Estimation of soil organic matter content using selected spectral subset of hyperspectral data
•Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with...
Saved in:
Published in | Geoderma Vol. 409; p. 115653 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with hyperspectral satellite image is promising.
Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content. |
---|---|
AbstractList | Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R² values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content. •Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with hyperspectral satellite image is promising. Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content. |
ArticleNumber | 115653 |
Author | Li, Yao Sun, Weichao Zhang, Xia Liu, Shuo |
Author_xml | – sequence: 1 givenname: Weichao surname: Sun fullname: Sun, Weichao email: sunwc@radi.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China – sequence: 2 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China – sequence: 3 givenname: Xia surname: Zhang fullname: Zhang, Xia organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China – sequence: 4 givenname: Yao surname: Li fullname: Li, Yao organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA |
BookMark | eNqFkE1LAzEQhoMo2Fb_guToZWuyySYb8KCIX1DwoldDmp2tKdukJqnQf29q1YMXT8MM7_MyPGN06IMHhM4omVJCxcVyuoDQQVyZaU1qOqW0EQ07QCPayroSdaMO0YiUZCWJoMdonNKyrJLUZIReb1N2K5Nd8Dj0OAU34BAXxjuLyzlDxDb4DD7jTXJ-gRMMYDN0OK3LjGbAaTNPkHf023YN8ffemWxO0FFvhgSn33OCXu5un28eqtnT_ePN9ayyjDe5qqlitmG8FYLzriegZCdpQ3nPBLFEtYpzmJM5k9I0ljEleNcqNQfJWpCWswk63_euY3jfQMp65ZKFYTAewibpWjDBa6J4W6KX-6iNIaUIvbYufwkoX7tBU6J3WvVS_2jVO616r7Xg4g--jkVg3P4PXu1BKB4-HESdrANvoXOxGNNdcP9VfAJTD5ic |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_116874 crossref_primary_10_1016_j_geoderma_2024_116877 crossref_primary_10_3390_rs14205221 crossref_primary_10_1007_s11104_022_05863_x crossref_primary_10_1016_j_jag_2025_104453 crossref_primary_10_3390_agronomy12123025 crossref_primary_10_3390_rs16071256 crossref_primary_10_1016_j_ecoinf_2024_102930 crossref_primary_10_1016_j_atech_2025_100855 crossref_primary_10_1016_j_jclepro_2022_134878 crossref_primary_10_1016_j_envpol_2022_120962 crossref_primary_10_1016_j_iswcr_2024_12_002 crossref_primary_10_1016_j_optlaseng_2022_107274 crossref_primary_10_3390_agriculture13010008 crossref_primary_10_1016_j_still_2023_105912 crossref_primary_10_1016_j_microc_2025_113410 crossref_primary_10_1016_j_jhazmat_2024_136729 crossref_primary_10_3390_agronomy14051067 crossref_primary_10_1007_s41064_024_00323_w crossref_primary_10_3390_rs14030714 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_optcom_2022_129163 crossref_primary_10_1117_1_JRS_18_042607 crossref_primary_10_1016_j_microc_2025_112709 crossref_primary_10_1007_s11368_023_03691_9 crossref_primary_10_1080_05704928_2024_2369570 crossref_primary_10_1016_j_asr_2024_07_056 crossref_primary_10_1016_j_geoderma_2024_116929 crossref_primary_10_3390_su16167058 crossref_primary_10_7717_peerj_17954 crossref_primary_10_3390_plants13131723 crossref_primary_10_1016_j_geomat_2025_100053 crossref_primary_10_1016_j_geodrs_2024_e00868 crossref_primary_10_3390_rs15184623 crossref_primary_10_3390_rs17040706 crossref_primary_10_1155_2024_8180765 crossref_primary_10_1016_j_catena_2025_108889 crossref_primary_10_3390_s22166124 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_1002_ldr_5291 crossref_primary_10_3390_rs15123191 crossref_primary_10_3390_su151813719 crossref_primary_10_1007_s11368_022_03377_8 crossref_primary_10_1016_j_geodrs_2023_e00617 crossref_primary_10_3390_rs15020465 crossref_primary_10_1016_j_ecoinf_2024_102484 crossref_primary_10_3390_agriculture15030311 crossref_primary_10_1016_j_microc_2024_111666 crossref_primary_10_3390_d14100862 crossref_primary_10_1080_01431161_2024_2388877 crossref_primary_10_3389_feart_2023_1118118 crossref_primary_10_3390_su152316310 crossref_primary_10_3390_min12030382 crossref_primary_10_1016_j_watres_2023_121041 crossref_primary_10_1016_j_geoderma_2023_116605 crossref_primary_10_3390_rs15194713 crossref_primary_10_1016_j_catena_2024_108312 |
Cites_doi | 10.1016/j.geoderma.2015.07.017 10.1016/j.geoderma.2009.12.025 10.1016/S0034-4257(02)00096-2 10.1016/S0034-4257(97)00135-1 10.1016/j.geoderma.2012.01.017 10.1002/cem.1180060506 10.1016/j.scitotenv.2020.142661 10.1021/ac60214a047 10.1080/01431160010006962 10.1016/j.geoderma.2008.06.011 10.1080/02693799108927867 10.2136/sssaj2006.0285 10.1016/j.envpol.2015.07.009 10.1016/j.geoderma.2007.12.009 10.2136/sssaj1999.6361650x 10.3390/rs9060632 10.1016/j.geoderma.2011.08.001 10.1016/j.geoderma.2021.115118 10.1021/ac00087a722 10.2136/sssaj1981.03615995004500060031x 10.1016/S0169-7439(01)00155-1 10.1023/A:1008119611481 10.1016/j.geoderma.2005.03.007 10.1007/s10661-010-1454-z 10.1007/s10661-008-0385-4 10.1023/B:JOPL.0000013354.67645.df 10.1016/j.rse.2014.09.032 10.1111/ejss.12272 10.1016/S0016-7061(03)00223-4 10.2136/sssaj2002.9880 10.1016/j.geoderma.2015.04.017 10.1016/j.scitotenv.2020.142120 10.1016/S0169-7439(98)00051-3 10.1016/j.geoderma.2021.115263 10.1016/j.aca.2009.06.046 10.1016/j.rse.2018.09.015 10.1016/j.rse.2016.03.025 10.1016/j.aca.2007.03.024 10.1016/j.envpol.2019.06.021 10.1016/S0003-2670(03)00331-3 10.1016/j.chemolab.2004.12.011 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115653 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115653 S0016706121007333 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-2193c53486644df0e97d71514f360c098944eb0b377a5c33964d899be738e7c43 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Aug 07 15:07:05 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue Jul 01 04:04:56 EDT 2025 Fri Feb 23 02:41:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaofen-5 satellite Soil organic matter Hyperspectral remote sensing image Spectral subset selection VNIR-SWIR spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-2193c53486644df0e97d71514f360c098944eb0b377a5c33964d899be738e7c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636420948 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636420948 crossref_citationtrail_10_1016_j_geoderma_2021_115653 crossref_primary_10_1016_j_geoderma_2021_115653 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Viscarra Rossel, Behrens (b0195) 2010; 158 Cui (b0040) 2017; 09 Liu, Zhang, Zhang (b0120) 2009; 154 Ahnstrom, Parker (b0005) 1999; 63 Chen, Chang, Clevers, Kooistra (b0030) 2015; 206 Shi, Ji, Viscarra Rossel, Chen, Zhou (b0150) 2015; 66 Skidmore, Ryan, Dawes, Short, O'loughlin (b0155) 1991; 5 Wold, Sjöström, Eriksson (b0215) 2001; 58 Durand, Devos, Ruckebusch, Huvenne (b0045) 2007; 595 Stevens, van Wesemael, Bartholomeus, Rosillon, Tychon, Ben-Dor (b0160) 2008; 144 Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (b0025) 2016; 179 Kooistra, Wanders, Epema, Leuven, Wehrens, Buydens (b0100) 2003; 484 Meng, Bao, Liu, Liu, Zhang, Zhang, Wang, Tang, Kong (b0130) 2020; 89 Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (b0200) 2006; 131 Minasny, McBratney (b0135) 2016; 264 Ben-Dor, Patkin, Banin, Karnieli (b0015) 2002; 23 Savitzky, A., Golay, M.J.E., 1964. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627. Hbirkou, Pätzold, Mahlein, Welp (b0080) 2012; 175-176 Thomas (b0190) 1994; 66 Zhou, Geng, Ji, Xu, Wang, Pan, Bumberger, Haase, Lausch (b0240) 2021; 755 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0095) 2002; 83 Xu, Li, Shi (b0235) 1995; 5 Wu, Liu, Han, Zhou, Liu, Wu (b0225) 2021; 754 Boyle (b0020) 2004; 31 Xu, Ji, Zhu (b0230) 1991; 2 Chong, Jun (b0035) 2005; 78 Eswaran, Reich, Kimble, Beinroth, Padmanabhan (b0050) 2000 Gomez, Viscarra Rossel, McBratney (b0070) 2008; 146 Leardi, Boggia, Terrile (b0105) 1992; 6 Sun, Zhang, Zou, Wu (b0180) 2017; 9 Shepherd, Walsh (b0145) 2002; 66 Gomez, Drost, Roger (b0065) 2015; 156 Heiri, Lotter, Lemcke (b0085) 2001; 25 Hu, Ma, Guo, Li, Pei (b0090) 2016; 44 Sun, Skidmore, Wang, Zhang (b0170) 2019; 252 Terra, Demattê, Viscarra Rossel (b0185) 2015; 255-256 Wang, Li, Wang (b0210) 2011; 174 Bao, Ustin, Meng, Zhang, Guan, Qi, Liu (b0010) 2021; 403 Stoner, Baumgardner (b0165) 1981; 45 Guo, Sun, Fu, Shi, Dang, Chen, Linderman, Zhang, Zhang, Jiang, Zhang, Zeng (b0075) 2021; 398 Li, Liang, Xu, Cao (b0115) 2009; 648 Sun, Zhang (b0175) 2017; 58 Gholizadeh, Žižala, Saberioon, Borůvka (b0060) 2018; 218 Galvão, Vitorello (b0055) 1998; 63 McBratney, Mendonça Santos, Minasny (b0125) 2003; 117 Vohland, Besold, Hill, Fründ (b0205) 2011; 166 Wu, Chen, Ji, Gong, Liao, Tian, Ma (b0220) 2007; 71 Leardi, González (b0110) 1998; 41 Bao (10.1016/j.geoderma.2021.115653_b0010) 2021; 403 Skidmore (10.1016/j.geoderma.2021.115653_b0155) 1991; 5 Eswaran (10.1016/j.geoderma.2021.115653_b0050) 2000 Durand (10.1016/j.geoderma.2021.115653_b0045) 2007; 595 Heiri (10.1016/j.geoderma.2021.115653_b0085) 2001; 25 Wu (10.1016/j.geoderma.2021.115653_b0220) 2007; 71 Guo (10.1016/j.geoderma.2021.115653_b0075) 2021; 398 Xu (10.1016/j.geoderma.2021.115653_b0235) 1995; 5 Chen (10.1016/j.geoderma.2021.115653_b0030) 2015; 206 Sun (10.1016/j.geoderma.2021.115653_b0180) 2017; 9 Boyle (10.1016/j.geoderma.2021.115653_b0020) 2004; 31 Gomez (10.1016/j.geoderma.2021.115653_b0070) 2008; 146 Terra (10.1016/j.geoderma.2021.115653_b0185) 2015; 255-256 Thomas (10.1016/j.geoderma.2021.115653_b0190) 1994; 66 Hu (10.1016/j.geoderma.2021.115653_b0090) 2016; 44 Wu (10.1016/j.geoderma.2021.115653_b0225) 2021; 754 Chong (10.1016/j.geoderma.2021.115653_b0035) 2005; 78 Kooistra (10.1016/j.geoderma.2021.115653_b0100) 2003; 484 Minasny (10.1016/j.geoderma.2021.115653_b0135) 2016; 264 Viscarra Rossel (10.1016/j.geoderma.2021.115653_b0195) 2010; 158 Sun (10.1016/j.geoderma.2021.115653_b0170) 2019; 252 Xu (10.1016/j.geoderma.2021.115653_b0230) 1991; 2 Stevens (10.1016/j.geoderma.2021.115653_b0160) 2008; 144 Zhou (10.1016/j.geoderma.2021.115653_b0240) 2021; 755 Wang (10.1016/j.geoderma.2021.115653_b0210) 2011; 174 Meng (10.1016/j.geoderma.2021.115653_b0130) 2020; 89 Ben-Dor (10.1016/j.geoderma.2021.115653_b0015) 2002; 23 Galvão (10.1016/j.geoderma.2021.115653_b0055) 1998; 63 Hbirkou (10.1016/j.geoderma.2021.115653_b0080) 2012; 175-176 McBratney (10.1016/j.geoderma.2021.115653_b0125) 2003; 117 Ahnstrom (10.1016/j.geoderma.2021.115653_b0005) 1999; 63 Liu (10.1016/j.geoderma.2021.115653_b0120) 2009; 154 Castaldi (10.1016/j.geoderma.2021.115653_b0025) 2016; 179 Viscarra Rossel (10.1016/j.geoderma.2021.115653_b0200) 2006; 131 Stoner (10.1016/j.geoderma.2021.115653_b0165) 1981; 45 Vohland (10.1016/j.geoderma.2021.115653_b0205) 2011; 166 10.1016/j.geoderma.2021.115653_b0140 Wold (10.1016/j.geoderma.2021.115653_b0215) 2001; 58 Leardi (10.1016/j.geoderma.2021.115653_b0105) 1992; 6 Gholizadeh (10.1016/j.geoderma.2021.115653_b0060) 2018; 218 Gomez (10.1016/j.geoderma.2021.115653_b0065) 2015; 156 Shepherd (10.1016/j.geoderma.2021.115653_b0145) 2002; 66 Li (10.1016/j.geoderma.2021.115653_b0115) 2009; 648 Sun (10.1016/j.geoderma.2021.115653_b0175) 2017; 58 Cui (10.1016/j.geoderma.2021.115653_b0040) 2017; 09 Huete (10.1016/j.geoderma.2021.115653_b0095) 2002; 83 Leardi (10.1016/j.geoderma.2021.115653_b0110) 1998; 41 Shi (10.1016/j.geoderma.2021.115653_b0150) 2015; 66 |
References_xml | – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: b0070 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study publication-title: Geoderma – volume: 754 start-page: 142120 year: 2021 ident: b0225 article-title: Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data publication-title: Sci. Total Environ. – volume: 44 start-page: 110 year: 2016 end-page: 118 ident: b0090 article-title: Optimization of the experiment conditions for estimating organic matter content with loss-on ignition method publication-title: Earth Environ. – volume: 71 start-page: 918 year: 2007 end-page: 926 ident: b0220 article-title: A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils publication-title: Soil Sci. Soc. Am. J. – volume: 25 start-page: 101 year: 2001 end-page: 110 ident: b0085 article-title: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results publication-title: J. Paleolimnol. – volume: 755 start-page: 142661 year: 2021 ident: b0240 article-title: Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images publication-title: Sci. Total Environ. – volume: 45 start-page: 1161 year: 1981 end-page: 1165 ident: b0165 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. – volume: 89 start-page: 102111 year: 2020 ident: b0130 article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 66 start-page: 679 year: 2015 end-page: 687 ident: b0150 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library publication-title: Eur. J. Soil Sci. – reference: Savitzky, A., Golay, M.J.E., 1964. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627. – volume: 5 start-page: 135 year: 1995 end-page: 142 ident: b0235 article-title: A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra publication-title: Pedosphere – volume: 255-256 start-page: 81 year: 2015 end-page: 93 ident: b0185 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data publication-title: Geoderma – volume: 66 start-page: 795A year: 1994 end-page: 804A ident: b0190 article-title: A primer on multivariate calibration publication-title: Anal. Chem. – volume: 179 start-page: 54 year: 2016 end-page: 65 ident: b0025 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. – volume: 63 start-page: 166 year: 1998 end-page: 181 ident: b0055 article-title: Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil publication-title: Remote Sens. Environ. – volume: 595 start-page: 72 year: 2007 end-page: 79 ident: b0045 article-title: Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles publication-title: Anal. Chim. Acta – volume: 09 start-page: 163 year: 2017 end-page: 164 ident: b0040 article-title: Study on the content of soil organic matter and rapidly available phosphorus and potassium of Baoding City publication-title: Appl. Practice New Technol. – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: b0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 648 start-page: 77 year: 2009 end-page: 84 ident: b0115 article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration publication-title: Anal Chim. Acta – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: b0215 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemometrics Intell. Lab. Syst. – volume: 206 start-page: 217 year: 2015 end-page: 226 ident: b0030 article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy publication-title: Environ. Pollut. – volume: 41 start-page: 195 year: 1998 end-page: 207 ident: b0110 article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them publication-title: Chemometrics Intell. Lab. Syst. – volume: 5 start-page: 431 year: 1991 end-page: 445 ident: b0155 article-title: Use of an expert system to map forest soils from a geographical information system publication-title: Int. J. Geogr. Inf. Syst. – year: 2000 ident: b0050 article-title: Global climate change and pedogenic carbonates – volume: 166 start-page: 198 year: 2011 end-page: 205 ident: b0205 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma – volume: 2 start-page: 142 year: 1991 end-page: 151 ident: b0230 article-title: A preliminary research of geographic regionalization of China land background and spectral reflectance characteristics publication-title: J. Remote Sens. – volume: 66 start-page: 988 year: 2002 end-page: 998 ident: b0145 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 9 start-page: 632 year: 2017 ident: b0180 article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements publication-title: Remote Sens. – volume: 398 start-page: 115118 year: 2021 ident: b0075 article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas publication-title: Geoderma – volume: 175-176 start-page: 21 year: 2012 end-page: 28 ident: b0080 article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale publication-title: Geoderma – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: b0195 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: b0095 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 23 start-page: 1043 year: 2002 end-page: 1062 ident: b0015 article-title: Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel publication-title: Int. J. Remote Sens. – volume: 252 start-page: 1117 year: 2019 end-page: 1124 ident: b0170 article-title: Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data publication-title: Environ. Pollut. – volume: 484 start-page: 189 year: 2003 end-page: 200 ident: b0100 article-title: The potential of field spectroscopy for the assessment of sediment properties in river floodplains publication-title: Anal. Chim. Acta – volume: 154 start-page: 147 year: 2009 end-page: 154 ident: b0120 article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China publication-title: Environ. Monit. Assess – volume: 264 start-page: 301 year: 2016 end-page: 311 ident: b0135 article-title: Digital soil mapping: A brief history and some lessons publication-title: Geoderma – volume: 6 start-page: 267 year: 1992 end-page: 281 ident: b0105 article-title: Genetic algorithms as a strategy for feature selection publication-title: J. Chemom. – volume: 403 start-page: 115263 year: 2021 ident: b0010 article-title: A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features publication-title: Geoderma – volume: 144 start-page: 395 year: 2008 end-page: 404 ident: b0160 article-title: Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils publication-title: Geoderma – volume: 63 start-page: 1650 year: 1999 end-page: 1658 ident: b0005 article-title: Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium publication-title: Soil Sci. Soc. Am. J. – volume: 78 start-page: 103 year: 2005 end-page: 112 ident: b0035 article-title: Performance of some variable selection methods when multicollinearity is present publication-title: Chemometrics Intell. Lab. Syst. – volume: 31 start-page: 125 year: 2004 end-page: 127 ident: b0020 article-title: A comparison of two methods for estimating the organic matter content of sediments publication-title: J. Paleolimnol. – volume: 218 start-page: 89 year: 2018 end-page: 103 ident: b0060 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. – volume: 58 start-page: 126 year: 2017 end-page: 133 ident: b0175 article-title: Estimating soil zinc concentrations using reflectance spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 174 start-page: 241 year: 2011 end-page: 257 ident: b0210 article-title: Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources publication-title: Environ. Monit. Assess. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0125 article-title: On digital soil mapping publication-title: Geoderma – volume: 156 start-page: 58 year: 2015 end-page: 70 ident: b0065 article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data publication-title: Remote Sens. Environ. – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.geoderma.2021.115653_b0135 article-title: Digital soil mapping: A brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 158 start-page: 46 issue: 1–2 year: 2010 ident: 10.1016/j.geoderma.2021.115653_b0195 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 83 start-page: 195 issue: 1-2 year: 2002 ident: 10.1016/j.geoderma.2021.115653_b0095 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 63 start-page: 166 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2021.115653_b0055 article-title: Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00135-1 – volume: 175-176 start-page: 21 year: 2012 ident: 10.1016/j.geoderma.2021.115653_b0080 article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.01.017 – volume: 6 start-page: 267 issue: 5 year: 1992 ident: 10.1016/j.geoderma.2021.115653_b0105 article-title: Genetic algorithms as a strategy for feature selection publication-title: J. Chemom. doi: 10.1002/cem.1180060506 – volume: 755 start-page: 142661 year: 2021 ident: 10.1016/j.geoderma.2021.115653_b0240 article-title: Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142661 – ident: 10.1016/j.geoderma.2021.115653_b0140 doi: 10.1021/ac60214a047 – volume: 23 start-page: 1043 issue: 6 year: 2002 ident: 10.1016/j.geoderma.2021.115653_b0015 article-title: Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010006962 – volume: 146 start-page: 403 issue: 3-4 year: 2008 ident: 10.1016/j.geoderma.2021.115653_b0070 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: 5 start-page: 431 issue: 4 year: 1991 ident: 10.1016/j.geoderma.2021.115653_b0155 article-title: Use of an expert system to map forest soils from a geographical information system publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693799108927867 – volume: 71 start-page: 918 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2021.115653_b0220 article-title: A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0285 – volume: 206 start-page: 217 year: 2015 ident: 10.1016/j.geoderma.2021.115653_b0030 article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.07.009 – volume: 144 start-page: 395 issue: 1-2 year: 2008 ident: 10.1016/j.geoderma.2021.115653_b0160 article-title: Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.009 – volume: 63 start-page: 1650 issue: 6 year: 1999 ident: 10.1016/j.geoderma.2021.115653_b0005 article-title: Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6361650x – volume: 89 start-page: 102111 year: 2020 ident: 10.1016/j.geoderma.2021.115653_b0130 article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 632 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2021.115653_b0180 article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements publication-title: Remote Sens. doi: 10.3390/rs9060632 – volume: 166 start-page: 198 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2021.115653_b0205 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.001 – volume: 398 start-page: 115118 year: 2021 ident: 10.1016/j.geoderma.2021.115653_b0075 article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115118 – volume: 66 start-page: 795A issue: 15 year: 1994 ident: 10.1016/j.geoderma.2021.115653_b0190 article-title: A primer on multivariate calibration publication-title: Anal. Chem. doi: 10.1021/ac00087a722 – year: 2000 ident: 10.1016/j.geoderma.2021.115653_b0050 – volume: 45 start-page: 1161 issue: 6 year: 1981 ident: 10.1016/j.geoderma.2021.115653_b0165 article-title: Characteristic variations in reflectance of surface soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500060031x – volume: 58 start-page: 109 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2021.115653_b0215 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 25 start-page: 101 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2021.115653_b0085 article-title: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results publication-title: J. Paleolimnol. doi: 10.1023/A:1008119611481 – volume: 131 start-page: 59 issue: 1-2 year: 2006 ident: 10.1016/j.geoderma.2021.115653_b0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 174 start-page: 241 issue: 1-4 year: 2011 ident: 10.1016/j.geoderma.2021.115653_b0210 article-title: Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-010-1454-z – volume: 154 start-page: 147 issue: 1-4 year: 2009 ident: 10.1016/j.geoderma.2021.115653_b0120 article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China publication-title: Environ. Monit. Assess doi: 10.1007/s10661-008-0385-4 – volume: 31 start-page: 125 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2021.115653_b0020 article-title: A comparison of two methods for estimating the organic matter content of sediments publication-title: J. Paleolimnol. doi: 10.1023/B:JOPL.0000013354.67645.df – volume: 156 start-page: 58 year: 2015 ident: 10.1016/j.geoderma.2021.115653_b0065 article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.032 – volume: 66 start-page: 679 issue: 4 year: 2015 ident: 10.1016/j.geoderma.2021.115653_b0150 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12272 – volume: 09 start-page: 163 year: 2017 ident: 10.1016/j.geoderma.2021.115653_b0040 article-title: Study on the content of soil organic matter and rapidly available phosphorus and potassium of Baoding City publication-title: Appl. Practice New Technol. – volume: 117 start-page: 3 issue: 1-2 year: 2003 ident: 10.1016/j.geoderma.2021.115653_b0125 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 66 start-page: 988 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2021.115653_b0145 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.9880 – volume: 255-256 start-page: 81 year: 2015 ident: 10.1016/j.geoderma.2021.115653_b0185 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.017 – volume: 2 start-page: 142 year: 1991 ident: 10.1016/j.geoderma.2021.115653_b0230 article-title: A preliminary research of geographic regionalization of China land background and spectral reflectance characteristics publication-title: J. Remote Sens. – volume: 754 start-page: 142120 year: 2021 ident: 10.1016/j.geoderma.2021.115653_b0225 article-title: Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142120 – volume: 41 start-page: 195 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2021.115653_b0110 article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00051-3 – volume: 403 start-page: 115263 year: 2021 ident: 10.1016/j.geoderma.2021.115653_b0010 article-title: A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115263 – volume: 648 start-page: 77 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2021.115653_b0115 article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration publication-title: Anal Chim. Acta doi: 10.1016/j.aca.2009.06.046 – volume: 218 start-page: 89 year: 2018 ident: 10.1016/j.geoderma.2021.115653_b0060 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – volume: 44 start-page: 110 issue: 01 year: 2016 ident: 10.1016/j.geoderma.2021.115653_b0090 article-title: Optimization of the experiment conditions for estimating organic matter content with loss-on ignition method publication-title: Earth Environ. – volume: 5 start-page: 135 issue: 2 year: 1995 ident: 10.1016/j.geoderma.2021.115653_b0235 article-title: A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra publication-title: Pedosphere – volume: 58 start-page: 126 year: 2017 ident: 10.1016/j.geoderma.2021.115653_b0175 article-title: Estimating soil zinc concentrations using reflectance spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 179 start-page: 54 year: 2016 ident: 10.1016/j.geoderma.2021.115653_b0025 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.025 – volume: 595 start-page: 72 issue: 1-2 year: 2007 ident: 10.1016/j.geoderma.2021.115653_b0045 article-title: Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.03.024 – volume: 252 start-page: 1117 issue: Pt B year: 2019 ident: 10.1016/j.geoderma.2021.115653_b0170 article-title: Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.06.021 – volume: 484 start-page: 189 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2021.115653_b0100 article-title: The potential of field spectroscopy for the assessment of sediment properties in river floodplains publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(03)00331-3 – volume: 78 start-page: 103 issue: 1-2 year: 2005 ident: 10.1016/j.geoderma.2021.115653_b0035 article-title: Performance of some variable selection methods when multicollinearity is present publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.12.011 |
SSID | ssj0017020 |
Score | 2.586945 |
Snippet | •Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of... Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115653 |
SubjectTerms | algorithms clay Gaofen-5 satellite global carbon budget Hyperspectral remote sensing image reflectance spectroscopy remote sensing soil Soil organic matter Spectral subset selection VNIR-SWIR spectroscopy |
Title | Estimation of soil organic matter content using selected spectral subset of hyperspectral data |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115653 https://www.proquest.com/docview/2636420948 |
Volume | 409 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IXvRgfEZ8kJp4Xdnddls4EoJBjZwk4WSzfSxCEAiPq7_dme4uURPDwWuz0zTT6TyyM99HyF0c2hSyDhNYMOGAu8wG2gobpGDMWqRQZXsWhZe-6A340zAZVkinnIXBtsrC9-c-3XvrYqVRaLOxGI9xxjcSMvQIWMg8iIifnEu08vvPbZtHJMMCmjESAX79bUp4AneEhGMefyiOwHtAdsP-ClC_XLWPPw9H5LBIHGk7P9sxqbjZCTloj5YFeIY7JW9deK_5KCKdZ3Q1H09pztpk6IfH0aTYmQ5hhmK7-4iuPAmOs9TPWy5h-xX4EbdG6XcoUJfbdWwkPSODh-5rpxcU_AmBYTxZB-CMmEkYbwpIemwWupa0EiI8z5gITYjQ69zpUDMp08Qw1hLcQvmlnWRNJw1n56Q6m8_cBaGI4mV1qp2LMx5ZkULiGDsnudGSSWtrJCmVpkwBLo4cF1NVdpFNVKlshcpWubJrpLGVW-TwGjslWuWdqB-GoiAG7JS9LS9RwSvCXyPpzM03KxULBoUYlLrNy3_sf0X2Y5yO8C1q16S6Xm7cDeQsa133Rlkne-3H517_C39Z7M8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qe1AP4hPfRvC6dLvJJu2xiFLt41TBk2HzWG2pbWnr_3eSzRYVxIPXwIQwmXwzQ2a-AbhJYpNh1KEjgyYcMZubSBluogyNWfEMs2w_RaE_4J0n9vicPlfgtuyFcWWVAfsLTPdoHVbqQZv1-WjkenwbXMSeActNHqQbUHPsVGkVau2Hbmew_kwQcWBnbPDICXxpFB7jNbmZY56CKGkggGCAQ3_zUT_Q2rug-13YCbEjaRfH24OKne7Ddvt1Efgz7AG83OGTLboRySwny9loQorBTZq8eypN4orT0dMQV_H-SpZ-Do41xLdcLnD7JUKJXTnpN8xRF-t1V0t6CE_3d8PbThRGKESasnQVIR5RnVLW5Bj3mDy2LWEEOnmWUx7r2LGvM6tiRYXIUk1pizODGZiygjat0IweQXU6m9pjII7Iy6hMWZvkrGF4hrFjYq1gWgkqjDmBtFSa1IFf3I25mMiykGwsS2VLp2xZKPsE6mu5ecGw8adEq7wT-c1WJLqBP2Wvy0uU-JDc70g2tbOPpUw4xVwMs93m6T_2v4LNzrDfk72HQfcMthLXLOEr1s6hulp82AsMYVbqMpjoJ53374A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+soil+organic+matter+content+using+selected+spectral+subset+of+hyperspectral+data&rft.jtitle=Geoderma&rft.au=Sun%2C+Weichao&rft.au=Liu%2C+Shuo&rft.au=Zhang%2C+Xia&rft.au=Li%2C+Yao&rft.date=2022-03-01&rft.issn=0016-7061&rft.volume=409+p.115653-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115653&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |