A comprehensive review on electrochemical green ammonia synthesis: From conventional to distinctive strategies for efficient nitrogen fixation
Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically...
Saved in:
Published in | Applied energy Vol. 352; p. 121960 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production.
[Display omitted]
•Ammonia can be used as a potential carbon-free energy carrier and non-fossil fuel.•Industrial ammonia production using Haber process is energy-intensive and emits CO2•Green ammonia can be produced via electrochemical route powered by renewable energy.•eNRR is less competitive with Haber process due to its higher N2 activation energy.•Producing NH3 by coupling eNRR with water electrolysis contributes to green economy. |
---|---|
AbstractList | Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production. Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently depends on the unsustainable and energy-intensive Haber–Bosch process. Hence, developing a viable and efficient method to produce NH3 economically has become a new challenge for researchers as its demand surges with each passing decade. Ammonia production from renewable energy sources can power the globe without emitting carbon. The electrochemical method of NH3 has emerged as an appealing strategy for sustainable NH3 production under mild conditions. However, this approach presents several challenges related to activating the highly stable N≡N bond, choice of electrolytes, proton source, etc. This study explores electrochemical methods with distinctive approaches that have been reported, which include redox-mediated processes, lithium cycling electrification, integrated plasma technology, phosphonium proton shuttling, and more. A comprehensive analysis of the underlying principles, experimental parameters, challenges, and potential applications are discussed for each method. It also assesses the recent electrocatalyst advancements employed for effective N2 fixation and their corresponding electrocatalytic performance. Finally, it emphasises the ongoing research efforts to overcome barriers and enable the widespread adoption of renewable grid energy systems for powering N2 gas electrolysis in green NH3 production. [Display omitted] •Ammonia can be used as a potential carbon-free energy carrier and non-fossil fuel.•Industrial ammonia production using Haber process is energy-intensive and emits CO2•Green ammonia can be produced via electrochemical route powered by renewable energy.•eNRR is less competitive with Haber process due to its higher N2 activation energy.•Producing NH3 by coupling eNRR with water electrolysis contributes to green economy. |
ArticleNumber | 121960 |
Author | Sankannavar, Ravi Santhosh, C.R. |
Author_xml | – sequence: 1 givenname: C.R. surname: Santhosh fullname: Santhosh, C.R. – sequence: 2 givenname: Ravi orcidid: 0000-0002-1590-5609 surname: Sankannavar fullname: Sankannavar, Ravi email: ravi.sankannavar@msrit.edu |
BookMark | eNqFkT1PHDEQhl0Qic-_ELlMc5exvbvxRSmCEAQkJBqoLeMd381p177Y5uD-BL853hw0NFRu3veZ8TPH7CDEgIx9FTAXILrv67ndYMC03M0lSDUXUiw6OGBHoKCbyU4sDtlxzmsAkELCEXs95y6Om4QrDJm2yBNuCZ95DBwHdCVFt8KRnB34MiEGbscxBrI870JZYab8k1-lOFZK2GIoFEONlsh7yoWCKxMzl2QLLgkz9zFx9J4c1TAPVAcsK9XTi526p-yLt0PGs7f3hD1cXd5fXM9u7_7cXJzfzpxq2jJrpLUtats3oIVX7Q_duqbtUQgrABpUXj8q62UrxKNTIDVaRO1s1wNqjaBO2Lc9d5Pi3yfMxYyUHQ6DDRifslGiVUKrhVQ1-msfdSnmnNAbR-X_svVXNBgBZlJv1uZdvZnUm736Wu8-1DeJRpt2nxd_74tYPdSbJJMnaQ57SvUwpo_0GeIfFAirTQ |
CitedBy_id | crossref_primary_10_1016_j_comptc_2025_115090 crossref_primary_10_1002_cctc_202401001 crossref_primary_10_1016_j_enconman_2024_118263 crossref_primary_10_1016_j_jece_2024_114034 crossref_primary_10_1016_j_jechem_2024_01_024 crossref_primary_10_1016_j_fuel_2024_133604 crossref_primary_10_1016_j_enconman_2024_119117 crossref_primary_10_1016_j_ceramint_2025_02_063 crossref_primary_10_3390_cryst14090818 crossref_primary_10_1021_acs_energyfuels_4c04626 crossref_primary_10_1016_j_seppur_2024_130202 crossref_primary_10_1016_j_jcis_2024_07_008 crossref_primary_10_3390_en17122963 crossref_primary_10_1016_j_jpowsour_2024_234971 crossref_primary_10_1016_j_apenergy_2024_123505 crossref_primary_10_1007_s11581_024_05578_2 crossref_primary_10_1039_D4YA00218K crossref_primary_10_1016_j_cogsc_2024_100985 |
Cites_doi | 10.1016/j.apcatb.2021.120667 10.1039/C8TA03974G 10.1021/acsami.0c22767 10.1021/acscatal.9b00366 10.1038/s41929-019-0280-0 10.1039/C8CC00657A 10.1016/j.apenergy.2023.121184 10.1038/s41467-018-04213-9 10.1021/acsenergylett.1c01568 10.1038/s41929-018-0092-7 10.1039/C8NR10401H 10.1021/acscentsci.8b00734 10.1039/D0TA08810B 10.1073/pnas.2204638119 10.1021/acs.chemrev.9b00659 10.1016/j.cej.2021.131843 10.1021/jacs.7b04393 10.1039/C4CP04838E 10.1016/j.fuel.2023.127779 10.1039/D1MA00243K 10.1038/s41929-019-0414-4 10.1039/C7TA10866D 10.1021/acssuschemeng.9b07679 10.1016/j.ijhydene.2020.10.192 10.1016/j.chempr.2021.01.009 10.1039/D0TA06576E 10.1039/C9TA05505C 10.1002/smtd.201800352 10.1002/cssc.201701975 10.1021/acsami.1c04458 10.1016/j.checat.2021.12.004 10.1021/acssuschemeng.9b01178 10.1016/j.fuel.2021.121303 10.1039/C8CC03627F 10.1039/C9TA04706A 10.1021/acscatal.8b02311 10.1016/j.ijhydene.2021.01.150 10.1021/acscatal.8b05134 10.1038/s41586-019-1260-x 10.1038/srep01145 10.1021/acs.inorgchem.1c01130 10.1039/C9TA06523G 10.1039/C9TA13135C 10.1002/smtd.201900356 10.1149/2.1091811jes 10.1002/smtd.201800204 10.1126/science.1254234 10.1016/j.ijhydene.2013.09.054 10.1007/s10098-020-01936-6 10.1039/D2CP00340F 10.1002/smtd.201800386 10.1021/acscatal.8b03802 10.1016/j.jechem.2021.01.018 10.1002/er.5355 10.1021/acsenergylett.0c02349 10.1038/s41467-018-05758-5 10.1016/j.rser.2022.112845 10.1016/j.enchem.2019.100011 10.1021/jacs.8b08379 10.1016/j.apcatb.2020.119746 10.1002/sus2.7 10.1016/j.nanoen.2018.04.039 10.1002/adma.201902709 10.1039/C7TA06139K 10.1039/C8TA10433F 10.1016/j.ijhydene.2011.10.004 10.1039/C9GC01338E 10.1002/aenm.201800369 10.1016/j.jpowsour.2008.02.097 10.1002/anie.202105536 10.1126/sciadv.1700336 10.1038/s41929-020-0455-8 10.1016/j.rser.2023.113197 10.1039/D2NJ02478K 10.1002/ange.201813174 10.1021/acssuschemeng.0c05764 10.1016/j.joule.2019.10.006 10.1039/D0TA03237A 10.1007/s12274-022-4568-z 10.1016/j.fuel.2021.120845 10.1039/C9NR03678D 10.1021/acsami.9b18027 10.1016/S1872-2067(21)63795-6 10.1039/D0NR08744K 10.1016/j.joule.2018.04.014 10.1016/j.nanoen.2020.104469 10.1007/s12274-018-1987-y 10.1039/D0TA07720H 10.1021/acsami.9b12675 10.1021/acscatal.9b02245 10.1002/smll.201803111 10.1002/ange.201811728 10.1039/C9TA04141A 10.1016/j.apenergy.2022.119463 10.1039/C8TA05627G 10.1126/sciadv.aar3208 10.1016/j.nanoen.2019.02.028 10.1002/eem2.12344 10.1016/j.joule.2019.02.003 10.1016/j.joule.2018.06.007 10.1016/j.apenergy.2019.114135 10.1021/acsenergylett.8b00487 10.1002/ange.201806386 10.1039/C9CY00907H 10.1021/acssuschemeng.0c03675 10.1039/C9TA09910G 10.1039/C9TA13485A 10.1016/j.cattod.2016.06.014 10.1039/C8TA11201K 10.1016/j.chempr.2018.10.010 10.1002/ange.201909831 10.1002/ange.202009217 10.1016/j.electacta.2005.03.023 10.1039/C9TA13026H 10.1126/science.abg2371 10.1149/2.0091708jes 10.1039/C8CC00459E 10.1002/ange.201801538 10.1039/C9CS00280D 10.1021/acssuschemeng.8b01438 10.1021/acssuschemeng.9b03141 10.1039/C9TA05016G 10.1021/acsaem.9b00102 10.1039/C7EE03639F 10.1016/j.ijhydene.2017.06.118 10.1016/j.jelechem.2021.115874 10.1007/s12274-019-2323-x 10.1002/cssc.202000670 10.1016/j.apenergy.2020.115185 10.1007/s10853-017-1176-5 10.1002/adma.201606550 10.1016/j.cej.2021.133752 10.1016/j.jcat.2019.10.029 10.1016/j.joule.2020.04.004 10.1039/C9TA10206J 10.1002/aenm.201801357 10.1039/D0SE00828A 10.1016/j.jcis.2021.11.087 10.1038/s42004-021-00449-7 10.1007/s41918-019-00061-3 10.1016/j.joule.2018.09.011 10.1039/D1QI00306B 10.1016/j.nanoen.2018.07.045 10.1021/acs.inorgchem.9b01707 10.1016/j.est.2022.105684 10.1007/s11814-016-0086-6 10.1002/er.6232 10.1016/j.coche.2020.100667 10.1039/C8QI01145A 10.1039/D0NR00412J 10.1039/D0NJ04244G 10.1021/acs.jpclett.2c00768 10.1039/D0RA05831A 10.1021/acsami.0c10991 10.1039/C7EE01126A 10.1016/j.chempr.2021.10.008 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2023.121960 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | 10_1016_j_apenergy_2023_121960 S0306261923013247 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAQXK AATTM AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-42aa5e8ad4081f35785c45de11a1004e3f8b3af2511bc3028eaee8ca6d0e88e03 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 05:46:56 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:01:18 EDT 2025 Sat Nov 09 16:00:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Green energy Zero-carbon ammonia Energy conversion and storage Haber–Bosch process Renewable energy Nitrogen reduction reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-42aa5e8ad4081f35785c45de11a1004e3f8b3af2511bc3028eaee8ca6d0e88e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1590-5609 |
PQID | 3153183923 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153183923 crossref_citationtrail_10_1016_j_apenergy_2023_121960 crossref_primary_10_1016_j_apenergy_2023_121960 elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_121960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Nash, Anibal, Dunwell, Kattel, Stavitski, Attenkofer, Chen, Yan, Xu (b106) 2018; 140 Su, Chen, Chen, Si, Wu, Wu, Geng, Zhang, Zeng (b174) 2020; 132 Zhang, Du, Ma, Ji, Guo, Tian, Chen, Huang, Cui, Asiri (b171) 2019; 12 Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith III, Hamann (b186) 2020; 120 Zamfirescu, Dincer (b12) 2008; 185 Chen, Xia (b7) 2019; 7 Ren, Zhao, Wei, Ma, Guo, Liu, Wang, Cui, Asiri, Li (b167) 2018; 5 Xu, Li, Bati, Bat-Erdene, Nine, Losic, Chen, Shapter, Batmunkh, Ma (b113) 2020; 8 Chang, Kong, Wang, Han, Cui, Tian, Chen, Meng, Chen, Liu (b71) 2022; 2 Sheets, Botte (b46) 2018; 54 Soloveichik (b32) 2019; 2 Cui, Tang, Zhang (b30) 2018; 8 Han, Wu, He, Zhuang, Lin, Han (b25) 2022; 55 Wang, Yang, Salla, Xi, Yang, Li, Zhang, Zhu, Huang, Huang (b54) 2021; 60 Guo, Liang, Zhao, Zhu, Cai, Zou, Xu (b102) 2018; 2 Huang, Wu, Han, Al-Enizi, Almutairi, Zhang, Zheng (b101) 2019; 3 Liu, Xu, Luo, Kong, Li, Lu, Alshehri, Alzahrani, Sun (b26) 2021; 29 Kong, Zhang, Zhang, Ji, Yu, Wang, Luo, Shi, Xu, Sun (b143) 2019; 11 Du, Xing, Zhang, Liu, Rawach, Sun (b77) 2021; 1 Martín, Shinagawa, Pérez-Ramírez (b61) 2019; 5 Li, Bao, Shi, Wulan, Yan, Jiang (b88) 2017; 29 Qiu, Xie, Qiu, Fang, Liang, Ren, Ji, Cui, Asiri, Cui (b110) 2018; 9 Liu, Zhao, Ding (b152) 2020; 44 Yu, Guo, Liu, Chen, Alshehri, Alzahrani, Hao, Li (b140) 2019; 11 (b19) 2023 Yang, Huang, Bai, Feng, Shao, Huang (b133) 2020; 32 Shen, Liu, Li, Chu (b176) 2020; 56 Kim, Lee, Kim, Yoo, Choi, Kim, Woo, Yoon, Han (b51) 2018; 11 Chehade, Dincer (b53) 2020; 44 Ghavam, Garcia-Garcia, Styring (b73) 2021; 46 McEnaney, Singh, Schwalbe, Kibsgaard, Lin, Cargnello, Jaramillo, Nørskov (b48) 2017; 10 Li, Li, Ma, Wei, Qiu, Guo, Shi, Zhang, Asiri, Chen (b136) 2018; 8 Li, Yu, Yang, Zhao, Kong, Wang, Asiri, Li, Sun (b147) 2019; 58 Chu, Liu, Wang, Zhang (b164) 2019; 2 Wang, Liu, Zhang, Huang, Chu (b127) 2019; 9 Lv, Wang, Du, Liu, Luo, Lu, Chen, Gao, Zheng, Sun (b63) 2020; 4 Zhang, Ji, Ren, Luo, Shi, Asiri, Zheng, Sun (b94) 2018; 6 Han, Liu, Ma, Cui, Xie, Wang, Wu, Gao, Xu, Sun (b99) 2018; 52 Xu, Ma, Li, Yue, Luo, Lu, Shi, Asiri, Yang, Sun (b148) 2020; 56 Li, Chen, Li, Li, Wu, Cui, Deng, Luo, Liu, Li (b163) 2021; 42 Li, Tang, Jin, Davey, Qiao (b42) 2021; 7 Han, Ji, Ren, Cui, Li, Xie, Wang, Li, Sun (b103) 2018; 6 Gao, Lv, Wang, Luo, Lu, Chen, Gao, Zhong, Guo, Sun (b111) 2020; 8 Tursun, Wu (b36) 2023; 342 Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (b23) 2017; 286 Shen, Choi, Masa, Li, Qiu, Jung, Sun (b44) 2021; 7 Geng, Liu, Kong, Li, Li, Liu, Du, Shu, Si, Zeng (b84) 2018; 30 Du, Yang, Pu, Zeng, Gong (b155) 2020; 8 Kim, Cho, Jeon, Lee, Yoo, Kim, Choi, Yoon, Han (b50) 2018; 165 Suryanto, Kang, Wang, Xiao, Zhou, Azofra, Cavallo, Zhang, MacFarlane (b62) 2018; 3 Mushtaq, Arif, Yasin, Tabish, Kumar, Ibraheem, Ye, Ajmal, Zhao, Li (b79) 2023; 176 Han, Liu, Chen, Lin, Liu, Lü, Bak, Liang, Zhao, Stavitski (b92) 2019; 131 Wang, Li, Liu (b114) 2020; 10 (b18) 2023 Zhu, Wu, Ji, Li, Wang, Wen, Gao, Shi, Luo, Peng (b151) 2019; 7 Wang, Yang, Wang, Ma, Tian, Pang, Tan, Gao (b82) 2022; 609 Sharma, Patel, Mushtaq, Kyriakou, Zafeiropoulos, Peeters, Welzel, van de Sanden, Tsampas (b55) 2020; 6 Kim, Chen, Han, Yoon, Li (b52) 2019; 21 Cui, Dong, Qu, Zhang, Zhao, Wang, Jiang (b122) 2021; 426 Wang, Chen, Lai, Peng, Zhao, Hu, Qiu, Ren, Liu, Luo (b142) 2020; 381 Chehade, Dincer (b5) 2021; 299 Giddey, Badwal, Kulkarni (b35) 2013; 38 Yao, Wang, Shahid, Gu, Wang, Li, Shao (b184) 2020; 3 Luo, Chen, Ding, Chen, Ding, Wang (b64) 2019; 3 Fu, Zhuang, OliverLam Chee, Dong, Ye, Shen (b165) 2019; 7 Xie, Geng, Zhu, Luo, Chang, Niu, Shi, Asiri, Gao, Wang (b170) 2019; 7 Yang, Zhao, Huang, Liu, Yu, Wang, Yuan, Sun, Li, Li (b156) 2021; 13 Tang, Qiao (b185) 2019; 48 Qu, Dai, Cui, Zhang, Wang, Jiang (b119) 2022; 433 Liu, Han, Zhao, Zhu, Tian, Zeng, Jiang, Xia, Chen (b130) 2018; 6 McPherson, Sudmeier, Fellowes, Wilkinson, Hughes, Tsang (b68) 2019; 131 Rao, Liu, Chien, Inoue, Zhang, Liu (b74) 2022; 168 Li, Ren, Liu, Zhao, Sun, Zhang, Kuang, Yan, Wei, Wu (b141) 2019; 7 Lan, Irvine, Tao (b33) 2013; 3 Wang, Xia, Yang, Wang, Fang, Chen, Tang, Asiri, Luo, Cui (b177) 2019; 55 Abghoui, Garden, Hlynsson, Björgvinsdóttir, Ólafsdóttir, Skúlason (b27) 2015; 17 Yu, Shu, Huang, Yang, Meng, Zou, Wang, Zeng, Zou, Deng (b161) 2020; 8 Yuan, Wei, Han, Yang, Huang, Gu, Ding, Ma, Zheng (b112) 2019; 7 Zhang, Jiao, Yang, Wan, Jiang (b181) 2019; 7 Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr (b183) 2019; 570 Suryanto, Matuszek, Choi, Hodgetts, Du, Bakker, Kang, Cherepanov, Simonov, MacFarlane (b1) 2021; 372 Bicer, Dincer (b66) 2017; 164 ami, Nohira, Goto, Ogata, Ito (b65) 2005; 50 Huang, Liu, Zhang, Wang, Wen, Wang, Hossain, Xie, Yao, Wu (b125) 2020; 8 Yu, Li, Li, Zhu, Zhang, Ji, Tang, Asiri, Sun, Li (b138) 2019; 55 Pan, Liu, Tahir, Esan, Zhu, Chen, An (b10) 2022; 322 Xu, Ithisuphalap, Li, Mukherjee, Lattimer, Soloveichik, Wu (b28) 2020; 69 Liu, Wang, Zhang, Li, Wang, Zhang, Han, Zhang (b153) 2020; 8 Song, Johnson, Peng, Hensley, Bonnesen, Liang, Huang, Yang, Zhang, Qiao (b108) 2018; 4 Bat-Erdene, Xu, Batmunkh, Bati, White, Nine, Losic, Chen, Wang, Ma (b80) 2020; 8 Wu, Xia, Wang, Lu, Liu, Shi, Sun (b173) 2018; 14 Deng, Iñiguez, Liu (b60) 2018; 2 Licht, Cui, Wang, Li, Lau, Liu (b67) 2014; 345 Li, Tang, Xia, Jin, Zheng, Qiao (b121) 2019; 9 MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Vallana, Simonov (b2) 2020; 4 Gu, Guo, Li, Tian, Chu (b175) 2020; 12 Wu, Fan, Zhang, Zhang (b43) 2021; 16 Wu, Yang, Xu, Wu, Wang, Lv, Ma, Xu, Zheng, Tan (b57) 2021; 299 Wu, Li, Zhu, Mou, Luo, Shi, Asiri, Zhang, Zheng, Zhao (b144) 2020; 56 Zhao, Hu, Chen, Zhang, Zhang, Wang (b39) 2021; 33 Jiao, Xu (b8) 2019; 31 Wu, Kong, Zhang, Xing, Zhao, Wang, Shi, Luo, Sun (b162) 2019; 3 Chen, Xia (b76) 2019; 7 Zhang, Kong, Du, Xia, Qu (b100) 2018; 54 Yu, Han, Wei, Huang, Gu, Peng, Ma, Zheng (b109) 2018; 2 Singh, Rohr, Statt, Schwalbe, Cargnello, Nørskov (b59) 2019; 9 Giddey, Badwal, Kulkarni (b22) 2013; 38 Liu, Lin, Gu, Cheng, Xie, Sun, Zhang, Luo, Alshehri, Hamdy (b81) 2022; 15 Su, Huang, Wang, Huang, Yuan, Huang, Xu, Lin (b9) 2023; 343 Sažinas, Li, Andersen, Saccoccio, Li, Pedersen, Kibsgaard, Vesborg, Chakraborty, Chorkendorff (b49) 2022; 13 Niu, An, Wang, Sun (b31) 2021; 61 Mao, Li, Tian, Zhou, Xu, Wang, Li, Wang, Wang (b117) 2022; 904 Jin, Li, Liu, Tang, Xu, Chen, Song, Zheng, Qiao (b137) 2019; 31 Wang, Cui, Zhao, Jia, Gu, Zhang, Meng, Shi, Zheng, Wang (b120) 2018; 9 Li, Liu, Wu, Zhang, Wang, Wang, Ji, Zhang, Luo, Wang (b134) 2019; 7 Zhao, Ren, Li, Fan, Sun, Ma, Wei, Wu (b172) 2019; 11 Zhang, Liu, Shi, Asiri, Luo, Sun, Li (b98) 2018; 6 Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (b14) 2018; 1 Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (b41) 2019; 3 Liu, Li, Guo, Kong, Ke, Chi, Li, Geng, Zeng (b83) 2020; 32 Nazemi, Panikkanvalappil, El-Sayed (b105) 2018; 49 Guo, Du, Qu, Li (b78) 2019; 7 Wang, Lv, Zhu, Du, Lu, Alshehri, Alzahrani, Zheng, Sun (b146) 2020; 56 Ardo, Rivas, Modestino, Greiving, Abdi, Llado, Artero, Ayers, Battaglia, Becker (b20) 2018; 11 Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang (b21) 2019; 1 Zheng, Zhang, Lv, Zhang, Wan, Gerrits, Wu, Lan, Wang, Wang (b56) 2023 Xu, Xu, Du, Wu, Ma, Ren, Li, Wei (b124) 2022; 46 Ripepi, Zaffaroni, Schreuders, Boshuizen, Mulder (b72) 2021; 6 Wang, Yu, Hu, Chen, Xin, Feng (b96) 2018; 9 Zhang, Han, Zheng, Shi, Asiri, Sun (b182) 2019; 6 Biswas, Kapse, Ghosh, Thapa, Dey (b70) 2022; 119 Erdemir, Dincer (b3) 2021; 45 Zhao, Lan, Yu, Fu, Liu, Mu (b154) 2018; 54 Deng, Wang, Alshehri, Alzahrani, Wang, Ye, Luo, Sun (b131) 2019; 7 Zhang, Ji, Ren, Ma, Shi, Tian, Asiri, Chen, Tang, Sun (b93) 2018; 30 Zhang, Ding, Chen, Yang, Wang (b86) 2019; 131 Lan, Irvine, Tao (b11) 2012; 37 Xian, Guo, Chen, Yu, Alshehri, Alzahrani, Hao, Song, Li (b129) 2019; 12 Peng, Cheng, Hatzenbeller, Addy, Zhou, Schiappacasse, Chen, Zhang, Anderson, Liu (b37) 2017; 42 Li, Mou, Zhu, Wang, Wang, Qiao, Shi, Luo, Zheng, Li (b158) 2019; 55 Chai, Chew, Munawaroh, Ashokkumar, Cheng, Park, Show (b40) 2021; 303 Wang, Zhang, Wang, Zhang, Liu, Zhao, Zheng, Du, Sun (b118) 2021; 60 Zhao, Wang, Zhou, Wang, Li, Chen, Wei, Wu, Luo, You (b169) 2019; 55 Lv, Weng, Yuan (b75) 2020; 13 Stangarone (b17) 2021; 23 Cheng, Ding, Chen, Zhang, Xue, Wang (b87) 2018; 30 Tang, Tian, Zhou, Yang, He, Zhao, Zhu (b115) 2022; 24 Zhang, Ren, Luo, Shi, Asiri, Li, Sun (b157) 2018; 54 Capdevila-Cortada (b38) 2019; 2 Wen, Li, Zhang, Liang, Zhang, Su, Zeng (b116) 2021; 13 Cheng, Nan, Li, Luo, Chu (b126) 2020; 8 Kyriakou, Garagounis, Vourros, Vasileiou, Stoukides (b47) 2020; 4 Zhang, Wu, Wang, Zhao, Chen, Wang, Wei, Luo, Zhang, Sun (b166) 2019; 9 Zhang, Qiu, Ma, Luo, Tian, Cui, Xie, Chen, Li, Sun (b97) 2018; 8 Huang, Xia, Shi, Asiri, Sun (b132) 2018; 54 Ren, Cui, Chen, Xie, Wei, Tian, Sun (b95) 2018; 54 Xing, Kong, Wu, Xie, Wang, Luo, Shi, Asiri, Zhang, Sun (b149) 2019; 7 Lee, Koh, Lee, Liu, Phang, Han, Tsung, Ling (b178) 2018; 4 Lv, Qian, Yan, Ding, Liu, Chen, Yu (b107) 2018; 130 Lv, Yan, Chen, Ding, Sun, Zhou, Yu (b104) 2018; 130 Jin, Zhang, Han, Wang, Wang, Zhang (b135) 2020; 8 Du, Guo, Kong, Qu (b160) 2018; 54 Zhao, Yin, Liu, Li, Fan, Chen (b179) 2017; 52 Lazouski, Schiffer, Williams, Manthiram (b13) 2019; 3 Jeerh, Zhang, Tao (b6) 2021; 9 Kim, Yoo, Kim, Yoon, Han (b69) 2016; 33 Chen, Cao, Wu, Zeng, Ding, Zhu, Wang (b90) 2017; 139 Shi, Bao, Wulan, Li, Zhang, Yan, Jiang (b89) 2017; 29 Liang, Ren, Yang, Gao, Gao, Yang, Zhu, Li, Ma, Liu (b180) 2021; 13 Zhang, Hu, Zhang, Cheung, Zhang, Liu, Leung (b123) 2021; 46 Li, Wu, Liu, Li, Li, Zhao, Alshehri, Alzahrani, Luo, Li (b159) 2021; 8 Zhang, Zhou, Zhang, Zhou, Ding, Li, Hong, Dou, Shao, Murphy (b58) 2023; 6 Xu, Ma, Li, Liu, Lu, Asiri, Yang, Sun (b145) 2020; 56 Zhang, Wang, Maréchal, Desideri (b4) 2020; 259 Wang, Gu, Zhang, Yang, Wang, Guan, Chen, Chi, Jia, Muroyama (b16) 2020; 270 Hou, Yang, Zhang (b29) 2020; 12 Cao, Zheng (b45) 2018; 11 Nan, Liu, Chao, Fang, Dong (b128) 2023 Wu, Fan, Zhang, Zhang (b24) 2021; 16 Ji, Liu (b150) 2021; 2 Palys, Wang, Zhang, Daoutidis (b15) 2021; 31 Zhang, Ji, Zhang, Chen, Li, Liu, Li, Qu (b139) 2019; Zamfirescu (10.1016/j.apenergy.2023.121960_b12) 2008; 185 Suryanto (10.1016/j.apenergy.2023.121960_b1) 2021; 372 Wang (10.1016/j.apenergy.2023.121960_b120) 2018; 9 Zhu (10.1016/j.apenergy.2023.121960_b151) 2019; 7 Lee (10.1016/j.apenergy.2023.121960_b178) 2018; 4 Zhang (10.1016/j.apenergy.2023.121960_b181) 2019; 7 Niu (10.1016/j.apenergy.2023.121960_b31) 2021; 61 Yang (10.1016/j.apenergy.2023.121960_b156) 2021; 13 Foster (10.1016/j.apenergy.2023.121960_b14) 2018; 1 Du (10.1016/j.apenergy.2023.121960_b77) 2021; 1 Suryanto (10.1016/j.apenergy.2023.121960_b62) 2018; 3 Han (10.1016/j.apenergy.2023.121960_b92) 2019; 131 Nan (10.1016/j.apenergy.2023.121960_b128) 2023 Zhang (10.1016/j.apenergy.2023.121960_b157) 2018; 54 Zhang (10.1016/j.apenergy.2023.121960_b171) 2019; 12 Jin (10.1016/j.apenergy.2023.121960_b135) 2020; 8 Zhang (10.1016/j.apenergy.2023.121960_b123) 2021; 46 Zhao (10.1016/j.apenergy.2023.121960_b21) 2019; 1 Yang (10.1016/j.apenergy.2023.121960_b91) 2017; 5 Lv (10.1016/j.apenergy.2023.121960_b104) 2018; 130 Zhang (10.1016/j.apenergy.2023.121960_b182) 2019; 6 Nazemi (10.1016/j.apenergy.2023.121960_b105) 2018; 49 Zhang (10.1016/j.apenergy.2023.121960_b86) 2019; 131 Wang (10.1016/j.apenergy.2023.121960_b146) 2020; 56 Li (10.1016/j.apenergy.2023.121960_b121) 2019; 9 Su (10.1016/j.apenergy.2023.121960_b174) 2020; 132 Lan (10.1016/j.apenergy.2023.121960_b11) 2012; 37 Lazouski (10.1016/j.apenergy.2023.121960_b34) 2020; 3 Tang (10.1016/j.apenergy.2023.121960_b115) 2022; 24 Giddey (10.1016/j.apenergy.2023.121960_b22) 2013; 38 Biswas (10.1016/j.apenergy.2023.121960_b70) 2022; 119 Xu (10.1016/j.apenergy.2023.121960_b113) 2020; 8 Xian (10.1016/j.apenergy.2023.121960_b129) 2019; 12 Zhao (10.1016/j.apenergy.2023.121960_b154) 2018; 54 Wang (10.1016/j.apenergy.2023.121960_b177) 2019; 55 Wu (10.1016/j.apenergy.2023.121960_b43) 2021; 16 Kong (10.1016/j.apenergy.2023.121960_b143) 2019; 11 Li (10.1016/j.apenergy.2023.121960_b158) 2019; 55 Andersen (10.1016/j.apenergy.2023.121960_b183) 2019; 570 (10.1016/j.apenergy.2023.121960_b18) 2023 Sheets (10.1016/j.apenergy.2023.121960_b46) 2018; 54 Hou (10.1016/j.apenergy.2023.121960_b29) 2020; 12 Liu (10.1016/j.apenergy.2023.121960_b152) 2020; 44 Jiao (10.1016/j.apenergy.2023.121960_b8) 2019; 31 Lan (10.1016/j.apenergy.2023.121960_b33) 2013; 3 Wu (10.1016/j.apenergy.2023.121960_b57) 2021; 299 Zheng (10.1016/j.apenergy.2023.121960_b56) 2023 Zhang (10.1016/j.apenergy.2023.121960_b139) 2019; 59 Zhang (10.1016/j.apenergy.2023.121960_b97) 2018; 8 Luo (10.1016/j.apenergy.2023.121960_b64) 2019; 3 Ripepi (10.1016/j.apenergy.2023.121960_b72) 2021; 6 McEnaney (10.1016/j.apenergy.2023.121960_b48) 2017; 10 Li (10.1016/j.apenergy.2023.121960_b134) 2019; 7 Lv (10.1016/j.apenergy.2023.121960_b75) 2020; 13 Ren (10.1016/j.apenergy.2023.121960_b95) 2018; 54 Ardo (10.1016/j.apenergy.2023.121960_b20) 2018; 11 Zhao (10.1016/j.apenergy.2023.121960_b39) 2021; 33 Kim (10.1016/j.apenergy.2023.121960_b69) 2016; 33 Yu (10.1016/j.apenergy.2023.121960_b109) 2018; 2 Lv (10.1016/j.apenergy.2023.121960_b107) 2018; 130 Deng (10.1016/j.apenergy.2023.121960_b131) 2019; 7 Lv (10.1016/j.apenergy.2023.121960_b63) 2020; 4 Cao (10.1016/j.apenergy.2023.121960_b45) 2018; 11 Li (10.1016/j.apenergy.2023.121960_b159) 2021; 8 Singh (10.1016/j.apenergy.2023.121960_b59) 2019; 9 Zhao (10.1016/j.apenergy.2023.121960_b179) 2017; 52 Tang (10.1016/j.apenergy.2023.121960_b185) 2019; 48 Shen (10.1016/j.apenergy.2023.121960_b176) 2020; 56 Guo (10.1016/j.apenergy.2023.121960_b102) 2018; 2 Yu (10.1016/j.apenergy.2023.121960_b140) 2019; 11 Licht (10.1016/j.apenergy.2023.121960_b67) 2014; 345 Shen (10.1016/j.apenergy.2023.121960_b44) 2021; 7 Kim (10.1016/j.apenergy.2023.121960_b52) 2019; 21 Zhao (10.1016/j.apenergy.2023.121960_b169) 2019; 55 Liang (10.1016/j.apenergy.2023.121960_b180) 2021; 13 Peng (10.1016/j.apenergy.2023.121960_b37) 2017; 42 Ji (10.1016/j.apenergy.2023.121960_b150) 2021; 2 Gu (10.1016/j.apenergy.2023.121960_b175) 2020; 12 Guo (10.1016/j.apenergy.2023.121960_b78) 2019; 7 Xie (10.1016/j.apenergy.2023.121960_b170) 2019; 7 Yang (10.1016/j.apenergy.2023.121960_b133) 2020; 32 Kim (10.1016/j.apenergy.2023.121960_b50) 2018; 165 Li (10.1016/j.apenergy.2023.121960_b147) 2019; 58 Rao (10.1016/j.apenergy.2023.121960_b74) 2022; 168 Soloveichik (10.1016/j.apenergy.2023.121960_b32) 2019; 2 Zhang (10.1016/j.apenergy.2023.121960_b4) 2020; 259 Li (10.1016/j.apenergy.2023.121960_b85) 2021; 4 Zhang (10.1016/j.apenergy.2023.121960_b166) 2019; 9 Cheng (10.1016/j.apenergy.2023.121960_b87) 2018; 30 Zhang (10.1016/j.apenergy.2023.121960_b100) 2018; 54 Du (10.1016/j.apenergy.2023.121960_b160) 2018; 54 Huang (10.1016/j.apenergy.2023.121960_b125) 2020; 8 Yao (10.1016/j.apenergy.2023.121960_b184) 2020; 3 Li (10.1016/j.apenergy.2023.121960_b163) 2021; 42 Fu (10.1016/j.apenergy.2023.121960_b165) 2019; 7 Zhao (10.1016/j.apenergy.2023.121960_b172) 2019; 11 Stangarone (10.1016/j.apenergy.2023.121960_b17) 2021; 23 Chen (10.1016/j.apenergy.2023.121960_b90) 2017; 139 Huang (10.1016/j.apenergy.2023.121960_b132) 2018; 54 Qing (10.1016/j.apenergy.2023.121960_b186) 2020; 120 Chen (10.1016/j.apenergy.2023.121960_b7) 2019; 7 Lazouski (10.1016/j.apenergy.2023.121960_b13) 2019; 3 Li (10.1016/j.apenergy.2023.121960_b42) 2021; 7 Wang (10.1016/j.apenergy.2023.121960_b16) 2020; 270 Han (10.1016/j.apenergy.2023.121960_b103) 2018; 6 Song (10.1016/j.apenergy.2023.121960_b108) 2018; 4 Deng (10.1016/j.apenergy.2023.121960_b60) 2018; 2 Erdemir (10.1016/j.apenergy.2023.121960_b3) 2021; 45 Qu (10.1016/j.apenergy.2023.121960_b119) 2022; 433 Sažinas (10.1016/j.apenergy.2023.121960_b49) 2022; 13 Abghoui (10.1016/j.apenergy.2023.121960_b27) 2015; 17 Wang (10.1016/j.apenergy.2023.121960_b114) 2020; 10 Liu (10.1016/j.apenergy.2023.121960_b81) 2022; 15 Kyriakou (10.1016/j.apenergy.2023.121960_b47) 2020; 4 Zhang (10.1016/j.apenergy.2023.121960_b98) 2018; 6 Liu (10.1016/j.apenergy.2023.121960_b130) 2018; 6 Giddey (10.1016/j.apenergy.2023.121960_b35) 2013; 38 Sharma (10.1016/j.apenergy.2023.121960_b55) 2020; 6 Xu (10.1016/j.apenergy.2023.121960_b124) 2022; 46 McPherson (10.1016/j.apenergy.2023.121960_b68) 2019; 131 Liu (10.1016/j.apenergy.2023.121960_b83) 2020; 32 Jin (10.1016/j.apenergy.2023.121960_b137) 2019; 31 Liu (10.1016/j.apenergy.2023.121960_b153) 2020; 8 Kim (10.1016/j.apenergy.2023.121960_b51) 2018; 11 Ghavam (10.1016/j.apenergy.2023.121960_b73) 2021; 46 Wu (10.1016/j.apenergy.2023.121960_b24) 2021; 16 Liu (10.1016/j.apenergy.2023.121960_b26) 2021; 29 Wu (10.1016/j.apenergy.2023.121960_b162) 2019; 3 Chehade (10.1016/j.apenergy.2023.121960_b5) 2021; 299 Chehade (10.1016/j.apenergy.2023.121960_b53) 2020; 44 Geng (10.1016/j.apenergy.2023.121960_b84) 2018; 30 Jeerh (10.1016/j.apenergy.2023.121960_b6) 2021; 9 Zhang (10.1016/j.apenergy.2023.121960_b58) 2023; 6 Zhang (10.1016/j.apenergy.2023.121960_b94) 2018; 6 Wang (10.1016/j.apenergy.2023.121960_b96) 2018; 9 Wang (10.1016/j.apenergy.2023.121960_b54) 2021; 60 Han (10.1016/j.apenergy.2023.121960_b99) 2018; 52 Pan (10.1016/j.apenergy.2023.121960_b10) 2022; 322 Mao (10.1016/j.apenergy.2023.121960_b117) 2022; 904 Xu (10.1016/j.apenergy.2023.121960_b28) 2020; 69 Wu (10.1016/j.apenergy.2023.121960_b144) 2020; 56 MacFarlane (10.1016/j.apenergy.2023.121960_b2) 2020; 4 Ithisuphalap (10.1016/j.apenergy.2023.121960_b41) 2019; 3 Li (10.1016/j.apenergy.2023.121960_b88) 2017; 29 Wang (10.1016/j.apenergy.2023.121960_b82) 2022; 609 Chang (10.1016/j.apenergy.2023.121960_b71) 2022; 2 Chen (10.1016/j.apenergy.2023.121960_b76) 2019; 7 Chai (10.1016/j.apenergy.2023.121960_b40) 2021; 303 Wen (10.1016/j.apenergy.2023.121960_b116) 2021; 13 Huang (10.1016/j.apenergy.2023.121960_b101) 2019; 3 Kyriakou (10.1016/j.apenergy.2023.121960_b23) 2017; 286 Han (10.1016/j.apenergy.2023.121960_b25) 2022; 55 Xu (10.1016/j.apenergy.2023.121960_b148) 2020; 56 Capdevila-Cortada (10.1016/j.apenergy.2023.121960_b38) 2019; 2 Qiu (10.1016/j.apenergy.2023.121960_b110) 2018; 9 Martín (10.1016/j.apenergy.2023.121960_b61) 2019; 5 Xing (10.1016/j.apenergy.2023.121960_b149) 2019; 7 Yang (10.1016/j.apenergy.2023.121960_b106) 2018; 140 Yuan (10.1016/j.apenergy.2023.121960_b112) 2019; 7 Cheng (10.1016/j.apenergy.2023.121960_b126) 2020; 8 Yu (10.1016/j.apenergy.2023.121960_b161) 2020; 8 Cui (10.1016/j.apenergy.2023.121960_b122) 2021; 426 Bicer (10.1016/j.apenergy.2023.121960_b66) 2017; 164 Palys (10.1016/j.apenergy.2023.121960_b15) 2021; 31 (10.1016/j.apenergy.2023.121960_b19) 2023 Cui (10.1016/j.apenergy.2023.121960_b30) 2018; 8 Zhang (10.1016/j.apenergy.2023.121960_b93) 2018; 30 Wang (10.1016/j.apenergy.2023.121960_b118) 2021; 60 Wu (10.1016/j.apenergy.2023.121960_b173) 2018; 14 Zhao (10.1016/j.apenergy.2023.121960_b168) 2021; 284 Xu (10.1016/j.apenergy.2023.121960_b145) 2020; 56 Wang (10.1016/j.apenergy.2023.121960_b127) 2019; 9 Yu (10.1016/j.apenergy.2023.121960_b138) 2019; 55 Chu (10.1016/j.apenergy.2023.121960_b164) 2019; 2 Du (10.1016/j.apenergy.2023.121960_b155) 2020; 8 Tursun (10.1016/j.apenergy.2023.121960_b36) 2023; 342 Su (10.1016/j.apenergy.2023.121960_b9) 2023; 343 Shi (10.1016/j.apenergy.2023.121960_b89) 2017; 29 Wang (10.1016/j.apenergy.2023.121960_b142) 2020; 381 Ren (10.1016/j.apenergy.2023.121960_b167) 2018; 5 Mushtaq (10.1016/j.apenergy.2023.121960_b79) 2023; 176 Li (10.1016/j.apenergy.2023.121960_b141) 2019; 7 Li (10.1016/j.apenergy.2023.121960_b136) 2018; 8 ami (10.1016/j.apenergy.2023.121960_b65) 2005; 50 Bat-Erdene (10.1016/j.apenergy.2023.121960_b80) 2020; 8 Gao (10.1016/j.apenergy.2023.121960_b111) 2020; 8 |
References_xml | – volume: 30 year: 2018 ident: b87 article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions publication-title: Adv Mater – volume: 9 start-page: 1795 year: 2018 ident: b96 article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nature Commun – volume: 7 start-page: 16117 year: 2019 end-page: 16121 ident: b151 article-title: Ambient electrohydrogenation of N publication-title: J Mater Chem A – volume: 55 year: 2022 ident: b25 article-title: Ammonia synthesis by electrochemical nitrogen reduction reaction-A novel energy storage way publication-title: J Energy Storage – volume: 44 start-page: 7183 year: 2020 end-page: 7197 ident: b53 article-title: A novel method for a new electromagnetic-induced ammonia synthesizer publication-title: Int J Energy Res – volume: 6 start-page: 313 year: 2020 end-page: 319 ident: b55 article-title: Plasma activated electrochemical ammonia synthesis from nitrogen and water publication-title: ACS Energy Lett – volume: 49 start-page: 316 year: 2018 end-page: 323 ident: b105 article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages publication-title: Nano Energy – volume: 21 start-page: 3839 year: 2019 end-page: 3845 ident: b52 article-title: Lithium-mediated ammonia synthesis from water and nitrogen: A membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system publication-title: Green Chem – volume: 139 start-page: 9771 year: 2017 end-page: 9774 ident: b90 article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li publication-title: J Am Chem Soc – volume: 4 start-page: 1186 year: 2020 end-page: 1205 ident: b2 article-title: A roadmap to the ammonia economy publication-title: Joule – volume: 381 start-page: 78 year: 2020 end-page: 83 ident: b142 article-title: Self-supported NbSe publication-title: J Catal – volume: 33 start-page: 1777 year: 2016 end-page: 1780 ident: b69 article-title: Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe publication-title: Korean J Chem Eng – volume: 54 start-page: 11427 year: 2018 end-page: 11430 ident: b132 article-title: Ag nanosheets for efficient electrocatalytic N publication-title: ChemComm – volume: 131 start-page: 2638 year: 2019 end-page: 2642 ident: b86 article-title: Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets publication-title: Angew Chem – volume: 32 year: 2020 ident: b83 article-title: A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N publication-title: Adv Mater – volume: 7 start-page: 26371 year: 2019 end-page: 26377 ident: b181 article-title: Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction publication-title: J Mater Chem A – volume: 6 start-page: 391 year: 2019 end-page: 395 ident: b182 article-title: Metal–organic framework-derived shuttle-like V publication-title: Inorg Chem Front – volume: 286 start-page: 2 year: 2017 end-page: 13 ident: b23 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal Today – volume: 2 start-page: 377 year: 2019 end-page: 380 ident: b32 article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process publication-title: Nat Catal – volume: 56 start-page: 14031 year: 2020 end-page: 14034 ident: b148 article-title: Enhanced electrocatalytic N publication-title: ChemComm – volume: 322 year: 2022 ident: b10 article-title: A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage publication-title: Appl Energy – volume: 284 year: 2021 ident: b168 article-title: Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N publication-title: Appl Catal B – volume: 46 start-page: 16661 year: 2022 end-page: 16665 ident: b124 article-title: Carbon-doped tin disulfide nanoflowers: A heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia publication-title: New J Chem – volume: 13 start-page: 4605 year: 2022 end-page: 4611 ident: b49 article-title: Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis publication-title: J Phy Chem Lett – volume: 37 start-page: 1482 year: 2012 end-page: 1494 ident: b11 article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials publication-title: Int J Hydrogen Energy – start-page: 1 year: 2023 end-page: 8 ident: b128 article-title: Crystal defect engineering of Bi publication-title: Nano Res – volume: 164 start-page: H5036 year: 2017 ident: b66 article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure publication-title: J Electrochem Soc – volume: 140 start-page: 13387 year: 2018 end-page: 13391 ident: b106 article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles publication-title: J Am Chem Soc – volume: 3 start-page: 463 year: 2020 end-page: 469 ident: b34 article-title: Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen publication-title: Nat Catal – volume: 11 start-page: 120 year: 2018 end-page: 124 ident: b51 article-title: Electrochemical synthesis of ammonia from water and nitrogen: A lithium-mediated approach using lithium-ion conducting glass ceramics publication-title: ChemSusChem – volume: 2 start-page: 1610 year: 2018 end-page: 1622 ident: b109 article-title: Boron-doped graphene for electrocatalytic N publication-title: Joule – volume: 120 start-page: 5437 year: 2020 end-page: 5516 ident: b186 article-title: Recent advances and challenges of electrocatalytic N publication-title: Chem Rev – volume: 16 year: 2021 ident: b24 article-title: Electrochemical synthesis of ammonia: Progress and challenges publication-title: Mater Today Phys – volume: 7 start-page: 9622 year: 2019 end-page: 9628 ident: b165 article-title: Oxygen vacancies in Ta publication-title: ACS Sustain Chem Eng – volume: 7 start-page: 1708 year: 2021 end-page: 1754 ident: b44 article-title: Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design publication-title: Chem – volume: 4 start-page: 4469 year: 2020 end-page: 4472 ident: b63 article-title: Sn dendrites for electrocatalytic N publication-title: Sustain Energy Fuels – volume: 342 year: 2023 ident: b36 article-title: Defective 1T publication-title: Fuel – volume: 176 year: 2023 ident: b79 article-title: Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives publication-title: Renew Sustain Energy Rev – volume: 259 year: 2020 ident: b4 article-title: Techno-economic comparison of green ammonia production processes publication-title: Appl Energy – volume: 7 start-page: 12692 year: 2019 end-page: 12696 ident: b149 article-title: Hollow Bi publication-title: ACS Sustain Chem Eng – volume: 11 start-page: 2768 year: 2018 end-page: 2783 ident: b20 article-title: Pathways to electrochemical solar-hydrogen technologies publication-title: Energy Environ Sci – volume: 55 start-page: 4997 year: 2019 end-page: 5000 ident: b169 article-title: Efficient electrohydrogenation of N publication-title: ChemComm – volume: 42 start-page: 1755 year: 2021 end-page: 1762 ident: b163 article-title: La-doped TiO publication-title: Chin J Catal – volume: 45 start-page: 4827 year: 2021 end-page: 4834 ident: b3 article-title: A perspective on the use of ammonia as a clean fuel: Challenges and solutions publication-title: Int J Energy Res – volume: 2 start-page: 846 year: 2018 end-page: 856 ident: b60 article-title: Electrocatalytic nitrogen reduction at low temperature publication-title: Joule – volume: 5 start-page: 18967 year: 2017 end-page: 18971 ident: b91 article-title: Electrochemical reduction of aqueous nitrogen (N publication-title: J Mater Chem A – volume: 130 start-page: 10403 year: 2018 end-page: 10407 ident: b107 article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions publication-title: Angew Chem – volume: 6 start-page: 3211 year: 2018 end-page: 3217 ident: b130 article-title: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction publication-title: J Mater Chem A – volume: 13 start-page: 2843 year: 2021 end-page: 2848 ident: b180 article-title: A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction publication-title: Nanoscale – volume: 7 start-page: 16979 year: 2019 end-page: 16983 ident: b112 article-title: Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis publication-title: J Mater Chem A – volume: 570 start-page: 504 year: 2019 end-page: 508 ident: b183 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature – volume: 9 start-page: 727 year: 2021 end-page: 752 ident: b6 article-title: Recent progress in ammonia fuel cells and their potential applications publication-title: J Mater Chem A – volume: 426 year: 2021 ident: b122 article-title: Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia publication-title: Chem Eng J – volume: 15 start-page: 7134 year: 2022 end-page: 7138 ident: b81 article-title: Enhanced N publication-title: Nano Res – volume: 52 start-page: 10175 year: 2017 end-page: 10185 ident: b179 article-title: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N publication-title: J Mater Sci – volume: 31 year: 2021 ident: b15 article-title: Renewable ammonia for sustainable energy and agriculture: Vision and systems engineering opportunities publication-title: Curr Opin Chem Eng – volume: 130 start-page: 6181 year: 2018 end-page: 6184 ident: b104 article-title: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions publication-title: Angew Chem – volume: 8 start-page: 4735 year: 2020 end-page: 4739 ident: b80 article-title: Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions publication-title: J Mater Chem A – volume: 7 start-page: 2524 year: 2019 end-page: 2528 ident: b141 article-title: A MoS publication-title: J Mater Chem A – volume: 3 year: 2019 ident: b162 article-title: Greatly enhanced electrocatalytic N publication-title: Small Methods – volume: 10 start-page: 29575 year: 2020 end-page: 29579 ident: b114 article-title: Glycerine-based synthesis of a highly efficient Fe publication-title: RSC Adv – volume: 9 start-page: 4609 year: 2019 end-page: 4615 ident: b166 article-title: Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N publication-title: ACS Catal – volume: 119 year: 2022 ident: b70 article-title: Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N publication-title: Proc Natl Acad Sci – volume: 56 start-page: 2107 year: 2020 end-page: 2110 ident: b146 article-title: Bi nanodendrites for efficient electrocatalytic N publication-title: ChemComm – volume: 5 start-page: 116 year: 2018 end-page: 121 ident: b167 article-title: High-performance N publication-title: ACS Cent Sci – volume: 6 start-page: 3817 year: 2021 end-page: 3823 ident: b72 article-title: Ammonia synthesis at ambient conditions via electrochemical atomic hydrogen permeation publication-title: ACS Energy Lett – volume: 3 start-page: 1127 year: 2019 end-page: 1139 ident: b13 article-title: Understanding continuous lithium-mediated electrochemical nitrogen reduction publication-title: Joule – volume: 54 start-page: 8474 year: 2018 end-page: 8477 ident: b95 article-title: Electrochemical N publication-title: Chem Commun – volume: 8 start-page: 13679 year: 2020 end-page: 13684 ident: b125 article-title: Promoting electrocatalytic nitrogen reduction to ammonia via Fe-boosted nitrogen activation on MnO publication-title: J Mater Chem A – volume: 9 start-page: 3485 year: 2018 ident: b110 article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst publication-title: Nature Commun – volume: 3 year: 2019 ident: b41 article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis publication-title: Small Methods – volume: 3 year: 2019 ident: b101 article-title: NbO publication-title: Small Methods – volume: 6 year: 2023 ident: b58 article-title: Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis publication-title: Energy Environ Mater – volume: 50 start-page: 5423 year: 2005 end-page: 5426 ident: b65 article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure publication-title: Electrochim Acta – volume: 38 start-page: 14576 year: 2013 end-page: 14594 ident: b22 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int J Hydrogen Energy – volume: 46 start-page: 4072 year: 2021 end-page: 4086 ident: b73 article-title: A novel approach to ammonia synthesis from hydrogen sulfide publication-title: Int J Hydrogen Energy – volume: 2 start-page: 3552 year: 2021 end-page: 3555 ident: b150 article-title: A nanoporous CeO publication-title: Mater Adv – volume: 433 year: 2022 ident: b119 article-title: Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia publication-title: Chem Eng J – volume: 4 start-page: 10 year: 2021 ident: b85 article-title: Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots publication-title: Commun Chem – volume: 6 start-page: 9550 year: 2018 end-page: 9554 ident: b94 article-title: Efficient electrochemical N publication-title: ACS Sustain Chem Eng – volume: 6 start-page: 12974 year: 2018 end-page: 12977 ident: b103 article-title: MoO publication-title: J Mater Chem A – volume: 8 start-page: 17956 year: 2020 end-page: 17959 ident: b111 article-title: Enabling electrochemical conversion of N publication-title: J Mater Chem A – volume: 56 start-page: 10505 year: 2020 end-page: 10508 ident: b176 article-title: FeVO publication-title: ChemComm – volume: 2 start-page: 1055 year: 2019 ident: b38 article-title: Electrifying the Haber–Bosch publication-title: Nat Catal – volume: 4 start-page: eaar3208 year: 2018 ident: b178 article-title: Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach publication-title: Sci Adv – volume: 4 year: 2018 ident: b108 article-title: A physical catalyst for the electrolysis of nitrogen to ammonia publication-title: Sci Adv – volume: 3 start-page: 1219 year: 2018 end-page: 1224 ident: b62 article-title: Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions publication-title: ACS Energy Lett – volume: 13 start-page: 3061 year: 2020 end-page: 3078 ident: b75 article-title: Ambient ammonia electrosynthesis: Current status, challenges, and perspectives publication-title: ChemSusChem – volume: 30 year: 2018 ident: b93 article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS publication-title: Adv Mater – volume: 11 start-page: 4231 year: 2019 end-page: 4235 ident: b172 article-title: High-performance N publication-title: Nanoscale – volume: 1 year: 2019 ident: b21 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: EnergyChem – volume: 372 start-page: 1187 year: 2021 end-page: 1191 ident: b1 article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle publication-title: Science – volume: 343 year: 2023 ident: b9 article-title: Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode publication-title: Appl Energy – volume: 185 start-page: 459 year: 2008 end-page: 465 ident: b12 article-title: Using ammonia as a sustainable fuel publication-title: J Power Sources – volume: 8 year: 2018 ident: b30 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv Energy Mater – volume: 299 year: 2021 ident: b57 article-title: Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis publication-title: Appl Catal B – volume: 165 start-page: F1027 year: 2018 ident: b50 article-title: Lithium-mediated ammonia electro-synthesis: Effect of CsClO publication-title: J Electrochem Soc – volume: 7 start-page: 3531 year: 2019 end-page: 3543 ident: b78 article-title: Recent progress in electrocatalytic nitrogen reduction publication-title: J Mater Chem A – volume: 3 start-page: 239 year: 2020 end-page: 270 ident: b184 article-title: Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges publication-title: Electrochem Energy Rev – volume: 33 year: 2021 ident: b39 article-title: Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction publication-title: Adv Mater – volume: 30 year: 2018 ident: b84 article-title: Achieving a record-high yield rate of 120.9 publication-title: Adv Mater – volume: 7 start-page: 21674 year: 2019 end-page: 21677 ident: b131 article-title: Improving the electrocatalytic N publication-title: J Mater Chem A – volume: 60 start-page: 7584 year: 2021 end-page: 7589 ident: b118 article-title: In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N publication-title: Inorg Chem – volume: 303 year: 2021 ident: b40 article-title: Microalgae and ammonia: A review on inter-relationship publication-title: Fuel – volume: 299 year: 2021 ident: b5 article-title: Progress in green ammonia production as potential carbon-free fuel publication-title: Fuel – volume: 7 start-page: 23416 year: 2019 end-page: 23431 ident: b76 article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis publication-title: J Mater Chem A – volume: 8 start-page: 5936 year: 2020 end-page: 5942 ident: b135 article-title: Efficient electrochemical N publication-title: J Mater Chem A – volume: 55 start-page: 7502 year: 2019 end-page: 7505 ident: b177 article-title: Electrocatalytic N publication-title: ChemComm – volume: 59 start-page: 10 year: 2019 end-page: 16 ident: b139 article-title: Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation publication-title: Nano Energy – volume: 132 start-page: 20591 year: 2020 end-page: 20596 ident: b174 article-title: Single atoms of iron on MoS publication-title: Angew Chem – volume: 12 start-page: 2445 year: 2019 end-page: 2451 ident: b129 article-title: Bioinspired electrocatalyst for electrochemical reduction of N publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 919 year: 2019 end-page: 924 ident: b171 article-title: Hexagonal boron nitride nanosheet for effective ambient N publication-title: Nano Res – volume: 24 start-page: 11491 year: 2022 end-page: 11495 ident: b115 article-title: Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen publication-title: Phys Chem Chem Phys – volume: 1 start-page: 490 year: 2018 end-page: 500 ident: b14 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nat Catal – volume: 13 start-page: 21474 year: 2021 end-page: 21481 ident: b156 article-title: Electrochemical fixation of nitrogen by promoting N publication-title: ACS Appl Mater Interfaces – year: 2023 ident: b18 article-title: National green hydrogen mission – year: 2023 ident: b19 article-title: National green hydrogen mission - ministry of new and renewable energy, government of India – volume: 3 start-page: 1145 year: 2013 ident: b33 article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure publication-title: Sci Rep – volume: 1 start-page: 150 year: 2021 end-page: 173 ident: b77 article-title: Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis publication-title: SusMat – volume: 9 start-page: 2902 year: 2019 end-page: 2908 ident: b121 article-title: Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction publication-title: ACS Catal – volume: 12 start-page: 6900 year: 2020 end-page: 6920 ident: b29 article-title: Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions publication-title: Nanoscale – volume: 7 start-page: 3232 year: 2021 end-page: 3255 ident: b42 article-title: Main-group elements boost electrochemical nitrogen fixation publication-title: Chem – volume: 69 year: 2020 ident: b28 article-title: Electrochemical ammonia synthesis through N publication-title: Nano Energy – volume: 11 start-page: 2992 year: 2018 end-page: 3008 ident: b45 article-title: Aqueous electrocatalytic N publication-title: Nano Res – volume: 6 start-page: 17303 year: 2018 end-page: 17306 ident: b98 article-title: TiO publication-title: J Mater Chem A – volume: 8 start-page: 10572 year: 2020 end-page: 10580 ident: b155 article-title: Enhanced electrochemical reduction of N publication-title: ACS Sustain Chem Eng – volume: 609 start-page: 815 year: 2022 end-page: 824 ident: b82 article-title: Hierarchical CoS publication-title: J Colloid Interface Sci – volume: 131 start-page: 2343 year: 2019 end-page: 2347 ident: b92 article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation publication-title: Angew Chem – volume: 11 start-page: 19274 year: 2019 end-page: 19277 ident: b143 article-title: WO publication-title: Nanoscale – volume: 7 start-page: 17761 year: 2019 end-page: 17765 ident: b134 article-title: Ambient electrocatalytic N publication-title: J Mater Chem A – volume: 29 year: 2017 ident: b89 article-title: Au sub-nanoclusters on TiO publication-title: Adv Mater – volume: 270 year: 2020 ident: b16 article-title: Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells publication-title: Appl Energy – volume: 9 start-page: 4248 year: 2019 end-page: 4254 ident: b127 article-title: Ambient electrocatalytic nitrogen reduction on a MoO publication-title: Catal Sci Technol – volume: 42 start-page: 19056 year: 2017 end-page: 19066 ident: b37 article-title: Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia publication-title: Int J Hydrogen Energy – volume: 13 start-page: 14181 year: 2021 end-page: 14188 ident: b116 article-title: Oxygen vacancy engineering of MOF-derived Zn-doped Co publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 13908 year: 2020 end-page: 13914 ident: b126 article-title: A rare-earth samarium oxide catalyst for electrocatalytic nitrogen reduction to ammonia publication-title: ACS Sustain Chem Eng – volume: 2 start-page: 2288 year: 2019 end-page: 2295 ident: b164 article-title: NiO nanodots on graphene for efficient electrochemical N publication-title: ACS Appl Energy Mater – volume: 8 year: 2018 ident: b136 article-title: Boosted electrocatalytic N publication-title: Adv Energy Mater – volume: 168 year: 2022 ident: b74 article-title: Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion publication-title: Renew Sustain Energy Rev – volume: 11 start-page: 35764 year: 2019 end-page: 35769 ident: b140 article-title: Cr publication-title: ACS Appl Mater Interfaces – volume: 54 start-page: 4250 year: 2018 end-page: 4253 ident: b46 article-title: Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte publication-title: Chem Commun – volume: 8 start-page: 20677 year: 2020 end-page: 20686 ident: b161 article-title: Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers publication-title: J Mater Chem A – volume: 2 year: 2018 ident: b102 article-title: Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature publication-title: Small Methods – volume: 8 start-page: 8540 year: 2018 end-page: 8544 ident: b97 article-title: High-performance electrohydrogenation of N publication-title: ACS Catal – volume: 9 start-page: 8316 year: 2019 end-page: 8324 ident: b59 article-title: Strategies toward selective electrochemical ammonia synthesis publication-title: ACS Catal – volume: 61 start-page: 304 year: 2021 end-page: 318 ident: b31 article-title: Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels publication-title: J Energy Chem – volume: 54 start-page: 5323 year: 2018 end-page: 5325 ident: b100 article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions publication-title: Chem Commun – volume: 12 start-page: 37258 year: 2020 end-page: 37264 ident: b175 article-title: Lithium iron oxide LiFeO publication-title: ACS Appl Mater Interfaces – volume: 4 start-page: 142 year: 2020 end-page: 158 ident: b47 article-title: An electrochemical Haber–Bosch process publication-title: Joule – volume: 8 start-page: 2320 year: 2020 end-page: 2326 ident: b153 article-title: MoS publication-title: ACS Sustain Chem Eng – volume: 52 start-page: 264 year: 2018 end-page: 270 ident: b99 article-title: Ambient N publication-title: Nano Energy – volume: 5 start-page: 263 year: 2019 end-page: 283 ident: b61 article-title: Electrocatalytic reduction of nitrogen: From Haber–Bosch to ammonia artificial leaf publication-title: Chem – volume: 54 start-page: 12848 year: 2018 end-page: 12851 ident: b160 article-title: Cr publication-title: ChemComm – volume: 58 start-page: 9597 year: 2019 end-page: 9601 ident: b147 article-title: Spinel LiMn publication-title: Inorg Chem – volume: 48 start-page: 3166 year: 2019 end-page: 3180 ident: b185 article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully publication-title: Chem Soc Rev – volume: 23 start-page: 509 year: 2021 end-page: 516 ident: b17 article-title: South Korean efforts to transition to a hydrogen economy publication-title: Clean Technol Environ Policy – volume: 3 start-page: 279 year: 2019 end-page: 289 ident: b64 article-title: Efficient electrocatalytic N publication-title: Joule – volume: 8 start-page: 15875 year: 2020 end-page: 15883 ident: b113 article-title: Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis publication-title: J Mater Chem A – volume: 32 year: 2020 ident: b133 article-title: A generalized surface chalcogenation strategy for boosting the electrochemical N publication-title: Adv Mater – volume: 29 year: 2021 ident: b26 article-title: Recent advances in strategies for highly selective electrocatalytic N publication-title: Curr Opin Electrochem – volume: 46 start-page: 13011 year: 2021 end-page: 13019 ident: b123 article-title: Mo publication-title: Int J Hydrogen Energy – volume: 29 year: 2017 ident: b88 article-title: Amorphizing of Au nanoparticles by CeO publication-title: Adv Mater – volume: 55 start-page: 6401 year: 2019 end-page: 6404 ident: b138 article-title: A perovskite La publication-title: ChemComm – volume: 44 start-page: 21070 year: 2020 end-page: 21075 ident: b152 article-title: Electrocatalytic reduction of nitrogen to ammonia under ambient conditions using a nanorod-structured MoN catalyst publication-title: New J Chem – volume: 7 start-page: 23416 year: 2019 end-page: 23431 ident: b7 article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis publication-title: J Mater Chem A – volume: 8 start-page: 3105 year: 2021 end-page: 3110 ident: b159 article-title: CuS concave polyhedral superstructures enabled efficient N publication-title: Inorg Chem Front – year: 2023 ident: b56 article-title: Enhanced NH publication-title: JACS Au – volume: 60 start-page: 18721 year: 2021 end-page: 18727 ident: b54 article-title: Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation publication-title: Angew Chem Int Ed – volume: 16 year: 2021 ident: b43 article-title: Electrochemical synthesis of ammonia: Progress and challenges publication-title: Mater Today Phys – volume: 2 start-page: 358 year: 2022 end-page: 371 ident: b71 article-title: Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation publication-title: Chem Catal – volume: 54 start-page: 13010 year: 2018 end-page: 13013 ident: b154 article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe publication-title: ChemComm – volume: 7 start-page: 24760 year: 2019 end-page: 24764 ident: b170 article-title: PdP publication-title: J Mater Chem A – volume: 31 year: 2019 ident: b8 article-title: Electrochemical ammonia synthesis and ammonia fuel cells publication-title: Adv Mater – volume: 54 start-page: 12966 year: 2018 end-page: 12969 ident: b157 article-title: Ambient NH publication-title: ChemComm – volume: 10 start-page: 1621 year: 2017 end-page: 1630 ident: b48 article-title: Ammonia synthesis from N publication-title: Energy Environ Sci – volume: 56 start-page: 3673 year: 2020 end-page: 3676 ident: b145 article-title: Ambient electrochemical NH publication-title: ChemComm – volume: 131 start-page: 17594 year: 2019 end-page: 17602 ident: b68 article-title: The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics publication-title: Angew Chem – volume: 345 start-page: 637 year: 2014 end-page: 640 ident: b67 article-title: Ammonia synthesis by N publication-title: Science – volume: 55 start-page: 14474 year: 2019 end-page: 14477 ident: b158 article-title: Dendritic Cu: A high-efficiency electrocatalyst for N publication-title: ChemComm – volume: 31 year: 2019 ident: b137 article-title: Nitrogen vacancies on 2D layered W publication-title: Adv Mater – volume: 904 year: 2022 ident: b117 article-title: Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis publication-title: J Electroanal Chem – volume: 56 start-page: 1831 year: 2020 end-page: 1834 ident: b144 article-title: P-doped graphene toward enhanced electrocatalytic N publication-title: ChemComm – volume: 14 year: 2018 ident: b173 article-title: Mn publication-title: Small – volume: 17 start-page: 4909 year: 2015 end-page: 4918 ident: b27 article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design publication-title: Phys Chem Chem Phys – volume: 9 start-page: 336 year: 2018 end-page: 344 ident: b120 article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal – volume: 38 start-page: 14576 year: 2013 end-page: 14594 ident: b35 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int J Hydrogen Energy – volume: 299 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b57 article-title: Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.120667 – volume: 6 start-page: 12974 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b103 article-title: MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 publication-title: J Mater Chem A doi: 10.1039/C8TA03974G – volume: 13 start-page: 14181 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b116 article-title: Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c22767 – volume: 9 start-page: 2902 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b121 article-title: Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction publication-title: ACS Catal doi: 10.1021/acscatal.9b00366 – volume: 16 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b43 article-title: Electrochemical synthesis of ammonia: Progress and challenges publication-title: Mater Today Phys – volume: 2 start-page: 377 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b32 article-title: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process publication-title: Nat Catal doi: 10.1038/s41929-019-0280-0 – volume: 54 start-page: 4250 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b46 article-title: Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte publication-title: Chem Commun doi: 10.1039/C8CC00657A – volume: 343 year: 2023 ident: 10.1016/j.apenergy.2023.121960_b9 article-title: Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121184 – volume: 9 start-page: 1795 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b96 article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nature Commun doi: 10.1038/s41467-018-04213-9 – volume: 6 start-page: 3817 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b72 article-title: Ammonia synthesis at ambient conditions via electrochemical atomic hydrogen permeation publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c01568 – volume: 55 start-page: 4997 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b169 article-title: Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions publication-title: ChemComm – volume: 1 start-page: 490 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b14 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nat Catal doi: 10.1038/s41929-018-0092-7 – volume: 11 start-page: 4231 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b172 article-title: High-performance N2-to-NH3 fixation by a metal-free electrocatalyst publication-title: Nanoscale doi: 10.1039/C8NR10401H – volume: 5 start-page: 116 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b167 article-title: High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00734 – volume: 9 start-page: 727 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b6 article-title: Recent progress in ammonia fuel cells and their potential applications publication-title: J Mater Chem A doi: 10.1039/D0TA08810B – volume: 119 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b70 article-title: Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2204638119 – volume: 55 start-page: 14474 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b158 article-title: Dendritic Cu: A high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions publication-title: ChemComm – volume: 120 start-page: 5437 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b186 article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00659 – volume: 426 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b122 article-title: Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131843 – volume: 56 start-page: 10505 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b176 article-title: FeVO4 porous nanorods for electrochemical nitrogen reduction: Contribution of the Fe 2c–V 2c dimer as a dual electron-donation center publication-title: ChemComm – volume: 139 start-page: 9771 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b90 article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy publication-title: J Am Chem Soc doi: 10.1021/jacs.7b04393 – volume: 17 start-page: 4909 year: 2015 ident: 10.1016/j.apenergy.2023.121960_b27 article-title: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP04838E – volume: 342 year: 2023 ident: 10.1016/j.apenergy.2023.121960_b36 article-title: Defective 1T′-MoX2 (X = S, Se, Te) monolayers for electrocatalytic ammonia synthesis: Steric and electronic effects on the catalytic activity publication-title: Fuel doi: 10.1016/j.fuel.2023.127779 – volume: 2 start-page: 3552 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b150 article-title: A nanoporous CeO2 nanowire array by acid etching preparation: An efficient electrocatalyst for ambient N2 reduction publication-title: Mater Adv doi: 10.1039/D1MA00243K – volume: 2 start-page: 1055 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b38 article-title: Electrifying the Haber–Bosch publication-title: Nat Catal doi: 10.1038/s41929-019-0414-4 – volume: 6 start-page: 3211 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b130 article-title: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction publication-title: J Mater Chem A doi: 10.1039/C7TA10866D – volume: 55 start-page: 7502 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b177 article-title: Electrocatalytic N2-to-NH3 conversion using oxygen-doped graphene: Experimental and theoretical studies publication-title: ChemComm – volume: 8 start-page: 2320 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b153 article-title: MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b07679 – volume: 46 start-page: 4072 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b73 article-title: A novel approach to ammonia synthesis from hydrogen sulfide publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.192 – volume: 7 start-page: 1708 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b44 article-title: Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design publication-title: Chem doi: 10.1016/j.chempr.2021.01.009 – volume: 8 start-page: 20677 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b161 article-title: Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers publication-title: J Mater Chem A doi: 10.1039/D0TA06576E – volume: 7 start-page: 23416 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b76 article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis publication-title: J Mater Chem A doi: 10.1039/C9TA05505C – volume: 3 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b41 article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis publication-title: Small Methods doi: 10.1002/smtd.201800352 – volume: 11 start-page: 120 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b51 article-title: Electrochemical synthesis of ammonia from water and nitrogen: A lithium-mediated approach using lithium-ion conducting glass ceramics publication-title: ChemSusChem doi: 10.1002/cssc.201701975 – volume: 13 start-page: 21474 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b156 article-title: Electrochemical fixation of nitrogen by promoting N2 adsorption and N–N triple bond cleavage on the CoS2/MoS2 nanocomposite publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c04458 – volume: 2 start-page: 358 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b71 article-title: Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation publication-title: Chem Catal doi: 10.1016/j.checat.2021.12.004 – volume: 7 start-page: 9622 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b165 article-title: Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b01178 – volume: 303 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b40 article-title: Microalgae and ammonia: A review on inter-relationship publication-title: Fuel doi: 10.1016/j.fuel.2021.121303 – volume: 54 start-page: 8474 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b95 article-title: Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst publication-title: Chem Commun doi: 10.1039/C8CC03627F – volume: 7 start-page: 17761 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b134 article-title: Ambient electrocatalytic N2 reduction to NH3 by metal fluorides publication-title: J Mater Chem A doi: 10.1039/C9TA04706A – year: 2023 ident: 10.1016/j.apenergy.2023.121960_b56 article-title: Enhanced NH3 synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N-doped defective MoS2 publication-title: JACS Au – volume: 8 start-page: 8540 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b97 article-title: High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions publication-title: ACS Catal doi: 10.1021/acscatal.8b02311 – volume: 46 start-page: 13011 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b123 article-title: Mo2C embedded on nitrogen-doped carbon toward electrocatalytic nitrogen reduction to ammonia under ambient conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.150 – year: 2023 ident: 10.1016/j.apenergy.2023.121960_b18 – volume: 9 start-page: 4609 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b166 article-title: Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media publication-title: ACS Catal doi: 10.1021/acscatal.8b05134 – volume: 570 start-page: 504 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b183 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 3 start-page: 1145 year: 2013 ident: 10.1016/j.apenergy.2023.121960_b33 article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure publication-title: Sci Rep doi: 10.1038/srep01145 – volume: 60 start-page: 7584 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b118 article-title: In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N2 reduction to NH3 publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.1c01130 – volume: 7 start-page: 21674 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b131 article-title: Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification publication-title: J Mater Chem A doi: 10.1039/C9TA06523G – volume: 56 start-page: 3673 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b145 article-title: Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles publication-title: ChemComm – volume: 8 start-page: 5936 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b135 article-title: Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets publication-title: J Mater Chem A doi: 10.1039/C9TA13135C – volume: 3 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b162 article-title: Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping publication-title: Small Methods doi: 10.1002/smtd.201900356 – volume: 165 start-page: F1027 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b50 article-title: Lithium-mediated ammonia electro-synthesis: Effect of CsClO4 on lithium plating efficiency and ammonia synthesis publication-title: J Electrochem Soc doi: 10.1149/2.1091811jes – volume: 2 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b102 article-title: Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature publication-title: Small Methods doi: 10.1002/smtd.201800204 – volume: 345 start-page: 637 year: 2014 ident: 10.1016/j.apenergy.2023.121960_b67 article-title: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3 publication-title: Science doi: 10.1126/science.1254234 – volume: 30 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b93 article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies publication-title: Adv Mater – volume: 38 start-page: 14576 year: 2013 ident: 10.1016/j.apenergy.2023.121960_b22 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.054 – volume: 23 start-page: 509 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b17 article-title: South Korean efforts to transition to a hydrogen economy publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-020-01936-6 – volume: 24 start-page: 11491 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b115 article-title: Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP00340F – volume: 29 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b26 article-title: Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis publication-title: Curr Opin Electrochem – volume: 3 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b101 article-title: NbO2 electrocatalyst toward 32% Faradaic efficiency for N2 fixation publication-title: Small Methods doi: 10.1002/smtd.201800386 – volume: 9 start-page: 336 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b120 article-title: Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution publication-title: ACS Catal doi: 10.1021/acscatal.8b03802 – volume: 61 start-page: 304 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b31 article-title: Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.01.018 – volume: 44 start-page: 7183 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b53 article-title: A novel method for a new electromagnetic-induced ammonia synthesizer publication-title: Int J Energy Res doi: 10.1002/er.5355 – volume: 6 start-page: 313 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b55 article-title: Plasma activated electrochemical ammonia synthesis from nitrogen and water publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.0c02349 – volume: 7 start-page: 23416 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b7 article-title: Ambient dinitrogen electrocatalytic reduction for ammonia synthesis publication-title: J Mater Chem A doi: 10.1039/C9TA05505C – volume: 9 start-page: 3485 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b110 article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst publication-title: Nature Commun doi: 10.1038/s41467-018-05758-5 – volume: 168 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b74 article-title: Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112845 – volume: 1 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b21 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100011 – volume: 32 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b83 article-title: A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction publication-title: Adv Mater – volume: 140 start-page: 13387 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b106 article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles publication-title: J Am Chem Soc doi: 10.1021/jacs.8b08379 – volume: 284 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b168 article-title: Defect-rich ZnS nanoparticles supported on reduced graphene oxide for high-efficiency ambient N2-to-NH3 conversion publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.119746 – volume: 1 start-page: 150 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b77 article-title: Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis publication-title: SusMat doi: 10.1002/sus2.7 – volume: 49 start-page: 316 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b105 article-title: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.039 – volume: 31 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b137 article-title: Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction publication-title: Adv Mater doi: 10.1002/adma.201902709 – volume: 54 start-page: 12966 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b157 article-title: Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles publication-title: ChemComm – volume: 56 start-page: 14031 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b148 article-title: Enhanced electrocatalytic N2-to-NH3 fixation by ZrS2 nanofibers with a sulfur vacancy publication-title: ChemComm – volume: 5 start-page: 18967 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b91 article-title: Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm publication-title: J Mater Chem A doi: 10.1039/C7TA06139K – volume: 7 start-page: 2524 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b141 article-title: A MoS2 nanosheet–reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions publication-title: J Mater Chem A doi: 10.1039/C8TA10433F – volume: 37 start-page: 1482 year: 2012 ident: 10.1016/j.apenergy.2023.121960_b11 article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.10.004 – volume: 21 start-page: 3839 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b52 article-title: Lithium-mediated ammonia synthesis from water and nitrogen: A membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system publication-title: Green Chem doi: 10.1039/C9GC01338E – volume: 8 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b30 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv Energy Mater doi: 10.1002/aenm.201800369 – volume: 55 start-page: 6401 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b138 article-title: A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media publication-title: ChemComm – volume: 185 start-page: 459 year: 2008 ident: 10.1016/j.apenergy.2023.121960_b12 article-title: Using ammonia as a sustainable fuel publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.02.097 – volume: 60 start-page: 18721 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b54 article-title: Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation publication-title: Angew Chem Int Ed doi: 10.1002/anie.202105536 – start-page: 1 year: 2023 ident: 10.1016/j.apenergy.2023.121960_b128 article-title: Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction publication-title: Nano Res – volume: 56 start-page: 2107 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b146 article-title: Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions publication-title: ChemComm – volume: 4 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b108 article-title: A physical catalyst for the electrolysis of nitrogen to ammonia publication-title: Sci Adv doi: 10.1126/sciadv.1700336 – volume: 3 start-page: 463 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b34 article-title: Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen publication-title: Nat Catal doi: 10.1038/s41929-020-0455-8 – volume: 176 year: 2023 ident: 10.1016/j.apenergy.2023.121960_b79 article-title: Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.113197 – volume: 46 start-page: 16661 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b124 article-title: Carbon-doped tin disulfide nanoflowers: A heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia publication-title: New J Chem doi: 10.1039/D2NJ02478K – volume: 131 start-page: 2638 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b86 article-title: Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets publication-title: Angew Chem doi: 10.1002/ange.201813174 – volume: 8 start-page: 13908 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b126 article-title: A rare-earth samarium oxide catalyst for electrocatalytic nitrogen reduction to ammonia publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c05764 – volume: 4 start-page: 142 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b47 article-title: An electrochemical Haber–Bosch process publication-title: Joule doi: 10.1016/j.joule.2019.10.006 – volume: 32 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b133 article-title: A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals publication-title: Adv Mater – volume: 8 start-page: 15875 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b113 article-title: Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis publication-title: J Mater Chem A doi: 10.1039/D0TA03237A – volume: 15 start-page: 7134 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b81 article-title: Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst publication-title: Nano Res doi: 10.1007/s12274-022-4568-z – volume: 299 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b5 article-title: Progress in green ammonia production as potential carbon-free fuel publication-title: Fuel doi: 10.1016/j.fuel.2021.120845 – volume: 11 start-page: 19274 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b143 article-title: WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3 publication-title: Nanoscale doi: 10.1039/C9NR03678D – volume: 12 start-page: 2445 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b129 article-title: Bioinspired electrocatalyst for electrochemical reduction of N2 to NH3 in ambient conditions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b18027 – volume: 42 start-page: 1755 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b163 article-title: La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63795-6 – volume: 13 start-page: 2843 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b180 article-title: A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction publication-title: Nanoscale doi: 10.1039/D0NR08744K – volume: 2 start-page: 846 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b60 article-title: Electrocatalytic nitrogen reduction at low temperature publication-title: Joule doi: 10.1016/j.joule.2018.04.014 – volume: 69 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b28 article-title: Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104469 – volume: 11 start-page: 2992 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b45 article-title: Aqueous electrocatalytic N2 reduction under ambient conditions publication-title: Nano Res doi: 10.1007/s12274-018-1987-y – volume: 8 start-page: 17956 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b111 article-title: Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array publication-title: J Mater Chem A doi: 10.1039/D0TA07720H – volume: 16 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b24 article-title: Electrochemical synthesis of ammonia: Progress and challenges publication-title: Mater Today Phys – volume: 11 start-page: 35764 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b140 article-title: Cr3C2 nanoparticle-embedded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b12675 – volume: 9 start-page: 8316 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b59 article-title: Strategies toward selective electrochemical ammonia synthesis publication-title: ACS Catal doi: 10.1021/acscatal.9b02245 – volume: 14 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b173 article-title: Mn3O4 nanocube: An efficient electrocatalyst toward artificial N2 fixation to NH3 publication-title: Small doi: 10.1002/smll.201803111 – volume: 131 start-page: 2343 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b92 article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation publication-title: Angew Chem doi: 10.1002/ange.201811728 – volume: 7 start-page: 16979 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b112 article-title: Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis publication-title: J Mater Chem A doi: 10.1039/C9TA04141A – volume: 322 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b10 article-title: A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119463 – volume: 6 start-page: 17303 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b98 article-title: TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions publication-title: J Mater Chem A doi: 10.1039/C8TA05627G – volume: 4 start-page: eaar3208 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b178 article-title: Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach publication-title: Sci Adv doi: 10.1126/sciadv.aar3208 – year: 2023 ident: 10.1016/j.apenergy.2023.121960_b19 – volume: 59 start-page: 10 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b139 article-title: Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.028 – volume: 6 year: 2023 ident: 10.1016/j.apenergy.2023.121960_b58 article-title: Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis publication-title: Energy Environ Mater doi: 10.1002/eem2.12344 – volume: 3 start-page: 1127 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b13 article-title: Understanding continuous lithium-mediated electrochemical nitrogen reduction publication-title: Joule doi: 10.1016/j.joule.2019.02.003 – volume: 2 start-page: 1610 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b109 article-title: Boron-doped graphene for electrocatalytic N2 reduction publication-title: Joule doi: 10.1016/j.joule.2018.06.007 – volume: 259 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b4 article-title: Techno-economic comparison of green ammonia production processes publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114135 – volume: 3 start-page: 1219 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b62 article-title: Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00487 – volume: 130 start-page: 10403 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b107 article-title: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions publication-title: Angew Chem doi: 10.1002/ange.201806386 – volume: 9 start-page: 4248 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b127 article-title: Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: Experimental and DFT studies publication-title: Catal Sci Technol doi: 10.1039/C9CY00907H – volume: 8 start-page: 10572 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b155 article-title: Enhanced electrochemical reduction of N2 to ammonia over pyrite FeS2 with excellent selectivity publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c03675 – volume: 7 start-page: 24760 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b170 article-title: PdP2 nanoparticles–reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions publication-title: J Mater Chem A doi: 10.1039/C9TA09910G – volume: 8 start-page: 4735 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b80 article-title: Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions publication-title: J Mater Chem A doi: 10.1039/C9TA13485A – volume: 286 start-page: 2 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b23 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal Today doi: 10.1016/j.cattod.2016.06.014 – volume: 30 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b87 article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions publication-title: Adv Mater – volume: 7 start-page: 3531 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b78 article-title: Recent progress in electrocatalytic nitrogen reduction publication-title: J Mater Chem A doi: 10.1039/C8TA11201K – volume: 5 start-page: 263 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b61 article-title: Electrocatalytic reduction of nitrogen: From Haber–Bosch to ammonia artificial leaf publication-title: Chem doi: 10.1016/j.chempr.2018.10.010 – volume: 131 start-page: 17594 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b68 article-title: The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics publication-title: Angew Chem doi: 10.1002/ange.201909831 – volume: 54 start-page: 12848 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b160 article-title: Cr2O3 nanofiber: A high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions publication-title: ChemComm – volume: 29 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b88 article-title: Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions publication-title: Adv Mater – volume: 132 start-page: 20591 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b174 article-title: Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia publication-title: Angew Chem doi: 10.1002/ange.202009217 – volume: 50 start-page: 5423 year: 2005 ident: 10.1016/j.apenergy.2023.121960_b65 article-title: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.03.023 – volume: 8 start-page: 13679 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b125 article-title: Promoting electrocatalytic nitrogen reduction to ammonia via Fe-boosted nitrogen activation on MnO2 surfaces publication-title: J Mater Chem A doi: 10.1039/C9TA13026H – volume: 372 start-page: 1187 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b1 article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle publication-title: Science doi: 10.1126/science.abg2371 – volume: 164 start-page: H5036 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b66 article-title: Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure publication-title: J Electrochem Soc doi: 10.1149/2.0091708jes – volume: 54 start-page: 5323 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b100 article-title: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions publication-title: Chem Commun doi: 10.1039/C8CC00459E – volume: 130 start-page: 6181 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b104 article-title: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions publication-title: Angew Chem doi: 10.1002/ange.201801538 – volume: 48 start-page: 3166 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b185 article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully publication-title: Chem Soc Rev doi: 10.1039/C9CS00280D – volume: 6 start-page: 9550 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b94 article-title: Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01438 – volume: 7 start-page: 12692 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b149 article-title: Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b03141 – volume: 7 start-page: 16117 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b151 article-title: Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity publication-title: J Mater Chem A doi: 10.1039/C9TA05016G – volume: 2 start-page: 2288 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b164 article-title: NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3 publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b00102 – volume: 11 start-page: 2768 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b20 article-title: Pathways to electrochemical solar-hydrogen technologies publication-title: Energy Environ Sci doi: 10.1039/C7EE03639F – volume: 42 start-page: 19056 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b37 article-title: Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.118 – volume: 904 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b117 article-title: Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2021.115874 – volume: 12 start-page: 919 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b171 article-title: Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3 publication-title: Nano Res doi: 10.1007/s12274-019-2323-x – volume: 31 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b8 article-title: Electrochemical ammonia synthesis and ammonia fuel cells publication-title: Adv Mater – volume: 13 start-page: 3061 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b75 article-title: Ambient ammonia electrosynthesis: Current status, challenges, and perspectives publication-title: ChemSusChem doi: 10.1002/cssc.202000670 – volume: 54 start-page: 11427 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b132 article-title: Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions publication-title: ChemComm – volume: 270 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b16 article-title: Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115185 – volume: 52 start-page: 10175 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b179 article-title: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure publication-title: J Mater Sci doi: 10.1007/s10853-017-1176-5 – volume: 29 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b89 article-title: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions publication-title: Adv Mater doi: 10.1002/adma.201606550 – volume: 433 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b119 article-title: Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia publication-title: Chem Eng J doi: 10.1016/j.cej.2021.133752 – volume: 38 start-page: 14576 year: 2013 ident: 10.1016/j.apenergy.2023.121960_b35 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.054 – volume: 381 start-page: 78 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b142 article-title: Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions publication-title: J Catal doi: 10.1016/j.jcat.2019.10.029 – volume: 4 start-page: 1186 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b2 article-title: A roadmap to the ammonia economy publication-title: Joule doi: 10.1016/j.joule.2020.04.004 – volume: 7 start-page: 26371 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b181 article-title: Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction publication-title: J Mater Chem A doi: 10.1039/C9TA10206J – volume: 8 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b136 article-title: Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower publication-title: Adv Energy Mater doi: 10.1002/aenm.201801357 – volume: 4 start-page: 4469 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b63 article-title: Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions publication-title: Sustain Energy Fuels doi: 10.1039/D0SE00828A – volume: 609 start-page: 815 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b82 article-title: Hierarchical CoS2/MoS2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.11.087 – volume: 4 start-page: 10 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b85 article-title: Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots publication-title: Commun Chem doi: 10.1038/s42004-021-00449-7 – volume: 3 start-page: 239 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b184 article-title: Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges publication-title: Electrochem Energy Rev doi: 10.1007/s41918-019-00061-3 – volume: 3 start-page: 279 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b64 article-title: Efficient electrocatalytic N2 fixation with MXene under ambient conditions publication-title: Joule doi: 10.1016/j.joule.2018.09.011 – volume: 8 start-page: 3105 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b159 article-title: CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions publication-title: Inorg Chem Front doi: 10.1039/D1QI00306B – volume: 52 start-page: 264 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b99 article-title: Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 58 start-page: 9597 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b147 article-title: Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.9b01707 – volume: 30 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b84 article-title: Achieving a record-high yield rate of 120.9 μgNH3 mgcat−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts publication-title: Adv Mater – volume: 54 start-page: 13010 year: 2018 ident: 10.1016/j.apenergy.2023.121960_b154 article-title: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions publication-title: ChemComm – volume: 55 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b25 article-title: Ammonia synthesis by electrochemical nitrogen reduction reaction-A novel energy storage way publication-title: J Energy Storage doi: 10.1016/j.est.2022.105684 – volume: 56 start-page: 1831 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b144 article-title: P-doped graphene toward enhanced electrocatalytic N2 reduction publication-title: ChemComm – volume: 33 start-page: 1777 year: 2016 ident: 10.1016/j.apenergy.2023.121960_b69 article-title: Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte publication-title: Korean J Chem Eng doi: 10.1007/s11814-016-0086-6 – volume: 45 start-page: 4827 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b3 article-title: A perspective on the use of ammonia as a clean fuel: Challenges and solutions publication-title: Int J Energy Res doi: 10.1002/er.6232 – volume: 31 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b15 article-title: Renewable ammonia for sustainable energy and agriculture: Vision and systems engineering opportunities publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2020.100667 – volume: 6 start-page: 391 year: 2019 ident: 10.1016/j.apenergy.2023.121960_b182 article-title: Metal–organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions publication-title: Inorg Chem Front doi: 10.1039/C8QI01145A – volume: 12 start-page: 6900 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b29 article-title: Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions publication-title: Nanoscale doi: 10.1039/D0NR00412J – volume: 44 start-page: 21070 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b152 article-title: Electrocatalytic reduction of nitrogen to ammonia under ambient conditions using a nanorod-structured MoN catalyst publication-title: New J Chem doi: 10.1039/D0NJ04244G – volume: 13 start-page: 4605 year: 2022 ident: 10.1016/j.apenergy.2023.121960_b49 article-title: Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis publication-title: J Phy Chem Lett doi: 10.1021/acs.jpclett.2c00768 – volume: 10 start-page: 29575 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b114 article-title: Glycerine-based synthesis of a highly efficient Fe2O3 electrocatalyst for N2 fixation publication-title: RSC Adv doi: 10.1039/D0RA05831A – volume: 12 start-page: 37258 year: 2020 ident: 10.1016/j.apenergy.2023.121960_b175 article-title: Lithium iron oxide LiFeO2 for electroreduction of dinitrogen to ammonia publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c10991 – volume: 10 start-page: 1621 year: 2017 ident: 10.1016/j.apenergy.2023.121960_b48 article-title: Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure publication-title: Energy Environ Sci doi: 10.1039/C7EE01126A – volume: 33 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b39 article-title: Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction publication-title: Adv Mater – volume: 7 start-page: 3232 year: 2021 ident: 10.1016/j.apenergy.2023.121960_b42 article-title: Main-group elements boost electrochemical nitrogen fixation publication-title: Chem doi: 10.1016/j.chempr.2021.10.008 |
SSID | ssj0002120 |
Score | 2.5440948 |
Snippet | Ammonia (NH3) is an excellent transition fuel of green hydrogen and a future contender in the energy market. However, industrial NH3 production currently... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121960 |
SubjectTerms | ammonia carbon electrochemistry electrolysis energy Energy conversion and storage fuels Green energy Haber–Bosch process hydrogen lithium markets nitrogen fixation Nitrogen reduction reaction Renewable energy renewable energy sources Zero-carbon ammonia |
Title | A comprehensive review on electrochemical green ammonia synthesis: From conventional to distinctive strategies for efficient nitrogen fixation |
URI | https://dx.doi.org/10.1016/j.apenergy.2023.121960 https://www.proquest.com/docview/3153183923 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYquIwDGgw0GKse0q5pk8ZJU24VoupA9DIq9WY5zjMEQVI1qQSX_YT95vk5ztpNkzhwTGRbkd_ze1_k732PsW88U_GQegCqQSQ9zhX3Eq1jL1XK15gN45EV9bmdxdM5v15Eiw67bGthiFbpYn8T0220dm_6bjf7yzzv_yC02-B_ui_gVFHO-ZC8vPdzQ_MYOGlGM9ij0VtVwo89uURbYdejJuIktDCyUpX_TVD_hGqbfyYf2b4DjjBuvu2AdbA4ZHtbcoKH7PhqU7VmhrpjW31iv8ZA1PEVPjR0dWgKVqAswLXBUU43AO6JhwOSvDOXUL0WBiBWeXUBk1X5DNscdahLyChCFDZkQlW3qhNggDCg1aYwg8EEjVVp_BR0_mL94IjNJ1d3l1PPNWLwVMij2uMDKSNMZMYNgNBWH0fxKMMgkCQ4h6FO0lBq-ltJVWgQC0rERMk48zFJ0A-P2U5RFviZQZJp30AEWk6ZvKjSxFcBco7DwPiJ0icsandfKKdSTs0ynkRLR3sUrdUEWU00Vjth_T_zlo1Ox5szRq1xxV8eJ0wyeXPueesNwhxHumORBZbrSoQmg1jQGZ6-Y_0v7AM9EW0miM7YTr1a41cDfuq0a727y3bH32-ms98NWQoJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMKwvrHuVA3Z1Y8ey4-wWFA3SVy5rgd4EWaY6F5sdxC6w_Yn95omy3GXDgB56tSXBEKmPnyHyI8AnUeh0zD0A9ShRgRBaBJkxaZBrHRoqxunEifpcLtL5tTi7SW424LivheG0So_9HaY7tPZPhn43h8uyHH5httvxf74vEONnsMnqVMkANqen5_PFAyCPvDqjHR_whLVC4bsjtSRXZHfEfcRZa2Hi1Cr_G6P-QWsXgmav4KXnjjjtPm8bNqjagRdrioI7sH_yp3DNDvUnt9mFX1Pk7PEVfe0y1rGrWcG6Qt8JR3vpALzlVBxU7KClwuZnZTliUzafcbaqv-N6mjq2NRYMEpVDTWzaXngCLRdGcvIUdjBa3FjV1lXRlD-cK-zB9ezk6nge-F4MgY5F0gZipFRCmSqE5RDGSeRokRQURYo15yg2WR4rwz8suY4taSFFlGmVFiFlGYXxPgyquqLXgFlhQssSeDltQ6POs1BHJASNI-sq2hxA0u--1F6onPtlfJN9Rtqd7K0m2Wqys9oBDB_mLTupjkdnTHrjyr-cTtp48ujcj703SHsi-ZpFVVTfNzK2QcTxzvjNE9Y_hK351eWFvDhdnL-F5_yGs2ii5B0M2tU9vbdcqM0_eF__DRNBDLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+electrochemical+green+ammonia+synthesis%3A+From+conventional+to+distinctive+strategies+for+efficient+nitrogen+fixation&rft.jtitle=Applied+energy&rft.au=Santhosh%2C+C.R.&rft.au=Sankannavar%2C+Ravi&rft.date=2023-12-15&rft.issn=0306-2619&rft.volume=352&rft.spage=121960&rft_id=info:doi/10.1016%2Fj.apenergy.2023.121960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2023_121960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |