Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls

Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residue...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 304; pp. 76 - 82
Main Authors Shahbaz, Muhammad, Kuzyakov, Yakov, Heitkamp, Felix
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition. [Display omitted] •Aggregate formation increased generally with amendment level.•Decrease of residue occlusion with increasing inputs•Aboveground C retention in aggregates decreased at high level of addition.•Soil priming mainly depended on the level of addition.•Increased mineralisation and less residue physical protection decreased SOM stabilization.
AbstractList Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition. [Display omitted] •Aggregate formation increased generally with amendment level.•Decrease of residue occlusion with increasing inputs•Aboveground C retention in aggregates decreased at high level of addition.•Soil priming mainly depended on the level of addition.•Increased mineralisation and less residue physical protection decreased SOM stabilization.
Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related. Consequently, adding high amounts of residues, such as straw, may increase SOM to only a small extent, and an alternative use of the residues may be justified. The objective of this study was to test how the level and type (above- or belowground) of residue addition affect SOM stabilization. We hypothesise that (1) root residues will be mineralised slower than leaf and stalk residues, (2) soil aggregate formation will increase with high additions, and (3) wheat residue addition will induce positive priming, with the magnitude depending on the residue level and type. Homogeneously 13C-labelled wheat residues (leaves, stalks, roots) were added to a silt-loam soil at levels of 1.40 and 5.04gDMkg−1 and CO2 release and δ13C signature were measured over 64days at 20°C. Water-stable macroaggregates (>250μm), microaggregates (53–250μm) and silt plus clay size fractions (<53μm) were separated and 13C incorporation from residue was quantified in each fraction after 64days. Aggregate formation generally increased with added residue amount, but the proportion of residues occluded within aggregates decreased with increasing addition level. The occlusion of residues from aboveground biomass was more reduced with addition level than that of roots. Residue mineralisation increased with the addition level, but this increase was less for roots compared to stalks and leaves. Priming effects were similar between residue types and mainly depended on the added amount: SOM mineralisation increased by 50% and 90% at low and high addition levels, respectively. We conclude that the proportion of residues physically protected within aggregates decreases and priming effects increase with increasing C input leading to decreasing rate of long-term C stabilization within SOM by increasing residue addition.
Author Heitkamp, Felix
Shahbaz, Muhammad
Kuzyakov, Yakov
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Shahbaz
  fullname: Shahbaz, Muhammad
  email: shahbazmu@yahoo.com
  organization: Section of Physical Geography, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstr 5, 37077 Göttingen, Germany
– sequence: 2
  givenname: Yakov
  surname: Kuzyakov
  fullname: Kuzyakov, Yakov
  organization: Department of Soil Science of Temperate Ecosystems, Georg August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
– sequence: 3
  givenname: Felix
  orcidid: 0000-0002-0037-5553
  surname: Heitkamp
  fullname: Heitkamp, Felix
  organization: Section of Physical Geography, Faculty of Geoscience and Geography, Georg-August-University Göttingen, Goldschmidtstr 5, 37077 Göttingen, Germany
BookMark eNqFkE1PGzEQhq0KJBLoX0A-ctllvLveTRAHKvqFFMSlPVaWMztOHO3aqe0U0V-PQ8qll1xm5tXMM4dnyk6cd8TYpYBSgGivN-WKfE9h1GWVcwmyBDH_wCZi1lVFW8n5CZtA3hQdtOKMTWPc5NhBBRP26zNhIB2Je8OjtwP3YaWdRT7qlCjwmPTSDvavTtY7_mzTmlv3hli3yuN2l-INfyRcZyqOkWvXc_QuBT_EC3Zq9BDp479-zn5-_fLj_nuxePr2cP9pUWDdyFTkYrCV0vS6n5uOjMAGa920ujNoulqCmGEz6xqAXiw1Nv28qmXTglzOZF2J-pxdHf5ug_-9o5jUaCPSMGhHfhdVBQBNJyq5P20Ppxh8jIGM2gY76vCiBKi9T7VR7z7V3qcCqbLPDN7-B6JNb1ZS0HY4jt8dcMoe_lgKKqIlh9TbQJhU7-2xF69ss5l0
CitedBy_id crossref_primary_10_1088_1755_1315_239_1_012012
crossref_primary_10_3390_f15111958
crossref_primary_10_1016_j_apsoil_2019_103445
crossref_primary_10_1016_j_scitotenv_2021_152882
crossref_primary_10_1016_j_soilbio_2018_01_003
crossref_primary_10_1590_s0100_204x2018000800010
crossref_primary_10_1016_j_soilbio_2020_107843
crossref_primary_10_1007_s00374_022_01654_9
crossref_primary_10_1016_j_jenvman_2022_115373
crossref_primary_10_1007_s00374_022_01647_8
crossref_primary_10_1016_j_apsoil_2020_103733
crossref_primary_10_1080_00380768_2021_1959836
crossref_primary_10_1002_ldr_4420
crossref_primary_10_1007_s11104_018_3850_z
crossref_primary_10_1111_gcb_17115
crossref_primary_10_1016_j_ecoenv_2024_116194
crossref_primary_10_1016_j_catena_2019_104408
crossref_primary_10_1016_j_apsoil_2024_105370
crossref_primary_10_1007_s12517_021_07587_1
crossref_primary_10_1007_s00374_020_01512_6
crossref_primary_10_1016_j_catena_2021_105999
crossref_primary_10_1071_SR20257
crossref_primary_10_1007_s42832_024_0278_7
crossref_primary_10_1016_j_catena_2024_108050
crossref_primary_10_1016_j_geoderma_2019_03_039
crossref_primary_10_1007_s11368_022_03393_8
crossref_primary_10_3390_horticulturae10050476
crossref_primary_10_1016_j_scienta_2021_110534
crossref_primary_10_5194_soil_11_105_2025
crossref_primary_10_1016_j_agee_2024_109183
crossref_primary_10_1016_j_scitotenv_2023_161865
crossref_primary_10_1016_j_geoderma_2023_116340
crossref_primary_10_3390_agronomy10121944
crossref_primary_10_1016_j_geoderma_2023_116625
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_1016_j_catena_2025_108872
crossref_primary_10_1007_s11104_024_06819_z
crossref_primary_10_1016_j_ecolind_2019_105644
crossref_primary_10_1371_journal_pone_0262691
crossref_primary_10_2134_agronj2018_11_0739
crossref_primary_10_1016_j_scitotenv_2024_173287
crossref_primary_10_1016_S2095_3119_21_63646_8
crossref_primary_10_1016_j_soilbio_2022_108636
crossref_primary_10_1016_j_apsoil_2022_104732
crossref_primary_10_1016_j_ejsobi_2024_103695
crossref_primary_10_1016_j_ejsobi_2021_103291
crossref_primary_10_1016_j_soilbio_2020_107901
crossref_primary_10_1111_1365_2664_14265
crossref_primary_10_1111_sum_13011
crossref_primary_10_1016_j_soilbio_2019_06_003
crossref_primary_10_1080_00103624_2017_1406099
crossref_primary_10_2136_sssaj2017_05_0143
crossref_primary_10_1016_j_jia_2024_12_013
crossref_primary_10_1016_j_envres_2024_118936
crossref_primary_10_1016_j_jenvman_2022_116959
crossref_primary_10_1002_jpln_202100122
crossref_primary_10_1002_saj2_20731
crossref_primary_10_1071_CP20259
crossref_primary_10_1007_s10533_022_00936_6
crossref_primary_10_1007_s11368_017_1891_1
crossref_primary_10_1016_j_agee_2023_108699
crossref_primary_10_1126_sciadv_abd3176
crossref_primary_10_1007_s11104_021_05168_5
crossref_primary_10_1007_s42729_023_01352_x
crossref_primary_10_1016_j_still_2023_105685
crossref_primary_10_3390_agronomy12030747
crossref_primary_10_1016_j_geoderma_2020_114688
crossref_primary_10_3390_agriculture8030037
crossref_primary_10_1002_ldr_4077
crossref_primary_10_1016_j_catena_2023_107366
crossref_primary_10_1016_j_catena_2023_107762
crossref_primary_10_1016_S1002_0160_19_60796_4
crossref_primary_10_1002_saj2_20051
crossref_primary_10_1016_j_geodrs_2018_e00187
crossref_primary_10_1080_00103624_2018_1448406
crossref_primary_10_1111_ejss_13493
crossref_primary_10_1111_nph_15361
crossref_primary_10_1093_femsec_fiz043
crossref_primary_10_3390_en17030600
crossref_primary_10_1016_j_ejsobi_2019_103096
crossref_primary_10_1038_s41467_024_45277_0
crossref_primary_10_1007_s42729_024_01672_6
crossref_primary_10_3389_feart_2022_1047079
crossref_primary_10_1016_j_geoderma_2021_115342
crossref_primary_10_1080_03650340_2019_1711065
crossref_primary_10_1002_agj2_20831
crossref_primary_10_1016_j_catena_2018_09_043
crossref_primary_10_1016_j_still_2020_104656
crossref_primary_10_2136_sssaj2017_09_0344
crossref_primary_10_3390_land11040486
crossref_primary_10_1111_gcb_16062
crossref_primary_10_1134_S1064229322010069
crossref_primary_10_3390_ijerph17218077
crossref_primary_10_1016_j_iswcr_2020_07_007
crossref_primary_10_17221_31_2019_SWR
crossref_primary_10_1146_annurev_ecolsys_112414_054234
crossref_primary_10_1007_s00374_016_1174_9
crossref_primary_10_1002_jpln_201900308
crossref_primary_10_1016_j_apsoil_2024_105330
crossref_primary_10_1016_j_eti_2024_103668
crossref_primary_10_1016_j_still_2021_104943
crossref_primary_10_1016_j_apsoil_2023_104985
crossref_primary_10_1016_j_agee_2021_107815
crossref_primary_10_1016_j_jia_2023_02_025
crossref_primary_10_1016_j_geodrs_2019_e00226
crossref_primary_10_1007_s42729_025_02359_2
crossref_primary_10_1016_j_geoderma_2021_115216
crossref_primary_10_1016_j_geoderma_2020_114828
crossref_primary_10_1007_s11368_020_02797_8
crossref_primary_10_1007_s11104_019_04240_5
crossref_primary_10_1016_j_scitotenv_2022_153878
crossref_primary_10_1016_j_geoderma_2017_05_032
crossref_primary_10_1016_j_jia_2022_12_006
crossref_primary_10_1186_s13568_020_01018_2
crossref_primary_10_1080_00103624_2022_2094396
crossref_primary_10_1007_s12145_024_01603_0
crossref_primary_10_1002_ldr_2667
crossref_primary_10_1016_j_still_2019_104428
crossref_primary_10_1007_s10533_023_01098_9
crossref_primary_10_1016_j_soilbio_2020_107789
crossref_primary_10_1016_j_soilbio_2022_108839
crossref_primary_10_1016_j_ecoleng_2022_106837
crossref_primary_10_17660_ActaHortic_2022_1343_6
crossref_primary_10_3390_soilsystems7010013
crossref_primary_10_1016_j_scitotenv_2025_178387
crossref_primary_10_1007_s11356_021_15562_2
crossref_primary_10_1007_s11368_021_02953_8
crossref_primary_10_1016_j_catena_2023_107152
crossref_primary_10_1016_j_still_2023_105815
crossref_primary_10_1016_j_agee_2021_107504
crossref_primary_10_1016_j_geoderma_2022_116216
crossref_primary_10_1016_j_still_2021_105219
crossref_primary_10_3390_agronomy12020485
crossref_primary_10_1016_j_catena_2019_104428
crossref_primary_10_1139_cjss_2022_0117
crossref_primary_10_1002_saj2_20136
crossref_primary_10_1016_j_ecolind_2022_109471
crossref_primary_10_3390_su141912078
crossref_primary_10_1016_j_soilbio_2019_03_027
crossref_primary_10_1016_j_agee_2023_108656
crossref_primary_10_1016_j_soilbio_2018_03_004
crossref_primary_10_3390_plants13141974
crossref_primary_10_1016_j_soilbio_2018_08_023
crossref_primary_10_1111_sum_13166
crossref_primary_10_1007_s11368_018_2152_7
crossref_primary_10_1016_j_soilbio_2020_108069
crossref_primary_10_5327_Z2176_947820200695
crossref_primary_10_1007_s10533_020_00675_6
crossref_primary_10_1016_j_jenvman_2024_123130
crossref_primary_10_1007_s11258_019_00945_w
Cites_doi 10.1016/j.pedobi.2011.12.001
10.1016/j.soilbio.2015.07.021
10.1016/j.soilbio.2010.12.011
10.1007/s10533-010-9439-0
10.1023/A:1016125726789
10.1126/science.1097396
10.1002/jpln.200700047
10.1016/0038-0717(87)90052-6
10.1111/oik.01728
10.1002/jpln.201200628
10.1016/j.geoderma.2014.09.010
10.2134/agronj2010.0146s
10.1007/s00374-015-1030-3
10.1111/1365-2745.12092
10.1007/s11104-014-2299-y
10.1016/j.still.2004.03.008
10.1007/s10533-007-9105-3
10.1111/gcb.12551
10.1016/j.soilbio.2015.09.020
10.2136/sssaj2007.0104
10.1038/srep10102
10.1111/j.1365-2389.2006.00801.x
10.1016/S0146-6380(00)00049-8
10.1016/j.soilbio.2008.09.015
10.1016/0038-0717(90)90046-3
10.1007/s00374-013-0794-6
10.1007/s11104-004-0907-y
10.2136/sssaj1998.03615995006200050032x
10.1016/j.soilbio.2008.07.023
10.1016/j.soilbio.2014.03.020
10.1007/s11104-005-4628-7
10.1016/j.geoderma.2011.11.005
10.1023/A:1012617516477
10.1016/j.apsoil.2010.09.006
10.1016/S0929-1393(98)00148-6
10.1023/A:1011922103323
10.1016/j.soilbio.2008.03.006
10.1016/0038-0717(93)90058-J
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2016.05.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 82
ExternalDocumentID 10_1016_j_geoderma_2016_05_019
S0016706116302221
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-345fc655fdad9f7ef1c4c3a46a7fcf735018c487400d1bac4d92354605b853213
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Sun Aug 24 04:04:37 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 04:04:42 EDT 2025
Fri Feb 23 02:30:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Root mineralisation
Soil organic matter
Straw residue
Carbon sequestration
Priming effect
Water stable aggregates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-345fc655fdad9f7ef1c4c3a46a7fcf735018c487400d1bac4d92354605b853213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0037-5553
PQID 2000471251
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2000471251
crossref_primary_10_1016_j_geoderma_2016_05_019
crossref_citationtrail_10_1016_j_geoderma_2016_05_019
elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bertrand, Chabbert, Kurek, Recous (bb0020) 2006; 281
Guenet, Neill, Bardoux, Abbadie (bb0045) 2010; 46
Baldock, Skjemstad (bb0015) 2000; 31
Blagodatskaya, Yuyukina, Blagodatsky, Kuzyakov (bb0030) 2011; 43
Powlson, Glendining, Coleman, Whitmore (bb0140) 2011; 103
Xiao, Guenet, Zhou, Su, Janssens (bb0210) 2015; 124
Bromand, Whalen, Janzen, Schjoerring, Ellert (bb0035) 2001; 235
Sauerbeck (bb0155) 2001; 60
Poirier, Angersa, Whalen (bb0135) 2014; 75
Kuzyakov, Blagodatskaya, Blagodatsky (bb0085) 2009; 41
Six, Conant, Paul, Paustian (bb0165) 2002; 241
Andruschkewitsch, Geisseler, Dultz, Joergensen, Ludwig (bb0010) 2014; 177
Kramer, Marhana, Ruess, Armbruster, Butenschoend, Haslwimmer, Kuzyakov, Pauschf, Scheunemannd, Schoene, Schmalwasser, Totsche, Walker, Stefan, Kandeler (bb0080) 2012; 55
Blagodatskaya, Anderson (bb0025) 1999; 11
Wu, Joergensen, Pommerening, Chaussod, Brookes (bb0200) 1990; 20
Prescott (bb0145) 2010; 101
Stewart, Plante, Paustian, Conant, Six (bb0175) 2008; 72
Freschet, Cornwell, Wardle, Elumeeva, Liu, Jackson, Onipchenko, Soudzilovskaia, Tao, Cornelissen (bb0040) 2013; 101
Helfrich, Ludwig, Potthoff, Flessa (bb0070) 2008; 40
Wang, Boutton, Xu, Hu, Jiang, Bai (bb0190) 2015; 5
Wu, Brookes, Jenkinson (bb0205) 1993; 25
Six, Bossuyt, Degryze, Denef (bb0170) 2004; 79
Heitkamp, Jacobs, Jungkunst, Heinze, Wendland, Kuzyakov (bb0060) 2012
Six, Elliott, Paustian, Doran (bb0160) 1998; 62
Vance, Brookes, Jenkinson (bb0180) 1987; 19
Webster (bb0195) 2007; 58
Moreno-Cornejo, Zornoza, Doane, Faz, Horwath (bb0115) 2015; 51
Poirier, Angers, Rochette, Whalen (bb0130) 2013; 49
Loeppmann, Blagodatskaya, Pausch, Kuzyakov (bb0100) 2016; 92
Gunina, Kuzyakov (bb0050) 2015; 90
Lehmann, Kinyangi, Solomon (bb0095) 2007; 85
Houghton (bb0075) 2012
Rasse, Rumpel, Dignac (bb0150) 2005; 269
Lugato, Bampa, Panagos, Montanarella, Jones (bb0110) 2014; 20
Gunina, Ryzhova, Dorodnikov, Kuzyakov (bb0055) 2015; 387
Lorenz, Lal (bb0105) 2012
von Lützow, Kögel-Knabner, Ludwig, Matzner, Flessa, Ekschmitt, Guggenberger, Marschner, Kalbitz (bb0185) 2008; 171
Lal (bb0090) 2004; 304
Heitkamp, Wendland, Offenberger, Gerold (bb0065) 2012; 170
Poeplau, Kätterer, Bolinder, Börjesson, Berti, Lugato (bb0125) 2015; 237–238
Abiven, Menasseri, Chenu (bb0005) 2009; 41
Webster (10.1016/j.geoderma.2016.05.019_bb0195) 2007; 58
Andruschkewitsch (10.1016/j.geoderma.2016.05.019_bb0010) 2014; 177
Houghton (10.1016/j.geoderma.2016.05.019_bb0075) 2012
Helfrich (10.1016/j.geoderma.2016.05.019_bb0070) 2008; 40
Xiao (10.1016/j.geoderma.2016.05.019_bb0210) 2015; 124
Gunina (10.1016/j.geoderma.2016.05.019_bb0055) 2015; 387
Freschet (10.1016/j.geoderma.2016.05.019_bb0040) 2013; 101
Six (10.1016/j.geoderma.2016.05.019_bb0160) 1998; 62
Vance (10.1016/j.geoderma.2016.05.019_bb0180) 1987; 19
Poeplau (10.1016/j.geoderma.2016.05.019_bb0125) 2015; 237–238
Blagodatskaya (10.1016/j.geoderma.2016.05.019_bb0025) 1999; 11
Kuzyakov (10.1016/j.geoderma.2016.05.019_bb0085) 2009; 41
Moreno-Cornejo (10.1016/j.geoderma.2016.05.019_bb0115) 2015; 51
Bromand (10.1016/j.geoderma.2016.05.019_bb0035) 2001; 235
Kramer (10.1016/j.geoderma.2016.05.019_bb0080) 2012; 55
Powlson (10.1016/j.geoderma.2016.05.019_bb0140) 2011; 103
Sauerbeck (10.1016/j.geoderma.2016.05.019_bb0155) 2001; 60
Bertrand (10.1016/j.geoderma.2016.05.019_bb0020) 2006; 281
Six (10.1016/j.geoderma.2016.05.019_bb0165) 2002; 241
Poirier (10.1016/j.geoderma.2016.05.019_bb0135) 2014; 75
Lal (10.1016/j.geoderma.2016.05.019_bb0090) 2004; 304
Lugato (10.1016/j.geoderma.2016.05.019_bb0110) 2014; 20
Prescott (10.1016/j.geoderma.2016.05.019_bb0145) 2010; 101
Blagodatskaya (10.1016/j.geoderma.2016.05.019_bb0030) 2011; 43
Lehmann (10.1016/j.geoderma.2016.05.019_bb0095) 2007; 85
Six (10.1016/j.geoderma.2016.05.019_bb0170) 2004; 79
Stewart (10.1016/j.geoderma.2016.05.019_bb0175) 2008; 72
Guenet (10.1016/j.geoderma.2016.05.019_bb0045) 2010; 46
Gunina (10.1016/j.geoderma.2016.05.019_bb0050) 2015; 90
Loeppmann (10.1016/j.geoderma.2016.05.019_bb0100) 2016; 92
Lorenz (10.1016/j.geoderma.2016.05.019_bb0105) 2012
Rasse (10.1016/j.geoderma.2016.05.019_bb0150) 2005; 269
von Lützow (10.1016/j.geoderma.2016.05.019_bb0185) 2008; 171
Poirier (10.1016/j.geoderma.2016.05.019_bb0130) 2013; 49
Wu (10.1016/j.geoderma.2016.05.019_bb0205) 1993; 25
Heitkamp (10.1016/j.geoderma.2016.05.019_bb0060) 2012
Baldock (10.1016/j.geoderma.2016.05.019_bb0015) 2000; 31
Heitkamp (10.1016/j.geoderma.2016.05.019_bb0065) 2012; 170
Wu (10.1016/j.geoderma.2016.05.019_bb0200) 1990; 20
Abiven (10.1016/j.geoderma.2016.05.019_bb0005) 2009; 41
Wang (10.1016/j.geoderma.2016.05.019_bb0190) 2015; 5
References_xml – start-page: S. 303
  year: 2012
  end-page: S. 346
  ident: bb0105
  article-title: Cropland soil carbon dynamics
  publication-title: Recarbonization of the Biosphere
– volume: 235
  start-page: 253
  year: 2001
  end-page: 257
  ident: bb0035
  article-title: A pulse-labelling method to generate
  publication-title: Plant Soil
– volume: 46
  start-page: 436
  year: 2010
  end-page: 442
  ident: bb0045
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Appl. Soil Ecol.
– volume: 90
  start-page: 87
  year: 2015
  end-page: 100
  ident: bb0050
  article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate
  publication-title: Soil Biol. Biochem.
– volume: 72
  start-page: 379
  year: 2008
  end-page: 392
  ident: bb0175
  article-title: Soil carbon saturation: linking concept and measurable carbon pools
  publication-title: Soil Sci. Soc. Am. J.
– volume: 281
  start-page: 291
  year: 2006
  end-page: 307
  ident: bb0020
  article-title: Can the biochemical features and histology of wheat residues explain their decomposition in soil?
  publication-title: Plant Soil
– volume: 62
  start-page: 1367
  year: 1998
  end-page: 1377
  ident: bb0160
  article-title: Aggregation and soil organic matter accumulation in cultivated and native grassland soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bb0180
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 31
  start-page: 697
  year: 2000
  end-page: 710
  ident: bb0015
  article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack
  publication-title: Org. Geochem.
– volume: 237–238
  start-page: 246
  year: 2015
  end-page: 255
  ident: bb0125
  article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments
  publication-title: Geoderma
– volume: 25
  start-page: 1435
  year: 1993
  end-page: 1441
  ident: bb0205
  article-title: Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil
  publication-title: Soil Biol. Biochem.
– volume: 49
  start-page: 527
  year: 2013
  end-page: 535
  ident: bb0130
  article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
  publication-title: Biol. Fertil. Soils
– volume: 101
  start-page: 133
  year: 2010
  end-page: 149
  ident: bb0145
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
– volume: 269
  start-page: 341
  year: 2005
  end-page: 356
  ident: bb0150
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
– volume: 387
  start-page: 265
  year: 2015
  end-page: 275
  ident: bb0055
  article-title: Effect of plant communities on aggregate composition and organic matter stabilisation in young soils
  publication-title: Plant Soil
– volume: 11
  start-page: 207
  year: 1999
  end-page: 216
  ident: bb0025
  article-title: Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies
  publication-title: Appl. Soil Ecol.
– volume: 92
  start-page: 111
  year: 2016
  end-page: 118
  ident: bb0100
  article-title: Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere
  publication-title: Soil Biol. Biochem.
– volume: 177
  start-page: 297
  year: 2014
  end-page: 306
  ident: bb0010
  article-title: Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 40
  start-page: 1823
  year: 2008
  end-page: 1835
  ident: bb0070
  article-title: Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 10102
  year: 2015
  ident: bb0190
  article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes
  publication-title: Sci. Rep.
– volume: 171
  start-page: 111
  year: 2008
  end-page: 124
  ident: bb0185
  article-title: Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 124
  start-page: 649
  year: 2015
  end-page: 657
  ident: bb0210
  article-title: Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation
  publication-title: Oikos
– volume: 41
  start-page: 435
  year: 2009
  end-page: 439
  ident: bb0085
  article-title: The Biology of the Regulatory Gate: comments on the paper by Kemmitt et al. (2008) ‘mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective’ [Soil Biol Biochem 40, 61–73]
  publication-title: Soil Biol. Biochem.
– volume: 85
  start-page: 45
  year: 2007
  end-page: 57
  ident: bb0095
  article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms
  publication-title: Biogeochemistry
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: bb0165
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
– start-page: 395
  year: 2012
  end-page: 428
  ident: bb0060
  article-title: Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world
  publication-title: Recarbonization of the Biosphere
– volume: 101
  start-page: 943
  year: 2013
  end-page: 952
  ident: bb0040
  article-title: Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide
  publication-title: J. Ecol.
– volume: 51
  start-page: 839
  year: 2015
  end-page: 845
  ident: bb0115
  article-title: Influence of cropping system management and crop residue addition on soil carbon turnover through the microbial biomass
  publication-title: Biol. Fertil. Soils
– volume: 60
  start-page: 253
  year: 2001
  end-page: 266
  ident: bb0155
  article-title: CO
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 20
  start-page: 3557
  year: 2014
  end-page: 3567
  ident: bb0110
  article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices
  publication-title: Glob. Chang. Biol.
– volume: 41
  start-page: 1
  year: 2009
  end-page: 12
  ident: bb0005
  article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis
  publication-title: Soil Biol. Biochem.
– volume: 55
  start-page: 111
  year: 2012
  end-page: 119
  ident: bb0080
  article-title: Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems
  publication-title: Pedobiologia
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0090
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 58
  start-page: 74
  year: 2007
  end-page: 82
  ident: bb0195
  article-title: Analysis of variance, inference, multiple comparisons and sampling effects in soil research
  publication-title: Eur. J. Soil Sci.
– volume: 20
  start-page: 1167
  year: 1990
  end-page: 1169
  ident: bb0200
  article-title: Measurement of soil microbial biomass, by fumigation-extraction — an automated procedure
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 778
  year: 2011
  end-page: 786
  ident: bb0030
  article-title: Three-source-partitioning of microbial biomass and of CO
  publication-title: Soil Biol. Biochem.
– volume: 103
  start-page: 279
  year: 2011
  end-page: 287
  ident: bb0140
  article-title: Implications for soil properties of removing cereal straw: results from long-term studies
  publication-title: Agron. J.
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bb0170
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– volume: 170
  start-page: 168
  year: 2012
  end-page: 175
  ident: bb0065
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model
  publication-title: Geoderma
– volume: 75
  start-page: 45
  year: 2014
  end-page: 53
  ident: bb0135
  article-title: Formation of millimetric-scale aggregates and associated retention of
  publication-title: Soil Biol. Biochem.
– start-page: S. 59
  year: 2012
  end-page: S. 82
  ident: bb0075
  article-title: Historic changes in terrestrial carbon storage
  publication-title: Recarbonization of the Biosphere
– volume: 55
  start-page: 111
  year: 2012
  ident: 10.1016/j.geoderma.2016.05.019_bb0080
  article-title: Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.12.001
– volume: 90
  start-page: 87
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0050
  article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.021
– volume: 43
  start-page: 778
  year: 2011
  ident: 10.1016/j.geoderma.2016.05.019_bb0030
  article-title: Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.12.011
– start-page: S. 59
  year: 2012
  ident: 10.1016/j.geoderma.2016.05.019_bb0075
  article-title: Historic changes in terrestrial carbon storage
– volume: 101
  start-page: 133
  year: 2010
  ident: 10.1016/j.geoderma.2016.05.019_bb0145
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9439-0
– volume: 241
  start-page: 155
  year: 2002
  ident: 10.1016/j.geoderma.2016.05.019_bb0165
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.geoderma.2016.05.019_bb0090
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– start-page: S. 303
  year: 2012
  ident: 10.1016/j.geoderma.2016.05.019_bb0105
  article-title: Cropland soil carbon dynamics
– volume: 171
  start-page: 111
  year: 2008
  ident: 10.1016/j.geoderma.2016.05.019_bb0185
  article-title: Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200700047
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.geoderma.2016.05.019_bb0180
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 124
  start-page: 649
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0210
  article-title: Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation
  publication-title: Oikos
  doi: 10.1111/oik.01728
– volume: 177
  start-page: 297
  year: 2014
  ident: 10.1016/j.geoderma.2016.05.019_bb0010
  article-title: Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200628
– volume: 237–238
  start-page: 246
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0125
  article-title: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.010
– volume: 103
  start-page: 279
  year: 2011
  ident: 10.1016/j.geoderma.2016.05.019_bb0140
  article-title: Implications for soil properties of removing cereal straw: results from long-term studies
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0146s
– volume: 51
  start-page: 839
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0115
  article-title: Influence of cropping system management and crop residue addition on soil carbon turnover through the microbial biomass
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-015-1030-3
– volume: 101
  start-page: 943
  year: 2013
  ident: 10.1016/j.geoderma.2016.05.019_bb0040
  article-title: Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12092
– volume: 387
  start-page: 265
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0055
  article-title: Effect of plant communities on aggregate composition and organic matter stabilisation in young soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2299-y
– volume: 79
  start-page: 7
  year: 2004
  ident: 10.1016/j.geoderma.2016.05.019_bb0170
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 85
  start-page: 45
  year: 2007
  ident: 10.1016/j.geoderma.2016.05.019_bb0095
  article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9105-3
– volume: 20
  start-page: 3557
  year: 2014
  ident: 10.1016/j.geoderma.2016.05.019_bb0110
  article-title: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12551
– volume: 92
  start-page: 111
  year: 2016
  ident: 10.1016/j.geoderma.2016.05.019_bb0100
  article-title: Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.09.020
– volume: 72
  start-page: 379
  year: 2008
  ident: 10.1016/j.geoderma.2016.05.019_bb0175
  article-title: Soil carbon saturation: linking concept and measurable carbon pools
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0104
– volume: 5
  start-page: 10102
  year: 2015
  ident: 10.1016/j.geoderma.2016.05.019_bb0190
  article-title: Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes
  publication-title: Sci. Rep.
  doi: 10.1038/srep10102
– volume: 58
  start-page: 74
  year: 2007
  ident: 10.1016/j.geoderma.2016.05.019_bb0195
  article-title: Analysis of variance, inference, multiple comparisons and sampling effects in soil research
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00801.x
– volume: 31
  start-page: 697
  year: 2000
  ident: 10.1016/j.geoderma.2016.05.019_bb0015
  article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00049-8
– volume: 41
  start-page: 1
  year: 2009
  ident: 10.1016/j.geoderma.2016.05.019_bb0005
  article-title: The effects of organic inputs over time on soil aggregate stability – a literature analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.09.015
– volume: 20
  start-page: 1167
  year: 1990
  ident: 10.1016/j.geoderma.2016.05.019_bb0200
  article-title: Measurement of soil microbial biomass, by fumigation-extraction — an automated procedure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90046-3
– volume: 49
  start-page: 527
  year: 2013
  ident: 10.1016/j.geoderma.2016.05.019_bb0130
  article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0794-6
– volume: 269
  start-page: 341
  year: 2005
  ident: 10.1016/j.geoderma.2016.05.019_bb0150
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– volume: 62
  start-page: 1367
  year: 1998
  ident: 10.1016/j.geoderma.2016.05.019_bb0160
  article-title: Aggregation and soil organic matter accumulation in cultivated and native grassland soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200050032x
– start-page: 395
  year: 2012
  ident: 10.1016/j.geoderma.2016.05.019_bb0060
  article-title: Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world
– volume: 41
  start-page: 435
  year: 2009
  ident: 10.1016/j.geoderma.2016.05.019_bb0085
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.07.023
– volume: 75
  start-page: 45
  year: 2014
  ident: 10.1016/j.geoderma.2016.05.019_bb0135
  article-title: Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.020
– volume: 281
  start-page: 291
  year: 2006
  ident: 10.1016/j.geoderma.2016.05.019_bb0020
  article-title: Can the biochemical features and histology of wheat residues explain their decomposition in soil?
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-4628-7
– volume: 170
  start-page: 168
  year: 2012
  ident: 10.1016/j.geoderma.2016.05.019_bb0065
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.11.005
– volume: 60
  start-page: 253
  year: 2001
  ident: 10.1016/j.geoderma.2016.05.019_bb0155
  article-title: CO2 emissions and C sequestration by agriculture - perspectives and limitations
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1012617516477
– volume: 46
  start-page: 436
  year: 2010
  ident: 10.1016/j.geoderma.2016.05.019_bb0045
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2010.09.006
– volume: 11
  start-page: 207
  year: 1999
  ident: 10.1016/j.geoderma.2016.05.019_bb0025
  article-title: Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(98)00148-6
– volume: 235
  start-page: 253
  year: 2001
  ident: 10.1016/j.geoderma.2016.05.019_bb0035
  article-title: A pulse-labelling method to generate 13C-enriched plant materials
  publication-title: Plant Soil
  doi: 10.1023/A:1011922103323
– volume: 40
  start-page: 1823
  year: 2008
  ident: 10.1016/j.geoderma.2016.05.019_bb0070
  article-title: Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.03.006
– volume: 25
  start-page: 1435
  year: 1993
  ident: 10.1016/j.geoderma.2016.05.019_bb0205
  article-title: Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(93)90058-J
SSID ssj0017020
Score 2.5784206
Snippet Crop residue addition is a way to increase soil organic matter (SOM) level in croplands. However, organic matter input and SOM stocks are not linearly related....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms aboveground biomass
carbon
carbon dioxide
Carbon sequestration
clay
cropland
leaves
microaggregates
mineralization
Priming effect
Root mineralisation
roots
silt
silt loam soils
Soil organic matter
straw
Straw residue
Water stable aggregates
wheat
Title Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls
URI https://dx.doi.org/10.1016/j.geoderma.2016.05.019
https://www.proquest.com/docview/2000471251
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXvQgPnF9LBG81m26SR_eFh-synpS8CIhTRPpot3F7l797c6kqagge_BSSumUMknm-9rMfEPIaQprhqdFEthc84DriAUpVybIUxbbIssj6wRMx_fx6JHfPomnDrloa2EwrdLH_iamu2jtr_S9N_uzssQaXxYnAEfAKPCrxVWw8wRn-dnHV5oHS0IvzcjiAO_-ViU8gTHChmNOf4jFjYJn9hdA_QrVDn-uN8mGJ4502LzbFumYapusD1_evXiG2SHPl44D1oZOLa2n5SttejZp-uZUNCkwQcyFbSovKf6CpWXlTADA4HS2mNfndGywGris32qqqoL6ZPZ6lzxeXz1cjALfPiHQAy7mARysjoWwhSoymxjLNNcDxWOVWG0TJ-WnObbkCwuWK80LIHsC90lzwPCIDfbISjWtzD6hkUZeZKNUaPieZEmq0niQG5MLZjKrwi4Rrc-k9tri2OLiVbZJZBPZ-lqir2UoJPi6S_pfdrNGXWOpRdYOifwxTyRAwFLbk3YMJSwi3BlRlZkuauzFGQJKA9c7-MfzD8lahKCP-S7iiKzM3xfmGCjLPO-5Odkjq8Obu9H9J1iF7Yc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1Remg5ICitoJTiSu0x3Thr56MSBwRFS2E5gcSlch3HRkGQXZFdVb30T_EHmXEc1CJVHCouURRpoujZnnmOZ94AfMxxzYi8yiJXGhEJk_AoF9pGZc5TVxVl4ryA6fgkHZ2Jb-fyfAFu-1oYSqsMvr_z6d5bhyeDgOZgWtdU48vTDMMRMgratfCQWXlkf_3EfVu7c7iPg_wpSQ6-nu6NotBaIDJDIWcRXpxJpXSVrgqXWceNMEMtUp054zIvc2cEtauLK15qIyokQpLOEEuMbwkf4nufwXOB7oLaJnz-fZ9XwrM4aEHyNKLP-6Ms-RInBXU484JHPO0kQ4t_RcQHscEHvIMVWA5Mle12YKzCgm1ewdLuxU1Q67Br8H3fk87Wsolj7aS-Yl2TKMOuvWwnQ-pJybddqSejf76sbrwJRky8nc5n7Rc2tlR-XLfXLdNNxUL2fPsazp4E1Dew2Ewauw4sMUTEXJJLgxtYnuU6T4eltaXktnA63gDZY6ZMEDOnnhpXqs9au1Q91oqwVrFUiPUGDO7tpp2cx6MWRT8k6q-JqTDmPGr7oR9DhauWjmJ0Yyfzlpp_xkgLkFy-_Y_3b8OL0en4WB0fnhxtwsuEGAcl28h3sDi7mdst5Euz8r2fnwx-PPWCuANHFyiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decrease+of+soil+organic+matter+stabilization+with+increasing+inputs%3A+Mechanisms+and+controls&rft.jtitle=Geoderma&rft.au=Shahbaz%2C+Muhammad&rft.au=Kuzyakov%2C+Yakov&rft.au=Heitkamp%2C+Felix&rft.date=2017-10-15&rft.issn=0016-7061&rft.volume=304+p.76-82&rft.spage=76&rft.epage=82&rft_id=info:doi/10.1016%2Fj.geoderma.2016.05.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon