Estimation of soil organic matter content using selected spectral subset of hyperspectral data

•Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 409; p. 115653
Main Authors Sun, Weichao, Liu, Shuo, Zhang, Xia, Li, Yao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with hyperspectral satellite image is promising. Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
AbstractList Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R² values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
•Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of SOM content using selected spectral subset is feasible.•GA-PLSR outperforms PLSR-VIP in estimation of SOM content.•Mapping SOM content with hyperspectral satellite image is promising. Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized as a promising method to rapidly estimate SOM content. However, the existing estimation methods mainly apply partial least squares regression (PLSR) to the entire spectral region of hyperspectral data. Here we proposed a method to extract the informative spectral subset based on spectral characteristics of soil constituents, which was then used to estimate SOM content with PLSR. Genetic algorithm (GA) and variable importance in the projection (VIP) score of PLSR were adopted to further select spectral bands separately. Both laboratory spectra of soil samples collected from an agricultural area and a hyperspectral satellite image were used to evaluate the performance of the method. For the estimations of SOM content using laboratory spectra, compared with the estimation using the entire spectral region of 400–2400 nm, the model accuracy was improved by using the spectral bands associated with clay minerals and the combined spectral bands of organic matter and clay minerals. For the estimations using soil spectra from hyperspectral remote sensing image, the RMSE and R2 values were improved from 0.91% and 0.34 to 0.55% and 0.76 by using the spectral bands associated with organic matter in comparison with the entire spectral region of 390–1029 nm. The estimation model developed with GA-PLSR using soil spectra from the hyperspectral satellite image was applied to map SOM content. Results suggest that estimating SOM content using informative spectral subset is promising and can be transferred to the hyperspectral satellite image to map SOM content.
ArticleNumber 115653
Author Li, Yao
Sun, Weichao
Zhang, Xia
Liu, Shuo
Author_xml – sequence: 1
  givenname: Weichao
  surname: Sun
  fullname: Sun, Weichao
  email: sunwc@radi.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China
– sequence: 2
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China
– sequence: 3
  givenname: Xia
  surname: Zhang
  fullname: Zhang, Xia
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China
– sequence: 4
  givenname: Yao
  surname: Li
  fullname: Li, Yao
  organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
BookMark eNqFkE1LAzEQhoMo2Fb_guToZWuyySYb8KCIX1DwoldDmp2tKdukJqnQf29q1YMXT8MM7_MyPGN06IMHhM4omVJCxcVyuoDQQVyZaU1qOqW0EQ07QCPayroSdaMO0YiUZCWJoMdonNKyrJLUZIReb1N2K5Nd8Dj0OAU34BAXxjuLyzlDxDb4DD7jTXJ-gRMMYDN0OK3LjGbAaTNPkHf023YN8ffemWxO0FFvhgSn33OCXu5un28eqtnT_ePN9ayyjDe5qqlitmG8FYLzriegZCdpQ3nPBLFEtYpzmJM5k9I0ljEleNcqNQfJWpCWswk63_euY3jfQMp65ZKFYTAewibpWjDBa6J4W6KX-6iNIaUIvbYufwkoX7tBU6J3WvVS_2jVO616r7Xg4g--jkVg3P4PXu1BKB4-HESdrANvoXOxGNNdcP9VfAJTD5ic
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_116874
crossref_primary_10_1016_j_geoderma_2024_116877
crossref_primary_10_3390_rs14205221
crossref_primary_10_1007_s11104_022_05863_x
crossref_primary_10_1016_j_jag_2025_104453
crossref_primary_10_3390_agronomy12123025
crossref_primary_10_3390_rs16071256
crossref_primary_10_1016_j_ecoinf_2024_102930
crossref_primary_10_1016_j_atech_2025_100855
crossref_primary_10_1016_j_jclepro_2022_134878
crossref_primary_10_1016_j_envpol_2022_120962
crossref_primary_10_1016_j_iswcr_2024_12_002
crossref_primary_10_1016_j_optlaseng_2022_107274
crossref_primary_10_3390_agriculture13010008
crossref_primary_10_1016_j_still_2023_105912
crossref_primary_10_1016_j_microc_2025_113410
crossref_primary_10_1016_j_jhazmat_2024_136729
crossref_primary_10_3390_agronomy14051067
crossref_primary_10_1007_s41064_024_00323_w
crossref_primary_10_3390_rs14030714
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_optcom_2022_129163
crossref_primary_10_1117_1_JRS_18_042607
crossref_primary_10_1016_j_microc_2025_112709
crossref_primary_10_1007_s11368_023_03691_9
crossref_primary_10_1080_05704928_2024_2369570
crossref_primary_10_1016_j_asr_2024_07_056
crossref_primary_10_1016_j_geoderma_2024_116929
crossref_primary_10_3390_su16167058
crossref_primary_10_7717_peerj_17954
crossref_primary_10_3390_plants13131723
crossref_primary_10_1016_j_geomat_2025_100053
crossref_primary_10_1016_j_geodrs_2024_e00868
crossref_primary_10_3390_rs15184623
crossref_primary_10_3390_rs17040706
crossref_primary_10_1155_2024_8180765
crossref_primary_10_1016_j_catena_2025_108889
crossref_primary_10_3390_s22166124
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_1002_ldr_5291
crossref_primary_10_3390_rs15123191
crossref_primary_10_3390_su151813719
crossref_primary_10_1007_s11368_022_03377_8
crossref_primary_10_1016_j_geodrs_2023_e00617
crossref_primary_10_3390_rs15020465
crossref_primary_10_1016_j_ecoinf_2024_102484
crossref_primary_10_3390_agriculture15030311
crossref_primary_10_1016_j_microc_2024_111666
crossref_primary_10_3390_d14100862
crossref_primary_10_1080_01431161_2024_2388877
crossref_primary_10_3389_feart_2023_1118118
crossref_primary_10_3390_su152316310
crossref_primary_10_3390_min12030382
crossref_primary_10_1016_j_watres_2023_121041
crossref_primary_10_1016_j_geoderma_2023_116605
crossref_primary_10_3390_rs15194713
crossref_primary_10_1016_j_catena_2024_108312
Cites_doi 10.1016/j.geoderma.2015.07.017
10.1016/j.geoderma.2009.12.025
10.1016/S0034-4257(02)00096-2
10.1016/S0034-4257(97)00135-1
10.1016/j.geoderma.2012.01.017
10.1002/cem.1180060506
10.1016/j.scitotenv.2020.142661
10.1021/ac60214a047
10.1080/01431160010006962
10.1016/j.geoderma.2008.06.011
10.1080/02693799108927867
10.2136/sssaj2006.0285
10.1016/j.envpol.2015.07.009
10.1016/j.geoderma.2007.12.009
10.2136/sssaj1999.6361650x
10.3390/rs9060632
10.1016/j.geoderma.2011.08.001
10.1016/j.geoderma.2021.115118
10.1021/ac00087a722
10.2136/sssaj1981.03615995004500060031x
10.1016/S0169-7439(01)00155-1
10.1023/A:1008119611481
10.1016/j.geoderma.2005.03.007
10.1007/s10661-010-1454-z
10.1007/s10661-008-0385-4
10.1023/B:JOPL.0000013354.67645.df
10.1016/j.rse.2014.09.032
10.1111/ejss.12272
10.1016/S0016-7061(03)00223-4
10.2136/sssaj2002.9880
10.1016/j.geoderma.2015.04.017
10.1016/j.scitotenv.2020.142120
10.1016/S0169-7439(98)00051-3
10.1016/j.geoderma.2021.115263
10.1016/j.aca.2009.06.046
10.1016/j.rse.2018.09.015
10.1016/j.rse.2016.03.025
10.1016/j.aca.2007.03.024
10.1016/j.envpol.2019.06.021
10.1016/S0003-2670(03)00331-3
10.1016/j.chemolab.2004.12.011
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115653
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115653
S0016706121007333
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-2193c53486644df0e97d71514f360c098944eb0b377a5c33964d899be738e7c43
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Aug 07 15:07:05 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Tue Jul 01 04:04:56 EDT 2025
Fri Feb 23 02:41:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaofen-5 satellite
Soil organic matter
Hyperspectral remote sensing image
Spectral subset selection
VNIR-SWIR spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-2193c53486644df0e97d71514f360c098944eb0b377a5c33964d899be738e7c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636420948
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636420948
crossref_citationtrail_10_1016_j_geoderma_2021_115653
crossref_primary_10_1016_j_geoderma_2021_115653
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Viscarra Rossel, Behrens (b0195) 2010; 158
Cui (b0040) 2017; 09
Liu, Zhang, Zhang (b0120) 2009; 154
Ahnstrom, Parker (b0005) 1999; 63
Chen, Chang, Clevers, Kooistra (b0030) 2015; 206
Shi, Ji, Viscarra Rossel, Chen, Zhou (b0150) 2015; 66
Skidmore, Ryan, Dawes, Short, O'loughlin (b0155) 1991; 5
Wold, Sjöström, Eriksson (b0215) 2001; 58
Durand, Devos, Ruckebusch, Huvenne (b0045) 2007; 595
Stevens, van Wesemael, Bartholomeus, Rosillon, Tychon, Ben-Dor (b0160) 2008; 144
Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (b0025) 2016; 179
Kooistra, Wanders, Epema, Leuven, Wehrens, Buydens (b0100) 2003; 484
Meng, Bao, Liu, Liu, Zhang, Zhang, Wang, Tang, Kong (b0130) 2020; 89
Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (b0200) 2006; 131
Minasny, McBratney (b0135) 2016; 264
Ben-Dor, Patkin, Banin, Karnieli (b0015) 2002; 23
Savitzky, A., Golay, M.J.E., 1964. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627.
Hbirkou, Pätzold, Mahlein, Welp (b0080) 2012; 175-176
Thomas (b0190) 1994; 66
Zhou, Geng, Ji, Xu, Wang, Pan, Bumberger, Haase, Lausch (b0240) 2021; 755
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0095) 2002; 83
Xu, Li, Shi (b0235) 1995; 5
Wu, Liu, Han, Zhou, Liu, Wu (b0225) 2021; 754
Boyle (b0020) 2004; 31
Xu, Ji, Zhu (b0230) 1991; 2
Chong, Jun (b0035) 2005; 78
Eswaran, Reich, Kimble, Beinroth, Padmanabhan (b0050) 2000
Gomez, Viscarra Rossel, McBratney (b0070) 2008; 146
Leardi, Boggia, Terrile (b0105) 1992; 6
Sun, Zhang, Zou, Wu (b0180) 2017; 9
Shepherd, Walsh (b0145) 2002; 66
Gomez, Drost, Roger (b0065) 2015; 156
Heiri, Lotter, Lemcke (b0085) 2001; 25
Hu, Ma, Guo, Li, Pei (b0090) 2016; 44
Sun, Skidmore, Wang, Zhang (b0170) 2019; 252
Terra, Demattê, Viscarra Rossel (b0185) 2015; 255-256
Wang, Li, Wang (b0210) 2011; 174
Bao, Ustin, Meng, Zhang, Guan, Qi, Liu (b0010) 2021; 403
Stoner, Baumgardner (b0165) 1981; 45
Guo, Sun, Fu, Shi, Dang, Chen, Linderman, Zhang, Zhang, Jiang, Zhang, Zeng (b0075) 2021; 398
Li, Liang, Xu, Cao (b0115) 2009; 648
Sun, Zhang (b0175) 2017; 58
Gholizadeh, Žižala, Saberioon, Borůvka (b0060) 2018; 218
Galvão, Vitorello (b0055) 1998; 63
McBratney, Mendonça Santos, Minasny (b0125) 2003; 117
Vohland, Besold, Hill, Fründ (b0205) 2011; 166
Wu, Chen, Ji, Gong, Liao, Tian, Ma (b0220) 2007; 71
Leardi, González (b0110) 1998; 41
Bao (10.1016/j.geoderma.2021.115653_b0010) 2021; 403
Skidmore (10.1016/j.geoderma.2021.115653_b0155) 1991; 5
Eswaran (10.1016/j.geoderma.2021.115653_b0050) 2000
Durand (10.1016/j.geoderma.2021.115653_b0045) 2007; 595
Heiri (10.1016/j.geoderma.2021.115653_b0085) 2001; 25
Wu (10.1016/j.geoderma.2021.115653_b0220) 2007; 71
Guo (10.1016/j.geoderma.2021.115653_b0075) 2021; 398
Xu (10.1016/j.geoderma.2021.115653_b0235) 1995; 5
Chen (10.1016/j.geoderma.2021.115653_b0030) 2015; 206
Sun (10.1016/j.geoderma.2021.115653_b0180) 2017; 9
Boyle (10.1016/j.geoderma.2021.115653_b0020) 2004; 31
Gomez (10.1016/j.geoderma.2021.115653_b0070) 2008; 146
Terra (10.1016/j.geoderma.2021.115653_b0185) 2015; 255-256
Thomas (10.1016/j.geoderma.2021.115653_b0190) 1994; 66
Hu (10.1016/j.geoderma.2021.115653_b0090) 2016; 44
Wu (10.1016/j.geoderma.2021.115653_b0225) 2021; 754
Chong (10.1016/j.geoderma.2021.115653_b0035) 2005; 78
Kooistra (10.1016/j.geoderma.2021.115653_b0100) 2003; 484
Minasny (10.1016/j.geoderma.2021.115653_b0135) 2016; 264
Viscarra Rossel (10.1016/j.geoderma.2021.115653_b0195) 2010; 158
Sun (10.1016/j.geoderma.2021.115653_b0170) 2019; 252
Xu (10.1016/j.geoderma.2021.115653_b0230) 1991; 2
Stevens (10.1016/j.geoderma.2021.115653_b0160) 2008; 144
Zhou (10.1016/j.geoderma.2021.115653_b0240) 2021; 755
Wang (10.1016/j.geoderma.2021.115653_b0210) 2011; 174
Meng (10.1016/j.geoderma.2021.115653_b0130) 2020; 89
Ben-Dor (10.1016/j.geoderma.2021.115653_b0015) 2002; 23
Galvão (10.1016/j.geoderma.2021.115653_b0055) 1998; 63
Hbirkou (10.1016/j.geoderma.2021.115653_b0080) 2012; 175-176
McBratney (10.1016/j.geoderma.2021.115653_b0125) 2003; 117
Ahnstrom (10.1016/j.geoderma.2021.115653_b0005) 1999; 63
Liu (10.1016/j.geoderma.2021.115653_b0120) 2009; 154
Castaldi (10.1016/j.geoderma.2021.115653_b0025) 2016; 179
Viscarra Rossel (10.1016/j.geoderma.2021.115653_b0200) 2006; 131
Stoner (10.1016/j.geoderma.2021.115653_b0165) 1981; 45
Vohland (10.1016/j.geoderma.2021.115653_b0205) 2011; 166
10.1016/j.geoderma.2021.115653_b0140
Wold (10.1016/j.geoderma.2021.115653_b0215) 2001; 58
Leardi (10.1016/j.geoderma.2021.115653_b0105) 1992; 6
Gholizadeh (10.1016/j.geoderma.2021.115653_b0060) 2018; 218
Gomez (10.1016/j.geoderma.2021.115653_b0065) 2015; 156
Shepherd (10.1016/j.geoderma.2021.115653_b0145) 2002; 66
Li (10.1016/j.geoderma.2021.115653_b0115) 2009; 648
Sun (10.1016/j.geoderma.2021.115653_b0175) 2017; 58
Cui (10.1016/j.geoderma.2021.115653_b0040) 2017; 09
Huete (10.1016/j.geoderma.2021.115653_b0095) 2002; 83
Leardi (10.1016/j.geoderma.2021.115653_b0110) 1998; 41
Shi (10.1016/j.geoderma.2021.115653_b0150) 2015; 66
References_xml – volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: b0070
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study
  publication-title: Geoderma
– volume: 754
  start-page: 142120
  year: 2021
  ident: b0225
  article-title: Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 110
  year: 2016
  end-page: 118
  ident: b0090
  article-title: Optimization of the experiment conditions for estimating organic matter content with loss-on ignition method
  publication-title: Earth Environ.
– volume: 71
  start-page: 918
  year: 2007
  end-page: 926
  ident: b0220
  article-title: A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 25
  start-page: 101
  year: 2001
  end-page: 110
  ident: b0085
  article-title: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results
  publication-title: J. Paleolimnol.
– volume: 755
  start-page: 142661
  year: 2021
  ident: b0240
  article-title: Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 1161
  year: 1981
  end-page: 1165
  ident: b0165
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 89
  start-page: 102111
  year: 2020
  ident: b0130
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  ident: b0150
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library
  publication-title: Eur. J. Soil Sci.
– reference: Savitzky, A., Golay, M.J.E., 1964. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627.
– volume: 5
  start-page: 135
  year: 1995
  end-page: 142
  ident: b0235
  article-title: A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra
  publication-title: Pedosphere
– volume: 255-256
  start-page: 81
  year: 2015
  end-page: 93
  ident: b0185
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data
  publication-title: Geoderma
– volume: 66
  start-page: 795A
  year: 1994
  end-page: 804A
  ident: b0190
  article-title: A primer on multivariate calibration
  publication-title: Anal. Chem.
– volume: 179
  start-page: 54
  year: 2016
  end-page: 65
  ident: b0025
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
– volume: 63
  start-page: 166
  year: 1998
  end-page: 181
  ident: b0055
  article-title: Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil
  publication-title: Remote Sens. Environ.
– volume: 595
  start-page: 72
  year: 2007
  end-page: 79
  ident: b0045
  article-title: Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles
  publication-title: Anal. Chim. Acta
– volume: 09
  start-page: 163
  year: 2017
  end-page: 164
  ident: b0040
  article-title: Study on the content of soil organic matter and rapidly available phosphorus and potassium of Baoding City
  publication-title: Appl. Practice New Technol.
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: b0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 648
  start-page: 77
  year: 2009
  end-page: 84
  ident: b0115
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal Chim. Acta
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: b0215
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometrics Intell. Lab. Syst.
– volume: 206
  start-page: 217
  year: 2015
  end-page: 226
  ident: b0030
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
– volume: 41
  start-page: 195
  year: 1998
  end-page: 207
  ident: b0110
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemometrics Intell. Lab. Syst.
– volume: 5
  start-page: 431
  year: 1991
  end-page: 445
  ident: b0155
  article-title: Use of an expert system to map forest soils from a geographical information system
  publication-title: Int. J. Geogr. Inf. Syst.
– year: 2000
  ident: b0050
  article-title: Global climate change and pedogenic carbonates
– volume: 166
  start-page: 198
  year: 2011
  end-page: 205
  ident: b0205
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
– volume: 2
  start-page: 142
  year: 1991
  end-page: 151
  ident: b0230
  article-title: A preliminary research of geographic regionalization of China land background and spectral reflectance characteristics
  publication-title: J. Remote Sens.
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: b0145
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 9
  start-page: 632
  year: 2017
  ident: b0180
  article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements
  publication-title: Remote Sens.
– volume: 398
  start-page: 115118
  year: 2021
  ident: b0075
  article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
  publication-title: Geoderma
– volume: 175-176
  start-page: 21
  year: 2012
  end-page: 28
  ident: b0080
  article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale
  publication-title: Geoderma
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: b0195
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: b0095
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 1043
  year: 2002
  end-page: 1062
  ident: b0015
  article-title: Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel
  publication-title: Int. J. Remote Sens.
– volume: 252
  start-page: 1117
  year: 2019
  end-page: 1124
  ident: b0170
  article-title: Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data
  publication-title: Environ. Pollut.
– volume: 484
  start-page: 189
  year: 2003
  end-page: 200
  ident: b0100
  article-title: The potential of field spectroscopy for the assessment of sediment properties in river floodplains
  publication-title: Anal. Chim. Acta
– volume: 154
  start-page: 147
  year: 2009
  end-page: 154
  ident: b0120
  article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China
  publication-title: Environ. Monit. Assess
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: b0135
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
– volume: 6
  start-page: 267
  year: 1992
  end-page: 281
  ident: b0105
  article-title: Genetic algorithms as a strategy for feature selection
  publication-title: J. Chemom.
– volume: 403
  start-page: 115263
  year: 2021
  ident: b0010
  article-title: A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features
  publication-title: Geoderma
– volume: 144
  start-page: 395
  year: 2008
  end-page: 404
  ident: b0160
  article-title: Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils
  publication-title: Geoderma
– volume: 63
  start-page: 1650
  year: 1999
  end-page: 1658
  ident: b0005
  article-title: Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium
  publication-title: Soil Sci. Soc. Am. J.
– volume: 78
  start-page: 103
  year: 2005
  end-page: 112
  ident: b0035
  article-title: Performance of some variable selection methods when multicollinearity is present
  publication-title: Chemometrics Intell. Lab. Syst.
– volume: 31
  start-page: 125
  year: 2004
  end-page: 127
  ident: b0020
  article-title: A comparison of two methods for estimating the organic matter content of sediments
  publication-title: J. Paleolimnol.
– volume: 218
  start-page: 89
  year: 2018
  end-page: 103
  ident: b0060
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 126
  year: 2017
  end-page: 133
  ident: b0175
  article-title: Estimating soil zinc concentrations using reflectance spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 174
  start-page: 241
  year: 2011
  end-page: 257
  ident: b0210
  article-title: Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources
  publication-title: Environ. Monit. Assess.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0125
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 156
  start-page: 58
  year: 2015
  end-page: 70
  ident: b0065
  article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data
  publication-title: Remote Sens. Environ.
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.geoderma.2021.115653_b0135
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 158
  start-page: 46
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geoderma.2021.115653_b0195
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 83
  start-page: 195
  issue: 1-2
  year: 2002
  ident: 10.1016/j.geoderma.2021.115653_b0095
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 63
  start-page: 166
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2021.115653_b0055
  article-title: Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00135-1
– volume: 175-176
  start-page: 21
  year: 2012
  ident: 10.1016/j.geoderma.2021.115653_b0080
  article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.01.017
– volume: 6
  start-page: 267
  issue: 5
  year: 1992
  ident: 10.1016/j.geoderma.2021.115653_b0105
  article-title: Genetic algorithms as a strategy for feature selection
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180060506
– volume: 755
  start-page: 142661
  year: 2021
  ident: 10.1016/j.geoderma.2021.115653_b0240
  article-title: Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142661
– ident: 10.1016/j.geoderma.2021.115653_b0140
  doi: 10.1021/ac60214a047
– volume: 23
  start-page: 1043
  issue: 6
  year: 2002
  ident: 10.1016/j.geoderma.2021.115653_b0015
  article-title: Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010006962
– volume: 146
  start-page: 403
  issue: 3-4
  year: 2008
  ident: 10.1016/j.geoderma.2021.115653_b0070
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 5
  start-page: 431
  issue: 4
  year: 1991
  ident: 10.1016/j.geoderma.2021.115653_b0155
  article-title: Use of an expert system to map forest soils from a geographical information system
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693799108927867
– volume: 71
  start-page: 918
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2021.115653_b0220
  article-title: A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0285
– volume: 206
  start-page: 217
  year: 2015
  ident: 10.1016/j.geoderma.2021.115653_b0030
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.009
– volume: 144
  start-page: 395
  issue: 1-2
  year: 2008
  ident: 10.1016/j.geoderma.2021.115653_b0160
  article-title: Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.12.009
– volume: 63
  start-page: 1650
  issue: 6
  year: 1999
  ident: 10.1016/j.geoderma.2021.115653_b0005
  article-title: Development and Assessment of a Sequential Extraction Procedure for the Fractionation of Soil Cadmium
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6361650x
– volume: 89
  start-page: 102111
  year: 2020
  ident: 10.1016/j.geoderma.2021.115653_b0130
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 632
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2021.115653_b0180
  article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements
  publication-title: Remote Sens.
  doi: 10.3390/rs9060632
– volume: 166
  start-page: 198
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2021.115653_b0205
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.001
– volume: 398
  start-page: 115118
  year: 2021
  ident: 10.1016/j.geoderma.2021.115653_b0075
  article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115118
– volume: 66
  start-page: 795A
  issue: 15
  year: 1994
  ident: 10.1016/j.geoderma.2021.115653_b0190
  article-title: A primer on multivariate calibration
  publication-title: Anal. Chem.
  doi: 10.1021/ac00087a722
– year: 2000
  ident: 10.1016/j.geoderma.2021.115653_b0050
– volume: 45
  start-page: 1161
  issue: 6
  year: 1981
  ident: 10.1016/j.geoderma.2021.115653_b0165
  article-title: Characteristic variations in reflectance of surface soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500060031x
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2021.115653_b0215
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 25
  start-page: 101
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2021.115653_b0085
  article-title: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results
  publication-title: J. Paleolimnol.
  doi: 10.1023/A:1008119611481
– volume: 131
  start-page: 59
  issue: 1-2
  year: 2006
  ident: 10.1016/j.geoderma.2021.115653_b0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 174
  start-page: 241
  issue: 1-4
  year: 2011
  ident: 10.1016/j.geoderma.2021.115653_b0210
  article-title: Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-010-1454-z
– volume: 154
  start-page: 147
  issue: 1-4
  year: 2009
  ident: 10.1016/j.geoderma.2021.115653_b0120
  article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China
  publication-title: Environ. Monit. Assess
  doi: 10.1007/s10661-008-0385-4
– volume: 31
  start-page: 125
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2021.115653_b0020
  article-title: A comparison of two methods for estimating the organic matter content of sediments
  publication-title: J. Paleolimnol.
  doi: 10.1023/B:JOPL.0000013354.67645.df
– volume: 156
  start-page: 58
  year: 2015
  ident: 10.1016/j.geoderma.2021.115653_b0065
  article-title: Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.032
– volume: 66
  start-page: 679
  issue: 4
  year: 2015
  ident: 10.1016/j.geoderma.2021.115653_b0150
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12272
– volume: 09
  start-page: 163
  year: 2017
  ident: 10.1016/j.geoderma.2021.115653_b0040
  article-title: Study on the content of soil organic matter and rapidly available phosphorus and potassium of Baoding City
  publication-title: Appl. Practice New Technol.
– volume: 117
  start-page: 3
  issue: 1-2
  year: 2003
  ident: 10.1016/j.geoderma.2021.115653_b0125
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 66
  start-page: 988
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2021.115653_b0145
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.9880
– volume: 255-256
  start-page: 81
  year: 2015
  ident: 10.1016/j.geoderma.2021.115653_b0185
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.017
– volume: 2
  start-page: 142
  year: 1991
  ident: 10.1016/j.geoderma.2021.115653_b0230
  article-title: A preliminary research of geographic regionalization of China land background and spectral reflectance characteristics
  publication-title: J. Remote Sens.
– volume: 754
  start-page: 142120
  year: 2021
  ident: 10.1016/j.geoderma.2021.115653_b0225
  article-title: Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142120
– volume: 41
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2021.115653_b0110
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00051-3
– volume: 403
  start-page: 115263
  year: 2021
  ident: 10.1016/j.geoderma.2021.115653_b0010
  article-title: A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115263
– volume: 648
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2021.115653_b0115
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal Chim. Acta
  doi: 10.1016/j.aca.2009.06.046
– volume: 218
  start-page: 89
  year: 2018
  ident: 10.1016/j.geoderma.2021.115653_b0060
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– volume: 44
  start-page: 110
  issue: 01
  year: 2016
  ident: 10.1016/j.geoderma.2021.115653_b0090
  article-title: Optimization of the experiment conditions for estimating organic matter content with loss-on ignition method
  publication-title: Earth Environ.
– volume: 5
  start-page: 135
  issue: 2
  year: 1995
  ident: 10.1016/j.geoderma.2021.115653_b0235
  article-title: A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra
  publication-title: Pedosphere
– volume: 58
  start-page: 126
  year: 2017
  ident: 10.1016/j.geoderma.2021.115653_b0175
  article-title: Estimating soil zinc concentrations using reflectance spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 179
  start-page: 54
  year: 2016
  ident: 10.1016/j.geoderma.2021.115653_b0025
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 595
  start-page: 72
  issue: 1-2
  year: 2007
  ident: 10.1016/j.geoderma.2021.115653_b0045
  article-title: Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.03.024
– volume: 252
  start-page: 1117
  issue: Pt B
  year: 2019
  ident: 10.1016/j.geoderma.2021.115653_b0170
  article-title: Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.06.021
– volume: 484
  start-page: 189
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2021.115653_b0100
  article-title: The potential of field spectroscopy for the assessment of sediment properties in river floodplains
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(03)00331-3
– volume: 78
  start-page: 103
  issue: 1-2
  year: 2005
  ident: 10.1016/j.geoderma.2021.115653_b0035
  article-title: Performance of some variable selection methods when multicollinearity is present
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.12.011
SSID ssj0017020
Score 2.586945
Snippet •Estimation of SOM content is degraded by non-informative spectral bands.•Informative spectral subsets can be extracted from absorption features.•Estimation of...
Soil organic matter (SOM) content plays an important role in the global carbon cycle and agricultural activities. Reflectance spectroscopy has been recognized...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115653
SubjectTerms algorithms
clay
Gaofen-5 satellite
global carbon budget
Hyperspectral remote sensing image
reflectance spectroscopy
remote sensing
soil
Soil organic matter
Spectral subset selection
VNIR-SWIR spectroscopy
Title Estimation of soil organic matter content using selected spectral subset of hyperspectral data
URI https://dx.doi.org/10.1016/j.geoderma.2021.115653
https://www.proquest.com/docview/2636420948
Volume 409
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IXvRgfEZ8kJp4Xdnddls4EoJBjZwk4WSzfSxCEAiPq7_dme4uURPDwWuz0zTT6TyyM99HyF0c2hSyDhNYMOGAu8wG2gobpGDMWqRQZXsWhZe-6A340zAZVkinnIXBtsrC9-c-3XvrYqVRaLOxGI9xxjcSMvQIWMg8iIifnEu08vvPbZtHJMMCmjESAX79bUp4AneEhGMefyiOwHtAdsP-ClC_XLWPPw9H5LBIHGk7P9sxqbjZCTloj5YFeIY7JW9deK_5KCKdZ3Q1H09pztpk6IfH0aTYmQ5hhmK7-4iuPAmOs9TPWy5h-xX4EbdG6XcoUJfbdWwkPSODh-5rpxcU_AmBYTxZB-CMmEkYbwpIemwWupa0EiI8z5gITYjQ69zpUDMp08Qw1hLcQvmlnWRNJw1n56Q6m8_cBaGI4mV1qp2LMx5ZkULiGDsnudGSSWtrJCmVpkwBLo4cF1NVdpFNVKlshcpWubJrpLGVW-TwGjslWuWdqB-GoiAG7JS9LS9RwSvCXyPpzM03KxULBoUYlLrNy3_sf0X2Y5yO8C1q16S6Xm7cDeQsa133Rlkne-3H517_C39Z7M8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qe1AP4hPfRvC6dLvJJu2xiFLt41TBk2HzWG2pbWnr_3eSzRYVxIPXwIQwmXwzQ2a-AbhJYpNh1KEjgyYcMZubSBluogyNWfEMs2w_RaE_4J0n9vicPlfgtuyFcWWVAfsLTPdoHVbqQZv1-WjkenwbXMSeActNHqQbUHPsVGkVau2Hbmew_kwQcWBnbPDICXxpFB7jNbmZY56CKGkggGCAQ3_zUT_Q2rug-13YCbEjaRfH24OKne7Ddvt1Efgz7AG83OGTLboRySwny9loQorBTZq8eypN4orT0dMQV_H-SpZ-Do41xLdcLnD7JUKJXTnpN8xRF-t1V0t6CE_3d8PbThRGKESasnQVIR5RnVLW5Bj3mDy2LWEEOnmWUx7r2LGvM6tiRYXIUk1pizODGZiygjat0IweQXU6m9pjII7Iy6hMWZvkrGF4hrFjYq1gWgkqjDmBtFSa1IFf3I25mMiykGwsS2VLp2xZKPsE6mu5ecGw8adEq7wT-c1WJLqBP2Wvy0uU-JDc70g2tbOPpUw4xVwMs93m6T_2v4LNzrDfk72HQfcMthLXLOEr1s6hulp82AsMYVbqMpjoJ53374A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+soil+organic+matter+content+using+selected+spectral+subset+of+hyperspectral+data&rft.jtitle=Geoderma&rft.au=Sun%2C+Weichao&rft.au=Liu%2C+Shuo&rft.au=Zhang%2C+Xia&rft.au=Li%2C+Yao&rft.date=2022-03-01&rft.issn=0016-7061&rft.volume=409+p.115653-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115653&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon