 5
Xu, Li, Bati, Bat-Erdene, Nine, Losic, Chen, Shapter, Batmunkh, Ma (b113) 2020; 8
Chang, Kong, Wang, Han, Cui, Tian, Chen, Meng, Chen, Liu (b71) 2022; 2
Sheets, Botte (b46) 2018; 54
Soloveichik (b32) 2019; 2
Cui, Tang, Zhang (b30) 2018; 8
Han, Wu, He, Zhuang, Lin, Han (b25) 2022; 55
Wang, Yang, Salla, Xi, Yang, Li, Zhang, Zhu, Huang, Huang (b54) 2021; 60
Guo, Liang, Zhao, Zhu, Cai, Zou, Xu (b102) 2018; 2
Huang, Wu, Han, Al-Enizi, Almutairi, Zhang, Zheng (b101) 2019; 3
Liu, Xu, Luo, Kong, Li, Lu, Alshehri, Alzahrani, Sun (b26) 2021; 29
Kong, Zhang, Zhang, Ji, Yu, Wang, Luo, Shi, Xu, Sun (b143) 2019; 11
Du, Xing, Zhang, Liu, Rawach, Sun (b77) 2021; 1
Martín, Shinagawa, Pérez-Ramírez (b61) 2019; 5
Li, Bao, Shi, Wulan, Yan, Jiang (b88) 2017; 29
Qiu, Xie, Qiu, Fang, Liang, Ren, Ji, Cui, Asiri, Cui (b110) 2018; 9
Liu, Zhao, Ding (b152) 2020; 44
Yu, Guo, Liu, Chen, Alshehri, Alzahrani, Hao, Li (b140) 2019; 11
(b19) 2023
Yang, Huang, Bai, Feng, Shao, Huang (b133) 2020; 32
Shen, Liu, Li, Chu (b176) 2020; 56
Kim, Lee, Kim, Yoo, Choi, Kim, Woo, Yoon, Han (b51) 2018; 11
Chehade, Dincer (b53) 2020; 44
Ghavam, Garcia-Garcia, Styring (b73) 2021; 46
McEnaney, Singh, Schwalbe, Kibsgaard, Lin, Cargnello, Jaramillo, Nørskov (b48) 2017; 10
Li, Li, Ma, Wei, Qiu, Guo, Shi, Zhang, Asiri, Chen (b136) 2018; 8
Li, Yu, Yang, Zhao, Kong, Wang, Asiri, Li, Sun (b147) 2019; 58
Chu, Liu, Wang, Zhang (b164) 2019; 2
Wang, Liu, Zhang, Huang, Chu (b127) 2019; 9
Lv, Wang, Du, Liu, Luo, Lu, Chen, Gao, Zheng, Sun (b63) 2020; 4
Zhang, Ji, Ren, Luo, Shi, Asiri, Zheng, Sun (b94) 2018; 6
Han, Liu, Ma, Cui, Xie, Wang, Wu, Gao, Xu, Sun (b99) 2018; 52
Xu, Ma, Li, Yue, Luo, Lu, Shi, Asiri, Yang, Sun (b148) 2020; 56
Li, Chen, Li, Li, Wu, Cui, Deng, Luo, Liu, Li (b163) 2021; 42
Li, Tang, Jin, Davey, Qiao (b42) 2021; 7
Han, Ji, Ren, Cui, Li, Xie, Wang, Li, Sun (b103) 2018; 6
Gao, Lv, Wang, Luo, Lu, Chen, Gao, Zhong, Guo, Sun (b111) 2020; 8
Tursun, Wu (b36) 2023; 342
Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (b23) 2017; 286
Shen, Choi, Masa, Li, Qiu, Jung, Sun (b44) 2021; 7
Geng, Liu, Kong, Li, Li, Liu, Du, Shu, Si, Zeng (b84) 2018; 30
Du, Yang, Pu, Zeng, Gong (b155) 2020; 8
Kim, Cho, Jeon, Lee, Yoo, Kim, Choi, Yoon, Han (b50) 2018; 165
Suryanto, Kang, Wang, Xiao, Zhou, Azofra, Cavallo, Zhang, MacFarlane (b62) 2018; 3
Mushtaq, Arif, Yasin, Tabish, Kumar, Ibraheem, Ye, Ajmal, Zhao, Li (b79) 2023; 176
Han, Liu, Chen, Lin, Liu, Lü, Bak, Liang, Zhao, Stavitski (b92) 2019; 131
Wang, Li, Liu (b114) 2020; 10
(b18) 2023
Zhu, Wu, Ji, Li, Wang, Wen, Gao, Shi, Luo, Peng (b151) 2019; 7
Wang, Yang, Wang, Ma, Tian, Pang, Tan, Gao (b82) 2022; 609
Sharma, Patel, Mushtaq, Kyriakou, Zafeiropoulos, Peeters, Welzel, van de Sanden, Tsampas (b55) 2020; 6
Kim, Chen, Han, Yoon, Li (b52) 2019; 21
Cui, Dong, Qu, Zhang, Zhao, Wang, Jiang (b122) 2021; 426
Wang, Chen, Lai, Peng, Zhao, Hu, Qiu, Ren, Liu, Luo (b142) 2020; 381
Chehade, Dincer (b5) 2021; 299
Giddey, Badwal, Kulkarni (b35) 2013; 38
Yao, Wang, Shahid, Gu, Wang, Li, Shao (b184) 2020; 3
Luo, Chen, Ding, Chen, Ding, Wang (b64) 2019; 3
Fu, Zhuang, OliverLam Chee, Dong, Ye, Shen (b165) 2019; 7
Xie, Geng, Zhu, Luo, Chang, Niu, Shi, Asiri, Gao, Wang (b170) 2019; 7
Yang, Zhao, Huang, Liu, Yu, Wang, Yuan, Sun, Li, Li (b156) 2021; 13
Tang, Qiao (b185) 2019; 48
Qu, Dai, Cui, Zhang, Wang, Jiang (b119) 2022; 433
Liu, Han, Zhao, Zhu, Tian, Zeng, Jiang, Xia, Chen (b130) 2018; 6
McPherson, Sudmeier, Fellowes, Wilkinson, Hughes, Tsang (b68) 2019; 131
Rao, Liu, Chien, Inoue, Zhang, Liu (b74) 2022; 168
Li, Ren, Liu, Zhao, Sun, Zhang, Kuang, Yan, Wei, Wu (b141) 2019; 7
Lan, Irvine, Tao (b33) 2013; 3
Wang, Xia, Yang, Wang, Fang, Chen, Tang, Asiri, Luo, Cui (b177) 2019; 55
Abghoui, Garden, Hlynsson, Björgvinsdóttir, Ólafsdóttir, Skúlason (b27) 2015; 17
Yu, Shu, Huang, Yang, Meng, Zou, Wang, Zeng, Zou, Deng (b161) 2020; 8
Yuan, Wei, Han, Yang, Huang, Gu, Ding, Ma, Zheng (b112) 2019; 7
Zhang, Jiao, Yang, Wan, Jiang (b181) 2019; 7
Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr (b183) 2019; 570
Suryanto, Matuszek, Choi, Hodgetts, Du, Bakker, Kang, Cherepanov, Simonov, MacFarlane (b1) 2021; 372
Bicer, Dincer (b66) 2017; 164
ami, Nohira, Goto, Ogata, Ito (b65) 2005; 50
Huang, Liu, Zhang, Wang, Wen, Wang, Hossain, Xie, Yao, Wu (b125) 2020; 8
Yu, Li, Li, Zhu, Zhang, Ji, Tang, Asiri, Sun, Li (b138) 2019; 55
Pan, Liu, Tahir, Esan, Zhu, Chen, An (b10) 2022; 322
Xu, Ithisuphalap, Li, Mukherjee, Lattimer, Soloveichik, Wu (b28) 2020; 69
Liu, Wang, Zhang, Li, Wang, Zhang, Han, Zhang (b153) 2020; 8
Song, Johnson, Peng, Hensley, Bonnesen, Liang, Huang, Yang, Zhang, Qiao (b108) 2018; 4
Bat-Erdene, Xu, Batmunkh, Bati, White, Nine, Losic, Chen, Wang, Ma (b80) 2020; 8
Wu, Xia, Wang, Lu, Liu, Shi, Sun (b173) 2018; 14
Deng, Iñiguez, Liu (b60) 2018; 2
Licht, Cui, Wang, Li, Lau, Liu (b67) 2014; 345
Li, Tang, Xia, Jin, Zheng, Qiao (b121) 2019; 9
MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Vallana, Simonov (b2) 2020; 4
Gu, Guo, Li, Tian, Chu (b175) 2020; 12
Wu, Fan, Zhang, Zhang (b43) 2021; 16
Wu, Yang, Xu, Wu, Wang, Lv, Ma, Xu, Zheng, Tan (b57) 2021; 299
Wu, Li, Zhu, Mou, Luo, Shi, Asiri, Zhang, Zheng, Zhao (b144) 2020; 56
Zhao, Hu, Chen, Zhang, Zhang, Wang (b39) 2021; 33
Jiao, Xu (b8) 2019; 31
Wu, Kong, Zhang, Xing, Zhao, Wang, Shi, Luo, Sun (b162) 2019; 3
Chen, Xia (b76) 2019; 7
Zhang, Kong, Du, Xia, Qu (b100) 2018; 54
Yu, Han, Wei, Huang, Gu, Peng, Ma, Zheng (b109) 2018; 2
Singh, Rohr, Statt, Schwalbe, Cargnello, Nørskov (b59) 2019; 9
Giddey, Badwal, Kulkarni (b22) 2013; 38
Liu, Lin, Gu, Cheng, Xie, Sun, Zhang, Luo, Alshehri, Hamdy (b81) 2022; 15
Su, Huang, Wang, Huang, Yuan, Huang, Xu, Lin (b9) 2023; 343
Sažinas, Li, Andersen, Saccoccio, Li, Pedersen, Kibsgaard, Vesborg, Chakraborty, Chorkendorff (b49) 2022; 13
Niu, An, Wang, Sun (b31) 2021; 61
Mao, Li, Tian, Zhou, Xu, Wang, Li, Wang, Wang (b117) 2022; 904
Jin, Li, Liu, Tang, Xu, Chen, Song, Zheng, Qiao (b137) 2019; 31
Wang, Cui, Zhao, Jia, Gu, Zhang, Meng, Shi, Zheng, Wang (b120) 2018; 9
Li, Liu, Wu, Zhang, Wang, Wang, Ji, Zhang, Luo, Wang (b134) 2019; 7
Zhao, Ren, Li, Fan, Sun, Ma, Wei, Wu (b172) 2019; 11
Zhang, Liu, Shi, Asiri, Luo, Sun, Li (b98) 2018; 6
Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (b14) 2018; 1
Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (b41) 2019; 3
Liu, Li, Guo, Kong, Ke, Chi, Li, Geng, Zeng (b83) 2020; 32
Nazemi, Panikkanvalappil, El-Sayed (b105) 2018; 49
Guo, Du, Qu, Li (b78) 2019; 7
Wang, Lv, Zhu, Du, Lu, Alshehri, Alzahrani, Zheng, Sun (b146) 2020; 56
Ardo, Rivas, Modestino, Greiving, Abdi, Llado, Artero, Ayers, Battaglia, Becker (b20) 2018; 11
Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang (b21) 2019; 1
Zheng, Zhang, Lv, Zhang, Wan, Gerrits, Wu, Lan, Wang, Wang (b56) 2023
Xu, Xu, Du, Wu, Ma, Ren, Li, Wei (b124) 2022; 46
Ripepi, Zaffaroni, Schreuders, Boshuizen, Mulder (b72) 2021; 6
Wang, Yu, Hu, Chen, Xin, Feng (b96) 2018; 9
Zhang, Han, Zheng, Shi, Asiri, Sun (b182) 2019; 6
Biswas, Kapse, Ghosh, Thapa, Dey (b70) 2022; 119
Erdemir, Dincer (b3) 2021; 45
Zhao, Lan, Yu, Fu, Liu, Mu (b154) 2018; 54
Deng, Wang, Alshehri, Alzahrani, Wang, Ye, Luo, Sun (b131) 2019; 7
Zhang, Ji, Ren, Ma, Shi, Tian, Asiri, Chen, Tang, Sun (b93) 2018; 30
Zhang, Ding, Chen, Yang, Wang (b86) 2019; 131
Lan, Irvine, Tao (b11) 2012; 37
Xian, Guo, Chen, Yu, Alshehri, Alzahrani, Hao, Song, Li (b129) 2019; 12
Peng, Cheng, Hatzenbeller, Addy, Zhou, Schiappacasse, Chen, Zhang, Anderson, Liu (b37) 2017; 42
Li, Mou, Zhu, Wang, Wang, Qiao, Shi, Luo, Zheng, Li (b158) 2019; 55
Chai, Chew, Munawaroh, Ashokkumar, Cheng, Park, Show (b40) 2021; 303
Wang, Zhang, Wang, Zhang, Liu, Zhao, Zheng, Du, Sun (b118) 2021; 60
Zhao, Wang, Zhou, Wang, Li, Chen, Wei, Wu, Luo, You (b169) 2019; 55
Lv, Weng, Yuan (b75) 2020; 13
Stangarone (b17) 2021; 23
Cheng, Ding, Chen, Zhang, Xue, Wang (b87) 2018; 30
Tang, Tian, Zhou, Yang, He, Zhao, Zhu (b115) 2022; 24
Zhang, Ren, Luo, Shi, Asiri, Li, Sun (b157) 2018; 54
Capdevila-Cortada (b38) 2019; 2
Wen, Li, Zhang, Liang, Zhang, Su, Zeng (b116) 2021; 13
Cheng, Nan, Li, Luo, Chu (b126) 2020; 8
Kyriakou, Garagounis, Vourros, Vasileiou, Stoukides (b47) 2020; 4
Zhang, Wu, Wang, Zhao, Chen, Wang, Wei, Luo, Zhang, Sun (b166) 2019; 9
Zhang, Qiu, Ma, Luo, Tian, Cui, Xie, Chen, Li, Sun (b97) 2018; 8
Huang, Xia, Shi, Asiri, Sun (b132) 2018; 54
Ren, Cui, Chen, Xie, Wei, Tian, Sun (b95) 2018; 54
Xing, Kong, Wu, Xie, Wang, Luo, Shi, Asiri, Zhang, Sun (b149) 2019; 7
Lee, Koh, Lee, Liu, Phang, Han, Tsung, Ling (b178) 2018; 4
Lv, Qian, Yan, Ding, Liu, Chen, Yu (b107) 2018; 130
Lv, Yan, Chen, Ding, Sun, Zhou, Yu (b104) 2018; 130
Jin, Zhang, Han, Wang, Wang, Zhang (b135) 2020; 8
Du, Guo, Kong, Qu (b160) 2018; 54
Zhao, Yin, Liu, Li, Fan, Chen (b179) 2017; 52
Lazouski, Schiffer, Williams, Manthiram (b13) 2019; 3
Jeerh, Zhang, Tao (b6) 2021; 9
Kim, Yoo, Kim, Yoon, Han (b69) 2016; 33
Chen, Cao, Wu, Zeng, Ding, Zhu, Wang (b90) 2017; 139
Shi, Bao, Wulan, Li, Zhang, Yan, Jiang (b89) 2017; 29
Liang, Ren, Yang, Gao, Gao, Yang, Zhu, Li, Ma, Liu (b180) 2021; 13
Zhang, Hu, Zhang, Cheung, Zhang, Liu, Leung (b123) 2021; 46
Li, Wu, Liu, Li, Li, Zhao, Alshehri, Alzahrani, Luo, Li (b159) 2021; 8
Zhang, Zhou, Zhang, Zhou, Ding, Li, Hong, Dou, Shao, Murphy (b58) 2023; 6
Xu, Ma, Li, Liu, Lu, Asiri, Yang, Sun (b145) 2020; 56
Zhang, Wang, Maréchal, Desideri (b4) 2020; 259
Wang, Gu, Zhang, Yang, Wang, Guan, Chen, Chi, Jia, Muroyama (b16) 2020; 270
Hou, Yang, Zhang (b29) 2020; 12
Cao, Zheng (b45) 2018; 11
Nan, Liu, Chao, Fang, Dong (b128) 2023
Wu, Fan, Zhang, Zhang (b24) 2021; 16
Ji, Liu (b150) 2021; 2
Palys, Wang, Zhang, Daoutidis (b15) 2021; 31
Zhang, Ji, Zhang, Chen, Li, Liu, Li, Qu (b139) 2019;
Zamfirescu (10.1016/j.apenergy.2023.121960_b12) 2008; 185
Suryanto (10.1016/j.apenergy.2023.121960_b1) 2021; 372
Wang (10.1016/j.apenergy.2023.121960_b120) 2018; 9
Zhu (10.1016/j.apenergy.2023.121960_b151) 2019; 7
Lee (10.1016/j.apenergy.2023.121960_b178) 2018; 4
Zhang (10.1016/j.apenergy.2023.121960_b181) 2019; 7
Niu (10.1016/j.apenergy.2023.121960_b31) 2021; 61
Yang (10.1016/j.apenergy.2023.121960_b156) 2021; 13
Foster (10.1016/j.apenergy.2023.121960_b14) 2018; 1
Du (10.1016/j.apenergy.2023.121960_b77) 2021; 1
Suryanto (10.1016/j.apenergy.2023.121960_b62) 2018; 3
Han (10.1016/j.apenergy.2023.121960_b92) 2019; 131
Nan (10.1016/j.apenergy.2023.121960_b128) 2023
Zhang (10.1016/j.apenergy.2023.121960_b157) 2018; 54
Zhang (10.1016/j.apenergy.2023.121960_b171) 2019; 12
Jin (10.1016/j.apenergy.2023.121960_b135) 2020; 8
Zhang (10.1016/j.apenergy.2023.121960_b123) 2021; 46
Zhao (10.1016/j.apenergy.2023.121960_b21) 2019; 1
Yang (10.1016/j.apenergy.2023.121960_b91) 2017; 5
Lv (10.1016/j.apenergy.2023.121960_b104) 2018; 130
Zhang (10.1016/j.apenergy.2023.121960_b182) 2019; 6
Nazemi (10.1016/j.apenergy.2023.121960_b105) 2018; 49
Zhang (10.1016/j.apenergy.2023.121960_b86) 2019; 131
Wang (10.1016/j.apenergy.2023.121960_b146) 2020; 56
Li (10.1016/j.apenergy.2023.121960_b121) 2019; 9
Su (10.1016/j.apenergy.2023.121960_b174) 2020; 132
Lan (10.1016/j.apenergy.2023.121960_b11) 2012; 37
Lazouski (10.1016/j.apenergy.2023.121960_b34) 2020; 3
Tang (10.1016/j.apenergy.2023.121960_b115) 2022; 24
Giddey (10.1016/j.apenergy.2023.121960_b22) 2013; 38
Biswas (10.1016/j.apenergy.2023.121960_b70) 2022; 119
Xu (10.1016/j.apenergy.2023.121960_b113) 2020; 8
Xian (10.1016/j.apenergy.2023.121960_b129) 2019; 12
Zhao (10.1016/j.apenergy.2023.121960_b154) 2018; 54
Wang (10.1016/j.apenergy.2023.121960_b177) 2019; 55
Wu (10.1016/j.apenergy.2023.121960_b43) 2021; 16
Kong (10.1016/j.apenergy.2023.121960_b143) 2019; 11
Li (10.1016/j.apenergy.2023.121960_b158) 2019; 55
Andersen (10.1016/j.apenergy.2023.121960_b183) 2019; 570
(10.1016/j.apenergy.2023.121960_b18) 2023
Sheets (10.1016/j.apenergy.2023.121960_b46) 2018; 54
Hou (10.1016/j.apenergy.2023.121960_b29) 2020; 12
Liu (10.1016/j.apenergy.2023.121960_b152) 2020; 44
Jiao (10.1016/j.apenergy.2023.121960_b8) 2019; 31
Lan (10.1016/j.apenergy.2023.121960_b33) 2013; 3
Wu (10.1016/j.apenergy.2023.121960_b57) 2021; 299
Zheng (10.1016/j.apenergy.2023.121960_b56) 2023
Zhang (10.1016/j.apenergy.2023.121960_b139) 2019; 59
Zhang (10.1016/j.apenergy.2023.121960_b97) 2018; 8
Luo (10.1016/j.apenergy.2023.121960_b64) 2019; 3
Ripepi (10.1016/j.apenergy.2023.121960_b72) 2021; 6
McEnaney (10.1016/j.apenergy.2023.121960_b48) 2017; 10
Li (10.1016/j.apenergy.2023.121960_b134) 2019; 7
Lv (10.1016/j.apenergy.2023.121960_b75) 2020; 13
Ren (10.1016/j.apenergy.2023.121960_b95) 2018; 54
Ardo (10.1016/j.apenergy.2023.121960_b20) 2018; 11
Zhao (10.1016/j.apenergy.2023.121960_b39) 2021; 33
Kim (10.1016/j.apenergy.2023.121960_b69) 2016; 33
Yu (10.1016/j.apenergy.2023.121960_b109) 2018; 2
Lv (10.1016/j.apenergy.2023.121960_b107) 2018; 130
Deng (10.1016/j.apenergy.2023.121960_b131) 2019; 7
Lv (10.1016/j.apenergy.2023.121960_b63) 2020; 4
Cao (10.1016/j.apenergy.2023.121960_b45) 2018; 11
Li (10.1016/j.apenergy.2023.121960_b159) 2021; 8
Singh (10.1016/j.apenergy.2023.121960_b59) 2019; 9
Zhao (10.1016/j.apenergy.2023.121960_b179) 2017; 52
Tang (10.1016/j.apenergy.2023.121960_b185) 2019; 48
Shen (10.1016/j.apenergy.2023.121960_b176) 2020; 56
Guo (10.1016/j.apenergy.2023.121960_b102) 2018; 2
Yu (10.1016/j.apenergy.2023.121960_b140) 2019; 11
Licht (10.1016/j.apenergy.2023.121960_b67) 2014; 345
Shen (10.1016/j.apenergy.2023.121960_b44) 2021; 7
Kim (10.1016/j.apenergy.2023.121960_b52) 2019; 21
Zhao (10.1016/j.apenergy.2023.121960_b169) 2019; 55
Liang (10.1016/j.apenergy.2023.121960_b180) 2021; 13
Peng (10.1016/j.apenergy.2023.121960_b37) 2017; 42
Ji (10.1016/j.apenergy.2023.121960_b150) 2021; 2
Gu (10.1016/j.apenergy.2023.121960_b175) 2020; 12
Guo (10.1016/j.apenergy.2023.121960_b78) 2019; 7
Xie (10.1016/j.apenergy.2023.121960_b170) 2019; 7
Yang (10.1016/j.apenergy.2023.121960_b133) 2020; 32
Kim (10.1016/j.apenergy.2023.121960_b50) 2018; 165
Li (10.1016/j.apenergy.2023.121960_b147) 2019; 58
Rao (10.1016/j.apenergy.2023.121960_b74) 2022; 168
Soloveichik (10.1016/j.apenergy.2023.121960_b32) 2019; 2
Zhang (10.1016/j.apenergy.2023.121960_b4) 2020; 259
Li (10.1016/j.apenergy.2023.121960_b85) 2021; 4
Zhang (10.1016/j.apenergy.2023.121960_b166) 2019; 9
Cheng (10.1016/j.apenergy.2023.121960_b87) 2018; 30
Zhang (10.1016/j.apenergy.2023.121960_b100) 2018; 54
Du (10.1016/j.apenergy.2023.121960_b160) 2018; 54
Huang (10.1016/j.apenergy.2023.121960_b125) 2020; 8
Yao (10.1016/j.apenergy.2023.121960_b184) 2020; 3
Li (10.1016/j.apenergy.2023.121960_b163) 2021; 42
Fu (10.1016/j.apenergy.2023.121960_b165) 2019; 7
Zhao (10.1016/j.apenergy.2023.121960_b172) 2019; 11
Stangarone (10.1016/j.apenergy.2023.121960_b17) 2021; 23
Chen (10.1016/j.apenergy.2023.121960_b90) 2017; 139
Huang (10.1016/j.apenergy.2023.121960_b132) 2018; 54
Qing (10.1016/j.apenergy.2023.121960_b186) 2020; 120
Chen (10.1016/j.apenergy.2023.121960_b7) 2019; 7
Lazouski (10.1016/j.apenergy.2023.121960_b13) 2019; 3
Li (10.1016/j.apenergy.2023.121960_b42) 2021; 7
Wang (10.1016/j.apenergy.2023.121960_b16) 2020; 270
Han (10.1016/j.apenergy.2023.121960_b103) 2018; 6
Song (10.1016/j.apenergy.2023.121960_b108) 2018; 4
Deng (10.1016/j.apenergy.2023.121960_b60) 2018; 2
Erdemir (10.1016/j.apenergy.2023.121960_b3) 2021; 45
Qu (10.1016/j.apenergy.2023.121960_b119) 2022; 433
Sažinas (10.1016/j.apenergy.2023.121960_b49) 2022; 13
Abghoui (10.1016/j.apenergy.2023.121960_b27) 2015; 17
Wang (10.1016/j.apenergy.2023.121960_b114) 2020; 10
Liu (10.1016/j.apenergy.2023.121960_b81) 2022; 15
Kyriakou (10.1016/j.apenergy.2023.121960_b47) 2020; 4
Zhang (10.1016/j.apenergy.2023.121960_b98) 2018; 6
Liu (10.1016/j.apenergy.2023.121960_b130) 2018; 6
Giddey (10.1016/j.apenergy.2023.121960_b35) 2013; 38
Sharma (10.1016/j.apenergy.2023.121960_b55) 2020; 6
Xu (10.1016/j.apenergy.2023.121960_b124) 2022; 46
McPherson (10.1016/j.apenergy.2023.121960_b68) 2019; 131
Liu (10.1016/j.apenergy.2023.121960_b83) 2020; 32
Jin (10.1016/j.apenergy.2023.121960_b137) 2019; 31
Liu (10.1016/j.apenergy.2023.121960_b153) 2020; 8
Kim (10.1016/j.apenergy.2023.121960_b51) 2018; 11
Ghavam (10.1016/j.apenergy.2023.121960_b73) 2021; 46
Wu (10.1016/j.apenergy.2023.121960_b24) 2021; 16
Liu (10.1016/j.apenergy.2023.121960_b26) 2021; 29
Wu (10.1016/j.apenergy.2023.121960_b162) 2019; 3
Chehade (10.1016/j.apenergy.2023.121960_b5) 2021; 299
Chehade (10.1016/j.apenergy.2023.121960_b53) 2020; 44
Geng (10.1016/j.apenergy.2023.121960_b84) 2018; 30
Jeerh (10.1016/j.apenergy.2023.121960_b6) 2021; 9
Zhang (10.1016/j.apenergy.2023.121960_b58) 2023; 6
Zhang (10.1016/j.apenergy.2023.121960_b94) 2018; 6
Wang (10.1016/j.apenergy.2023.121960_b96) 2018; 9
Wang (10.1016/j.apenergy.2023.121960_b54) 2021; 60
Han (10.1016/j.apenergy.2023.121960_b99) 2018; 52
Pan (10.1016/j.apenergy.2023.121960_b10) 2022; 322
Mao (10.1016/j.apenergy.2023.121960_b117) 2022; 904
Xu (10.1016/j.apenergy.2023.121960_b28) 2020; 69
Wu (10.1016/j.apenergy.2023.121960_b144) 2020; 56
MacFarlane (10.1016/j.apenergy.2023.121960_b2) 2020; 4
Ithisuphalap (10.1016/j.apenergy.2023.121960_b41) 2019; 3
Li (10.1016/j.apenergy.2023.121960_b88) 2017; 29
Wang (10.1016/j.apenergy.2023.121960_b82) 2022; 609
Chang (10.1016/j.apenergy.2023.121960_b71) 2022; 2
Chen (10.1016/j.apenergy.2023.121960_b76) 2019; 7
Chai (10.1016/j.apenergy.2023.121960_b40) 2021; 303
Wen (10.1016/j.apenergy.2023.121960_b116) 2021; 13
Huang (10.1016/j.apenergy.2023.121960_b101) 2019; 3
Kyriakou (10.1016/j.apenergy.2023.121960_b23) 2017; 286
Han (10.1016/j.apenergy.2023.121960_b25) 2022; 55
Xu (10.1016/j.apenergy.2023.121960_b148) 2020; 56
Capdevila-Cortada (10.1016/j.apenergy.2023.121960_b38) 2019; 2
Qiu (10.1016/j.apenergy.2023.121960_b110) 2018; 9
Martín (10.1016/j.apenergy.2023.121960_b61) 2019; 5
Xing (10.1016/j.apenergy.2023.121960_b149) 2019; 7
Yang (10.1016/j.apenergy.2023.121960_b106) 2018; 140
Yuan (10.1016/j.apenergy.2023.121960_b112) 2019; 7
Cheng (10.1016/j.apenergy.2023.121960_b126) 2020; 8
Yu (10.1016/j.apenergy.2023.121960_b161) 2020; 8
Cui (10.1016/j.apenergy.2023.121960_b122) 2021; 426
Bicer (10.1016/j.apenergy.2023.121960_b66) 2017; 164
Palys (10.1016/j.apenergy.2023.121960_b15) 2021; 31
(10.1016/j.apenergy.2023.121960_b19) 2023
Cui (10.1016/j.apenergy.2023.121960_b30) 2018; 8
Zhang (10.1016/j.apenergy.2023.121960_b93) 2018; 30
Wang (10.1016/j.apenergy.2023.121960_b118) 2021; 60
Wu (10.1016/j.apenergy.2023.121960_b173) 2018; 14
Zhao (10.1016/j.apenergy.2023.121960_b168) 2021; 284
Xu (10.1016/j.apenergy.2023.121960_b145) 2020; 56
Wang (10.1016/j.apenergy.2023.121960_b127) 2019; 9
Yu (10.1016/j.apenergy.2023.121960_b138) 2019; 55
Chu (10.1016/j.apenergy.2023.121960_b164) 2019; 2
Du (10.1016/j.apenergy.2023.121960_b155) 2020; 8
Tursun (10.1016/j.apenergy.2023.121960_b36) 2023; 342
Su (10.1016/j.apenergy.2023.121960_b9) 2023; 343
Shi (10.1016/j.apenergy.2023.121960_b89) 2017; 29
Wang (10.1016/j.apenergy.2023.121960_b142) 2020; 381
Ren (10.1016/j.apenergy.2023.121960_b167) 2018; 5
Mushtaq (10.1016/j.apenergy.2023.121960_b79) 2023; 176
Li (10.1016/j.apenergy.2023.121960_b141) 2019; 7
Li (10.1016/j.apenergy.2023.121960_b136) 2018; 8
ami (10.1016/j.apenergy.2023.121960_b65) 2005; 50
Bat-Erdene (10.1016/j.apenergy.2023.121960_b80) 2020; 8
Gao (10.1016/j.apenergy.2023.121960_b111) 2020; 8
References_xml – volume: 30
  year: 2018
  ident: b87
  article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions
  publication-title: Adv Mater
– volume: 9
  start-page: 1795
  year: 2018
  ident: b96
  article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
  publication-title: Nature Commun
– volume: 7
  start-page: 16117
  year: 2019
  end-page: 16121
  ident: b151
  article-title: Ambient electrohydrogenation of N
  publication-title: J Mater Chem A
– volume: 55
  year: 2022
  ident: b25
  article-title: Ammonia synthesis by electrochemical nitrogen reduction reaction-A novel energy storage way
  publication-title: J Energy Storage
– volume: 44
  start-page: 7183
  year: 2020
  end-page: 7197
  ident: b53
  article-title: A novel method for a new electromagnetic-induced ammonia synthesizer
  publication-title: Int J Energy Res
– volume: 6
  start-page: 313
  year: 2020
  end-page: 319
  ident: b55
  article-title: Plasma activated electrochemical ammonia synthesis from nitrogen and water
  publication-title: ACS Energy Lett
– volume: 49
  start-page: 316
  year: 2018
  end-page: 323
  ident: b105
  article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
  publication-title: Nano Energy
– volume: 21
  start-page: 3839
  year: 2019
  end-page: 3845
  ident: b52
  article-title: Lithium-mediated ammonia synthesis from water and nitrogen: A membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system
  publication-title: Green Chem
– volume: 139
  start-page: 9771
  year: 2017
  end-page: 9774
  ident: b90
  article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li
  publication-title: J Am Chem Soc
– volume: 4
  start-page: 1186
  year: 2020
  end-page: 1205
  ident: b2
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
– volume: 381
  start-page: 78
  year: 2020
  end-page: 83
  ident: b142
  article-title: Self-supported NbSe
  publication-title: J Catal
– volume: 33
  start-page: 1777
  year: 2016
  end-page: 1780
  ident: b69
  article-title: Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe
  publication-title: Korean J Chem Eng
– volume: 54
  start-page: 11427
  year: 2018
  end-page: 11430
  ident: b132
  article-title: Ag nanosheets for efficient electrocatalytic N
  publication-title: ChemComm
– volume: 131
  start-page: 2638
  year: 2019
  end-page: 2642
  ident: b86
  article-title: Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets
  publication-title: Angew Chem
– volume: 32
  year: 2020
  ident: b83
  article-title: A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N
  publication-title: Adv Mater
– volume: 7
  start-page: 26371
  year: 2019
  end-page: 26377
  ident: b181
  article-title: Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction
  publication-title: J Mater Chem A
– volume: 6
  start-page: 391
  year: 2019
  end-page: 395
  ident: b182
  article-title: Metal–organic framework-derived shuttle-like V
  publication-title: Inorg Chem Front
– volume: 286
  start-page: 2
  year: 2017
  end-page: 13
  ident: b23
  article-title: Progress in the electrochemical synthesis of ammonia
  publication-title: Catal Today
– volume: 2
  start-page: 377
  year: 2019
  end-page: 380
  ident: b32
  article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process
  publication-title: Nat Catal
– volume: 56
  start-page: 14031
  year: 2020
  end-page: 14034
  ident: b148
  article-title: Enhanced electrocatalytic N
  publication-title: ChemComm
– volume: 322
  year: 2022
  ident: b10
  article-title: A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage
  publication-title: Appl Energy
– volume: 284
  year: 2021
  ident: b168
  article-title: Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N
  publication-title: Appl Catal B
– volume: 46
  start-page: 16661
  year: 2022
  end-page: 16665
  ident: b124
  article-title: Carbon-doped tin disulfide nanoflowers: A heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia
  publication-title: New J Chem
– volume: 13
  start-page: 4605
  year: 2022
  end-page: 4611
  ident: b49
  article-title: Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis
  publication-title: J Phy Chem Lett
– volume: 37
  start-page: 1482
  year: 2012
  end-page: 1494
  ident: b11
  article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials
  publication-title: Int J Hydrogen Energy
– start-page: 1
  year: 2023
  end-page: 8
  ident: b128
  article-title: Crystal defect engineering of Bi
  publication-title: Nano Res
– volume: 164
  start-page: H5036
  year: 2017
  ident: b66
  article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure
  publication-title: J Electrochem Soc
– volume: 140
  start-page: 13387
  year: 2018
  end-page: 13391
  ident: b106
  article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 463
  year: 2020
  end-page: 469
  ident: b34
  article-title: Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen
  publication-title: Nat Catal
– volume: 11
  start-page: 120
  year: 2018
  end-page: 124
  ident: b51
  article-title: Electrochemical synthesis of ammonia from water and nitrogen: A lithium-mediated approach using lithium-ion conducting glass ceramics
  publication-title: ChemSusChem
– volume: 2
  start-page: 1610
  year: 2018
  end-page: 1622
  ident: b109
  article-title: Boron-doped graphene for electrocatalytic N
  publication-title: Joule
– volume: 120
  start-page: 5437
  year: 2020
  end-page: 5516
  ident: b186
  article-title: Recent advances and challenges of electrocatalytic N
  publication-title: Chem Rev
– volume: 16
  year: 2021
  ident: b24
  article-title: Electrochemical synthesis of ammonia: Progress and challenges
  publication-title: Mater Today Phys
– volume: 7
  start-page: 9622
  year: 2019
  end-page: 9628
  ident: b165
  article-title: Oxygen vacancies in Ta
  publication-title: ACS Sustain Chem Eng
– volume: 7
  start-page: 1708
  year: 2021
  end-page: 1754
  ident: b44
  article-title: Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design
  publication-title: Chem
– volume: 4
  start-page: 4469
  year: 2020
  end-page: 4472
  ident: b63
  article-title: Sn dendrites for electrocatalytic N
  publication-title: Sustain Energy Fuels
– volume: 342
  year: 2023
  ident: b36
  article-title: Defective 1T
  publication-title: Fuel
– volume: 176
  year: 2023
  ident: b79
  article-title: Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives
  publication-title: Renew Sustain Energy Rev
– volume: 259
  year: 2020
  ident: b4
  article-title: Techno-economic comparison of green ammonia production processes
  publication-title: Appl Energy
– volume: 7
  start-page: 12692
  year: 2019
  end-page: 12696
  ident: b149
  article-title: Hollow Bi
  publication-title: ACS Sustain Chem Eng
– volume: 11
  start-page: 2768
  year: 2018
  end-page: 2783
  ident: b20
  article-title: Pathways to electrochemical solar-hydrogen technologies
  publication-title: Energy Environ Sci
– volume: 55
  start-page: 4997
  year: 2019
  end-page: 5000
  ident: b169
  article-title: Efficient electrohydrogenation of N
  publication-title: ChemComm
– volume: 42
  start-page: 1755
  year: 2021
  end-page: 1762
  ident: b163
  article-title: La-doped TiO
  publication-title: Chin J Catal
– volume: 45
  start-page: 4827
  year: 2021
  end-page: 4834
  ident: b3
  article-title: A perspective on the use of ammonia as a clean fuel: Challenges and solutions
  publication-title: Int J Energy Res
– volume: 2
  start-page: 846
  year: 2018
  end-page: 856
  ident: b60
  article-title: Electrocatalytic nitrogen reduction at low temperature
  publication-title: Joule
– volume: 5
  start-page: 18967
  year: 2017
  end-page: 18971
  ident: b91
  article-title: Electrochemical reduction of aqueous nitrogen (N
  publication-title: J Mater Chem A
– volume: 130
  start-page: 10403
  year: 2018
  end-page: 10407
  ident: b107
  article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions
  publication-title: Angew Chem
– volume: 6
  start-page: 3211
  year: 2018
  end-page: 3217
  ident: b130
  article-title: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction
  publication-title: J Mater Chem A
– volume: 13
  start-page: 2843
  year: 2021
  end-page: 2848
  ident: b180
  article-title: A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction
  publication-title: Nanoscale
– volume: 7
  start-page: 16979
  year: 2019
  end-page: 16983
  ident: b112
  article-title: Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis
  publication-title: J Mater Chem A
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  ident: b183
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
– volume: 9
  start-page: 727
  year: 2021
  end-page: 752
  ident: b6
  article-title: Recent progress in ammonia fuel cells and their potential applications
  publication-title: J Mater Chem A
– volume: 426
  year: 2021
  ident: b122
  article-title: Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia
  publication-title: Chem Eng J
– volume: 15
  start-page: 7134
  year: 2022
  end-page: 7138
  ident: b81
  article-title: Enhanced N
  publication-title: Nano Res
– volume: 52
  start-page: 10175
  year: 2017
  end-page: 10185
  ident: b179
  article-title: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N
  publication-title: J Mater Sci
– volume: 31
  year: 2021
  ident: b15
  article-title: Renewable ammonia for sustainable energy and agriculture: Vision and systems engineering opportunities
  publication-title: Curr Opin Chem Eng
– volume: 130
  start-page: 6181
  year: 2018
  end-page: 6184
  ident: b104
  article-title: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions
  publication-title: Angew Chem
– volume: 8
  start-page: 4735
  year: 2020
  end-page: 4739
  ident: b80
  article-title: Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions
  publication-title: J Mater Chem A
– volume: 7
  start-page: 2524
  year: 2019
  end-page: 2528
  ident: b141
  article-title: A MoS
  publication-title: J Mater Chem A
– volume: 3
  year: 2019
  ident: b162
  article-title: Greatly enhanced electrocatalytic N
  publication-title: Small Methods
– volume: 10
  start-page: 29575
  year: 2020
  end-page: 29579
  ident: b114
  article-title: Glycerine-based synthesis of a highly efficient Fe
  publication-title: RSC Adv
– volume: 9
  start-page: 4609
  year: 2019
  end-page: 4615
  ident: b166
  article-title: Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N
  publication-title: ACS Catal
– volume: 119
  year: 2022
  ident: b70
  article-title: Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N
  publication-title: Proc Natl Acad Sci
– volume: 56
  start-page: 2107
  year: 2020
  end-page: 2110
  ident: b146
  article-title: Bi nanodendrites for efficient electrocatalytic N
  publication-title: ChemComm
– volume: 5
  start-page: 116
  year: 2018
  end-page: 121
  ident: b167
  article-title: High-performance N
  publication-title: ACS Cent Sci
– volume: 6
  start-page: 3817
  year: 2021
  end-page: 3823
  ident: b72
  article-title: Ammonia synthesis at ambient conditions via electrochemical atomic hydrogen permeation
  publication-title: ACS Energy Lett
– volume: 3
  start-page: 1127
  year: 2019
  end-page: 1139
  ident: b13
  article-title: Understanding continuous lithium-mediated electrochemical nitrogen reduction
  publication-title: Joule
– volume: 54
  start-page: 8474
  year: 2018
  end-page: 8477
  ident: b95
  article-title: Electrochemical N
  publication-title: Chem Commun
– volume: 8
  start-page: 13679
  year: 2020
  end-page: 13684
  ident: b125
  article-title: Promoting electrocatalytic nitrogen reduction to ammonia via Fe-boosted nitrogen activation on MnO
  publication-title: J Mater Chem A
– volume: 9
  start-page: 3485
  year: 2018
  ident: b110
  article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
  publication-title: Nature Commun
– volume: 3
  year: 2019
  ident: b41
  article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis
  publication-title: Small Methods
– volume: 3
  year: 2019
  ident: b101
  article-title: NbO
  publication-title: Small Methods
– volume: 6
  year: 2023
  ident: b58
  article-title: Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis
  publication-title: Energy Environ Mater
– volume: 50
  start-page: 5423
  year: 2005
  end-page: 5426
  ident: b65
  article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure
  publication-title: Electrochim Acta
– volume: 38
  start-page: 14576
  year: 2013
  end-page: 14594
  ident: b22
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 4072
  year: 2021
  end-page: 4086
  ident: b73
  article-title: A novel approach to ammonia synthesis from hydrogen sulfide
  publication-title: Int J Hydrogen Energy
– volume: 2
  start-page: 3552
  year: 2021
  end-page: 3555
  ident: b150
  article-title: A nanoporous CeO
  publication-title: Mater Adv
– volume: 433
  year: 2022
  ident: b119
  article-title: Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia
  publication-title: Chem Eng J
– volume: 4
  start-page: 10
  year: 2021
  ident: b85
  article-title: Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots
  publication-title: Commun Chem
– volume: 6
  start-page: 9550
  year: 2018
  end-page: 9554
  ident: b94
  article-title: Efficient electrochemical N
  publication-title: ACS Sustain Chem Eng
– volume: 6
  start-page: 12974
  year: 2018
  end-page: 12977
  ident: b103
  article-title: MoO
  publication-title: J Mater Chem A
– volume: 8
  start-page: 17956
  year: 2020
  end-page: 17959
  ident: b111
  article-title: Enabling electrochemical conversion of N
  publication-title: J Mater Chem A
– volume: 56
  start-page: 10505
  year: 2020
  end-page: 10508
  ident: b176
  article-title: FeVO
  publication-title: ChemComm
– volume: 2
  start-page: 1055
  year: 2019
  ident: b38
  article-title: Electrifying the Haber–Bosch
  publication-title: Nat Catal
– volume: 4
  start-page: eaar3208
  year: 2018
  ident: b178
  article-title: Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach
  publication-title: Sci Adv
– volume: 4
  year: 2018
  ident: b108
  article-title: A physical catalyst for the electrolysis of nitrogen to ammonia
  publication-title: Sci Adv
– volume: 3
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: b62
  article-title: Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions
  publication-title: ACS Energy Lett
– volume: 13
  start-page: 3061
  year: 2020
  end-page: 3078
  ident: b75
  article-title: Ambient ammonia electrosynthesis: Current status, challenges, and perspectives
  publication-title: ChemSusChem
– volume: 30
  year: 2018
  ident: b93
  article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS
  publication-title: Adv Mater
– volume: 11
  start-page: 4231
  year: 2019
  end-page: 4235
  ident: b172
  article-title: High-performance N
  publication-title: Nanoscale
– volume: 1
  year: 2019
  ident: b21
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: EnergyChem
– volume: 372
  start-page: 1187
  year: 2021
  end-page: 1191
  ident: b1
  article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle
  publication-title: Science
– volume: 343
  year: 2023
  ident: b9
  article-title: Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode
  publication-title: Appl Energy
– volume: 185
  start-page: 459
  year: 2008
  end-page: 465
  ident: b12
  article-title: Using ammonia as a sustainable fuel
  publication-title: J Power Sources
– volume: 8
  year: 2018
  ident: b30
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv Energy Mater
– volume: 299
  year: 2021
  ident: b57
  article-title: Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis
  publication-title: Appl Catal B
– volume: 165
  start-page: F1027
  year: 2018
  ident: b50
  article-title: Lithium-mediated ammonia electro-synthesis: Effect of CsClO
  publication-title: J Electrochem Soc
– volume: 7
  start-page: 3531
  year: 2019
  end-page: 3543
  ident: b78
  article-title: Recent progress in electrocatalytic nitrogen reduction
  publication-title: J Mater Chem A
– volume: 3
  start-page: 239
  year: 2020
  end-page: 270
  ident: b184
  article-title: Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges
  publication-title: Electrochem Energy Rev
– volume: 33
  year: 2021
  ident: b39
  article-title: Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction
  publication-title: Adv Mater
– volume: 30
  year: 2018
  ident: b84
  article-title: Achieving a record-high yield rate of 120.9
  publication-title: Adv Mater
– volume: 7
  start-page: 21674
  year: 2019
  end-page: 21677
  ident: b131
  article-title: Improving the electrocatalytic N
  publication-title: J Mater Chem A
– volume: 60
  start-page: 7584
  year: 2021
  end-page: 7589
  ident: b118
  article-title: In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N
  publication-title: Inorg Chem
– volume: 303
  year: 2021
  ident: b40
  article-title: Microalgae and ammonia: A review on inter-relationship
  publication-title: Fuel
– volume: 299
  year: 2021
  ident: b5
  article-title: Progress in green ammonia production as potential carbon-free fuel
  publication-title: Fuel
– volume: 7
  start-page: 23416
  year: 2019
  end-page: 23431
  ident: b76
  article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
  publication-title: J Mater Chem A
– volume: 8
  start-page: 5936
  year: 2020
  end-page: 5942
  ident: b135
  article-title: Efficient electrochemical N
  publication-title: J Mater Chem A
– volume: 55
  start-page: 7502
  year: 2019
  end-page: 7505
  ident: b177
  article-title: Electrocatalytic N
  publication-title: ChemComm
– volume: 59
  start-page: 10
  year: 2019
  end-page: 16
  ident: b139
  article-title: Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation
  publication-title: Nano Energy
– volume: 132
  start-page: 20591
  year: 2020
  end-page: 20596
  ident: b174
  article-title: Single atoms of iron on MoS
  publication-title: Angew Chem
– volume: 12
  start-page: 2445
  year: 2019
  end-page: 2451
  ident: b129
  article-title: Bioinspired electrocatalyst for electrochemical reduction of N
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 919
  year: 2019
  end-page: 924
  ident: b171
  article-title: Hexagonal boron nitride nanosheet for effective ambient N
  publication-title: Nano Res
– volume: 24
  start-page: 11491
  year: 2022
  end-page: 11495
  ident: b115
  article-title: Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen
  publication-title: Phys Chem Chem Phys
– volume: 1
  start-page: 490
  year: 2018
  end-page: 500
  ident: b14
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nat Catal
– volume: 13
  start-page: 21474
  year: 2021
  end-page: 21481
  ident: b156
  article-title: Electrochemical fixation of nitrogen by promoting N
  publication-title: ACS Appl Mater Interfaces
– year: 2023
  ident: b18
  article-title: National green hydrogen mission
– year: 2023
  ident: b19
  article-title: National green hydrogen mission - ministry of new and renewable energy, government of India
– volume: 3
  start-page: 1145
  year: 2013
  ident: b33
  article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure
  publication-title: Sci Rep
– volume: 1
  start-page: 150
  year: 2021
  end-page: 173
  ident: b77
  article-title: Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis
  publication-title: SusMat
– volume: 9
  start-page: 2902
  year: 2019
  end-page: 2908
  ident: b121
  article-title: Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction
  publication-title: ACS Catal
– volume: 12
  start-page: 6900
  year: 2020
  end-page: 6920
  ident: b29
  article-title: Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions
  publication-title: Nanoscale
– volume: 7
  start-page: 3232
  year: 2021
  end-page: 3255
  ident: b42
  article-title: Main-group elements boost electrochemical nitrogen fixation
  publication-title: Chem
– volume: 69
  year: 2020
  ident: b28
  article-title: Electrochemical ammonia synthesis through N
  publication-title: Nano Energy
– volume: 11
  start-page: 2992
  year: 2018
  end-page: 3008
  ident: b45
  article-title: Aqueous electrocatalytic N
  publication-title: Nano Res
– volume: 6
  start-page: 17303
  year: 2018
  end-page: 17306
  ident: b98
  article-title: TiO
  publication-title: J Mater Chem A
– volume: 8
  start-page: 10572
  year: 2020
  end-page: 10580
  ident: b155
  article-title: Enhanced electrochemical reduction of N
  publication-title: ACS Sustain Chem Eng
– volume: 609
  start-page: 815
  year: 2022
  end-page: 824
  ident: b82
  article-title: Hierarchical CoS
  publication-title: J Colloid Interface Sci
– volume: 131
  start-page: 2343
  year: 2019
  end-page: 2347
  ident: b92
  article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
  publication-title: Angew Chem
– volume: 11
  start-page: 19274
  year: 2019
  end-page: 19277
  ident: b143
  article-title: WO
  publication-title: Nanoscale
– volume: 7
  start-page: 17761
  year: 2019
  end-page: 17765
  ident: b134
  article-title: Ambient electrocatalytic N
  publication-title: J Mater Chem A
– volume: 29
  year: 2017
  ident: b89
  article-title: Au sub-nanoclusters on TiO
  publication-title: Adv Mater
– volume: 270
  year: 2020
  ident: b16
  article-title: Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells
  publication-title: Appl Energy
– volume: 9
  start-page: 4248
  year: 2019
  end-page: 4254
  ident: b127
  article-title: Ambient electrocatalytic nitrogen reduction on a MoO
  publication-title: Catal Sci Technol
– volume: 42
  start-page: 19056
  year: 2017
  end-page: 19066
  ident: b37
  article-title: Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia
  publication-title: Int J Hydrogen Energy
– volume: 13
  start-page: 14181
  year: 2021
  end-page: 14188
  ident: b116
  article-title: Oxygen vacancy engineering of MOF-derived Zn-doped Co
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 13908
  year: 2020
  end-page: 13914
  ident: b126
  article-title: A rare-earth samarium oxide catalyst for electrocatalytic nitrogen reduction to ammonia
  publication-title: ACS Sustain Chem Eng
– volume: 2
  start-page: 2288
  year: 2019
  end-page: 2295
  ident: b164
  article-title: NiO nanodots on graphene for efficient electrochemical N
  publication-title: ACS Appl Energy Mater
– volume: 8
  year: 2018
  ident: b136
  article-title: Boosted electrocatalytic N
  publication-title: Adv Energy Mater
– volume: 168
  year: 2022
  ident: b74
  article-title: Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion
  publication-title: Renew Sustain Energy Rev
– volume: 11
  start-page: 35764
  year: 2019
  end-page: 35769
  ident: b140
  article-title: Cr
  publication-title: ACS Appl Mater Interfaces
– volume: 54
  start-page: 4250
  year: 2018
  end-page: 4253
  ident: b46
  article-title: Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte
  publication-title: Chem Commun
– volume: 8
  start-page: 20677
  year: 2020
  end-page: 20686
  ident: b161
  article-title: Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers
  publication-title: J Mater Chem A
– volume: 2
  year: 2018
  ident: b102
  article-title: Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature
  publication-title: Small Methods
– volume: 8
  start-page: 8540
  year: 2018
  end-page: 8544
  ident: b97
  article-title: High-performance electrohydrogenation of N
  publication-title: ACS Catal
– volume: 9
  start-page: 8316
  year: 2019
  end-page: 8324
  ident: b59
  article-title: Strategies toward selective electrochemical ammonia synthesis
  publication-title: ACS Catal
– volume: 61
  start-page: 304
  year: 2021
  end-page: 318
  ident: b31
  article-title: Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
  publication-title: J Energy Chem
– volume: 54
  start-page: 5323
  year: 2018
  end-page: 5325
  ident: b100
  article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions
  publication-title: Chem Commun
– volume: 12
  start-page: 37258
  year: 2020
  end-page: 37264
  ident: b175
  article-title: Lithium iron oxide LiFeO
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  start-page: 142
  year: 2020
  end-page: 158
  ident: b47
  article-title: An electrochemical Haber–Bosch process
  publication-title: Joule
– volume: 8
  start-page: 2320
  year: 2020
  end-page: 2326
  ident: b153
  article-title: MoS
  publication-title: ACS Sustain Chem Eng
– volume: 52
  start-page: 264
  year: 2018
  end-page: 270
  ident: b99
  article-title: Ambient N
  publication-title: Nano Energy
– volume: 5
  start-page: 263
  year: 2019
  end-page: 283
  ident: b61
  article-title: Electrocatalytic reduction of nitrogen: From Haber–Bosch to ammonia artificial leaf
  publication-title: Chem
– volume: 54
  start-page: 12848
  year: 2018
  end-page: 12851
  ident: b160
  article-title: Cr
  publication-title: ChemComm
– volume: 58
  start-page: 9597
  year: 2019
  end-page: 9601
  ident: b147
  article-title: Spinel LiMn
  publication-title: Inorg Chem
– volume: 48
  start-page: 3166
  year: 2019
  end-page: 3180
  ident: b185
  article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
  publication-title: Chem Soc Rev
– volume: 23
  start-page: 509
  year: 2021
  end-page: 516
  ident: b17
  article-title: South Korean efforts to transition to a hydrogen economy
  publication-title: Clean Technol Environ Policy
– volume: 3
  start-page: 279
  year: 2019
  end-page: 289
  ident: b64
  article-title: Efficient electrocatalytic N
  publication-title: Joule
– volume: 8
  start-page: 15875
  year: 2020
  end-page: 15883
  ident: b113
  article-title: Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis
  publication-title: J Mater Chem A
– volume: 32
  year: 2020
  ident: b133
  article-title: A generalized surface chalcogenation strategy for boosting the electrochemical N
  publication-title: Adv Mater
– volume: 29
  year: 2021
  ident: b26
  article-title: Recent advances in strategies for highly selective electrocatalytic N
  publication-title: Curr Opin Electrochem
– volume: 46
  start-page: 13011
  year: 2021
  end-page: 13019
  ident: b123
  article-title: Mo
  publication-title: Int J Hydrogen Energy
– volume: 29
  year: 2017
  ident: b88
  article-title: Amorphizing of Au nanoparticles by CeO
  publication-title: Adv Mater
– volume: 55
  start-page: 6401
  year: 2019
  end-page: 6404
  ident: b138
  article-title: A perovskite La
  publication-title: ChemComm
– volume: 44
  start-page: 21070
  year: 2020
  end-page: 21075
  ident: b152
  article-title: Electrocatalytic reduction of nitrogen to ammonia under ambient conditions using a nanorod-structured MoN catalyst
  publication-title: New J Chem
– volume: 7
  start-page: 23416
  year: 2019
  end-page: 23431
  ident: b7
  article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
  publication-title: J Mater Chem A
– volume: 8
  start-page: 3105
  year: 2021
  end-page: 3110
  ident: b159
  article-title: CuS concave polyhedral superstructures enabled efficient N
  publication-title: Inorg Chem Front
– year: 2023
  ident: b56
  article-title: Enhanced NH
  publication-title: JACS Au
– volume: 60
  start-page: 18721
  year: 2021
  end-page: 18727
  ident: b54
  article-title: Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation
  publication-title: Angew Chem Int Ed
– volume: 16
  year: 2021
  ident: b43
  article-title: Electrochemical synthesis of ammonia: Progress and challenges
  publication-title: Mater Today Phys
– volume: 2
  start-page: 358
  year: 2022
  end-page: 371
  ident: b71
  article-title: Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation
  publication-title: Chem Catal
– volume: 54
  start-page: 13010
  year: 2018
  end-page: 13013
  ident: b154
  article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe
  publication-title: ChemComm
– volume: 7
  start-page: 24760
  year: 2019
  end-page: 24764
  ident: b170
  article-title: PdP
  publication-title: J Mater Chem A
– volume: 31
  year: 2019
  ident: b8
  article-title: Electrochemical ammonia synthesis and ammonia fuel cells
  publication-title: Adv Mater
– volume: 54
  start-page: 12966
  year: 2018
  end-page: 12969
  ident: b157
  article-title: Ambient NH
  publication-title: ChemComm
– volume: 10
  start-page: 1621
  year: 2017
  end-page: 1630
  ident: b48
  article-title: Ammonia synthesis from N
  publication-title: Energy Environ Sci
– volume: 56
  start-page: 3673
  year: 2020
  end-page: 3676
  ident: b145
  article-title: Ambient electrochemical NH
  publication-title: ChemComm
– volume: 131
  start-page: 17594
  year: 2019
  end-page: 17602
  ident: b68
  article-title: The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics
  publication-title: Angew Chem
– volume: 345
  start-page: 637
  year: 2014
  end-page: 640
  ident: b67
  article-title: Ammonia synthesis by N
  publication-title: Science
– volume: 55
  start-page: 14474
  year: 2019
  end-page: 14477
  ident: b158
  article-title: Dendritic Cu: A high-efficiency electrocatalyst for N
  publication-title: ChemComm
– volume: 31
  year: 2019
  ident: b137
  article-title: Nitrogen vacancies on 2D layered W
  publication-title: Adv Mater
– volume: 904
  year: 2022
  ident: b117
  article-title: Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis
  publication-title: J Electroanal Chem
– volume: 56
  start-page: 1831
  year: 2020
  end-page: 1834
  ident: b144
  article-title: P-doped graphene toward enhanced electrocatalytic N
  publication-title: ChemComm
– volume: 14
  year: 2018
  ident: b173
  article-title: Mn
  publication-title: Small
– volume: 17
  start-page: 4909
  year: 2015
  end-page: 4918
  ident: b27
  article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design
  publication-title: Phys Chem Chem Phys
– volume: 9
  start-page: 336
  year: 2018
  end-page: 344
  ident: b120
  article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal
– volume: 38
  start-page: 14576
  year: 2013
  end-page: 14594
  ident: b35
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int J Hydrogen Energy
– volume: 299
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b57
  article-title: Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.120667
– volume: 6
  start-page: 12974
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b103
  article-title: MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA03974G
– volume: 13
  start-page: 14181
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b116
  article-title: Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c22767
– volume: 9
  start-page: 2902
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b121
  article-title: Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00366
– volume: 16
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b43
  article-title: Electrochemical synthesis of ammonia: Progress and challenges
  publication-title: Mater Today Phys
– volume: 2
  start-page: 377
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b32
  article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0280-0
– volume: 54
  start-page: 4250
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b46
  article-title: Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte
  publication-title: Chem Commun
  doi: 10.1039/C8CC00657A
– volume: 343
  year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b9
  article-title: Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121184
– volume: 9
  start-page: 1795
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b96
  article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
  publication-title: Nature Commun
  doi: 10.1038/s41467-018-04213-9
– volume: 6
  start-page: 3817
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b72
  article-title: Ammonia synthesis at ambient conditions via electrochemical atomic hydrogen permeation
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c01568
– volume: 55
  start-page: 4997
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b169
  article-title: Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions
  publication-title: ChemComm
– volume: 1
  start-page: 490
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b14
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0092-7
– volume: 11
  start-page: 4231
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b172
  article-title: High-performance N2-to-NH3 fixation by a metal-free electrocatalyst
  publication-title: Nanoscale
  doi: 10.1039/C8NR10401H
– volume: 5
  start-page: 116
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b167
  article-title: High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.8b00734
– volume: 9
  start-page: 727
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b6
  article-title: Recent progress in ammonia fuel cells and their potential applications
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA08810B
– volume: 119
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b70
  article-title: Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2204638119
– volume: 55
  start-page: 14474
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b158
  article-title: Dendritic Cu: A high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions
  publication-title: ChemComm
– volume: 120
  start-page: 5437
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b186
  article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00659
– volume: 426
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b122
  article-title: Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131843
– volume: 56
  start-page: 10505
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b176
  article-title: FeVO4 porous nanorods for electrochemical nitrogen reduction: Contribution of the Fe 2c–V 2c dimer as a dual electron-donation center
  publication-title: ChemComm
– volume: 139
  start-page: 9771
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b90
  article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b04393
– volume: 17
  start-page: 4909
  year: 2015
  ident: 10.1016/j.apenergy.2023.121960_b27
  article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP04838E
– volume: 342
  year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b36
  article-title: Defective 1T′-MoX2 (X = S, Se, Te) monolayers for electrocatalytic ammonia synthesis: Steric and electronic effects on the catalytic activity
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127779
– volume: 2
  start-page: 3552
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b150
  article-title: A nanoporous CeO2 nanowire array by acid etching preparation: An efficient electrocatalyst for ambient N2 reduction
  publication-title: Mater Adv
  doi: 10.1039/D1MA00243K
– volume: 2
  start-page: 1055
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b38
  article-title: Electrifying the Haber–Bosch
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0414-4
– volume: 6
  start-page: 3211
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b130
  article-title: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA10866D
– volume: 55
  start-page: 7502
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b177
  article-title: Electrocatalytic N2-to-NH3 conversion using oxygen-doped graphene: Experimental and theoretical studies
  publication-title: ChemComm
– volume: 8
  start-page: 2320
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b153
  article-title: MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b07679
– volume: 46
  start-page: 4072
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b73
  article-title: A novel approach to ammonia synthesis from hydrogen sulfide
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.192
– volume: 7
  start-page: 1708
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b44
  article-title: Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.01.009
– volume: 8
  start-page: 20677
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b161
  article-title: Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA06576E
– volume: 7
  start-page: 23416
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b76
  article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA05505C
– volume: 3
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b41
  article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis
  publication-title: Small Methods
  doi: 10.1002/smtd.201800352
– volume: 11
  start-page: 120
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b51
  article-title: Electrochemical synthesis of ammonia from water and nitrogen: A lithium-mediated approach using lithium-ion conducting glass ceramics
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701975
– volume: 13
  start-page: 21474
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b156
  article-title: Electrochemical fixation of nitrogen by promoting N2 adsorption and N–N triple bond cleavage on the CoS2/MoS2 nanocomposite
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c04458
– volume: 2
  start-page: 358
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b71
  article-title: Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation
  publication-title: Chem Catal
  doi: 10.1016/j.checat.2021.12.004
– volume: 7
  start-page: 9622
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b165
  article-title: Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b01178
– volume: 303
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b40
  article-title: Microalgae and ammonia: A review on inter-relationship
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121303
– volume: 54
  start-page: 8474
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b95
  article-title: Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst
  publication-title: Chem Commun
  doi: 10.1039/C8CC03627F
– volume: 7
  start-page: 17761
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b134
  article-title: Ambient electrocatalytic N2 reduction to NH3 by metal fluorides
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA04706A
– year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b56
  article-title: Enhanced NH3 synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N-doped defective MoS2
  publication-title: JACS Au
– volume: 8
  start-page: 8540
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b97
  article-title: High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b02311
– volume: 46
  start-page: 13011
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b123
  article-title: Mo2C embedded on nitrogen-doped carbon toward electrocatalytic nitrogen reduction to ammonia under ambient conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.01.150
– year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b18
– volume: 9
  start-page: 4609
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b166
  article-title: Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b05134
– volume: 570
  start-page: 504
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b183
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 3
  start-page: 1145
  year: 2013
  ident: 10.1016/j.apenergy.2023.121960_b33
  article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure
  publication-title: Sci Rep
  doi: 10.1038/srep01145
– volume: 60
  start-page: 7584
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b118
  article-title: In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N2 reduction to NH3
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.1c01130
– volume: 7
  start-page: 21674
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b131
  article-title: Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA06523G
– volume: 56
  start-page: 3673
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b145
  article-title: Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles
  publication-title: ChemComm
– volume: 8
  start-page: 5936
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b135
  article-title: Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA13135C
– volume: 3
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b162
  article-title: Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping
  publication-title: Small Methods
  doi: 10.1002/smtd.201900356
– volume: 165
  start-page: F1027
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b50
  article-title: Lithium-mediated ammonia electro-synthesis: Effect of CsClO4 on lithium plating efficiency and ammonia synthesis
  publication-title: J Electrochem Soc
  doi: 10.1149/2.1091811jes
– volume: 2
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b102
  article-title: Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature
  publication-title: Small Methods
  doi: 10.1002/smtd.201800204
– volume: 345
  start-page: 637
  year: 2014
  ident: 10.1016/j.apenergy.2023.121960_b67
  article-title: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
  publication-title: Science
  doi: 10.1126/science.1254234
– volume: 30
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b93
  article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies
  publication-title: Adv Mater
– volume: 38
  start-page: 14576
  year: 2013
  ident: 10.1016/j.apenergy.2023.121960_b22
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.054
– volume: 23
  start-page: 509
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b17
  article-title: South Korean efforts to transition to a hydrogen economy
  publication-title: Clean Technol Environ Policy
  doi: 10.1007/s10098-020-01936-6
– volume: 24
  start-page: 11491
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b115
  article-title: Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP00340F
– volume: 29
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b26
  article-title: Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis
  publication-title: Curr Opin Electrochem
– volume: 3
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b101
  article-title: NbO2 electrocatalyst toward 32% Faradaic efficiency for N2 fixation
  publication-title: Small Methods
  doi: 10.1002/smtd.201800386
– volume: 9
  start-page: 336
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b120
  article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b03802
– volume: 61
  start-page: 304
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b31
  article-title: Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.01.018
– volume: 44
  start-page: 7183
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b53
  article-title: A novel method for a new electromagnetic-induced ammonia synthesizer
  publication-title: Int J Energy Res
  doi: 10.1002/er.5355
– volume: 6
  start-page: 313
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b55
  article-title: Plasma activated electrochemical ammonia synthesis from nitrogen and water
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02349
– volume: 7
  start-page: 23416
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b7
  article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA05505C
– volume: 9
  start-page: 3485
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b110
  article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
  publication-title: Nature Commun
  doi: 10.1038/s41467-018-05758-5
– volume: 168
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b74
  article-title: Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112845
– volume: 1
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b21
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100011
– volume: 32
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b83
  article-title: A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction
  publication-title: Adv Mater
– volume: 140
  start-page: 13387
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b106
  article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b08379
– volume: 284
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b168
  article-title: Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N2-to-NH3 conversion
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119746
– volume: 1
  start-page: 150
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b77
  article-title: Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis
  publication-title: SusMat
  doi: 10.1002/sus2.7
– volume: 49
  start-page: 316
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b105
  article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.039
– volume: 31
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b137
  article-title: Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction
  publication-title: Adv Mater
  doi: 10.1002/adma.201902709
– volume: 54
  start-page: 12966
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b157
  article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles
  publication-title: ChemComm
– volume: 56
  start-page: 14031
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b148
  article-title: Enhanced electrocatalytic N2-to-NH3 fixation by ZrS2 nanofibers with a sulfur vacancy
  publication-title: ChemComm
– volume: 5
  start-page: 18967
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b91
  article-title: Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06139K
– volume: 7
  start-page: 2524
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b141
  article-title: A MoS2 nanosheet–reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA10433F
– volume: 37
  start-page: 1482
  year: 2012
  ident: 10.1016/j.apenergy.2023.121960_b11
  article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.10.004
– volume: 21
  start-page: 3839
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b52
  article-title: Lithium-mediated ammonia synthesis from water and nitrogen: A membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system
  publication-title: Green Chem
  doi: 10.1039/C9GC01338E
– volume: 8
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b30
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201800369
– volume: 55
  start-page: 6401
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b138
  article-title: A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media
  publication-title: ChemComm
– volume: 185
  start-page: 459
  year: 2008
  ident: 10.1016/j.apenergy.2023.121960_b12
  article-title: Using ammonia as a sustainable fuel
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.02.097
– volume: 60
  start-page: 18721
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b54
  article-title: Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202105536
– start-page: 1
  year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b128
  article-title: Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction
  publication-title: Nano Res
– volume: 56
  start-page: 2107
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b146
  article-title: Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions
  publication-title: ChemComm
– volume: 4
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b108
  article-title: A physical catalyst for the electrolysis of nitrogen to ammonia
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700336
– volume: 3
  start-page: 463
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b34
  article-title: Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0455-8
– volume: 176
  year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b79
  article-title: Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113197
– volume: 46
  start-page: 16661
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b124
  article-title: Carbon-doped tin disulfide nanoflowers: A heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia
  publication-title: New J Chem
  doi: 10.1039/D2NJ02478K
– volume: 131
  start-page: 2638
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b86
  article-title: Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets
  publication-title: Angew Chem
  doi: 10.1002/ange.201813174
– volume: 8
  start-page: 13908
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b126
  article-title: A rare-earth samarium oxide catalyst for electrocatalytic nitrogen reduction to ammonia
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c05764
– volume: 4
  start-page: 142
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b47
  article-title: An electrochemical Haber–Bosch process
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.006
– volume: 32
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b133
  article-title: A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals
  publication-title: Adv Mater
– volume: 8
  start-page: 15875
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b113
  article-title: Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA03237A
– volume: 15
  start-page: 7134
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b81
  article-title: Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4568-z
– volume: 299
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b5
  article-title: Progress in green ammonia production as potential carbon-free fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120845
– volume: 11
  start-page: 19274
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b143
  article-title: WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3
  publication-title: Nanoscale
  doi: 10.1039/C9NR03678D
– volume: 12
  start-page: 2445
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b129
  article-title: Bioinspired electrocatalyst for electrochemical reduction of N2 to NH3 in ambient conditions
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b18027
– volume: 42
  start-page: 1755
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b163
  article-title: La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63795-6
– volume: 13
  start-page: 2843
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b180
  article-title: A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction
  publication-title: Nanoscale
  doi: 10.1039/D0NR08744K
– volume: 2
  start-page: 846
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b60
  article-title: Electrocatalytic nitrogen reduction at low temperature
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.014
– volume: 69
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b28
  article-title: Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104469
– volume: 11
  start-page: 2992
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b45
  article-title: Aqueous electrocatalytic N2 reduction under ambient conditions
  publication-title: Nano Res
  doi: 10.1007/s12274-018-1987-y
– volume: 8
  start-page: 17956
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b111
  article-title: Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA07720H
– volume: 16
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b24
  article-title: Electrochemical synthesis of ammonia: Progress and challenges
  publication-title: Mater Today Phys
– volume: 11
  start-page: 35764
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b140
  article-title: Cr3C2 nanoparticle-embedded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b12675
– volume: 9
  start-page: 8316
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b59
  article-title: Strategies toward selective electrochemical ammonia synthesis
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b02245
– volume: 14
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b173
  article-title: Mn3O4 nanocube: An efficient electrocatalyst toward artificial N2 fixation to NH3
  publication-title: Small
  doi: 10.1002/smll.201803111
– volume: 131
  start-page: 2343
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b92
  article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
  publication-title: Angew Chem
  doi: 10.1002/ange.201811728
– volume: 7
  start-page: 16979
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b112
  article-title: Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA04141A
– volume: 322
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b10
  article-title: A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119463
– volume: 6
  start-page: 17303
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b98
  article-title: TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA05627G
– volume: 4
  start-page: eaar3208
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b178
  article-title: Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aar3208
– year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b19
– volume: 59
  start-page: 10
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b139
  article-title: Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.028
– volume: 6
  year: 2023
  ident: 10.1016/j.apenergy.2023.121960_b58
  article-title: Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis
  publication-title: Energy Environ Mater
  doi: 10.1002/eem2.12344
– volume: 3
  start-page: 1127
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b13
  article-title: Understanding continuous lithium-mediated electrochemical nitrogen reduction
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.003
– volume: 2
  start-page: 1610
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b109
  article-title: Boron-doped graphene for electrocatalytic N2 reduction
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.007
– volume: 259
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b4
  article-title: Techno-economic comparison of green ammonia production processes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114135
– volume: 3
  start-page: 1219
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b62
  article-title: Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00487
– volume: 130
  start-page: 10403
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b107
  article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions
  publication-title: Angew Chem
  doi: 10.1002/ange.201806386
– volume: 9
  start-page: 4248
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b127
  article-title: Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: Experimental and DFT studies
  publication-title: Catal Sci Technol
  doi: 10.1039/C9CY00907H
– volume: 8
  start-page: 10572
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b155
  article-title: Enhanced electrochemical reduction of N2 to ammonia over pyrite FeS2 with excellent selectivity
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c03675
– volume: 7
  start-page: 24760
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b170
  article-title: PdP2 nanoparticles–reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA09910G
– volume: 8
  start-page: 4735
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b80
  article-title: Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA13485A
– volume: 286
  start-page: 2
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b23
  article-title: Progress in the electrochemical synthesis of ammonia
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 30
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b87
  article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions
  publication-title: Adv Mater
– volume: 7
  start-page: 3531
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b78
  article-title: Recent progress in electrocatalytic nitrogen reduction
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA11201K
– volume: 5
  start-page: 263
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b61
  article-title: Electrocatalytic reduction of nitrogen: From Haber–Bosch to ammonia artificial leaf
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.010
– volume: 131
  start-page: 17594
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b68
  article-title: The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics
  publication-title: Angew Chem
  doi: 10.1002/ange.201909831
– volume: 54
  start-page: 12848
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b160
  article-title: Cr2O3 nanofiber: A high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions
  publication-title: ChemComm
– volume: 29
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b88
  article-title: Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions
  publication-title: Adv Mater
– volume: 132
  start-page: 20591
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b174
  article-title: Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia
  publication-title: Angew Chem
  doi: 10.1002/ange.202009217
– volume: 50
  start-page: 5423
  year: 2005
  ident: 10.1016/j.apenergy.2023.121960_b65
  article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2005.03.023
– volume: 8
  start-page: 13679
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b125
  article-title: Promoting electrocatalytic nitrogen reduction to ammonia via Fe-boosted nitrogen activation on MnO2 surfaces
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA13026H
– volume: 372
  start-page: 1187
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b1
  article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle
  publication-title: Science
  doi: 10.1126/science.abg2371
– volume: 164
  start-page: H5036
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b66
  article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0091708jes
– volume: 54
  start-page: 5323
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b100
  article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions
  publication-title: Chem Commun
  doi: 10.1039/C8CC00459E
– volume: 130
  start-page: 6181
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b104
  article-title: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions
  publication-title: Angew Chem
  doi: 10.1002/ange.201801538
– volume: 48
  start-page: 3166
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b185
  article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00280D
– volume: 6
  start-page: 9550
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b94
  article-title: Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01438
– volume: 7
  start-page: 12692
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b149
  article-title: Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b03141
– volume: 7
  start-page: 16117
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b151
  article-title: Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA05016G
– volume: 2
  start-page: 2288
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b164
  article-title: NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b00102
– volume: 11
  start-page: 2768
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b20
  article-title: Pathways to electrochemical solar-hydrogen technologies
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03639F
– volume: 42
  start-page: 19056
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b37
  article-title: Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.118
– volume: 904
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b117
  article-title: Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2021.115874
– volume: 12
  start-page: 919
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b171
  article-title: Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2323-x
– volume: 31
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b8
  article-title: Electrochemical ammonia synthesis and ammonia fuel cells
  publication-title: Adv Mater
– volume: 13
  start-page: 3061
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b75
  article-title: Ambient ammonia electrosynthesis: Current status, challenges, and perspectives
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000670
– volume: 54
  start-page: 11427
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b132
  article-title: Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions
  publication-title: ChemComm
– volume: 270
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b16
  article-title: Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115185
– volume: 52
  start-page: 10175
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b179
  article-title: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1176-5
– volume: 29
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b89
  article-title: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions
  publication-title: Adv Mater
  doi: 10.1002/adma.201606550
– volume: 433
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b119
  article-title: Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.133752
– volume: 38
  start-page: 14576
  year: 2013
  ident: 10.1016/j.apenergy.2023.121960_b35
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.054
– volume: 381
  start-page: 78
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b142
  article-title: Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.10.029
– volume: 4
  start-page: 1186
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b2
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 7
  start-page: 26371
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b181
  article-title: Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA10206J
– volume: 8
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b136
  article-title: Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201801357
– volume: 4
  start-page: 4469
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b63
  article-title: Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions
  publication-title: Sustain Energy Fuels
  doi: 10.1039/D0SE00828A
– volume: 609
  start-page: 815
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b82
  article-title: Hierarchical CoS2/MoS2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.11.087
– volume: 4
  start-page: 10
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b85
  article-title: Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots
  publication-title: Commun Chem
  doi: 10.1038/s42004-021-00449-7
– volume: 3
  start-page: 239
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b184
  article-title: Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges
  publication-title: Electrochem Energy Rev
  doi: 10.1007/s41918-019-00061-3
– volume: 3
  start-page: 279
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b64
  article-title: Efficient electrocatalytic N2 fixation with MXene under ambient conditions
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.011
– volume: 8
  start-page: 3105
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b159
  article-title: CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions
  publication-title: Inorg Chem Front
  doi: 10.1039/D1QI00306B
– volume: 52
  start-page: 264
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b99
  article-title: Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.045
– volume: 58
  start-page: 9597
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b147
  article-title: Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.9b01707
– volume: 30
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b84
  article-title: Achieving a record-high yield rate of 120.9 μgNH3 mgcat−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts
  publication-title: Adv Mater
– volume: 54
  start-page: 13010
  year: 2018
  ident: 10.1016/j.apenergy.2023.121960_b154
  article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions
  publication-title: ChemComm
– volume: 55
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b25
  article-title: Ammonia synthesis by electrochemical nitrogen reduction reaction-A novel energy storage way
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105684
– volume: 56
  start-page: 1831
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b144
  article-title: P-doped graphene toward enhanced electrocatalytic N2 reduction
  publication-title: ChemComm
– volume: 33
  start-page: 1777
  year: 2016
  ident: 10.1016/j.apenergy.2023.121960_b69
  article-title: Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte
  publication-title: Korean J Chem Eng
  doi: 10.1007/s11814-016-0086-6
– volume: 45
  start-page: 4827
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b3
  article-title: A perspective on the use of ammonia as a clean fuel: Challenges and solutions
  publication-title: Int J Energy Res
  doi: 10.1002/er.6232
– volume: 31
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b15
  article-title: Renewable ammonia for sustainable energy and agriculture: Vision and systems engineering opportunities
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2020.100667
– volume: 6
  start-page: 391
  year: 2019
  ident: 10.1016/j.apenergy.2023.121960_b182
  article-title: Metal–organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions
  publication-title: Inorg Chem Front
  doi: 10.1039/C8QI01145A
– volume: 12
  start-page: 6900
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b29
  article-title: Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions
  publication-title: Nanoscale
  doi: 10.1039/D0NR00412J
– volume: 44
  start-page: 21070
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b152
  article-title: Electrocatalytic reduction of nitrogen to ammonia under ambient conditions using a nanorod-structured MoN catalyst
  publication-title: New J Chem
  doi: 10.1039/D0NJ04244G
– volume: 13
  start-page: 4605
  year: 2022
  ident: 10.1016/j.apenergy.2023.121960_b49
  article-title: Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis
  publication-title: J Phy Chem Lett
  doi: 10.1021/acs.jpclett.2c00768
– volume: 10
  start-page: 29575
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b114
  article-title: Glycerine-based synthesis of a highly efficient Fe2O3 electrocatalyst for N2 fixation
  publication-title: RSC Adv
  doi: 10.1039/D0RA05831A
– volume: 12
  start-page: 37258
  year: 2020
  ident: 10.1016/j.apenergy.2023.121960_b175
  article-title: Lithium iron oxide LiFeO2 for electroreduction of dinitrogen to ammonia
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c10991
– volume: 10
  start-page: 1621
  year: 2017
  ident: 10.1016/j.apenergy.2023.121960_b48
  article-title: Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE01126A
– volume: 33
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b39
  article-title: Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction
  publication-title: Adv Mater
– volume: 7
  start-page: 3232
  year: 2021
  ident: 10.1016/j.apenergy.2023.121960_b42
  article-title: Main-group elements boost electrochemical nitrogen fixation
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.10.008
SSID ssj0002120
Score 2.5440948
Snippet Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121960
SubjectTerms ammonia
carbon
electrochemistry
electrolysis
energy
Energy conversion and storage
fuels
Green energy
Haber–Bosch process
hydrogen
lithium
markets
nitrogen fixation
Nitrogen reduction reaction
Renewable energy
renewable energy sources
Zero-carbon ammonia
Title A comprehensive review on electrochemical green ammonia synthesis: From conventional to distinctive strategies for efficient nitrogen fixation
URI https://dx.doi.org/10.1016/j.apenergy.2023.121960
https://www.proquest.com/docview/3153183923
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYquIwDGgw0GKse0q5pk8ZJU24VoupA9DIq9WY5zjMEQVI1qQSX_YT95vk5ztpNkzhwTGRbkd_ze1_k732PsW88U_GQegCqQSQ9zhX3Eq1jL1XK15gN45EV9bmdxdM5v15Eiw67bGthiFbpYn8T0220dm_6bjf7yzzv_yC02-B_ui_gVFHO-ZC8vPdzQ_MYOGlGM9ij0VtVwo89uURbYdejJuIktDCyUpX_TVD_hGqbfyYf2b4DjjBuvu2AdbA4ZHtbcoKH7PhqU7VmhrpjW31iv8ZA1PEVPjR0dWgKVqAswLXBUU43AO6JhwOSvDOXUL0WBiBWeXUBk1X5DNscdahLyChCFDZkQlW3qhNggDCg1aYwg8EEjVVp_BR0_mL94IjNJ1d3l1PPNWLwVMij2uMDKSNMZMYNgNBWH0fxKMMgkCQ4h6FO0lBq-ltJVWgQC0rERMk48zFJ0A-P2U5RFviZQZJp30AEWk6ZvKjSxFcBco7DwPiJ0icsandfKKdSTs0ynkRLR3sUrdUEWU00Vjth_T_zlo1Ox5szRq1xxV8eJ0wyeXPueesNwhxHumORBZbrSoQmg1jQGZ6-Y_0v7AM9EW0miM7YTr1a41cDfuq0a727y3bH32-ms98NWQoJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMKwvrHuVA3Z1Y8ey4-wWFA3SVy5rgd4EWaY6F5sdxC6w_Yn95omy3GXDgB56tSXBEKmPnyHyI8AnUeh0zD0A9ShRgRBaBJkxaZBrHRoqxunEifpcLtL5tTi7SW424LivheG0So_9HaY7tPZPhn43h8uyHH5httvxf74vEONnsMnqVMkANqen5_PFAyCPvDqjHR_whLVC4bsjtSRXZHfEfcRZa2Hi1Cr_G6P-QWsXgmav4KXnjjjtPm8bNqjagRdrioI7sH_yp3DNDvUnt9mFX1Pk7PEVfe0y1rGrWcG6Qt8JR3vpALzlVBxU7KClwuZnZTliUzafcbaqv-N6mjq2NRYMEpVDTWzaXngCLRdGcvIUdjBa3FjV1lXRlD-cK-zB9ezk6nge-F4MgY5F0gZipFRCmSqE5RDGSeRokRQURYo15yg2WR4rwz8suY4taSFFlGmVFiFlGYXxPgyquqLXgFlhQssSeDltQ6POs1BHJASNI-sq2hxA0u--1F6onPtlfJN9Rtqd7K0m2Wqys9oBDB_mLTupjkdnTHrjyr-cTtp48ujcj703SHsi-ZpFVVTfNzK2QcTxzvjNE9Y_hK351eWFvDhdnL-F5_yGs2ii5B0M2tU9vbdcqM0_eF__DRNBDLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+electrochemical+green+ammonia+synthesis%3A+From+conventional+to+distinctive+strategies+for+efficient+nitrogen+fixation&rft.jtitle=Applied+energy&rft.au=Santhosh%2C+C.R.&rft.au=Sankannavar%2C+Ravi&rft.date=2023-12-15&rft.issn=0306-2619&rft.volume=352&rft.spage=121960&rft_id=info:doi/10.1016%2Fj.apenergy.2023.121960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2023_121960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon