Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity

Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the g...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 592; p. 124606
Main Authors Bai, Lichun, Yan, Jiuchun, bai, Lixin, Zeng, Zhijie, ma, yuhang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. [Display omitted] An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed.
AbstractList An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed.
Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed. [Display omitted] An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of antibubbles when a spark-induced cavitation bubble oscillates in their vicinity is studied using a high-speed video camera. It is found that the rupture process of antibubble impacted by shock wave is different from that of antibubble due to aging or puncture. There is a stable phase relationship between the cavitation bubble deformation and the antibubble deformation. The non-uniformity of the thickness of the gas film strongly influences the rupture process of the antibubble. The antibubbles will split horizontally into two parts, and the gas in the gas film of antibubbles will move and gather to the point where the air film is thickest, and then divide into two gas bubbles. The dynamics of antibubble deformation under the impact of primary shock wave and secondary shock wave induced by the growth and collapse of cavitation bubble is analysed.
ArticleNumber 124606
Author Yan, Jiuchun
Zeng, Zhijie
Bai, Lichun
ma, yuhang
bai, Lixin
Author_xml – sequence: 1
  givenname: Lichun
  surname: Bai
  fullname: Bai, Lichun
  organization: School of Electronic and Information Engineering, Liaoning Technical University, China
– sequence: 2
  givenname: Jiuchun
  surname: Yan
  fullname: Yan, Jiuchun
  email: jcyan@hit.edu.cn
  organization: State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
– sequence: 3
  givenname: Lixin
  orcidid: 0000-0003-0950-315X
  surname: bai
  fullname: bai, Lixin
  email: blx@mail.ioa.ac.cn
  organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China
– sequence: 4
  givenname: Zhijie
  surname: Zeng
  fullname: Zeng, Zhijie
  organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China
– sequence: 5
  givenname: yuhang
  surname: ma
  fullname: ma, yuhang
  organization: State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, China
BookMark eNqFkM2KHCEURiVMID2TeYXgMpvqWGppC1kkNPmDgWwya7GsW9O3U60dtTrMMm8-NtXJIpsBQbx85-N6rslViAEIedOydcta9W6_9nHKcxrdmjNeh1wqpl6QVbvRopGiM1dkxQzXjdadfkWuc94zxmSnzYr82WKAgyvxIbnjDj2NfYZ0cgVjoHGkZQd0gDGmw7-RC_UU7Oe-n4D-3kF903x06WeDYZg9DNS7E5YFuMRi9jhNrkCmGCiWTE_oMWB5fE1ejm7KcHu5b8j9508_tl-bu-9fvm0_3jVeyK40wnDVK6OVU9Jxw40yvdmIzg-6N4ybvvVSOg9iGJ0GgLHfiJFrqUAzIzZO3JC3S-8xxV8z5GIPmD3UpQLEOVsuz05qr6zR90vUp5hzgtH6y3dKcjjZltmzebu3f83bs3m7mK-4-g8_Jjy49Pg8-GEBoXo4ISRbrUGoRjGBL3aI-FzFEwgypzo
CitedBy_id crossref_primary_10_1016_j_ultsonch_2021_105577
crossref_primary_10_1063_5_0100591
Cites_doi 10.1209/0295-5075/83/54001
10.1063/1.363605
10.1121/1.1397358
10.1103/PhysRevLett.109.264502
10.1063/1.5000037
10.1016/j.colsurfa.2006.04.048
10.1209/epl/i2004-10435-7
10.1017/S0022112002003695
10.1016/S1001-6058(10)60150-3
10.1103/PhysRevE.66.056204
10.1038/129059a0
10.1063/1.4796147
10.1103/PhysRevLett.114.104501
10.1038/scientificamerican0474-116
10.1021/la1048419
10.1063/1.1421102
10.1103/PhysRevLett.87.274501
10.1103/PhysRevLett.114.214501
10.1016/S1001-6058(08)60106-7
10.1039/C4SM00718B
10.1016/j.colsurfa.2010.01.028
10.1103/PhysRevE.87.061002
10.1063/1.1368163
10.1016/j.colsurfa.2016.09.032
10.1017/S0022112002001209
10.1088/1367-2630/5/1/161
10.2174/157018007778992847
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2020.124606
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4359
ExternalDocumentID 10_1016_j_colsurfa_2020_124606
S0927775720301990
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-3926b6976a64a292969b9835cd7b9029b1c44ace3dfa7eeefb83f2746e70938a3
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Tue Aug 05 10:40:40 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Tue Jul 01 02:41:51 EDT 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cavitation bubble
High-speed photography
Antibubble
Spark discharge
Shock wave
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-3926b6976a64a292969b9835cd7b9029b1c44ace3dfa7eeefb83f2746e70938a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0950-315X
PQID 2400452964
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400452964
crossref_citationtrail_10_1016_j_colsurfa_2020_124606
crossref_primary_10_1016_j_colsurfa_2020_124606
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2020_124606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-05
PublicationDateYYYYMMDD 2020-05-05
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-05
  day: 05
PublicationDecade 2020
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tufaile, Sartorelli (bib0030) 2002; 66
Robinson, Blake, Kodama, Shima, Tomita (bib0115) 2001; 89
Tomita, Robinson, Tong (bib0110) 2002; 466
Kim, Stone (bib0035) 2008; 83
Rososhek, Efimov, Tewari, Yanuka, Khishchenko, Krasik (bib0140) 2016; 25
Zou, Ji, Yuan, Ruan, Fu (bib0070) 2013; 87
Dorbolo, Caps, Vandewalle (bib0075) 2003; 5
Sob’yanin (bib0065) 2015; 114
Dorbolo, Reyssat, Vandewalle, Qu´Er´E (bib0045) 2005; 69
Bai, Xu, Wu, Lin, Li (bib0020) 2016; 509
Scheid, Dorbolo, Arriaga, Rio (bib0055) 2012; 109
Bai, Xu, Li, Gao (bib0120) 2011; 23
Shaw, Schiffers, Emmony (bib0100) 2001; 110
Bai, Xu, Tian, Li (bib0090) 2008; 20
Scheid, Zawala, Dorbolo (bib0060) 2014; 10
Poortinga (bib0085) 2011; 27
Kim, Vogel (bib0080) 2006; 289
Postema, Ten Cate, Schmitz, De Jong, Van Wamel (bib0040) 2007; 4
Poulain, Guenoun, Gart, Crowe, Jung (bib0130) 2015; 114
Lindau, Lauterborn (bib0095) 2003; 479
Silpe, Mcgrail (bib0005) 2013; 113
Stong (bib0015) 1974; 230
Hughes, Hughes (bib0010) 1932; 129
Dorbolo, Terwagne, Delhalle, Dujardin, Huet, Vandewalle, Denkov (bib0050) 2010; 365
Brujan, Keen, Vogel, Blake (bib0105) 2002; 14
Ganan-Calvo, Gordillo (bib0025) 2001; 87
Rososhek, Efimov, Nitishinski, Yanuka, Tewari, Gurovich, Khishchenko, Krasik (bib0135) 2017; 24
Kodama, Takayama, Nagayasu (bib0125) 1996; 80
Bai (10.1016/j.colsurfa.2020.124606_bib0120) 2011; 23
Postema (10.1016/j.colsurfa.2020.124606_bib0040) 2007; 4
Rososhek (10.1016/j.colsurfa.2020.124606_bib0140) 2016; 25
Dorbolo (10.1016/j.colsurfa.2020.124606_bib0045) 2005; 69
Lindau (10.1016/j.colsurfa.2020.124606_bib0095) 2003; 479
Silpe (10.1016/j.colsurfa.2020.124606_bib0005) 2013; 113
Shaw (10.1016/j.colsurfa.2020.124606_bib0100) 2001; 110
Robinson (10.1016/j.colsurfa.2020.124606_bib0115) 2001; 89
Rososhek (10.1016/j.colsurfa.2020.124606_bib0135) 2017; 24
Scheid (10.1016/j.colsurfa.2020.124606_bib0060) 2014; 10
Tufaile (10.1016/j.colsurfa.2020.124606_bib0030) 2002; 66
Stong (10.1016/j.colsurfa.2020.124606_bib0015) 1974; 230
Kim (10.1016/j.colsurfa.2020.124606_bib0035) 2008; 83
Zou (10.1016/j.colsurfa.2020.124606_bib0070) 2013; 87
Dorbolo (10.1016/j.colsurfa.2020.124606_bib0075) 2003; 5
Poortinga (10.1016/j.colsurfa.2020.124606_bib0085) 2011; 27
Brujan (10.1016/j.colsurfa.2020.124606_bib0105) 2002; 14
Poulain (10.1016/j.colsurfa.2020.124606_bib0130) 2015; 114
Ganan-Calvo (10.1016/j.colsurfa.2020.124606_bib0025) 2001; 87
Dorbolo (10.1016/j.colsurfa.2020.124606_bib0050) 2010; 365
Scheid (10.1016/j.colsurfa.2020.124606_bib0055) 2012; 109
Tomita (10.1016/j.colsurfa.2020.124606_bib0110) 2002; 466
Kodama (10.1016/j.colsurfa.2020.124606_bib0125) 1996; 80
Sob’yanin (10.1016/j.colsurfa.2020.124606_bib0065) 2015; 114
Bai (10.1016/j.colsurfa.2020.124606_bib0020) 2016; 509
Kim (10.1016/j.colsurfa.2020.124606_bib0080) 2006; 289
Hughes (10.1016/j.colsurfa.2020.124606_bib0010) 1932; 129
Bai (10.1016/j.colsurfa.2020.124606_bib0090) 2008; 20
References_xml – volume: 509
  start-page: 334
  year: 2016
  end-page: 340
  ident: bib0020
  article-title: Formation of antibubbles and multilayer antibubbles
  publication-title: Colloids Surf. A
– volume: 289
  start-page: 237
  year: 2006
  end-page: 244
  ident: bib0080
  article-title: Antibubbles: Factors that affect their stability
  publication-title: Colloids Surf. A
– volume: 14
  start-page: 85
  year: 2002
  end-page: 92
  ident: bib0105
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. of Fluids
– volume: 89
  start-page: 8225
  year: 2001
  end-page: 8237
  ident: bib0115
  article-title: Interaction of cavitation bubbles with a free surface
  publication-title: J. Appl. Phys.
– volume: 25
  year: 2016
  ident: bib0140
  article-title: Comparison of electrical explosions of spherical wire arrays in water and glycerol on different timescales
  publication-title: Phys. Plasmas
– volume: 4
  start-page: 74
  year: 2007
  end-page: 77
  ident: bib0040
  article-title: Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: first result
  publication-title: Lett. Drug Des. Discov.
– volume: 466
  start-page: 259
  year: 2002
  end-page: 283
  ident: bib0110
  article-title: Growth and collapse of cavitation bubbles near a curved rigid boundary
  publication-title: J. Fluid Mech.
– volume: 80
  start-page: 5587
  year: 1996
  end-page: 5592
  ident: bib0125
  article-title: The dynamics of two air bubbles loaded by an underwater shock wave
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 161.1
  year: 2003
  end-page: 161.9
  ident: bib0075
  article-title: Fluid instabilities in the birth and death of antibubbles
  publication-title: New J. Phys.
– volume: 110
  start-page: 1822
  year: 2001
  end-page: 1827
  ident: bib0100
  article-title: Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity
  publication-title: J. Acoust. Soc. Am.
– volume: 69
  start-page: 966
  year: 2005
  end-page: 970
  ident: bib0045
  article-title: Aging of an antibubble
  publication-title: Europhys. Lett.
– volume: 23
  start-page: 562
  year: 2011
  end-page: 569
  ident: bib0120
  article-title: The counter jet formation in an air bubble induced by the impact
  publication-title: J. Hydrodyn. Ser. B
– volume: 87
  year: 2001
  ident: bib0025
  article-title: Perfectly monodisperse microbubbling by capillary flow focusing
  publication-title: Phys. Rev. Lett.
– volume: 365
  start-page: 43
  year: 2010
  end-page: 45
  ident: bib0050
  article-title: Antibubble lifetime: influence of the bulk viscosity and of the surface modulus of the mixture
  publication-title: Colloids Surf. A
– volume: 83
  start-page: 54001
  year: 2008
  ident: bib0035
  article-title: Dynamics of the formation of antibubbles
  publication-title: Europhys. Lett.
– volume: 109
  year: 2012
  ident: bib0055
  article-title: The drainage of an air film with viscous interfaces
  publication-title: Phys. Rev. Lett.
– volume: 113
  year: 2013
  ident: bib0005
  article-title: Magnetic antibubbles: formation and control of magnetic macroemulsions for fluid transport applications
  publication-title: J. Appl. Phys.
– volume: 129
  start-page: 59
  year: 1932
  ident: bib0010
  article-title: Liquid drops on the same liquid surface
  publication-title: Nature
– volume: 114
  year: 2015
  ident: bib0130
  article-title: Particle motion induced by bubble cavitation
  publication-title: Phys. Rev. Lett.
– volume: 24
  year: 2017
  ident: bib0135
  article-title: Spherical wire arrays electrical explosion in water and glycerol
  publication-title: Phys. Plasmas
– volume: 10
  start-page: 7096
  year: 2014
  end-page: 7102
  ident: bib0060
  article-title: Gas dissolution in antibubble dynamics
  publication-title: Soft Matter
– volume: 114
  year: 2015
  ident: bib0065
  article-title: Theory of the antibubble collapse
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: bib0070
  article-title: Collapse of an antibubble
  publication-title: Phys.Rev. E
– volume: 20
  start-page: 637
  year: 2008
  end-page: 644
  ident: bib0090
  article-title: A high-speed photographic study of ultrasonic cavitation near rigid boundary
  publication-title: J. Hydrodyn. Ser. B
– volume: 27
  start-page: 2138
  year: 2011
  end-page: 2141
  ident: bib0085
  article-title: Long-lived antibubbles: stable antibubbles through Pickering stabilization
  publication-title: Langmuir
– volume: 479
  start-page: 327
  year: 2003
  end-page: 348
  ident: bib0095
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
– volume: 230
  start-page: 116
  year: 1974
  end-page: 120
  ident: bib0015
  article-title: Curious bubbles in which a gas encloses a liquid instead of the other way around
  publication-title: Sci. Am.
– volume: 66
  year: 2002
  ident: bib0030
  article-title: Bubble and spherical air shell formation dynamics
  publication-title: Phys. Rev. E
– volume: 83
  start-page: 54001
  year: 2008
  ident: 10.1016/j.colsurfa.2020.124606_bib0035
  article-title: Dynamics of the formation of antibubbles
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/83/54001
– volume: 80
  start-page: 5587
  year: 1996
  ident: 10.1016/j.colsurfa.2020.124606_bib0125
  article-title: The dynamics of two air bubbles loaded by an underwater shock wave
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363605
– volume: 110
  start-page: 1822
  year: 2001
  ident: 10.1016/j.colsurfa.2020.124606_bib0100
  article-title: Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1397358
– volume: 109
  year: 2012
  ident: 10.1016/j.colsurfa.2020.124606_bib0055
  article-title: The drainage of an air film with viscous interfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.264502
– volume: 24
  year: 2017
  ident: 10.1016/j.colsurfa.2020.124606_bib0135
  article-title: Spherical wire arrays electrical explosion in water and glycerol
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5000037
– volume: 289
  start-page: 237
  year: 2006
  ident: 10.1016/j.colsurfa.2020.124606_bib0080
  article-title: Antibubbles: Factors that affect their stability
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2006.04.048
– volume: 69
  start-page: 966
  year: 2005
  ident: 10.1016/j.colsurfa.2020.124606_bib0045
  article-title: Aging of an antibubble
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2004-10435-7
– volume: 479
  start-page: 327
  year: 2003
  ident: 10.1016/j.colsurfa.2020.124606_bib0095
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002003695
– volume: 23
  start-page: 562
  year: 2011
  ident: 10.1016/j.colsurfa.2020.124606_bib0120
  article-title: The counter jet formation in an air bubble induced by the impact
  publication-title: J. Hydrodyn. Ser. B
  doi: 10.1016/S1001-6058(10)60150-3
– volume: 66
  year: 2002
  ident: 10.1016/j.colsurfa.2020.124606_bib0030
  article-title: Bubble and spherical air shell formation dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.056204
– volume: 129
  start-page: 59
  year: 1932
  ident: 10.1016/j.colsurfa.2020.124606_bib0010
  article-title: Liquid drops on the same liquid surface
  publication-title: Nature
  doi: 10.1038/129059a0
– volume: 113
  year: 2013
  ident: 10.1016/j.colsurfa.2020.124606_bib0005
  article-title: Magnetic antibubbles: formation and control of magnetic macroemulsions for fluid transport applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4796147
– volume: 114
  year: 2015
  ident: 10.1016/j.colsurfa.2020.124606_bib0065
  article-title: Theory of the antibubble collapse
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.104501
– volume: 230
  start-page: 116
  year: 1974
  ident: 10.1016/j.colsurfa.2020.124606_bib0015
  article-title: Curious bubbles in which a gas encloses a liquid instead of the other way around
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0474-116
– volume: 27
  start-page: 2138
  year: 2011
  ident: 10.1016/j.colsurfa.2020.124606_bib0085
  article-title: Long-lived antibubbles: stable antibubbles through Pickering stabilization
  publication-title: Langmuir
  doi: 10.1021/la1048419
– volume: 14
  start-page: 85
  year: 2002
  ident: 10.1016/j.colsurfa.2020.124606_bib0105
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. of Fluids
  doi: 10.1063/1.1421102
– volume: 87
  year: 2001
  ident: 10.1016/j.colsurfa.2020.124606_bib0025
  article-title: Perfectly monodisperse microbubbling by capillary flow focusing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.274501
– volume: 114
  year: 2015
  ident: 10.1016/j.colsurfa.2020.124606_bib0130
  article-title: Particle motion induced by bubble cavitation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.214501
– volume: 25
  year: 2016
  ident: 10.1016/j.colsurfa.2020.124606_bib0140
  article-title: Comparison of electrical explosions of spherical wire arrays in water and glycerol on different timescales
  publication-title: Phys. Plasmas
– volume: 20
  start-page: 637
  year: 2008
  ident: 10.1016/j.colsurfa.2020.124606_bib0090
  article-title: A high-speed photographic study of ultrasonic cavitation near rigid boundary
  publication-title: J. Hydrodyn. Ser. B
  doi: 10.1016/S1001-6058(08)60106-7
– volume: 10
  start-page: 7096
  year: 2014
  ident: 10.1016/j.colsurfa.2020.124606_bib0060
  article-title: Gas dissolution in antibubble dynamics
  publication-title: Soft Matter
  doi: 10.1039/C4SM00718B
– volume: 365
  start-page: 43
  year: 2010
  ident: 10.1016/j.colsurfa.2020.124606_bib0050
  article-title: Antibubble lifetime: influence of the bulk viscosity and of the surface modulus of the mixture
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.01.028
– volume: 87
  year: 2013
  ident: 10.1016/j.colsurfa.2020.124606_bib0070
  article-title: Collapse of an antibubble
  publication-title: Phys.Rev. E
  doi: 10.1103/PhysRevE.87.061002
– volume: 89
  start-page: 8225
  year: 2001
  ident: 10.1016/j.colsurfa.2020.124606_bib0115
  article-title: Interaction of cavitation bubbles with a free surface
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1368163
– volume: 509
  start-page: 334
  year: 2016
  ident: 10.1016/j.colsurfa.2020.124606_bib0020
  article-title: Formation of antibubbles and multilayer antibubbles
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2016.09.032
– volume: 466
  start-page: 259
  year: 2002
  ident: 10.1016/j.colsurfa.2020.124606_bib0110
  article-title: Growth and collapse of cavitation bubbles near a curved rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002001209
– volume: 5
  start-page: 161.1
  year: 2003
  ident: 10.1016/j.colsurfa.2020.124606_bib0075
  article-title: Fluid instabilities in the birth and death of antibubbles
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/5/1/161
– volume: 4
  start-page: 74
  year: 2007
  ident: 10.1016/j.colsurfa.2020.124606_bib0040
  article-title: Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: first result
  publication-title: Lett. Drug Des. Discov.
  doi: 10.2174/157018007778992847
SSID ssj0004579
Score 2.3233426
Snippet Deformation of an antibubble under the impact of a cavitation bubble. The non-uniformity of the thickness of the gas film strongly influences the rupture...
An antibubble is the opposite of a soap bubble: a thin spherical gas shell containing liquid inside and surrounded by liquid outside. The dynamic behaviour of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124606
SubjectTerms air
Antibubble
bubbles
Cavitation bubble
deformation
High-speed photography
liquids
Shock wave
soaps
Spark discharge
video cameras
Title Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity
URI https://dx.doi.org/10.1016/j.colsurfa.2020.124606
https://www.proquest.com/docview/2400452964
Volume 592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DD-pB_MRvIniNm22aLEcZylTcRQe7hSRNsTo62Tq9Cf7nvremY4rgQeihCUlI8x4vv9fk_R4hZ0olHmygZZlIUsa9ajErecoSdDcs7EAuwtjh-57o9vntIBk0SKeOhcFrlcH2VzZ9Zq1DTTOsZvM1z5sPLRVJKRM8RwScotBv51yilp9_XCwwhge-vUgybL0QJfwMYw8n03GG_EMREi1wgZmPft-gfpjq2f5zvUHWA3Ckl9XcNknDF1tkpVPna9siawvUgtvkswPvgEYrRurc0ZGd_3-lo4wC7qOpn4cuYpUp4ClzO7V26On7k4cyBYMzfmHguIMKpNSZt8DpTUMz5MIETQLASvOC5uWEvuFZPWD7HdK_vnrsdFlIt8BczJOSAVISVgA8MYKbCGCTUFYBQHOptKoVKXvhODfOx2lmpPc-s-04A6dWeNlScdvEu2SpGBV-j1Bwy1zbA1ZUyvC2j60FL0cAXIAPc2Ay9klSr7F2Yd6YEmOo60tnz7qWjUbZ6Eo2-6Q57_dasXH82UPVItTf9ErDlvFn39Na5hpkiScppvCj6UTjxdvqxPrgH-MfklUsza5PJkdkqRxP_TFAnNKezHT4hCxf3tx1e1_zHP4A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6h9sByQLuwiMc-jMTVaklspz6iaquyQC8LEjfLdhwRqFLUpux5_zkzjVOV1UocVsohcWLLyYzG32RmPgOcaS0D2kDHCyVzLoLuc5eJnEtyNxyuQD6h2uGbiRrfiZ_38n4Lhm0tDKVVRtvf2PSVtY4tvfg1e89l2fvV10mWZZLiiIhTNPrtXWKnkh3oXlxejScbpOGRci_JOHXYKBR-xOGni-W8IAqihLgWhKLNj_69Rv1lrVdL0Ogj7EbsyC6a6X2CrVDtwfaw3bJtD3Y22AX34c8QzxGQNqTUpWczt_4Fy2YFQ-jH8rCuXqQmW-FRl27p3DSw3w8BrxnanPkTR98dtSBn3r5EWm8WHyM6TFQmxKysrFhZL9gLhesR3n-Gu9GP2-GYxx0XuE-FrDmCJeUUIhSrhE0QOSntNGI0n2dO9xPtzr0Q1oc0L2wWQijcIC3Qr1Uh6-t0YNMD6FSzKhwCQ8_MDwLCRa2tGITUOXR0FCIGfDGPVuMIZPuNjY_zpl0xpqbNO3s0rWwMycY0sjmC3rrfc0PI8W4P3YrQvFEtg6vGu31PW5kblCUFU2wVZsuFodzbJmh9_B_jf4ft8e3Ntbm-nFydwAe6s8qmlF-gU8-X4Ssintp9ixr9Cpu1AMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cinematographic+observation+of+the+deformation+of+an+antibubble+when+a+spark-induced+cavitation+bubble+oscillates+in+its+vicinity&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Bai%2C+Lichun&rft.au=Yan%2C+Jiuchun&rft.au=bai%2C+Lixin&rft.au=Zeng%2C+Zhijie&rft.date=2020-05-05&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.eissn=1873-4359&rft.volume=592&rft_id=info:doi/10.1016%2Fj.colsurfa.2020.124606&rft.externalDocID=S0927775720301990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon