Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls
Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residue...
Saved in:
Published in | Geoderma Vol. 304; pp. 76 - 82 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition.
[Display omitted]
•Aggregate formation increased generally with amendment level.•Decrease of residue occlusion with increasing inputs•Aboveground C retention in aggregates decreased at high level of addition.•Soil priming mainly depended on the level of addition.•Increased mineralisation and less residue physical protection decreased SOM stabilization. |
---|---|
AbstractList | Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition.
[Display omitted]
•Aggregate formation increased generally with amendment level.•Decrease of residue occlusion with increasing inputs•Aboveground C retention in aggregates decreased at high level of addition.•Soil priming mainly depended on the level of addition.•Increased mineralisation and less residue physical protection decreased SOM stabilization. Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition. |
Author | Heitkamp, Felix Shahbaz, Muhammad Kuzyakov, Yakov |
Author_xml | – sequence: 1 givenname: Muhammad surname: Shahbaz fullname: Shahbaz, Muhammad email: shahbazmu@yahoo.com organization: Section of Physical Geography, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstr 5, 37077 Göttingen, Germany – sequence: 2 givenname: Yakov surname: Kuzyakov fullname: Kuzyakov, Yakov organization: Department of Soil Science of Temperate Ecosystems, Georg August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany – sequence: 3 givenname: Felix orcidid: 0000-0002-0037-5553 surname: Heitkamp fullname: Heitkamp, Felix organization: Section of Physical Geography, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstr 5, 37077 Göttingen, Germany |
BookMark | eNqFkE1PGzEQhq0KJBLoX0A-ctllvLveTRAHKvqFFMSlPVaWMztOHO3aqe0U0V-PQ8qll1xm5tXMM4dnyk6cd8TYpYBSgGivN-WKfE9h1GWVcwmyBDH_wCZi1lVFW8n5CZtA3hQdtOKMTWPc5NhBBRP26zNhIB2Je8OjtwP3YaWdRT7qlCjwmPTSDvavTtY7_mzTmlv3hli3yuN2l-INfyRcZyqOkWvXc_QuBT_EC3Zq9BDp479-zn5-_fLj_nuxePr2cP9pUWDdyFTkYrCV0vS6n5uOjMAGa920ujNoulqCmGEz6xqAXiw1Nv28qmXTglzOZF2J-pxdHf5ug_-9o5jUaCPSMGhHfhdVBQBNJyq5P20Ppxh8jIGM2gY76vCiBKi9T7VR7z7V3qcCqbLPDN7-B6JNb1ZS0HY4jt8dcMoe_lgKKqIlh9TbQJhU7-2xF69ss5l0 |
CitedBy_id | crossref_primary_10_1088_1755_1315_239_1_012012 crossref_primary_10_3390_f15111958 crossref_primary_10_1016_j_apsoil_2019_103445 crossref_primary_10_1016_j_scitotenv_2021_152882 crossref_primary_10_1016_j_soilbio_2018_01_003 crossref_primary_10_1590_s0100_204x2018000800010 crossref_primary_10_1016_j_soilbio_2020_107843 crossref_primary_10_1007_s00374_022_01654_9 crossref_primary_10_1016_j_jenvman_2022_115373 crossref_primary_10_1007_s00374_022_01647_8 crossref_primary_10_1016_j_apsoil_2020_103733 crossref_primary_10_1080_00380768_2021_1959836 crossref_primary_10_1002_ldr_4420 crossref_primary_10_1007_s11104_018_3850_z crossref_primary_10_1111_gcb_17115 crossref_primary_10_1016_j_ecoenv_2024_116194 crossref_primary_10_1016_j_catena_2019_104408 crossref_primary_10_1016_j_apsoil_2024_105370 crossref_primary_10_1007_s12517_021_07587_1 crossref_primary_10_1007_s00374_020_01512_6 crossref_primary_10_1016_j_catena_2021_105999 crossref_primary_10_1071_SR20257 crossref_primary_10_1007_s42832_024_0278_7 crossref_primary_10_1016_j_catena_2024_108050 crossref_primary_10_1016_j_geoderma_2019_03_039 crossref_primary_10_1007_s11368_022_03393_8 crossref_primary_10_3390_horticulturae10050476 crossref_primary_10_1016_j_scienta_2021_110534 crossref_primary_10_5194_soil_11_105_2025 crossref_primary_10_1016_j_agee_2024_109183 crossref_primary_10_1016_j_scitotenv_2023_161865 crossref_primary_10_1016_j_geoderma_2023_116340 crossref_primary_10_3390_agronomy10121944 crossref_primary_10_1016_j_geoderma_2023_116625 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_1016_j_catena_2025_108872 crossref_primary_10_1007_s11104_024_06819_z crossref_primary_10_1016_j_ecolind_2019_105644 crossref_primary_10_1371_journal_pone_0262691 crossref_primary_10_2134_agronj2018_11_0739 crossref_primary_10_1016_j_scitotenv_2024_173287 crossref_primary_10_1016_S2095_3119_21_63646_8 crossref_primary_10_1016_j_soilbio_2022_108636 crossref_primary_10_1016_j_apsoil_2022_104732 crossref_primary_10_1016_j_ejsobi_2024_103695 crossref_primary_10_1016_j_ejsobi_2021_103291 crossref_primary_10_1016_j_soilbio_2020_107901 crossref_primary_10_1111_1365_2664_14265 crossref_primary_10_1111_sum_13011 crossref_primary_10_1016_j_soilbio_2019_06_003 crossref_primary_10_1080_00103624_2017_1406099 crossref_primary_10_2136_sssaj2017_05_0143 crossref_primary_10_1016_j_jia_2024_12_013 crossref_primary_10_1016_j_envres_2024_118936 crossref_primary_10_1016_j_jenvman_2022_116959 crossref_primary_10_1002_jpln_202100122 crossref_primary_10_1002_saj2_20731 crossref_primary_10_1071_CP20259 crossref_primary_10_1007_s10533_022_00936_6 crossref_primary_10_1007_s11368_017_1891_1 crossref_primary_10_1016_j_agee_2023_108699 crossref_primary_10_1126_sciadv_abd3176 crossref_primary_10_1007_s11104_021_05168_5 crossref_primary_10_1007_s42729_023_01352_x crossref_primary_10_1016_j_still_2023_105685 crossref_primary_10_3390_agronomy12030747 crossref_primary_10_1016_j_geoderma_2020_114688 crossref_primary_10_3390_agriculture8030037 crossref_primary_10_1002_ldr_4077 crossref_primary_10_1016_j_catena_2023_107366 crossref_primary_10_1016_j_catena_2023_107762 crossref_primary_10_1016_S1002_0160_19_60796_4 crossref_primary_10_1002_saj2_20051 crossref_primary_10_1016_j_geodrs_2018_e00187 crossref_primary_10_1080_00103624_2018_1448406 crossref_primary_10_1111_ejss_13493 crossref_primary_10_1111_nph_15361 crossref_primary_10_1093_femsec_fiz043 crossref_primary_10_3390_en17030600 crossref_primary_10_1016_j_ejsobi_2019_103096 crossref_primary_10_1038_s41467_024_45277_0 crossref_primary_10_1007_s42729_024_01672_6 crossref_primary_10_3389_feart_2022_1047079 crossref_primary_10_1016_j_geoderma_2021_115342 crossref_primary_10_1080_03650340_2019_1711065 crossref_primary_10_1002_agj2_20831 crossref_primary_10_1016_j_catena_2018_09_043 crossref_primary_10_1016_j_still_2020_104656 crossref_primary_10_2136_sssaj2017_09_0344 crossref_primary_10_3390_land11040486 crossref_primary_10_1111_gcb_16062 crossref_primary_10_1134_S1064229322010069 crossref_primary_10_3390_ijerph17218077 crossref_primary_10_1016_j_iswcr_2020_07_007 crossref_primary_10_17221_31_2019_SWR crossref_primary_10_1146_annurev_ecolsys_112414_054234 crossref_primary_10_1007_s00374_016_1174_9 crossref_primary_10_1002_jpln_201900308 crossref_primary_10_1016_j_apsoil_2024_105330 crossref_primary_10_1016_j_eti_2024_103668 crossref_primary_10_1016_j_still_2021_104943 crossref_primary_10_1016_j_apsoil_2023_104985 crossref_primary_10_1016_j_agee_2021_107815 crossref_primary_10_1016_j_jia_2023_02_025 crossref_primary_10_1016_j_geodrs_2019_e00226 crossref_primary_10_1007_s42729_025_02359_2 crossref_primary_10_1016_j_geoderma_2021_115216 crossref_primary_10_1016_j_geoderma_2020_114828 crossref_primary_10_1007_s11368_020_02797_8 crossref_primary_10_1007_s11104_019_04240_5 crossref_primary_10_1016_j_scitotenv_2022_153878 crossref_primary_10_1016_j_geoderma_2017_05_032 crossref_primary_10_1016_j_jia_2022_12_006 crossref_primary_10_1186_s13568_020_01018_2 crossref_primary_10_1080_00103624_2022_2094396 crossref_primary_10_1007_s12145_024_01603_0 crossref_primary_10_1002_ldr_2667 crossref_primary_10_1016_j_still_2019_104428 crossref_primary_10_1007_s10533_023_01098_9 crossref_primary_10_1016_j_soilbio_2020_107789 crossref_primary_10_1016_j_soilbio_2022_108839 crossref_primary_10_1016_j_ecoleng_2022_106837 crossref_primary_10_17660_ActaHortic_2022_1343_6 crossref_primary_10_3390_soilsystems7010013 crossref_primary_10_1016_j_scitotenv_2025_178387 crossref_primary_10_1007_s11356_021_15562_2 crossref_primary_10_1007_s11368_021_02953_8 crossref_primary_10_1016_j_catena_2023_107152 crossref_primary_10_1016_j_still_2023_105815 crossref_primary_10_1016_j_agee_2021_107504 crossref_primary_10_1016_j_geoderma_2022_116216 crossref_primary_10_1016_j_still_2021_105219 crossref_primary_10_3390_agronomy12020485 crossref_primary_10_1016_j_catena_2019_104428 crossref_primary_10_1139_cjss_2022_0117 crossref_primary_10_1002_saj2_20136 crossref_primary_10_1016_j_ecolind_2022_109471 crossref_primary_10_3390_su141912078 crossref_primary_10_1016_j_soilbio_2019_03_027 crossref_primary_10_1016_j_agee_2023_108656 crossref_primary_10_1016_j_soilbio_2018_03_004 crossref_primary_10_3390_plants13141974 crossref_primary_10_1016_j_soilbio_2018_08_023 crossref_primary_10_1111_sum_13166 crossref_primary_10_1007_s11368_018_2152_7 crossref_primary_10_1016_j_soilbio_2020_108069 crossref_primary_10_5327_Z2176_947820200695 crossref_primary_10_1007_s10533_020_00675_6 crossref_primary_10_1016_j_jenvman_2024_123130 crossref_primary_10_1007_s11258_019_00945_w |
Cites_doi | 10.1016/j.pedobi.2011.12.001 10.1016/j.soilbio.2015.07.021 10.1016/j.soilbio.2010.12.011 10.1007/s10533-010-9439-0 10.1023/A:1016125726789 10.1126/science.1097396 10.1002/jpln.200700047 10.1016/0038-0717(87)90052-6 10.1111/oik.01728 10.1002/jpln.201200628 10.1016/j.geoderma.2014.09.010 10.2134/agronj2010.0146s 10.1007/s00374-015-1030-3 10.1111/1365-2745.12092 10.1007/s11104-014-2299-y 10.1016/j.still.2004.03.008 10.1007/s10533-007-9105-3 10.1111/gcb.12551 10.1016/j.soilbio.2015.09.020 10.2136/sssaj2007.0104 10.1038/srep10102 10.1111/j.1365-2389.2006.00801.x 10.1016/S0146-6380(00)00049-8 10.1016/j.soilbio.2008.09.015 10.1016/0038-0717(90)90046-3 10.1007/s00374-013-0794-6 10.1007/s11104-004-0907-y 10.2136/sssaj1998.03615995006200050032x 10.1016/j.soilbio.2008.07.023 10.1016/j.soilbio.2014.03.020 10.1007/s11104-005-4628-7 10.1016/j.geoderma.2011.11.005 10.1023/A:1012617516477 10.1016/j.apsoil.2010.09.006 10.1016/S0929-1393(98)00148-6 10.1023/A:1011922103323 10.1016/j.soilbio.2008.03.006 10.1016/0038-0717(93)90058-J |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2016.05.019 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 82 |
ExternalDocumentID | 10_1016_j_geoderma_2016_05_019 S0016706116302221 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-345fc655fdad9f7ef1c4c3a46a7fcf735018c487400d1bac4d92354605b853213 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Sun Aug 24 04:04:37 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 04:04:42 EDT 2025 Fri Feb 23 02:30:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Root mineralisation Soil organic matter Straw residue Carbon sequestration Priming effect Water stable aggregates |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-345fc655fdad9f7ef1c4c3a46a7fcf735018c487400d1bac4d92354605b853213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0037-5553 |
PQID | 2000471251 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000471251 crossref_primary_10_1016_j_geoderma_2016_05_019 crossref_citationtrail_10_1016_j_geoderma_2016_05_019 elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_05_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-15 |
PublicationDateYYYYMMDD | 2017-10-15 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bertrand, Chabbert, Kurek, Recous (bb0020) 2006; 281 Guenet, Neill, Bardoux, Abbadie (bb0045) 2010; 46 Baldock, Skjemstad (bb0015) 2000; 31 Blagodatskaya, Yuyukina, Blagodatsky, Kuzyakov (bb0030) 2011; 43 Powlson, Glendining, Coleman, Whitmore (bb0140) 2011; 103 Xiao, Guenet, Zhou, Su, Janssens (bb0210) 2015; 124 Bromand, Whalen, Janzen, Schjoerring, Ellert (bb0035) 2001; 235 Sauerbeck (bb0155) 2001; 60 Poirier, Angersa, Whalen (bb0135) 2014; 75 Kuzyakov, Blagodatskaya, Blagodatsky (bb0085) 2009; 41 Six, Conant, Paul, Paustian (bb0165) 2002; 241 Andruschkewitsch, Geisseler, Dultz, Joergensen, Ludwig (bb0010) 2014; 177 Kramer, Marhana, Ruess, Armbruster, Butenschoend, Haslwimmer, Kuzyakov, Pauschf, Scheunemannd, Schoene, Schmalwasser, Totsche, Walker, Stefan, Kandeler (bb0080) 2012; 55 Blagodatskaya, Anderson (bb0025) 1999; 11 Wu, Joergensen, Pommerening, Chaussod, Brookes (bb0200) 1990; 20 Prescott (bb0145) 2010; 101 Stewart, Plante, Paustian, Conant, Six (bb0175) 2008; 72 Freschet, Cornwell, Wardle, Elumeeva, Liu, Jackson, Onipchenko, Soudzilovskaia, Tao, Cornelissen (bb0040) 2013; 101 Helfrich, Ludwig, Potthoff, Flessa (bb0070) 2008; 40 Wang, Boutton, Xu, Hu, Jiang, Bai (bb0190) 2015; 5 Wu, Brookes, Jenkinson (bb0205) 1993; 25 Six, Bossuyt, Degryze, Denef (bb0170) 2004; 79 Heitkamp, Jacobs, Jungkunst, Heinze, Wendland, Kuzyakov (bb0060) 2012 Six, Elliott, Paustian, Doran (bb0160) 1998; 62 Vance, Brookes, Jenkinson (bb0180) 1987; 19 Webster (bb0195) 2007; 58 Moreno-Cornejo, Zornoza, Doane, Faz, Horwath (bb0115) 2015; 51 Poirier, Angers, Rochette, Whalen (bb0130) 2013; 49 Loeppmann, Blagodatskaya, Pausch, Kuzyakov (bb0100) 2016; 92 Gunina, Kuzyakov (bb0050) 2015; 90 Lehmann, Kinyangi, Solomon (bb0095) 2007; 85 Houghton (bb0075) 2012 Rasse, Rumpel, Dignac (bb0150) 2005; 269 Lugato, Bampa, Panagos, Montanarella, Jones (bb0110) 2014; 20 Gunina, Ryzhova, Dorodnikov, Kuzyakov (bb0055) 2015; 387 Lorenz, Lal (bb0105) 2012 von Lützow, Kögel-Knabner, Ludwig, Matzner, Flessa, Ekschmitt, Guggenberger, Marschner, Kalbitz (bb0185) 2008; 171 Lal (bb0090) 2004; 304 Heitkamp, Wendland, Offenberger, Gerold (bb0065) 2012; 170 Poeplau, Kätterer, Bolinder, Börjesson, Berti, Lugato (bb0125) 2015; 237–238 Abiven, Menasseri, Chenu (bb0005) 2009; 41 Webster (10.1016/j.geoderma.2016.05.019_bb0195) 2007; 58 Andruschkewitsch (10.1016/j.geoderma.2016.05.019_bb0010) 2014; 177 Houghton (10.1016/j.geoderma.2016.05.019_bb0075) 2012 Helfrich (10.1016/j.geoderma.2016.05.019_bb0070) 2008; 40 Xiao (10.1016/j.geoderma.2016.05.019_bb0210) 2015; 124 Gunina (10.1016/j.geoderma.2016.05.019_bb0055) 2015; 387 Freschet (10.1016/j.geoderma.2016.05.019_bb0040) 2013; 101 Six (10.1016/j.geoderma.2016.05.019_bb0160) 1998; 62 Vance (10.1016/j.geoderma.2016.05.019_bb0180) 1987; 19 Poeplau (10.1016/j.geoderma.2016.05.019_bb0125) 2015; 237–238 Blagodatskaya (10.1016/j.geoderma.2016.05.019_bb0025) 1999; 11 Kuzyakov (10.1016/j.geoderma.2016.05.019_bb0085) 2009; 41 Moreno-Cornejo (10.1016/j.geoderma.2016.05.019_bb0115) 2015; 51 Bromand (10.1016/j.geoderma.2016.05.019_bb0035) 2001; 235 Kramer (10.1016/j.geoderma.2016.05.019_bb0080) 2012; 55 Powlson (10.1016/j.geoderma.2016.05.019_bb0140) 2011; 103 Sauerbeck (10.1016/j.geoderma.2016.05.019_bb0155) 2001; 60 Bertrand (10.1016/j.geoderma.2016.05.019_bb0020) 2006; 281 Six (10.1016/j.geoderma.2016.05.019_bb0165) 2002; 241 Poirier (10.1016/j.geoderma.2016.05.019_bb0135) 2014; 75 Lal (10.1016/j.geoderma.2016.05.019_bb0090) 2004; 304 Lugato (10.1016/j.geoderma.2016.05.019_bb0110) 2014; 20 Prescott (10.1016/j.geoderma.2016.05.019_bb0145) 2010; 101 Blagodatskaya (10.1016/j.geoderma.2016.05.019_bb0030) 2011; 43 Lehmann (10.1016/j.geoderma.2016.05.019_bb0095) 2007; 85 Six (10.1016/j.geoderma.2016.05.019_bb0170) 2004; 79 Stewart (10.1016/j.geoderma.2016.05.019_bb0175) 2008; 72 Guenet (10.1016/j.geoderma.2016.05.019_bb0045) 2010; 46 Gunina (10.1016/j.geoderma.2016.05.019_bb0050) 2015; 90 Loeppmann (10.1016/j.geoderma.2016.05.019_bb0100) 2016; 92 Lorenz (10.1016/j.geoderma.2016.05.019_bb0105) 2012 Rasse (10.1016/j.geoderma.2016.05.019_bb0150) 2005; 269 von Lützow (10.1016/j.geoderma.2016.05.019_bb0185) 2008; 171 Poirier (10.1016/j.geoderma.2016.05.019_bb0130) 2013; 49 Wu (10.1016/j.geoderma.2016.05.019_bb0205) 1993; 25 Heitkamp (10.1016/j.geoderma.2016.05.019_bb0060) 2012 Baldock (10.1016/j.geoderma.2016.05.019_bb0015) 2000; 31 Heitkamp (10.1016/j.geoderma.2016.05.019_bb0065) 2012; 170 Wu (10.1016/j.geoderma.2016.05.019_bb0200) 1990; 20 Abiven (10.1016/j.geoderma.2016.05.019_bb0005) 2009; 41 Wang (10.1016/j.geoderma.2016.05.019_bb0190) 2015; 5 |
References_xml | – start-page: S. 303 year: 2012 end-page: S. 346 ident: bb0105 article-title: Cropland soil carbon dynamics publication-title: Recarbonization of the Biosphere – volume: 235 start-page: 253 year: 2001 end-page: 257 ident: bb0035 article-title: A pulse-labelling method to generate publication-title: Plant Soil – volume: 46 start-page: 436 year: 2010 end-page: 442 ident: bb0045 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Appl. Soil Ecol. – volume: 90 start-page: 87 year: 2015 end-page: 100 ident: bb0050 article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate publication-title: Soil Biol. Biochem. – volume: 72 start-page: 379 year: 2008 end-page: 392 ident: bb0175 article-title: Soil carbon saturation: linking concept and measurable carbon pools publication-title: Soil Sci. Soc. Am. J. – volume: 281 start-page: 291 year: 2006 end-page: 307 ident: bb0020 article-title: Can the biochemical features and histology of wheat residues explain their decomposition in soil? publication-title: Plant Soil – volume: 62 start-page: 1367 year: 1998 end-page: 1377 ident: bb0160 article-title: Aggregation and soil organic matter accumulation in cultivated and native grassland soils publication-title: Soil Sci. Soc. Am. J. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bb0180 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 31 start-page: 697 year: 2000 end-page: 710 ident: bb0015 article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack publication-title: Org. Geochem. – volume: 237–238 start-page: 246 year: 2015 end-page: 255 ident: bb0125 article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments publication-title: Geoderma – volume: 25 start-page: 1435 year: 1993 end-page: 1441 ident: bb0205 article-title: Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil publication-title: Soil Biol. Biochem. – volume: 49 start-page: 527 year: 2013 end-page: 535 ident: bb0130 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biol. Fertil. Soils – volume: 101 start-page: 133 year: 2010 end-page: 149 ident: bb0145 article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry – volume: 269 start-page: 341 year: 2005 end-page: 356 ident: bb0150 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil – volume: 387 start-page: 265 year: 2015 end-page: 275 ident: bb0055 article-title: Effect of plant communities on aggregate composition and organic matter stabilisation in young soils publication-title: Plant Soil – volume: 11 start-page: 207 year: 1999 end-page: 216 ident: bb0025 article-title: Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies publication-title: Appl. Soil Ecol. – volume: 92 start-page: 111 year: 2016 end-page: 118 ident: bb0100 article-title: Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere publication-title: Soil Biol. Biochem. – volume: 177 start-page: 297 year: 2014 end-page: 306 ident: bb0010 article-title: Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment publication-title: J. Plant Nutr. Soil Sci. – volume: 40 start-page: 1823 year: 2008 end-page: 1835 ident: bb0070 article-title: Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen publication-title: Soil Biol. Biochem. – volume: 5 start-page: 10102 year: 2015 ident: bb0190 article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes publication-title: Sci. Rep. – volume: 171 start-page: 111 year: 2008 end-page: 124 ident: bb0185 article-title: Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model publication-title: J. Plant Nutr. Soil Sci. – volume: 124 start-page: 649 year: 2015 end-page: 657 ident: bb0210 article-title: Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation publication-title: Oikos – volume: 41 start-page: 435 year: 2009 end-page: 439 ident: bb0085 article-title: The Biology of the Regulatory Gate: comments on the paper by Kemmitt et al. (2008) ‘mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective’ [Soil Biol Biochem 40, 61–73] publication-title: Soil Biol. Biochem. – volume: 85 start-page: 45 year: 2007 end-page: 57 ident: bb0095 article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms publication-title: Biogeochemistry – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: bb0165 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – start-page: 395 year: 2012 end-page: 428 ident: bb0060 article-title: Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world publication-title: Recarbonization of the Biosphere – volume: 101 start-page: 943 year: 2013 end-page: 952 ident: bb0040 article-title: Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide publication-title: J. Ecol. – volume: 51 start-page: 839 year: 2015 end-page: 845 ident: bb0115 article-title: Influence of cropping system management and crop residue addition on soil carbon turnover through the microbial biomass publication-title: Biol. Fertil. Soils – volume: 60 start-page: 253 year: 2001 end-page: 266 ident: bb0155 article-title: CO publication-title: Nutr. Cycl. Agroecosyst. – volume: 20 start-page: 3557 year: 2014 end-page: 3567 ident: bb0110 article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices publication-title: Glob. Chang. Biol. – volume: 41 start-page: 1 year: 2009 end-page: 12 ident: bb0005 article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis publication-title: Soil Biol. Biochem. – volume: 55 start-page: 111 year: 2012 end-page: 119 ident: bb0080 article-title: Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems publication-title: Pedobiologia – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0090 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 58 start-page: 74 year: 2007 end-page: 82 ident: bb0195 article-title: Analysis of variance, inference, multiple comparisons and sampling effects in soil research publication-title: Eur. J. Soil Sci. – volume: 20 start-page: 1167 year: 1990 end-page: 1169 ident: bb0200 article-title: Measurement of soil microbial biomass, by fumigation-extraction — an automated procedure publication-title: Soil Biol. Biochem. – volume: 43 start-page: 778 year: 2011 end-page: 786 ident: bb0030 article-title: Three-source-partitioning of microbial biomass and of CO publication-title: Soil Biol. Biochem. – volume: 103 start-page: 279 year: 2011 end-page: 287 ident: bb0140 article-title: Implications for soil properties of removing cereal straw: results from long-term studies publication-title: Agron. J. – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: bb0170 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. – volume: 170 start-page: 168 year: 2012 end-page: 175 ident: bb0065 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model publication-title: Geoderma – volume: 75 start-page: 45 year: 2014 end-page: 53 ident: bb0135 article-title: Formation of millimetric-scale aggregates and associated retention of publication-title: Soil Biol. Biochem. – start-page: S. 59 year: 2012 end-page: S. 82 ident: bb0075 article-title: Historic changes in terrestrial carbon storage publication-title: Recarbonization of the Biosphere – volume: 55 start-page: 111 year: 2012 ident: 10.1016/j.geoderma.2016.05.019_bb0080 article-title: Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.12.001 – volume: 90 start-page: 87 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0050 article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.021 – volume: 43 start-page: 778 year: 2011 ident: 10.1016/j.geoderma.2016.05.019_bb0030 article-title: Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.12.011 – start-page: S. 59 year: 2012 ident: 10.1016/j.geoderma.2016.05.019_bb0075 article-title: Historic changes in terrestrial carbon storage – volume: 101 start-page: 133 year: 2010 ident: 10.1016/j.geoderma.2016.05.019_bb0145 article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry doi: 10.1007/s10533-010-9439-0 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2016.05.019_bb0165 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.geoderma.2016.05.019_bb0090 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – start-page: S. 303 year: 2012 ident: 10.1016/j.geoderma.2016.05.019_bb0105 article-title: Cropland soil carbon dynamics – volume: 171 start-page: 111 year: 2008 ident: 10.1016/j.geoderma.2016.05.019_bb0185 article-title: Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200700047 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.geoderma.2016.05.019_bb0180 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 124 start-page: 649 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0210 article-title: Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation publication-title: Oikos doi: 10.1111/oik.01728 – volume: 177 start-page: 297 year: 2014 ident: 10.1016/j.geoderma.2016.05.019_bb0010 article-title: Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200628 – volume: 237–238 start-page: 246 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0125 article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.010 – volume: 103 start-page: 279 year: 2011 ident: 10.1016/j.geoderma.2016.05.019_bb0140 article-title: Implications for soil properties of removing cereal straw: results from long-term studies publication-title: Agron. J. doi: 10.2134/agronj2010.0146s – volume: 51 start-page: 839 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0115 article-title: Influence of cropping system management and crop residue addition on soil carbon turnover through the microbial biomass publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-1030-3 – volume: 101 start-page: 943 year: 2013 ident: 10.1016/j.geoderma.2016.05.019_bb0040 article-title: Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide publication-title: J. Ecol. doi: 10.1111/1365-2745.12092 – volume: 387 start-page: 265 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0055 article-title: Effect of plant communities on aggregate composition and organic matter stabilisation in young soils publication-title: Plant Soil doi: 10.1007/s11104-014-2299-y – volume: 79 start-page: 7 year: 2004 ident: 10.1016/j.geoderma.2016.05.019_bb0170 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 85 start-page: 45 year: 2007 ident: 10.1016/j.geoderma.2016.05.019_bb0095 article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms publication-title: Biogeochemistry doi: 10.1007/s10533-007-9105-3 – volume: 20 start-page: 3557 year: 2014 ident: 10.1016/j.geoderma.2016.05.019_bb0110 article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12551 – volume: 92 start-page: 111 year: 2016 ident: 10.1016/j.geoderma.2016.05.019_bb0100 article-title: Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.09.020 – volume: 72 start-page: 379 year: 2008 ident: 10.1016/j.geoderma.2016.05.019_bb0175 article-title: Soil carbon saturation: linking concept and measurable carbon pools publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0104 – volume: 5 start-page: 10102 year: 2015 ident: 10.1016/j.geoderma.2016.05.019_bb0190 article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes publication-title: Sci. Rep. doi: 10.1038/srep10102 – volume: 58 start-page: 74 year: 2007 ident: 10.1016/j.geoderma.2016.05.019_bb0195 article-title: Analysis of variance, inference, multiple comparisons and sampling effects in soil research publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00801.x – volume: 31 start-page: 697 year: 2000 ident: 10.1016/j.geoderma.2016.05.019_bb0015 article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack publication-title: Org. Geochem. doi: 10.1016/S0146-6380(00)00049-8 – volume: 41 start-page: 1 year: 2009 ident: 10.1016/j.geoderma.2016.05.019_bb0005 article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.09.015 – volume: 20 start-page: 1167 year: 1990 ident: 10.1016/j.geoderma.2016.05.019_bb0200 article-title: Measurement of soil microbial biomass, by fumigation-extraction — an automated procedure publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90046-3 – volume: 49 start-page: 527 year: 2013 ident: 10.1016/j.geoderma.2016.05.019_bb0130 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0794-6 – volume: 269 start-page: 341 year: 2005 ident: 10.1016/j.geoderma.2016.05.019_bb0150 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – volume: 62 start-page: 1367 year: 1998 ident: 10.1016/j.geoderma.2016.05.019_bb0160 article-title: Aggregation and soil organic matter accumulation in cultivated and native grassland soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200050032x – start-page: 395 year: 2012 ident: 10.1016/j.geoderma.2016.05.019_bb0060 article-title: Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world – volume: 41 start-page: 435 year: 2009 ident: 10.1016/j.geoderma.2016.05.019_bb0085 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.07.023 – volume: 75 start-page: 45 year: 2014 ident: 10.1016/j.geoderma.2016.05.019_bb0135 article-title: Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.03.020 – volume: 281 start-page: 291 year: 2006 ident: 10.1016/j.geoderma.2016.05.019_bb0020 article-title: Can the biochemical features and histology of wheat residues explain their decomposition in soil? publication-title: Plant Soil doi: 10.1007/s11104-005-4628-7 – volume: 170 start-page: 168 year: 2012 ident: 10.1016/j.geoderma.2016.05.019_bb0065 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model publication-title: Geoderma doi: 10.1016/j.geoderma.2011.11.005 – volume: 60 start-page: 253 year: 2001 ident: 10.1016/j.geoderma.2016.05.019_bb0155 article-title: CO2 emissions and C sequestration by agriculture - perspectives and limitations publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1012617516477 – volume: 46 start-page: 436 year: 2010 ident: 10.1016/j.geoderma.2016.05.019_bb0045 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2010.09.006 – volume: 11 start-page: 207 year: 1999 ident: 10.1016/j.geoderma.2016.05.019_bb0025 article-title: Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(98)00148-6 – volume: 235 start-page: 253 year: 2001 ident: 10.1016/j.geoderma.2016.05.019_bb0035 article-title: A pulse-labelling method to generate 13C-enriched plant materials publication-title: Plant Soil doi: 10.1023/A:1011922103323 – volume: 40 start-page: 1823 year: 2008 ident: 10.1016/j.geoderma.2016.05.019_bb0070 article-title: Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.03.006 – volume: 25 start-page: 1435 year: 1993 ident: 10.1016/j.geoderma.2016.05.019_bb0205 article-title: Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90058-J |
SSID | ssj0017020 |
Score | 2.5784206 |
Snippet | Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | aboveground biomass carbon carbon dioxide Carbon sequestration clay cropland leaves microaggregates mineralization Priming effect Root mineralisation roots silt silt loam soils Soil organic matter straw Straw residue Water stable aggregates wheat |
Title | Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls |
URI | https://dx.doi.org/10.1016/j.geoderma.2016.05.019 https://www.proquest.com/docview/2000471251 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXvQgPnF9LBG81m26SR_eFh-synpS8CIhTRPpot3F7l797c6kqagge_BSSumUMknm-9rMfEPIaQprhqdFEthc84DriAUpVybIUxbbIssj6wRMx_fx6JHfPomnDrloa2EwrdLH_iamu2jtr_S9N_uzssQaXxYnAEfAKPCrxVWw8wRn-dnHV5oHS0IvzcjiAO_-ViU8gTHChmNOf4jFjYJn9hdA_QrVDn-uN8mGJ4502LzbFumYapusD1_evXiG2SHPl44D1oZOLa2n5SttejZp-uZUNCkwQcyFbSovKf6CpWXlTADA4HS2mNfndGywGris32qqqoL6ZPZ6lzxeXz1cjALfPiHQAy7mARysjoWwhSoymxjLNNcDxWOVWG0TJ-WnObbkCwuWK80LIHsC90lzwPCIDfbISjWtzD6hkUZeZKNUaPieZEmq0niQG5MLZjKrwi4Rrc-k9tri2OLiVbZJZBPZ-lqir2UoJPi6S_pfdrNGXWOpRdYOifwxTyRAwFLbk3YMJSwi3BlRlZkuauzFGQJKA9c7-MfzD8lahKCP-S7iiKzM3xfmGCjLPO-5Odkjq8Obu9H9J1iF7Yc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1Remg5ICitoJTiSu0x3Thr56MSBwRFS2E5gcSlch3HRkGQXZFdVb30T_EHmXEc1CJVHCouURRpoujZnnmOZ94AfMxxzYi8yiJXGhEJk_AoF9pGZc5TVxVl4ryA6fgkHZ2Jb-fyfAFu-1oYSqsMvr_z6d5bhyeDgOZgWtdU48vTDMMRMgratfCQWXlkf_3EfVu7c7iPg_wpSQ6-nu6NotBaIDJDIWcRXpxJpXSVrgqXWceNMEMtUp054zIvc2cEtauLK15qIyokQpLOEEuMbwkf4nufwXOB7oLaJnz-fZ9XwrM4aEHyNKLP-6Ms-RInBXU484JHPO0kQ4t_RcQHscEHvIMVWA5Mle12YKzCgm1ewdLuxU1Q67Br8H3fk87Wsolj7aS-Yl2TKMOuvWwnQ-pJybddqSejf76sbrwJRky8nc5n7Rc2tlR-XLfXLdNNxUL2fPsazp4E1Dew2Ewauw4sMUTEXJJLgxtYnuU6T4eltaXktnA63gDZY6ZMEDOnnhpXqs9au1Q91oqwVrFUiPUGDO7tpp2cx6MWRT8k6q-JqTDmPGr7oR9DhauWjmJ0Yyfzlpp_xkgLkFy-_Y_3b8OL0en4WB0fnhxtwsuEGAcl28h3sDi7mdst5Euz8r2fnwx-PPWCuANHFyiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decrease+of+soil+organic+matter+stabilization+with+increasing+inputs%3A+Mechanisms+and+controls&rft.jtitle=Geoderma&rft.au=Shahbaz%2C+Muhammad&rft.au=Kuzyakov%2C+Yakov&rft.au=Heitkamp%2C+Felix&rft.date=2017-10-15&rft.issn=0016-7061&rft.volume=304+p.76-82&rft.spage=76&rft.epage=82&rft_id=info:doi/10.1016%2Fj.geoderma.2016.05.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |