Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures
The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P availability for plant uptake. Biochar with its heterogeneous surface properties as influenced by feedstock and pyrolysis temperature can affect P re...
Saved in:
Published in | Geoderma Vol. 341; pp. 10 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P availability for plant uptake. Biochar with its heterogeneous surface properties as influenced by feedstock and pyrolysis temperature can affect P retention and availability in tropical soils. In the present study, incubation studies were conducted for 90 days to investigate the effect of corn cob and rice husk biochar on P sorption and desorption in two acid (Typic Plinthustult-A & Plinthic Acrudox-B) and one neutral soil (Quartzipsamment-C). The biochars were pyrolyzed at varying temperatures (300 °C, 450 °C and 650 °C) and applied at a rate of 1% (w/w) to the soils. Phosphorus sorption data were fitted to Langmuir and Freundlich models. Phosphorus desorption was done on the residual samples that received initial P concentrations of 21.5 mg L−1, 43.0 mg L−1 and 86.0 mg L−1 solution using 10 mM KCl. The P sorption capacity of the two acid soils i.e. A (395 mg kg−1) and B (296 mg kg−1) were more than two fold that of the neutral soil (C) (105 mg kg−1). Addition of the biochar types to soil A raised the equilibrium P concentration in solution at decreasing pyrolysis temperature. Similar trend was observed in soil B with the exception of corn cob and rice husk biochar at 650 °C which increased the soil's (B) P sorption capacity. In soil C, both biochar types increased P sorption capacity with increasing pyrolysis temperatures. Phosphorus desorbability increased with increasing initial P concentrations in the three soils. Generally, P desorbability increased in the acid soils but decreased in the neutral soil upon biochar amendment. Decreases in P adsorption and consequently increases in P desorption were more pronounced when the 300 °C biochar types were amended with the soils. The study thus showed that biochar pyrolyzed at 300–450 °C could be used to reduce P sorption and increase P bioavailability especially in acid soils. The addition of biochar to neutral or alkaline soils might increase P retention possibly in the short-term, reducing P bioavailability.
•Phosphorus bioavailability in soil solution is dependent on soil type, feedstock used and pyrolysis temperature.•Addition of biochar to acid soils decreases P retention at decreasing pyrolysis temperature.•Biochar amendment in neutral soil raises P sorption capacity at increasing pyrolysis temperature.•Phosphorus desorbability in biochar amended acid soils increases while in neutral soil it decreases. |
---|---|
AbstractList | The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P availability for plant uptake. Biochar with its heterogeneous surface properties as influenced by feedstock and pyrolysis temperature can affect P retention and availability in tropical soils. In the present study, incubation studies were conducted for 90 days to investigate the effect of corn cob and rice husk biochar on P sorption and desorption in two acid (Typic Plinthustult-A & Plinthic Acrudox-B) and one neutral soil (Quartzipsamment-C). The biochars were pyrolyzed at varying temperatures (300 °C, 450 °C and 650 °C) and applied at a rate of 1% (w/w) to the soils. Phosphorus sorption data were fitted to Langmuir and Freundlich models. Phosphorus desorption was done on the residual samples that received initial P concentrations of 21.5 mg L−1, 43.0 mg L−1 and 86.0 mg L−1 solution using 10 mM KCl. The P sorption capacity of the two acid soils i.e. A (395 mg kg−1) and B (296 mg kg−1) were more than two fold that of the neutral soil (C) (105 mg kg−1). Addition of the biochar types to soil A raised the equilibrium P concentration in solution at decreasing pyrolysis temperature. Similar trend was observed in soil B with the exception of corn cob and rice husk biochar at 650 °C which increased the soil's (B) P sorption capacity. In soil C, both biochar types increased P sorption capacity with increasing pyrolysis temperatures. Phosphorus desorbability increased with increasing initial P concentrations in the three soils. Generally, P desorbability increased in the acid soils but decreased in the neutral soil upon biochar amendment. Decreases in P adsorption and consequently increases in P desorption were more pronounced when the 300 °C biochar types were amended with the soils. The study thus showed that biochar pyrolyzed at 300–450 °C could be used to reduce P sorption and increase P bioavailability especially in acid soils. The addition of biochar to neutral or alkaline soils might increase P retention possibly in the short-term, reducing P bioavailability.
•Phosphorus bioavailability in soil solution is dependent on soil type, feedstock used and pyrolysis temperature.•Addition of biochar to acid soils decreases P retention at decreasing pyrolysis temperature.•Biochar amendment in neutral soil raises P sorption capacity at increasing pyrolysis temperature.•Phosphorus desorbability in biochar amended acid soils increases while in neutral soil it decreases. The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P availability for plant uptake. Biochar with its heterogeneous surface properties as influenced by feedstock and pyrolysis temperature can affect P retention and availability in tropical soils. In the present study, incubation studies were conducted for 90 days to investigate the effect of corn cob and rice husk biochar on P sorption and desorption in two acid (Typic Plinthustult-A & Plinthic Acrudox-B) and one neutral soil (Quartzipsamment-C). The biochars were pyrolyzed at varying temperatures (300 °C, 450 °C and 650 °C) and applied at a rate of 1% (w/w) to the soils. Phosphorus sorption data were fitted to Langmuir and Freundlich models. Phosphorus desorption was done on the residual samples that received initial P concentrations of 21.5 mg L−1, 43.0 mg L−1 and 86.0 mg L−1 solution using 10 mM KCl. The P sorption capacity of the two acid soils i.e. A (395 mg kg−1) and B (296 mg kg−1) were more than two fold that of the neutral soil (C) (105 mg kg−1). Addition of the biochar types to soil A raised the equilibrium P concentration in solution at decreasing pyrolysis temperature. Similar trend was observed in soil B with the exception of corn cob and rice husk biochar at 650 °C which increased the soil's (B) P sorption capacity. In soil C, both biochar types increased P sorption capacity with increasing pyrolysis temperatures. Phosphorus desorbability increased with increasing initial P concentrations in the three soils. Generally, P desorbability increased in the acid soils but decreased in the neutral soil upon biochar amendment. Decreases in P adsorption and consequently increases in P desorption were more pronounced when the 300 °C biochar types were amended with the soils. The study thus showed that biochar pyrolyzed at 300–450 °C could be used to reduce P sorption and increase P bioavailability especially in acid soils. The addition of biochar to neutral or alkaline soils might increase P retention possibly in the short-term, reducing P bioavailability. |
Author | Breuning-Madsen, H. Abekoe, M.K. Andersen, M.N. Eduah, J.O. Nartey, E.K. |
Author_xml | – sequence: 1 givenname: J.O. surname: Eduah fullname: Eduah, J.O. email: jo.eduah@yahoo.com organization: Department of Soil Science, School of Agriculture, University of Ghana, P. O. Box LG 245, Legon, Ghana – sequence: 2 givenname: E.K. surname: Nartey fullname: Nartey, E.K. organization: Department of Soil Science, School of Agriculture, University of Ghana, P. O. Box LG 245, Legon, Ghana – sequence: 3 givenname: M.K. surname: Abekoe fullname: Abekoe, M.K. organization: Department of Soil Science, School of Agriculture, University of Ghana, P. O. Box LG 245, Legon, Ghana – sequence: 4 givenname: H. surname: Breuning-Madsen fullname: Breuning-Madsen, H. organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Denmark – sequence: 5 givenname: M.N. surname: Andersen fullname: Andersen, M.N. organization: Department of Agroecology and Environment, Aarhus University, Denmark |
BookMark | eNqFkcGO1DAMhiO0SMwuvALKkUsHp-20qcQBtGIBaSU4wDlKE3froU1Kkg6al-CZSRm4cFnJihXH3x_59zW7ct4hYy8F7AWI5vVx_4DeYpj1vgTR7UHkaJ6wnZBtWTTlobtiO8ilooVGPGPXMR7ztYUSduzXl9HHZfRhjTxgQpfIO66d5fqkadI9TZTOnBxPY0DkxrsUdEzkHnj0NEWuZ3QWLf9JaeSBDPJxjd__SBgfXD563pM3ow5cJ37S4bzByzn46Rwp8oTzgkGnNWB8zp4Oeor44m--Yd_u3n-9_Vjcf_7w6fbdfWGq-pCKClA2tuptD3bzABtsQYIcqjY_tBV0Xc5DIwbAoTQ11laC6VDIgzQaobphry66S_A_VoxJzRQNTpN26NeoyrIEWbeyrnNrc2k1wccYcFBLoDlPoQSo7XN1VP8WoLYFKBA5mgy--Q80lPTmb3aQpsfxtxccsw8nwqCiIXQGLQU0SVlPj0n8Bh3hrJA |
CitedBy_id | crossref_primary_10_1080_03650340_2022_2103550 crossref_primary_10_1007_s42729_021_00583_0 crossref_primary_10_1002_agj2_20230 crossref_primary_10_1016_j_scitotenv_2021_146240 crossref_primary_10_5004_dwt_2023_29810 crossref_primary_10_1038_s41598_024_55527_2 crossref_primary_10_3390_agronomy12010027 crossref_primary_10_1007_s12633_024_02882_4 crossref_primary_10_1016_j_jclepro_2021_130079 crossref_primary_10_1134_S1064229322602293 crossref_primary_10_1016_j_scitotenv_2022_156333 crossref_primary_10_1016_j_scitotenv_2023_167104 crossref_primary_10_1111_jac_12383 crossref_primary_10_1016_j_chnaes_2023_05_003 crossref_primary_10_3390_su16072755 crossref_primary_10_1007_s12517_021_06629_y crossref_primary_10_31857_S0032180X22601116 crossref_primary_10_1186_s40068_024_00379_y crossref_primary_10_2139_ssrn_4125294 crossref_primary_10_1007_s13399_020_01222_x crossref_primary_10_1016_j_heliyon_2020_e05601 crossref_primary_10_1016_j_jenvman_2023_118191 crossref_primary_10_1016_j_envpol_2023_122340 crossref_primary_10_1071_SR21103 crossref_primary_10_1080_00103624_2020_1763393 crossref_primary_10_3390_agronomy11112223 crossref_primary_10_1111_sum_12894 crossref_primary_10_1016_j_scitotenv_2022_157278 crossref_primary_10_1016_j_jobe_2020_101705 crossref_primary_10_1007_s42773_023_00263_5 crossref_primary_10_1016_j_chemosphere_2021_131176 crossref_primary_10_1016_S1002_0160_21_60003_6 crossref_primary_10_1007_s11368_021_03131_6 crossref_primary_10_1016_j_still_2021_105251 crossref_primary_10_1016_j_scitotenv_2022_155571 crossref_primary_10_1080_00103624_2022_2034847 crossref_primary_10_1016_j_scitotenv_2020_138489 crossref_primary_10_1016_j_fcr_2019_107628 crossref_primary_10_1007_s11368_024_03756_3 crossref_primary_10_1007_s44246_024_00109_0 crossref_primary_10_3389_fenvs_2023_1252305 crossref_primary_10_1016_j_rsci_2021_05_004 crossref_primary_10_1002_ldr_5296 crossref_primary_10_1007_s11356_019_06762_y crossref_primary_10_1007_s42729_021_00631_9 crossref_primary_10_3389_fchem_2023_1225073 crossref_primary_10_3390_agronomy10070990 crossref_primary_10_1016_j_scitotenv_2021_145106 crossref_primary_10_1016_j_jenvman_2022_115087 crossref_primary_10_1007_s11368_021_02993_0 crossref_primary_10_1016_j_scitotenv_2020_143657 crossref_primary_10_1002_ldr_4599 crossref_primary_10_1016_j_jece_2022_107232 crossref_primary_10_1007_s11270_021_05336_4 crossref_primary_10_1007_s11356_020_09716_x crossref_primary_10_1007_s11356_021_15364_6 crossref_primary_10_20961_stjssa_v21i1_79310 crossref_primary_10_1016_j_chemosphere_2023_138293 crossref_primary_10_1016_j_envres_2023_116258 crossref_primary_10_3390_su132414041 crossref_primary_10_1007_s11368_020_02713_0 crossref_primary_10_3390_agriculture13020375 crossref_primary_10_1016_j_envres_2020_109277 crossref_primary_10_1016_j_envres_2021_112455 crossref_primary_10_1007_s42729_023_01428_8 crossref_primary_10_1016_j_chemosphere_2021_132112 crossref_primary_10_1007_s10311_023_01631_0 crossref_primary_10_1007_s11368_022_03359_w crossref_primary_10_1016_j_jece_2021_106899 crossref_primary_10_1016_j_chemosphere_2022_137244 crossref_primary_10_1016_j_seh_2024_100093 crossref_primary_10_3390_su15129215 crossref_primary_10_1016_j_envpol_2020_114816 crossref_primary_10_1016_j_scitotenv_2021_152171 crossref_primary_10_1007_s42729_021_00597_8 crossref_primary_10_1007_s42773_022_00135_4 crossref_primary_10_3390_w15081531 crossref_primary_10_20961_stjssa_v21i2_93130 crossref_primary_10_4236_ojss_2024_141006 crossref_primary_10_1016_j_envpol_2020_113970 crossref_primary_10_1016_j_jclepro_2020_120573 crossref_primary_10_3390_agronomy11020359 crossref_primary_10_1016_j_micron_2021_103070 crossref_primary_10_1016_j_eja_2024_127322 crossref_primary_10_3390_molecules28052225 crossref_primary_10_1016_j_rser_2021_111791 crossref_primary_10_1016_j_jclepro_2022_132915 crossref_primary_10_1016_j_colsuc_2023_100020 crossref_primary_10_1007_s42773_022_00178_7 crossref_primary_10_1016_j_eti_2020_100808 crossref_primary_10_1016_j_jenvman_2021_114214 crossref_primary_10_3390_agronomy12081923 crossref_primary_10_5004_dwt_2022_28136 crossref_primary_10_1016_j_heliyon_2023_e19356 crossref_primary_10_3390_agronomy11020248 crossref_primary_10_1080_03650340_2019_1699240 crossref_primary_10_1016_j_chemosphere_2023_137809 crossref_primary_10_48130_TIA_2023_0013 crossref_primary_10_1590_1678_4499_20230243 crossref_primary_10_1038_s41598_025_92816_w crossref_primary_10_1016_j_geoderma_2020_114921 crossref_primary_10_3390_agronomy11102010 crossref_primary_10_1016_j_scitotenv_2021_150325 |
Cites_doi | 10.1002/ep.10378 10.1021/ie0207919 10.1021/ie070415u 10.2134/jeq2014.01.0021 10.1007/s11104-010-0464-5 10.1016/j.ecoleng.2013.10.027 10.1016/j.geoderma.2015.08.036 10.1097/00010694-197004000-00002 10.1016/j.geoderma.2014.10.023 10.1016/S0016-7061(00)00110-5 10.1016/j.jcis.2010.03.020 10.1016/j.biortech.2012.12.044 10.1007/s10533-007-9104-4 10.1016/j.geoderma.2014.08.015 10.1016/j.gca.2009.11.010 10.1016/j.biortech.2016.08.079 10.1346/CCMN.1958.0070122 10.1007/s11027-005-9006-5 10.1021/es035034w 10.1016/j.jaap.2013.02.010 10.1007/BF00009284 10.1007/s11104-013-1938-z 10.1021/es4017816 10.1046/j.1469-8137.1999.00400.x 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P 10.1016/j.geoderma.2013.12.022 10.4155/cmt.13.23 10.1007/s10973-011-1578-6 10.1111/sum.12047 10.1081/CSS-120000389 10.1007/s11368-011-0405-9 10.1016/j.geoderma.2016.05.007 10.1016/S0341-8162(98)00063-0 10.13031/2013.25409 10.1016/j.still.2014.10.009 10.1002/gea.20102 10.1016/S0016-7061(03)00183-6 10.1016/j.scitotenv.2018.01.283 10.1002/jpln.3591050303 10.1016/j.biortech.2011.03.038 10.1007/s00374-014-0954-3 10.1016/j.rser.2011.05.010 10.1016/S0065-2113(10)05002-9 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.01.016 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 17 |
ExternalDocumentID | 10_1016_j_geoderma_2019_01_016 S0016706118311406 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-30e86d3bdb0d1016e6e70808f37e8673099e86f61f0ef2c4e4d80c9e1858cae03 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 01:42:02 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Jul 01 04:04:49 EDT 2025 Fri Feb 23 02:27:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sorption Phosphorus Pyrolysis temperature Desorption Rice husk biochar Corn cob biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-30e86d3bdb0d1016e6e70808f37e8673099e86f61f0ef2c4e4d80c9e1858cae03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2220847844 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2220847844 crossref_primary_10_1016_j_geoderma_2019_01_016 crossref_citationtrail_10_1016_j_geoderma_2019_01_016 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lehmann (bb0160) 2007; 5 Frost, Palmer, Pogson (bb0105) 2012; 107 Kirk, Santos, Santos (bb0150) 1999; 142 Zheng, Deng, Zhao, Luo, Novak, Herbert, Xing (bb0255) 2013; 130 Guzman, Alcantara, Baron, Torrent (bb0125) 1994; 159 Brewer, Schmidt-Rohr, Satrio, Brown (bb0055) 2009; 28 Liang, Cao, Zhao, Xu, Harris (bb0170) 2014; 43 Joseph, Graber, Chia, Munroe, Donne, Thomas, Nielsen, Marjo, Rutlidge, Pan, Li, Taylor, Rawal, Hook (bb0145) 2010; 4 WRB (bb0240) 1998 Dong, Ma, Zhu, Li, Gu (bb0085) 2013; 47 Schoumans, Chardon (bb0200) 2015; 237–238 Knicker (bb0155) 2007; 85 Soil Survey Staff (bb0215) 2010 Xu, Sun, Shao, Chang (bb0245) 2014; 62 DeLuca, Gundale, MacKenzie, Jones (bb0075) 2015 Antal, Gronli (bb0020) 2003; 42 Jaisi, Blake, Kukkadapu (bb0130) 2010; 74 Gerke, Beibner, Romer (bb0120) 2000; 163 Awadzi, Ahiahor, Breuning-Madsen (bb0035) 2008; 13 Sun, Ro, Guo, Novak, Mashayekhi (bb0225) 2011; 102 McDowell, Condron (bb0175) 2001; 32 Cerozi, Fitzsimmons (bb0060) 2016 Bourke, Manley-Harris, Fushimi, Dowaki, Nunoura, Antal (bb0050) 2007; 46 Zhai, CaiJi, Liu, Wang, Ren, Gai, Xi, Liu (bb0250) 2014; 51 Jiang, Yuan, Renkou, Bish (bb0135) 2015; 146 Gérard (bb0115) 2016; 262 Cui, Wang, Fu, Ci (bb4000) 2011; 11 Parr (bb0190) 2006; 21 Wang, Camps-Arbestain, Hedley, Bishop (bb0230) 2012; 357 Schwertmann (bb0205) 1964; 105 Bornø, Muller-Stover, Lui (bb0045) 2018; 627 Chun, Sheng, Chiou, Xing (bb0065) 2004; 38 Sohi, Krull, Lopez-Capel, Bol (bb0210) 2010; 105 Soinne, Hovi, Tammeorg, Turtola (bb0220) 2014; 219–220 Day (bb0070) 1965; vol. 9 Agrafioti, Bouras, Kalderis, Diamadopoulos (bb0015) 2013; 101 Antelo, Fiol, Pérez, Mariño, Arce, Gondar, López (bb0025) 2010; 347 Abekoe, Sahrawat (bb0005) 2001; 102 Lehmann, Gaunt, Rondon (bb0165) 2006; 11 Mehra, Jackson (bb0180) 1960; 7 Atkinson, Fitzgerald, Hipps (bb0030) 2010; 337 Duku, Gu, Hagan (bb0090) 2011; 15 Morales, Comerford, Guerrini, Falcao, Reeves (bb0185) 2013; 29 Borggaard, Szilas, Gimsing, Rasmussen (bb0040) 2004; 118 Dickson, Benneh (bb0080) 1995 Wang, Camps-Arbestain, Hedley (bb0235) 2014; 375 Schneider, Haderlein (bb0195) 2016; 277 Gaskin, Steiner, Harris, Das, Bibens (bb0110) 2008; 51 Abekoe, Tiessen (bb0010) 1998; 33 Eriksson, Gustafsson, Hesterberg (bb0100) 2015; 241–242 Dwomo, Dedzoe (bb0095) 2010; 30 John (bb0140) 1970; 109 Lehmann (10.1016/j.geoderma.2019.01.016_bb0160) 2007; 5 Zhai (10.1016/j.geoderma.2019.01.016_bb0250) 2014; 51 Abekoe (10.1016/j.geoderma.2019.01.016_bb0010) 1998; 33 Schwertmann (10.1016/j.geoderma.2019.01.016_bb0205) 1964; 105 Jiang (10.1016/j.geoderma.2019.01.016_bb0135) 2015; 146 Soinne (10.1016/j.geoderma.2019.01.016_bb0220) 2014; 219–220 Sun (10.1016/j.geoderma.2019.01.016_bb0225) 2011; 102 Liang (10.1016/j.geoderma.2019.01.016_bb0170) 2014; 43 Bornø (10.1016/j.geoderma.2019.01.016_bb0045) 2018; 627 Cui (10.1016/j.geoderma.2019.01.016_bb4000) 2011; 11 Dickson (10.1016/j.geoderma.2019.01.016_bb0080) 1995 Day (10.1016/j.geoderma.2019.01.016_bb0070) 1965; vol. 9 Wang (10.1016/j.geoderma.2019.01.016_bb0230) 2012; 357 Soil Survey Staff (10.1016/j.geoderma.2019.01.016_bb0215) 2010 Awadzi (10.1016/j.geoderma.2019.01.016_bb0035) 2008; 13 Lehmann (10.1016/j.geoderma.2019.01.016_bb0165) 2006; 11 Antal (10.1016/j.geoderma.2019.01.016_bb0020) 2003; 42 Gérard (10.1016/j.geoderma.2019.01.016_bb0115) 2016; 262 Morales (10.1016/j.geoderma.2019.01.016_bb0185) 2013; 29 Abekoe (10.1016/j.geoderma.2019.01.016_bb0005) 2001; 102 Chun (10.1016/j.geoderma.2019.01.016_bb0065) 2004; 38 Guzman (10.1016/j.geoderma.2019.01.016_bb0125) 1994; 159 Frost (10.1016/j.geoderma.2019.01.016_bb0105) 2012; 107 Brewer (10.1016/j.geoderma.2019.01.016_bb0055) 2009; 28 Dong (10.1016/j.geoderma.2019.01.016_bb0085) 2013; 47 John (10.1016/j.geoderma.2019.01.016_bb0140) 1970; 109 Joseph (10.1016/j.geoderma.2019.01.016_bb0145) 2010; 4 Duku (10.1016/j.geoderma.2019.01.016_bb0090) 2011; 15 Eriksson (10.1016/j.geoderma.2019.01.016_bb0100) 2015; 241–242 DeLuca (10.1016/j.geoderma.2019.01.016_bb0075) 2015 Sohi (10.1016/j.geoderma.2019.01.016_bb0210) 2010; 105 Bourke (10.1016/j.geoderma.2019.01.016_bb0050) 2007; 46 Knicker (10.1016/j.geoderma.2019.01.016_bb0155) 2007; 85 Dwomo (10.1016/j.geoderma.2019.01.016_bb0095) 2010; 30 McDowell (10.1016/j.geoderma.2019.01.016_bb0175) 2001; 32 Agrafioti (10.1016/j.geoderma.2019.01.016_bb0015) 2013; 101 Schoumans (10.1016/j.geoderma.2019.01.016_bb0200) 2015; 237–238 WRB (10.1016/j.geoderma.2019.01.016_bb0240) 1998 Borggaard (10.1016/j.geoderma.2019.01.016_bb0040) 2004; 118 Zheng (10.1016/j.geoderma.2019.01.016_bb0255) 2013; 130 Kirk (10.1016/j.geoderma.2019.01.016_bb0150) 1999; 142 Wang (10.1016/j.geoderma.2019.01.016_bb0235) 2014; 375 Parr (10.1016/j.geoderma.2019.01.016_bb0190) 2006; 21 Cerozi (10.1016/j.geoderma.2019.01.016_bb0060) 2016 Gaskin (10.1016/j.geoderma.2019.01.016_bb0110) 2008; 51 Gerke (10.1016/j.geoderma.2019.01.016_bb0120) 2000; 163 Schneider (10.1016/j.geoderma.2019.01.016_bb0195) 2016; 277 Xu (10.1016/j.geoderma.2019.01.016_bb0245) 2014; 62 Mehra (10.1016/j.geoderma.2019.01.016_bb0180) 1960; 7 Atkinson (10.1016/j.geoderma.2019.01.016_bb0030) 2010; 337 Antelo (10.1016/j.geoderma.2019.01.016_bb0025) 2010; 347 Jaisi (10.1016/j.geoderma.2019.01.016_bb0130) 2010; 74 |
References_xml | – volume: 375 start-page: 61 year: 2014 end-page: 74 ident: bb0235 article-title: The fate of phosphorus of ash-rich biochars in a soil-plant system publication-title: Plant Soil – volume: 15 start-page: 3539 year: 2011 end-page: 3551 ident: bb0090 article-title: Biochar production potential in Ghana-a review publication-title: Renew. Sust. Energ. Rev. – volume: 109 start-page: 214 year: 1970 end-page: 220 ident: bb0140 article-title: Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid publication-title: Soil Sci. – volume: 142 start-page: 185 year: 1999 end-page: 200 ident: bb0150 article-title: Phosphate solubilization by organic anion excretion from rice growing in aerobic soils: rates of excretion and decomposition, effects of rhizosphere pH and effects on phosphate solubility and uptake publication-title: New Phytol. J. – year: 1995 ident: bb0080 article-title: A New Geography of Ghana – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bb0160 article-title: Bio-energy in the Black publication-title: Front. Ecol. Environ. – volume: 4 start-page: 323 year: 2010 end-page: 343 ident: bb0145 article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components publication-title: Carbon Manag. – volume: 85 start-page: 91 year: 2007 end-page: 118 ident: bb0155 article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review publication-title: Biogeochemistry – volume: 28 start-page: 386 year: 2009 end-page: 396 ident: bb0055 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environ. Prog. Sustain. Energy – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: bb0165 article-title: Biochar sequestration in terrestrial ecosystem- a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 241–242 start-page: 68 year: 2015 end-page: 74 ident: bb0100 article-title: Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden publication-title: Geoderma – volume: 13 start-page: 181 year: 2008 end-page: 194 ident: bb0035 article-title: The soil-land use system in a sand spit area in the semi-arid coastal savannah region of Ghana-development, sustainability and threat publication-title: West Afr J. App. Ecol. – volume: 102 start-page: 5757 year: 2011 end-page: 5763 ident: bb0225 article-title: Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars publication-title: Bioresour. Technol. – volume: 347 start-page: 112 year: 2010 end-page: 119 ident: bb0025 article-title: Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 2531 year: 2001 end-page: 2547 ident: bb0175 article-title: Influence of soil constituents on soil phosphorus sorption and desorption publication-title: Commun. Soil Sci. Plant Anal. – volume: 357 start-page: 173 year: 2012 end-page: 187 ident: bb0230 article-title: Predicting phosphorus bioavailability from high-ash biochars publication-title: Environ. Pollut. – volume: vol. 9 start-page: 545 year: 1965 end-page: 567 ident: bb0070 article-title: Particle fractionation and particle-size analysis publication-title: Methods of Soil Analysis – start-page: 421 year: 2015 end-page: 454 ident: bb0075 article-title: Biochar effects on soil nutrient transformations publication-title: Biochar for Environmental Management: Science, Technology and Implementation – volume: 42 start-page: 1619 year: 2003 end-page: 1640 ident: bb0020 article-title: The art, science, and technology of charcoal production publication-title: Ind. Eng. Chem. Res. – volume: 62 start-page: 54 year: 2014 end-page: 60 ident: bb0245 article-title: Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity publication-title: Ecol. Eng. – volume: 30 start-page: 11 year: 2010 end-page: 28 ident: bb0095 article-title: Oxisol (ferralsol) development in two agro-ecological zones of Ghana: a preliminary evaluation of some profiles publication-title: J. Sci. Technol. – volume: 627 start-page: 963 year: 2018 end-page: 974 ident: bb0045 article-title: Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types publication-title: Sci. Total Environ. – volume: 7 start-page: 317 year: 1960 end-page: 327 ident: bb0180 article-title: Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate publication-title: Clay Clay Miner. – volume: 74 start-page: 1309 year: 2010 end-page: 1319 ident: bb0130 article-title: Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides publication-title: Geochim. Cosmochim. Acta – volume: 46 start-page: 5954 year: 2007 end-page: 5967 ident: bb0050 article-title: Do all carbonized charcoals have the same chemical structure? A model of the chemical structure of carbonized charcoal publication-title: Ind. Eng. Chem. Res. – volume: 237–238 start-page: 325 year: 2015 end-page: 335 ident: bb0200 article-title: Phosphate saturation degree and accumulation of phosphate in various soil types in Netherlands publication-title: Geoderma – volume: 130 start-page: 463 year: 2013 end-page: 471 ident: bb0255 article-title: Characteristics and nutrient values of biochars produced from giant reed at different temperatures publication-title: Bioresour. Technol. – volume: 118 start-page: 55 year: 2004 end-page: 61 ident: bb0040 article-title: Estimation of soil phosphate adsorption capacity by means of pedotransfer function publication-title: Geoderma – volume: 262 start-page: 213 year: 2016 end-page: 226 ident: bb0115 article-title: Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils. A myth revisited publication-title: Geoderma – volume: 43 start-page: 1504 year: 2014 end-page: 1509 ident: bb0170 article-title: Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property publication-title: J. Environ. Qual. – volume: 163 start-page: 207 year: 2000 end-page: 212 ident: bb0120 article-title: The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by single root. The basic concept and determination of soil parameters publication-title: J. Plant Nutr. Soil Sci. – volume: 146 start-page: 139 year: 2015 end-page: 147 ident: bb0135 article-title: Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws publication-title: Soil Tillage Res. – start-page: 778 year: 2016 end-page: 781 ident: bb0060 article-title: The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution publication-title: Bioresour. Technol. – volume: 11 start-page: 1135 year: 2011 end-page: 1141 ident: bb4000 article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar publication-title: J. Soils Sediments. – volume: 51 start-page: 2061 year: 2008 end-page: 2069 ident: bb0110 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: Trans. ASABE – volume: 219–220 start-page: 162 year: 2014 end-page: 167 ident: bb0220 article-title: Effect of biochar on phosphorus sorption and soil clay aggregate stability publication-title: Geoderma – volume: 21 start-page: 171 year: 2006 end-page: 185 ident: bb0190 article-title: Effect of fire on phytolith coloration publication-title: Geoarcheology – volume: 101 start-page: 72 year: 2013 end-page: 78 ident: bb0015 article-title: Biochar production by sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrolysis – volume: 105 start-page: 194 year: 1964 end-page: 202 ident: bb0205 article-title: Differenzierung der Eisenoxide des bodens Dutch extraction mit Ammoniumoxalate-Losung publication-title: Z. Pflanzenernahr. Dung. Bodenkd. – year: 2010 ident: bb0215 article-title: Keys to Soil Taxonomy – year: 1998 ident: bb0240 article-title: World Reference Base for Soil Resources. World Resources Report. No. 84 – volume: 33 start-page: 1 year: 1998 end-page: 15 ident: bb0010 article-title: Phosphorus forms, lateritic nodules and soil properties along a hillslope in northern Ghana publication-title: Catena – volume: 105 start-page: 47 year: 2010 end-page: 82 ident: bb0210 article-title: Chapter 2–a review of biochar and its use and function in soil publication-title: Adv. Agron. – volume: 102 start-page: 175 year: 2001 end-page: 187 ident: bb0005 article-title: Phosphorus retention and extractability in soils of the humid zones in West Africa publication-title: Geoderma – volume: 38 start-page: 4649 year: 2004 end-page: 4655 ident: bb0065 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. – volume: 29 start-page: 306 year: 2013 end-page: 314 ident: bb0185 article-title: Sorption and desorption of phosphate on biochar and biochar-soil mixtures publication-title: Soil Use Manag. – volume: 159 start-page: 219 year: 1994 end-page: 225 ident: bb0125 article-title: Phytoavailability of phosphate adsorbed on ferrihydrite, hematite and goethite publication-title: Plant Soil – volume: 47 start-page: 12156 year: 2013 end-page: 12164 ident: bb0085 article-title: Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolysis temperatures based on X-ray photoelectron spectroscopy and flow calorimetry publication-title: Environ. Sci. Technol. – volume: 51 start-page: 113 year: 2014 end-page: 122 ident: bb0250 article-title: Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities publication-title: Biol. Fertil. Soils – volume: 107 start-page: 905 year: 2012 end-page: 909 ident: bb0105 article-title: Thermal stability of crandallite CaAl publication-title: J. Therm. Anal. Calorim. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: bb0030 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 277 start-page: 83 year: 2016 end-page: 90 ident: bb0195 article-title: Potential effects of biochar on the availability of phosphorus mechanistic insights publication-title: Geoderma – volume: 28 start-page: 386 year: 2009 ident: 10.1016/j.geoderma.2019.01.016_bb0055 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.10378 – volume: 42 start-page: 1619 year: 2003 ident: 10.1016/j.geoderma.2019.01.016_bb0020 article-title: The art, science, and technology of charcoal production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0207919 – year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0215 – volume: 46 start-page: 5954 year: 2007 ident: 10.1016/j.geoderma.2019.01.016_bb0050 article-title: Do all carbonized charcoals have the same chemical structure? A model of the chemical structure of carbonized charcoal publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070415u – volume: 43 start-page: 1504 year: 2014 ident: 10.1016/j.geoderma.2019.01.016_bb0170 article-title: Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property publication-title: J. Environ. Qual. doi: 10.2134/jeq2014.01.0021 – volume: 337 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0030 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 62 start-page: 54 year: 2014 ident: 10.1016/j.geoderma.2019.01.016_bb0245 article-title: Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.10.027 – volume: 262 start-page: 213 year: 2016 ident: 10.1016/j.geoderma.2019.01.016_bb0115 article-title: Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils. A myth revisited publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.036 – volume: 109 start-page: 214 issue: 4 year: 1970 ident: 10.1016/j.geoderma.2019.01.016_bb0140 article-title: Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid publication-title: Soil Sci. doi: 10.1097/00010694-197004000-00002 – volume: 357 start-page: 173 year: 2012 ident: 10.1016/j.geoderma.2019.01.016_bb0230 article-title: Predicting phosphorus bioavailability from high-ash biochars publication-title: Environ. Pollut. – volume: 241–242 start-page: 68 year: 2015 ident: 10.1016/j.geoderma.2019.01.016_bb0100 article-title: Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden publication-title: Geoderma doi: 10.1016/j.geoderma.2014.10.023 – volume: 102 start-page: 175 year: 2001 ident: 10.1016/j.geoderma.2019.01.016_bb0005 article-title: Phosphorus retention and extractability in soils of the humid zones in West Africa publication-title: Geoderma doi: 10.1016/S0016-7061(00)00110-5 – volume: 347 start-page: 112 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0025 article-title: Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.03.020 – volume: 130 start-page: 463 year: 2013 ident: 10.1016/j.geoderma.2019.01.016_bb0255 article-title: Characteristics and nutrient values of biochars produced from giant reed at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.044 – volume: 85 start-page: 91 year: 2007 ident: 10.1016/j.geoderma.2019.01.016_bb0155 article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review publication-title: Biogeochemistry doi: 10.1007/s10533-007-9104-4 – volume: 237–238 start-page: 325 year: 2015 ident: 10.1016/j.geoderma.2019.01.016_bb0200 article-title: Phosphate saturation degree and accumulation of phosphate in various soil types in Netherlands publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.015 – start-page: 421 year: 2015 ident: 10.1016/j.geoderma.2019.01.016_bb0075 article-title: Biochar effects on soil nutrient transformations – volume: 74 start-page: 1309 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0130 article-title: Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.11.010 – start-page: 778 year: 2016 ident: 10.1016/j.geoderma.2019.01.016_bb0060 article-title: The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.079 – volume: 7 start-page: 317 year: 1960 ident: 10.1016/j.geoderma.2019.01.016_bb0180 article-title: Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1958.0070122 – year: 1998 ident: 10.1016/j.geoderma.2019.01.016_bb0240 – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.geoderma.2019.01.016_bb0165 article-title: Biochar sequestration in terrestrial ecosystem- a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-005-9006-5 – volume: 38 start-page: 4649 year: 2004 ident: 10.1016/j.geoderma.2019.01.016_bb0065 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. doi: 10.1021/es035034w – volume: 101 start-page: 72 year: 2013 ident: 10.1016/j.geoderma.2019.01.016_bb0015 article-title: Biochar production by sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2013.02.010 – volume: 159 start-page: 219 year: 1994 ident: 10.1016/j.geoderma.2019.01.016_bb0125 article-title: Phytoavailability of phosphate adsorbed on ferrihydrite, hematite and goethite publication-title: Plant Soil doi: 10.1007/BF00009284 – volume: 375 start-page: 61 year: 2014 ident: 10.1016/j.geoderma.2019.01.016_bb0235 article-title: The fate of phosphorus of ash-rich biochars in a soil-plant system publication-title: Plant Soil doi: 10.1007/s11104-013-1938-z – volume: 47 start-page: 12156 year: 2013 ident: 10.1016/j.geoderma.2019.01.016_bb0085 article-title: Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolysis temperatures based on X-ray photoelectron spectroscopy and flow calorimetry publication-title: Environ. Sci. Technol. doi: 10.1021/es4017816 – volume: 142 start-page: 185 year: 1999 ident: 10.1016/j.geoderma.2019.01.016_bb0150 article-title: Phosphate solubilization by organic anion excretion from rice growing in aerobic soils: rates of excretion and decomposition, effects of rhizosphere pH and effects on phosphate solubility and uptake publication-title: New Phytol. J. doi: 10.1046/j.1469-8137.1999.00400.x – volume: 13 start-page: 181 year: 2008 ident: 10.1016/j.geoderma.2019.01.016_bb0035 article-title: The soil-land use system in a sand spit area in the semi-arid coastal savannah region of Ghana-development, sustainability and threat publication-title: West Afr J. App. Ecol. – volume: 163 start-page: 207 year: 2000 ident: 10.1016/j.geoderma.2019.01.016_bb0120 article-title: The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by single root. The basic concept and determination of soil parameters publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P – volume: 219–220 start-page: 162 year: 2014 ident: 10.1016/j.geoderma.2019.01.016_bb0220 article-title: Effect of biochar on phosphorus sorption and soil clay aggregate stability publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 4 start-page: 323 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0145 article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components publication-title: Carbon Manag. doi: 10.4155/cmt.13.23 – volume: 107 start-page: 905 year: 2012 ident: 10.1016/j.geoderma.2019.01.016_bb0105 article-title: Thermal stability of crandallite CaAl3 (PO4)2(OH)·(H2O) publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-011-1578-6 – volume: 29 start-page: 306 year: 2013 ident: 10.1016/j.geoderma.2019.01.016_bb0185 article-title: Sorption and desorption of phosphate on biochar and biochar-soil mixtures publication-title: Soil Use Manag. doi: 10.1111/sum.12047 – volume: 32 start-page: 2531 year: 2001 ident: 10.1016/j.geoderma.2019.01.016_bb0175 article-title: Influence of soil constituents on soil phosphorus sorption and desorption publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-120000389 – volume: 11 start-page: 1135 year: 2011 ident: 10.1016/j.geoderma.2019.01.016_bb4000 article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar publication-title: J. Soils Sediments. doi: 10.1007/s11368-011-0405-9 – volume: 277 start-page: 83 year: 2016 ident: 10.1016/j.geoderma.2019.01.016_bb0195 article-title: Potential effects of biochar on the availability of phosphorus mechanistic insights publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.007 – volume: 33 start-page: 1 year: 1998 ident: 10.1016/j.geoderma.2019.01.016_bb0010 article-title: Phosphorus forms, lateritic nodules and soil properties along a hillslope in northern Ghana publication-title: Catena doi: 10.1016/S0341-8162(98)00063-0 – volume: 30 start-page: 11 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0095 article-title: Oxisol (ferralsol) development in two agro-ecological zones of Ghana: a preliminary evaluation of some profiles publication-title: J. Sci. Technol. – volume: 51 start-page: 2061 issue: 6 year: 2008 ident: 10.1016/j.geoderma.2019.01.016_bb0110 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: Trans. ASABE doi: 10.13031/2013.25409 – volume: vol. 9 start-page: 545 year: 1965 ident: 10.1016/j.geoderma.2019.01.016_bb0070 article-title: Particle fractionation and particle-size analysis – volume: 146 start-page: 139 year: 2015 ident: 10.1016/j.geoderma.2019.01.016_bb0135 article-title: Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.10.009 – volume: 21 start-page: 171 year: 2006 ident: 10.1016/j.geoderma.2019.01.016_bb0190 article-title: Effect of fire on phytolith coloration publication-title: Geoarcheology doi: 10.1002/gea.20102 – volume: 118 start-page: 55 year: 2004 ident: 10.1016/j.geoderma.2019.01.016_bb0040 article-title: Estimation of soil phosphate adsorption capacity by means of pedotransfer function publication-title: Geoderma doi: 10.1016/S0016-7061(03)00183-6 – volume: 627 start-page: 963 year: 2018 ident: 10.1016/j.geoderma.2019.01.016_bb0045 article-title: Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.283 – volume: 105 start-page: 194 year: 1964 ident: 10.1016/j.geoderma.2019.01.016_bb0205 article-title: Differenzierung der Eisenoxide des bodens Dutch extraction mit Ammoniumoxalate-Losung publication-title: Z. Pflanzenernahr. Dung. Bodenkd. doi: 10.1002/jpln.3591050303 – year: 1995 ident: 10.1016/j.geoderma.2019.01.016_bb0080 – volume: 102 start-page: 5757 year: 2011 ident: 10.1016/j.geoderma.2019.01.016_bb0225 article-title: Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.038 – volume: 51 start-page: 113 year: 2014 ident: 10.1016/j.geoderma.2019.01.016_bb0250 article-title: Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0954-3 – volume: 15 start-page: 3539 year: 2011 ident: 10.1016/j.geoderma.2019.01.016_bb0090 article-title: Biochar production potential in Ghana-a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2011.05.010 – volume: 105 start-page: 47 year: 2010 ident: 10.1016/j.geoderma.2019.01.016_bb0210 article-title: Chapter 2–a review of biochar and its use and function in soil publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)05002-9 – volume: 5 start-page: 381 year: 2007 ident: 10.1016/j.geoderma.2019.01.016_bb0160 article-title: Bio-energy in the Black publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 |
SSID | ssj0017020 |
Score | 2.5748382 |
Snippet | The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | acid soils adsorption alkaline soils aluminum bioavailability biochar calcium phosphates Corn cob biochar corn cobs Desorption feedstocks iron Phosphorus potassium chloride pyrolysis Pyrolysis temperature rice hulls Rice husk biochar soil amendments Sorption sorption isotherms temperature tropical soils |
Title | Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.01.016 https://www.proquest.com/docview/2220847844 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSH0idNH0GFXt21Yj2s4xIati0NPTSQm5Bkuet0ay-2N5BLfkJ-c2dkObSlkEPB2PgxspkZz4zlmW8IeSdAccs4r1FXMuOispn2QmSu8F5Zpe2RxuLkL6dydcY_nYvzPXI818JgWmWy_ZNNj9Y6HVkkbi62TYM1vkwqcEeglBDUR9htzhVq-fvr2zQPpvIEzchkhlf_ViV8ATLChmMRf4jpCN-Jfc__7aD-MtXR_5w8Ig9T4EiX07M9JnuhfUIeLL_3CTwjPCU3X9fdsF13_W6gPQbDyHRq24raS9tsJkTuK9q0dAQJBhrT1O2Aic906JrNQO3POCNOcXaWItwQXe-GH3EI-EptYeWoazos1aJ2pJe2xyopur3quwhtQhHpKsE0D8_I2cmHb8erLPVbyHzBxZgVeShlVbjK5RUyKMigIKAs60LBCTAFWsO2lqzOQ33keeBVmXsdwOWX3oa8eE72264NLwgtWVELqa23wnOhlHUO7sFyy1xRSGkPiJiZbHwCI8eeGBszZ51dmFk4BoVjcgaLPCCLW7rtBMdxJ4WeZWj-UCwDPuNO2rez0A28dfgrxbah2w0Goqoc_HrJ-cv_GP8VuY97U_7ka7I_9rvwBmKc0R1GJT4k95YfP69OfwETkwAj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhc2h7KH3S9KlCr2blyJKt4xIaNk2y9JBAbkKS5a7Trb3Y3kD-RH9zZ2Q5tKWQQ8HYYDGymRnPjKWZbwj5JEBxi7CuUZUyyURpEuWESCx3Lje5MocKi5PPV3J5mX25Eld75GiqhcG0ymj7R5serHW8M4_cnG_rGmt8U5mDOwKlhKAeYbf3EZ1KzMj-4uR0ubrbTMhZRGdMZYIEvxUKX4OYsOdYgCBKVUDwxNbn__ZRf1nr4IKOn5DHMXaki_H1npI93zwjjxbfuoif4Z-Tn1_Xbb9dt92upx3Gw8h3apqSmhtTb0ZQ7ltaN3QAIXoaMtVNj7nPtG_rTU_Nj7AoTnGBliLiEF3v-u9hCvhRbeBkqa1brNaiZqA3psNCKbq97dqAbkIR7CoiNfcvyOXx54ujZRJbLiSOZ2JIOPOFLLktLSuRQV76HGLKouI5DIA1UAqulUwr5qtDl_msLJhTHrx-4Yxn_CWZNW3jXxFapLwSUhlnhMtEnhtr4RkpM6nlXEpzQMTEZO0iHjm2xdjoKfHsWk_C0SgczVI45AGZ39FtR0SOeynUJEP9h25pcBv30n6chK7hw8PdFNP4dtdrCKwYuPYiy17_x_wfyIPlxfmZPjtZnb4hD3FkTKd8S2ZDt_PvIOQZ7Puo0r8AyZAC1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+retention+and+availability+in+three+contrasting+soils+amended+with+rice+husk+and+corn+cob+biochar+at+varying+pyrolysis+temperatures&rft.jtitle=Geoderma&rft.au=Eduah%2C+J.O.&rft.au=Nartey%2C+E.K.&rft.au=Abekoe%2C+M.K.&rft.au=Breuning-Madsen%2C+H.&rft.date=2019-05-01&rft.issn=0016-7061&rft.volume=341&rft.spage=10&rft.epage=17&rft_id=info:doi/10.1016%2Fj.geoderma.2019.01.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_01_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |