Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity
Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the g...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 592; p. 124606 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deformation of an antibubble under the impact of a cavitation bubble.
The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed.
[Display omitted]
An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. |
---|---|
AbstractList | An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. [Display omitted] An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. |
ArticleNumber | 124606 |
Author | Yan, Jiuchun Zeng, Zhijie Bai, Lichun ma, yuhang bai, Lixin |
Author_xml | – sequence: 1 givenname: Lichun surname: Bai fullname: Bai, Lichun organization: School of Electronic and Information Engineering, Liaoning Technical University, China – sequence: 2 givenname: Jiuchun surname: Yan fullname: Yan, Jiuchun email: jcyan@hit.edu.cn organization: State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China – sequence: 3 givenname: Lixin orcidid: 0000-0003-0950-315X surname: bai fullname: bai, Lixin email: blx@mail.ioa.ac.cn organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China – sequence: 4 givenname: Zhijie surname: Zeng fullname: Zeng, Zhijie organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China – sequence: 5 givenname: yuhang surname: ma fullname: ma, yuhang organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China |
BookMark | eNqFkM2KHCEURiVMID2TeYXgMpvqWGppC1kkNPmDgWwya7GsW9O3U60dtTrMMm8-NtXJIpsBQbx85-N6rslViAEIedOydcta9W6_9nHKcxrdmjNeh1wqpl6QVbvRopGiM1dkxQzXjdadfkWuc94zxmSnzYr82WKAgyvxIbnjDj2NfYZ0cgVjoHGkZQd0gDGmw7-RC_UU7Oe-n4D-3kF903x06WeDYZg9DNS7E5YFuMRi9jhNrkCmGCiWTE_oMWB5fE1ejm7KcHu5b8j9508_tl-bu-9fvm0_3jVeyK40wnDVK6OVU9Jxw40yvdmIzg-6N4ybvvVSOg9iGJ0GgLHfiJFrqUAzIzZO3JC3S-8xxV8z5GIPmD3UpQLEOVsuz05qr6zR90vUp5hzgtH6y3dKcjjZltmzebu3f83bs3m7mK-4-g8_Jjy49Pg8-GEBoXo4ISRbrUGoRjGBL3aI-FzFEwgypzo |
CitedBy_id | crossref_primary_10_1016_j_ultsonch_2021_105577 crossref_primary_10_1063_5_0100591 |
Cites_doi | 10.1209/0295-5075/83/54001 10.1063/1.363605 10.1121/1.1397358 10.1103/PhysRevLett.109.264502 10.1063/1.5000037 10.1016/j.colsurfa.2006.04.048 10.1209/epl/i2004-10435-7 10.1017/S0022112002003695 10.1016/S1001-6058(10)60150-3 10.1103/PhysRevE.66.056204 10.1038/129059a0 10.1063/1.4796147 10.1103/PhysRevLett.114.104501 10.1038/scientificamerican0474-116 10.1021/la1048419 10.1063/1.1421102 10.1103/PhysRevLett.87.274501 10.1103/PhysRevLett.114.214501 10.1016/S1001-6058(08)60106-7 10.1039/C4SM00718B 10.1016/j.colsurfa.2010.01.028 10.1103/PhysRevE.87.061002 10.1063/1.1368163 10.1016/j.colsurfa.2016.09.032 10.1017/S0022112002001209 10.1088/1367-2630/5/1/161 10.2174/157018007778992847 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2020.124606 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4359 |
ExternalDocumentID | 10_1016_j_colsurfa_2020_124606 S0927775720301990 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABNUV ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCB SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-3926b6976a64a292969b9835cd7b9029b1c44ace3dfa7eeefb83f2746e70938a3 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Tue Aug 05 10:40:40 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Tue Jul 01 02:41:51 EDT 2025 Fri Feb 23 02:49:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cavitation bubble High-speed photography Antibubble Spark discharge Shock wave |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-3926b6976a64a292969b9835cd7b9029b1c44ace3dfa7eeefb83f2746e70938a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0950-315X |
PQID | 2400452964 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400452964 crossref_citationtrail_10_1016_j_colsurfa_2020_124606 crossref_primary_10_1016_j_colsurfa_2020_124606 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2020_124606 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-05 |
PublicationDateYYYYMMDD | 2020-05-05 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tufaile, Sartorelli (bib0030) 2002; 66 Robinson, Blake, Kodama, Shima, Tomita (bib0115) 2001; 89 Tomita, Robinson, Tong (bib0110) 2002; 466 Kim, Stone (bib0035) 2008; 83 Rososhek, Efimov, Tewari, Yanuka, Khishchenko, Krasik (bib0140) 2016; 25 Zou, Ji, Yuan, Ruan, Fu (bib0070) 2013; 87 Dorbolo, Caps, Vandewalle (bib0075) 2003; 5 Sob’yanin (bib0065) 2015; 114 Dorbolo, Reyssat, Vandewalle, Qu´Er´E (bib0045) 2005; 69 Bai, Xu, Wu, Lin, Li (bib0020) 2016; 509 Scheid, Dorbolo, Arriaga, Rio (bib0055) 2012; 109 Bai, Xu, Li, Gao (bib0120) 2011; 23 Shaw, Schiffers, Emmony (bib0100) 2001; 110 Bai, Xu, Tian, Li (bib0090) 2008; 20 Scheid, Zawala, Dorbolo (bib0060) 2014; 10 Poortinga (bib0085) 2011; 27 Kim, Vogel (bib0080) 2006; 289 Postema, Ten Cate, Schmitz, De Jong, Van Wamel (bib0040) 2007; 4 Poulain, Guenoun, Gart, Crowe, Jung (bib0130) 2015; 114 Lindau, Lauterborn (bib0095) 2003; 479 Silpe, Mcgrail (bib0005) 2013; 113 Stong (bib0015) 1974; 230 Hughes, Hughes (bib0010) 1932; 129 Dorbolo, Terwagne, Delhalle, Dujardin, Huet, Vandewalle, Denkov (bib0050) 2010; 365 Brujan, Keen, Vogel, Blake (bib0105) 2002; 14 Ganan-Calvo, Gordillo (bib0025) 2001; 87 Rososhek, Efimov, Nitishinski, Yanuka, Tewari, Gurovich, Khishchenko, Krasik (bib0135) 2017; 24 Kodama, Takayama, Nagayasu (bib0125) 1996; 80 Bai (10.1016/j.colsurfa.2020.124606_bib0120) 2011; 23 Postema (10.1016/j.colsurfa.2020.124606_bib0040) 2007; 4 Rososhek (10.1016/j.colsurfa.2020.124606_bib0140) 2016; 25 Dorbolo (10.1016/j.colsurfa.2020.124606_bib0045) 2005; 69 Lindau (10.1016/j.colsurfa.2020.124606_bib0095) 2003; 479 Silpe (10.1016/j.colsurfa.2020.124606_bib0005) 2013; 113 Shaw (10.1016/j.colsurfa.2020.124606_bib0100) 2001; 110 Robinson (10.1016/j.colsurfa.2020.124606_bib0115) 2001; 89 Rososhek (10.1016/j.colsurfa.2020.124606_bib0135) 2017; 24 Scheid (10.1016/j.colsurfa.2020.124606_bib0060) 2014; 10 Tufaile (10.1016/j.colsurfa.2020.124606_bib0030) 2002; 66 Stong (10.1016/j.colsurfa.2020.124606_bib0015) 1974; 230 Kim (10.1016/j.colsurfa.2020.124606_bib0035) 2008; 83 Zou (10.1016/j.colsurfa.2020.124606_bib0070) 2013; 87 Dorbolo (10.1016/j.colsurfa.2020.124606_bib0075) 2003; 5 Poortinga (10.1016/j.colsurfa.2020.124606_bib0085) 2011; 27 Brujan (10.1016/j.colsurfa.2020.124606_bib0105) 2002; 14 Poulain (10.1016/j.colsurfa.2020.124606_bib0130) 2015; 114 Ganan-Calvo (10.1016/j.colsurfa.2020.124606_bib0025) 2001; 87 Dorbolo (10.1016/j.colsurfa.2020.124606_bib0050) 2010; 365 Scheid (10.1016/j.colsurfa.2020.124606_bib0055) 2012; 109 Tomita (10.1016/j.colsurfa.2020.124606_bib0110) 2002; 466 Kodama (10.1016/j.colsurfa.2020.124606_bib0125) 1996; 80 Sob’yanin (10.1016/j.colsurfa.2020.124606_bib0065) 2015; 114 Bai (10.1016/j.colsurfa.2020.124606_bib0020) 2016; 509 Kim (10.1016/j.colsurfa.2020.124606_bib0080) 2006; 289 Hughes (10.1016/j.colsurfa.2020.124606_bib0010) 1932; 129 Bai (10.1016/j.colsurfa.2020.124606_bib0090) 2008; 20 |
References_xml | – volume: 509 start-page: 334 year: 2016 end-page: 340 ident: bib0020 article-title: Formation of antibubbles and multilayer antibubbles publication-title: Colloids Surf. A – volume: 289 start-page: 237 year: 2006 end-page: 244 ident: bib0080 article-title: Antibubbles: Factors that affect their stability publication-title: Colloids Surf. A – volume: 14 start-page: 85 year: 2002 end-page: 92 ident: bib0105 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. of Fluids – volume: 89 start-page: 8225 year: 2001 end-page: 8237 ident: bib0115 article-title: Interaction of cavitation bubbles with a free surface publication-title: J. Appl. Phys. – volume: 25 year: 2016 ident: bib0140 article-title: Comparison of electrical explosions of spherical wire arrays in water and glycerol on different timescales publication-title: Phys. Plasmas – volume: 4 start-page: 74 year: 2007 end-page: 77 ident: bib0040 article-title: Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: first result publication-title: Lett. Drug Des. Discov. – volume: 466 start-page: 259 year: 2002 end-page: 283 ident: bib0110 article-title: Growth and collapse of cavitation bubbles near a curved rigid boundary publication-title: J. Fluid Mech. – volume: 80 start-page: 5587 year: 1996 end-page: 5592 ident: bib0125 article-title: The dynamics of two air bubbles loaded by an underwater shock wave publication-title: J. Appl. Phys. – volume: 5 start-page: 161.1 year: 2003 end-page: 161.9 ident: bib0075 article-title: Fluid instabilities in the birth and death of antibubbles publication-title: New J. Phys. – volume: 110 start-page: 1822 year: 2001 end-page: 1827 ident: bib0100 article-title: Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity publication-title: J. Acoust. Soc. Am. – volume: 69 start-page: 966 year: 2005 end-page: 970 ident: bib0045 article-title: Aging of an antibubble publication-title: Europhys. Lett. – volume: 23 start-page: 562 year: 2011 end-page: 569 ident: bib0120 article-title: The counter jet formation in an air bubble induced by the impact publication-title: J. Hydrodyn. Ser. B – volume: 87 year: 2001 ident: bib0025 article-title: Perfectly monodisperse microbubbling by capillary flow focusing publication-title: Phys. Rev. Lett. – volume: 365 start-page: 43 year: 2010 end-page: 45 ident: bib0050 article-title: Antibubble lifetime: influence of the bulk viscosity and of the surface modulus of the mixture publication-title: Colloids Surf. A – volume: 83 start-page: 54001 year: 2008 ident: bib0035 article-title: Dynamics of the formation of antibubbles publication-title: Europhys. Lett. – volume: 109 year: 2012 ident: bib0055 article-title: The drainage of an air film with viscous interfaces publication-title: Phys. Rev. Lett. – volume: 113 year: 2013 ident: bib0005 article-title: Magnetic antibubbles: formation and control of magnetic macroemulsions for fluid transport applications publication-title: J. Appl. Phys. – volume: 129 start-page: 59 year: 1932 ident: bib0010 article-title: Liquid drops on the same liquid surface publication-title: Nature – volume: 114 year: 2015 ident: bib0130 article-title: Particle motion induced by bubble cavitation publication-title: Phys. Rev. Lett. – volume: 24 year: 2017 ident: bib0135 article-title: Spherical wire arrays electrical explosion in water and glycerol publication-title: Phys. Plasmas – volume: 10 start-page: 7096 year: 2014 end-page: 7102 ident: bib0060 article-title: Gas dissolution in antibubble dynamics publication-title: Soft Matter – volume: 114 year: 2015 ident: bib0065 article-title: Theory of the antibubble collapse publication-title: Phys. Rev. Lett. – volume: 87 year: 2013 ident: bib0070 article-title: Collapse of an antibubble publication-title: Phys.Rev. E – volume: 20 start-page: 637 year: 2008 end-page: 644 ident: bib0090 article-title: A high-speed photographic study of ultrasonic cavitation near rigid boundary publication-title: J. Hydrodyn. Ser. B – volume: 27 start-page: 2138 year: 2011 end-page: 2141 ident: bib0085 article-title: Long-lived antibubbles: stable antibubbles through Pickering stabilization publication-title: Langmuir – volume: 479 start-page: 327 year: 2003 end-page: 348 ident: bib0095 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. – volume: 230 start-page: 116 year: 1974 end-page: 120 ident: bib0015 article-title: Curious bubbles in which a gas encloses a liquid instead of the other way around publication-title: Sci. Am. – volume: 66 year: 2002 ident: bib0030 article-title: Bubble and spherical air shell formation dynamics publication-title: Phys. Rev. E – volume: 83 start-page: 54001 year: 2008 ident: 10.1016/j.colsurfa.2020.124606_bib0035 article-title: Dynamics of the formation of antibubbles publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/54001 – volume: 80 start-page: 5587 year: 1996 ident: 10.1016/j.colsurfa.2020.124606_bib0125 article-title: The dynamics of two air bubbles loaded by an underwater shock wave publication-title: J. Appl. Phys. doi: 10.1063/1.363605 – volume: 110 start-page: 1822 year: 2001 ident: 10.1016/j.colsurfa.2020.124606_bib0100 article-title: Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1397358 – volume: 109 year: 2012 ident: 10.1016/j.colsurfa.2020.124606_bib0055 article-title: The drainage of an air film with viscous interfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.264502 – volume: 24 year: 2017 ident: 10.1016/j.colsurfa.2020.124606_bib0135 article-title: Spherical wire arrays electrical explosion in water and glycerol publication-title: Phys. Plasmas doi: 10.1063/1.5000037 – volume: 289 start-page: 237 year: 2006 ident: 10.1016/j.colsurfa.2020.124606_bib0080 article-title: Antibubbles: Factors that affect their stability publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2006.04.048 – volume: 69 start-page: 966 year: 2005 ident: 10.1016/j.colsurfa.2020.124606_bib0045 article-title: Aging of an antibubble publication-title: Europhys. Lett. doi: 10.1209/epl/i2004-10435-7 – volume: 479 start-page: 327 year: 2003 ident: 10.1016/j.colsurfa.2020.124606_bib0095 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112002003695 – volume: 23 start-page: 562 year: 2011 ident: 10.1016/j.colsurfa.2020.124606_bib0120 article-title: The counter jet formation in an air bubble induced by the impact publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(10)60150-3 – volume: 66 year: 2002 ident: 10.1016/j.colsurfa.2020.124606_bib0030 article-title: Bubble and spherical air shell formation dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.056204 – volume: 129 start-page: 59 year: 1932 ident: 10.1016/j.colsurfa.2020.124606_bib0010 article-title: Liquid drops on the same liquid surface publication-title: Nature doi: 10.1038/129059a0 – volume: 113 year: 2013 ident: 10.1016/j.colsurfa.2020.124606_bib0005 article-title: Magnetic antibubbles: formation and control of magnetic macroemulsions for fluid transport applications publication-title: J. Appl. Phys. doi: 10.1063/1.4796147 – volume: 114 year: 2015 ident: 10.1016/j.colsurfa.2020.124606_bib0065 article-title: Theory of the antibubble collapse publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.104501 – volume: 230 start-page: 116 year: 1974 ident: 10.1016/j.colsurfa.2020.124606_bib0015 article-title: Curious bubbles in which a gas encloses a liquid instead of the other way around publication-title: Sci. Am. doi: 10.1038/scientificamerican0474-116 – volume: 27 start-page: 2138 year: 2011 ident: 10.1016/j.colsurfa.2020.124606_bib0085 article-title: Long-lived antibubbles: stable antibubbles through Pickering stabilization publication-title: Langmuir doi: 10.1021/la1048419 – volume: 14 start-page: 85 year: 2002 ident: 10.1016/j.colsurfa.2020.124606_bib0105 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. of Fluids doi: 10.1063/1.1421102 – volume: 87 year: 2001 ident: 10.1016/j.colsurfa.2020.124606_bib0025 article-title: Perfectly monodisperse microbubbling by capillary flow focusing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.274501 – volume: 114 year: 2015 ident: 10.1016/j.colsurfa.2020.124606_bib0130 article-title: Particle motion induced by bubble cavitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.214501 – volume: 25 year: 2016 ident: 10.1016/j.colsurfa.2020.124606_bib0140 article-title: Comparison of electrical explosions of spherical wire arrays in water and glycerol on different timescales publication-title: Phys. Plasmas – volume: 20 start-page: 637 year: 2008 ident: 10.1016/j.colsurfa.2020.124606_bib0090 article-title: A high-speed photographic study of ultrasonic cavitation near rigid boundary publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(08)60106-7 – volume: 10 start-page: 7096 year: 2014 ident: 10.1016/j.colsurfa.2020.124606_bib0060 article-title: Gas dissolution in antibubble dynamics publication-title: Soft Matter doi: 10.1039/C4SM00718B – volume: 365 start-page: 43 year: 2010 ident: 10.1016/j.colsurfa.2020.124606_bib0050 article-title: Antibubble lifetime: influence of the bulk viscosity and of the surface modulus of the mixture publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2010.01.028 – volume: 87 year: 2013 ident: 10.1016/j.colsurfa.2020.124606_bib0070 article-title: Collapse of an antibubble publication-title: Phys.Rev. E doi: 10.1103/PhysRevE.87.061002 – volume: 89 start-page: 8225 year: 2001 ident: 10.1016/j.colsurfa.2020.124606_bib0115 article-title: Interaction of cavitation bubbles with a free surface publication-title: J. Appl. Phys. doi: 10.1063/1.1368163 – volume: 509 start-page: 334 year: 2016 ident: 10.1016/j.colsurfa.2020.124606_bib0020 article-title: Formation of antibubbles and multilayer antibubbles publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2016.09.032 – volume: 466 start-page: 259 year: 2002 ident: 10.1016/j.colsurfa.2020.124606_bib0110 article-title: Growth and collapse of cavitation bubbles near a curved rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112002001209 – volume: 5 start-page: 161.1 year: 2003 ident: 10.1016/j.colsurfa.2020.124606_bib0075 article-title: Fluid instabilities in the birth and death of antibubbles publication-title: New J. Phys. doi: 10.1088/1367-2630/5/1/161 – volume: 4 start-page: 74 year: 2007 ident: 10.1016/j.colsurfa.2020.124606_bib0040 article-title: Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: first result publication-title: Lett. Drug Des. Discov. doi: 10.2174/157018007778992847 |
SSID | ssj0004579 |
Score | 2.3233426 |
Snippet | Deformation of an antibubble under the impact of a cavitation bubble.
The non-uniformity of the thickness of the gas film strongly influences the rupture... An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124606 |
SubjectTerms | air Antibubble bubbles Cavitation bubble deformation High-speed photography liquids Shock wave soaps Spark discharge video cameras |
Title | Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity |
URI | https://dx.doi.org/10.1016/j.colsurfa.2020.124606 https://www.proquest.com/docview/2400452964 |
Volume | 592 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DD-pB_MRvIniNm22aLEcZylTcRQe7hSRNsTo62Tq9Cf7nvremY4rgQeihCUlI8x4vv9fk_R4hZ0olHmygZZlIUsa9ajErecoSdDcs7EAuwtjh-57o9vntIBk0SKeOhcFrlcH2VzZ9Zq1DTTOsZvM1z5sPLRVJKRM8RwScotBv51yilp9_XCwwhge-vUgybL0QJfwMYw8n03GG_EMREi1wgZmPft-gfpjq2f5zvUHWA3Ckl9XcNknDF1tkpVPna9siawvUgtvkswPvgEYrRurc0ZGd_3-lo4wC7qOpn4cuYpUp4ClzO7V26On7k4cyBYMzfmHguIMKpNSZt8DpTUMz5MIETQLASvOC5uWEvuFZPWD7HdK_vnrsdFlIt8BczJOSAVISVgA8MYKbCGCTUFYBQHOptKoVKXvhODfOx2lmpPc-s-04A6dWeNlScdvEu2SpGBV-j1Bwy1zbA1ZUyvC2j60FL0cAXIAPc2Ay9klSr7F2Yd6YEmOo60tnz7qWjUbZ6Eo2-6Q57_dasXH82UPVItTf9ErDlvFn39Na5hpkiScppvCj6UTjxdvqxPrgH-MfklUsza5PJkdkqRxP_TFAnNKezHT4hCxf3tx1e1_zHP4A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6h9sByQLuwiMc-jMTVaklspz6iaquyQC8LEjfLdhwRqFLUpux5_zkzjVOV1UocVsohcWLLyYzG32RmPgOcaS0D2kDHCyVzLoLuc5eJnEtyNxyuQD6h2uGbiRrfiZ_38n4Lhm0tDKVVRtvf2PSVtY4tvfg1e89l2fvV10mWZZLiiIhTNPrtXWKnkh3oXlxejScbpOGRci_JOHXYKBR-xOGni-W8IAqihLgWhKLNj_69Rv1lrVdL0Ogj7EbsyC6a6X2CrVDtwfaw3bJtD3Y22AX34c8QzxGQNqTUpWczt_4Fy2YFQ-jH8rCuXqQmW-FRl27p3DSw3w8BrxnanPkTR98dtSBn3r5EWm8WHyM6TFQmxKysrFhZL9gLhesR3n-Gu9GP2-GYxx0XuE-FrDmCJeUUIhSrhE0QOSntNGI0n2dO9xPtzr0Q1oc0L2wWQijcIC3Qr1Uh6-t0YNMD6FSzKhwCQ8_MDwLCRa2tGITUOXR0FCIGfDGPVuMIZPuNjY_zpl0xpqbNO3s0rWwMycY0sjmC3rrfc0PI8W4P3YrQvFEtg6vGu31PW5kblCUFU2wVZsuFodzbJmh9_B_jf4ft8e3Ntbm-nFydwAe6s8qmlF-gU8-X4Ssintp9ixr9Cpu1AMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cinematographic+observation+of+the+deformation+of+an+antibubble+when+a+spark-induced+cavitation+bubble+oscillates+in+its+vicinity&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Bai%2C+Lichun&rft.au=Yan%2C+Jiuchun&rft.au=bai%2C+Lixin&rft.au=Zeng%2C+Zhijie&rft.date=2020-05-05&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.eissn=1873-4359&rft.volume=592&rft_id=info:doi/10.1016%2Fj.colsurfa.2020.124606&rft.externalDocID=S0927775720301990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |