Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity

•No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favora...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 405; p. 115443
Main Authors Mondal, Surajit, Chakraborty, Debashis
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favorable climate and soil type. Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy.
AbstractList •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favorable climate and soil type. Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy.
Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy.
ArticleNumber 115443
Author Chakraborty, Debashis
Mondal, Surajit
Author_xml – sequence: 1
  givenname: Surajit
  surname: Mondal
  fullname: Mondal, Surajit
  email: surajit.icar@gmail.com
  organization: ICAR – Research Complex for Eastern Region, Patna 800 014, Bihar, India
– sequence: 2
  givenname: Debashis
  surname: Chakraborty
  fullname: Chakraborty, Debashis
  email: debashisiari@gmail.com
  organization: Division of Agricultural Physics, ICAR – Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
BookMark eNqFkMFqGzEQhkVJoHaSVwg69rKutNqV1tBDi2mTQqCX9hYQs9KsIyNLrqQ1-O2j4PaSiy8zDHz_8PMtyVWIAQm552zFGZefd6stRotpD6uWtXzFed914gNZ8EG1jWz79RVZsEo2ikn-kSxz3tVTsZYtyPODjyN4uscCDQTwp-wyzfN2i7lkWl6g0BCb4ryHLdIJjnFOMPoTNS8QKkRzdJ7mkmZT5oQUgqWHmGJ25XRLrifwGe_-7Rvy58f335vH5unXw8_Nt6fGiK4vDZ8GNthBqWmULdZhpJjGgSuQnRFW8BEUn4RZc2WFNetxEnbdDZb1HAwTQtyQT-e_hxT_zrW43rtssFYOGOesWymkZKrnXUW_nFFTK-aEkzauQHExlATOa870m1S90_-l6jep-iy1xuW7-CG5PaTT5eDXcxCrh6PDpLNxGAxal9AUbaO79OIVvouZgA
CitedBy_id crossref_primary_10_1016_j_apsoil_2023_105088
crossref_primary_10_1016_j_geoderma_2025_117204
crossref_primary_10_1016_j_still_2024_106162
crossref_primary_10_1016_j_agee_2025_109555
crossref_primary_10_1111_sum_70026
crossref_primary_10_1016_j_agee_2022_108265
crossref_primary_10_1155_2024_8682240
crossref_primary_10_1016_j_geodrs_2025_e00932
crossref_primary_10_3390_soilsystems8010006
crossref_primary_10_1016_j_iswcr_2023_07_007
crossref_primary_10_3389_fpls_2022_975169
crossref_primary_10_1016_j_catena_2022_106563
crossref_primary_10_1002_saj2_20477
crossref_primary_10_1111_gcb_16618
crossref_primary_10_1111_ejss_13485
crossref_primary_10_1139_cjss_2023_0075
crossref_primary_10_1016_j_jclepro_2024_143186
crossref_primary_10_3390_agronomy13030710
crossref_primary_10_17221_29_2022_RAE
crossref_primary_10_1016_j_jhydrol_2023_130516
crossref_primary_10_1016_j_soilad_2024_100014
crossref_primary_10_3390_agriculture13112128
crossref_primary_10_1007_s42729_022_00945_2
crossref_primary_10_3390_agronomy14040788
crossref_primary_10_1002_ldr_4931
crossref_primary_10_1016_j_still_2022_105408
crossref_primary_10_1016_j_jafr_2023_100907
crossref_primary_10_1016_j_scitotenv_2023_163570
crossref_primary_10_3390_agriculture13030683
crossref_primary_10_1007_s40333_023_0064_x
crossref_primary_10_3390_agriculture13040764
crossref_primary_10_1016_j_agee_2023_108600
crossref_primary_10_1016_j_scitotenv_2024_171782
crossref_primary_10_1016_j_agee_2024_109053
crossref_primary_10_1088_2976_601X_ad7bbe
crossref_primary_10_1111_aab_70006
crossref_primary_10_1016_j_jclepro_2022_132874
crossref_primary_10_3390_su141811651
crossref_primary_10_1016_j_jenvman_2023_119070
crossref_primary_10_1016_j_soisec_2021_100028
crossref_primary_10_1029_2024RG000836
crossref_primary_10_1007_s10653_023_01721_6
crossref_primary_10_1016_j_agee_2023_108498
crossref_primary_10_1016_j_geoderma_2023_116565
crossref_primary_10_3390_agronomy14061327
crossref_primary_10_3390_agronomy14112482
crossref_primary_10_1016_j_still_2022_105540
crossref_primary_10_1016_j_still_2025_106496
crossref_primary_10_1111_sum_13040
crossref_primary_10_3390_plants12213762
crossref_primary_10_1080_00103624_2024_2321925
crossref_primary_10_3390_agriengineering6030132
crossref_primary_10_1007_s11368_023_03652_2
crossref_primary_10_3390_agronomy15010001
crossref_primary_10_36783_18069657rbcs20230032
crossref_primary_10_1080_23311932_2023_2294542
crossref_primary_10_1111_ejss_70081
crossref_primary_10_1016_j_still_2023_105849
crossref_primary_10_1016_j_agee_2024_109080
crossref_primary_10_1016_j_still_2023_105649
crossref_primary_10_5194_soil_8_621_2022
crossref_primary_10_1038_s41598_023_41307_x
crossref_primary_10_1111_sum_13007
crossref_primary_10_1016_j_apsoil_2023_105260
crossref_primary_10_1016_j_scitotenv_2024_170418
crossref_primary_10_1016_j_scitotenv_2023_168283
Cites_doi 10.1016/j.still.2005.06.004
10.1016/j.still.2011.10.015
10.1016/j.geoderma.2015.06.003
10.1038/nclimate2292
10.1111/j.1365-2389.2007.00915.x
10.1038/s41598-019-47861-7
10.1016/j.agee.2010.08.006
10.1111/gcb.12517
10.1038/s41598-017-09742-9
10.1016/j.geoderma.2008.04.005
10.1038/s41893-020-0500-2
10.1002/ldr.2689
10.1016/S0167-1987(99)00107-5
10.1016/j.agwat.2005.07.019
10.1016/j.still.2004.09.011
10.1002/ldr.3470
10.1016/S0167-1987(00)00155-0
10.1016/S0167-1987(02)00019-3
10.1007/s10098-019-01728-7
10.1016/j.still.2019.104385
10.1016/j.still.2013.04.006
10.2136/sssaj2002.1930
10.1016/j.geoderma.2012.12.002
10.1016/j.agee.2014.02.014
10.3389/fenvs.2018.00140
10.1016/j.soilbio.2010.09.008
10.2136/sssaj2009.0079
10.1017/S1355770X20000066
10.2134/agronj14.0465
10.1002/ldr.635
10.1016/j.still.2019.06.009
10.1016/j.still.2012.06.004
10.1186/s13750-017-0108-9
10.1016/j.geoderma.2018.03.011
10.1016/j.soilbio.2013.06.015
10.1111/ejss.12879
10.18637/jss.v036.i03
10.1127/metz/2016/0816
10.4141/S98-034
10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
10.1016/j.still.2011.02.004
10.1016/j.geoderma.2016.02.020
10.1038/nature17174
10.1038/nature10176
10.1038/nature13809
10.1111/j.1529-8817.2003.00730.x
10.1016/j.scitotenv.2017.10.009
10.1023/A:1006271331703
10.1016/j.still.2010.08.015
10.1016/j.still.2017.12.019
10.1016/j.still.2005.02.025
10.1002/jpln.201600451
10.1002/ece3.4586
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1051/agro:2002043
10.1016/bs.agron.2015.06.002
10.1046/j.1354-1013.2002.00486.x
10.1016/S0038-0717(00)00179-6
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115443
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115443
S0016706121005231
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-1f808d877fb62efb6c63fb817a64c3d31ba71f3c917d3dc9bf3d948d051ac0333
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 05:29:41 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 04:04:56 EDT 2025
Fri Feb 23 02:47:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bulk density
Saturated hydraulic conductivity
Meta-regression
Mean weight diameter
Total porosity
Macroporosity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-1f808d877fb62efb6c63fb817a64c3d31ba71f3c917d3dc9bf3d948d051ac0333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636607514
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636607514
crossref_citationtrail_10_1016_j_geoderma_2021_115443
crossref_primary_10_1016_j_geoderma_2021_115443
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cavalchini, Rognoni, Tangorra, Costa (b0055) 2013; 44
R Core Team R: A language and environment for statistical computing. Version 1.2.5033. R Foundation for Statistical Computing 2020 Vienna, Austria [Online]. Available.
Balesdent, Chenu, Balaban (b0015) 2000; 53
Kay, VandenBygaart (b0140) 2002; 66
Mondal, Chakraborty, Das, Shrivastava, Mishra, Bandyopadhyay, Chaudhari (b0185) 2019; 195
Knowler (b0145) 2004; 15
Adams, Gurevitch, Rosenberg (b0005) 1997; 78
Gurevitch, Curtis, Jones (b0105) 2001; vol. 32
Heger, Zens, Bangalore (b0125) 2020; 25
Nimmo (b0200) 2004; 3
Viechtbauer (b0315) 2010; 36
Hartmann, Zink, Fleige, Horn (b0115) 2012; 124
Chaplain, Defossez, Richard, Tessier, Roger-Estrade (b0070) 2011; 111
Paustian, Six, Elliott, Hunt (b0225) 2000; 48
Liu, Lu, Cui, Li, Fang (b0155) 2014; 20
Haddaway, Hedlund, Jackson, Kätterer, Lugato, Thomsen, Isberg (b0110) 2017; 6
Blanco-Canqui, Ruis (b0035) 2018; 326
Cerdà (b0060) 2000; 57
Caruso, De Vries, Bardgett, Lehmann (b0050) 2018; 8
Powlson, Stirling, Jat, Gerard, Palm, Sanchez, Cassman (b0235) 2014; 4
Schjønning, Thomsen (b0270) 2013; 132
Bronick, Lal (b0045) 2005; 81
Rosenberg, Adams, Gurevitch (b0250) 2000
Barto, Alt, Oelmann, Wilcke, Rillig (b0020) 2010; 42
Zuber, Behnke, Nafziger, Villamil (b0330) 2015; 107
Curaqueo, Barea, Acevedo, Rubio, Cornejo, Borie (b0075) 2011; 113
Six, Elliott, Paustian (b0275) 2000; 32
Soane, Ball, Arvidsson, Basch, Moreno, Roger-Estrade (b0290) 2012; 118
Van Groenigen, Osenberg, Hungate (b0305) 2011; 475
Franzluebbers (b0090) 2010; 74
Somasundaram, Reeves, Wang, Heenan, Dalal (b0295) 2017; 28
Berisso, Schjønning, Keller, Lamandé, Simojoki, Iversen, Forkman (b0030) 2013; 195
Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Kögel-Knabner (b0300) 2018; 181
West, Post (b0320) 2002; 66
Moret, Arrúe, López, Gracia (b0195) 2006; 82
García-Díaz, Allas, Gristina, Cerdà, Pereira, Novara (b0095) 2016; 271
Hedges, Gurevitch, Curtis (b0120) 1999; 80
Nunes, Denardin, Pauletto, Faganello, Pinto (b0205) 2015; 259
Zhao, Zhang, Xue, Pu, Zhang, Liu, Zhang (b0325) 2015; 134
Jarvis (b0130) 2007; 58
Sasal, Andriulo, Taboada (b0265) 2006; 87
Six, Ogle, Breidt, Conant, Mosier, Paustian (b0285) 2004; 10
Álvaro-Fuentes, Arrúe, Gracia, López (b0010) 2008; 145
Dimassi, Mary, Wylleman, Labreuche, Couture, Piraux, Cohan (b0080) 2014; 188
Pittelkow, Liang, Linquist, Van Groenigen, Lee, Lundy, Van Kessel (b0230) 2015; 517
Mondal, Chakraborty, Bandyopadhyay, Aggarwal, Rana (b0180) 2020; 31
Six, Feller, Denef, Ogle, De Moraes Sa, Albrecht (b0280) 2002; 22
Pastorelli, Vignozzi, Landi, Piccolo, Orsini, Seddaiu, Pagliai (b0215) 2013; 66
Guo, Gifford (b0100) 2002; 8
Paustian, Lehmann, Ogle, Reay, Robertson, Smith (b0220) 2016; 532
Rohatgi, A., 2016. WebPlotDigitizer version 3.10. Austin, Texas [Online]. Available: http://arohatgi. info/WebPlotDigitizer.
Marandola, Belliggiano, Romagnoli, Ievoli (b0170) 2019; 7
Chakraborty, Ladha, Rana, Jat, Gathala, Yadav, Raman (b0065) 2017; 7
FAO (b0085) 2001
Maroušek, Strunecký, Stehel (b0175) 2019; 21
Rubel, Brugger, Haslinger, Auer (b0255) 2017; 26
VandenBygaart, Protz, Tomlin (b0310) 1999; 79
Mondal, Poonia, Mishra, Bhatt, Karnena, Saurabh, Chakraborty (b0190) 2020; 71
Borie, Rubio, Rouanet, Morales, Borie, Rojas (b0040) 2006; 88
Jat, Chakraborty, Ladha, Rana, Gathala, McDonald, Gerard (b0135) 2020; 3
Liu, Yang, Wang, Huang, Li (b0160) 2018; 618
Ogle, Alsaker, Baldock, Bernoux, Breidt, McConkey, Vazquez-Amabile (b0210) 2019; 9
Li, Li, Cui, Jagadamma, Zhang (b0150) 2019; 194
Luo, Wang, Sun (b0165) 2010; 139
Sarker, Singh, Cowie, Fang, Collins, Badgery, Dalal (b0260) 2018; 178
Baumert, Vasilyeva, Vladimirov, Meier, Kögel-Knabner, Mueller (b0025) 2018; 6
Mondal (10.1016/j.geoderma.2021.115443_b0180) 2020; 31
Nunes (10.1016/j.geoderma.2021.115443_b0205) 2015; 259
Dimassi (10.1016/j.geoderma.2021.115443_b0080) 2014; 188
Curaqueo (10.1016/j.geoderma.2021.115443_b0075) 2011; 113
10.1016/j.geoderma.2021.115443_b0245
Somasundaram (10.1016/j.geoderma.2021.115443_b0295) 2017; 28
Barto (10.1016/j.geoderma.2021.115443_b0020) 2010; 42
FAO (10.1016/j.geoderma.2021.115443_b0085) 2001
10.1016/j.geoderma.2021.115443_b0240
Pittelkow (10.1016/j.geoderma.2021.115443_b0230) 2015; 517
Baumert (10.1016/j.geoderma.2021.115443_b0025) 2018; 6
Blanco-Canqui (10.1016/j.geoderma.2021.115443_b0035) 2018; 326
Nimmo (10.1016/j.geoderma.2021.115443_b0200) 2004; 3
Liu (10.1016/j.geoderma.2021.115443_b0155) 2014; 20
VandenBygaart (10.1016/j.geoderma.2021.115443_b0310) 1999; 79
Chaplain (10.1016/j.geoderma.2021.115443_b0070) 2011; 111
West (10.1016/j.geoderma.2021.115443_b0320) 2002; 66
Sarker (10.1016/j.geoderma.2021.115443_b0260) 2018; 178
Hartmann (10.1016/j.geoderma.2021.115443_b0115) 2012; 124
Rubel (10.1016/j.geoderma.2021.115443_b0255) 2017; 26
Sasal (10.1016/j.geoderma.2021.115443_b0265) 2006; 87
García-Díaz (10.1016/j.geoderma.2021.115443_b0095) 2016; 271
Mondal (10.1016/j.geoderma.2021.115443_b0185) 2019; 195
Luo (10.1016/j.geoderma.2021.115443_b0165) 2010; 139
Pastorelli (10.1016/j.geoderma.2021.115443_b0215) 2013; 66
Moret (10.1016/j.geoderma.2021.115443_b0195) 2006; 82
Six (10.1016/j.geoderma.2021.115443_b0285) 2004; 10
Balesdent (10.1016/j.geoderma.2021.115443_b0015) 2000; 53
Powlson (10.1016/j.geoderma.2021.115443_b0235) 2014; 4
Paustian (10.1016/j.geoderma.2021.115443_b0220) 2016; 532
Caruso (10.1016/j.geoderma.2021.115443_b0050) 2018; 8
Haddaway (10.1016/j.geoderma.2021.115443_b0110) 2017; 6
Six (10.1016/j.geoderma.2021.115443_b0275) 2000; 32
Ogle (10.1016/j.geoderma.2021.115443_b0210) 2019; 9
Franzluebbers (10.1016/j.geoderma.2021.115443_b0090) 2010; 74
Guo (10.1016/j.geoderma.2021.115443_b0100) 2002; 8
Hedges (10.1016/j.geoderma.2021.115443_b0120) 1999; 80
Knowler (10.1016/j.geoderma.2021.115443_b0145) 2004; 15
Van Groenigen (10.1016/j.geoderma.2021.115443_b0305) 2011; 475
Heger (10.1016/j.geoderma.2021.115443_b0125) 2020; 25
Li (10.1016/j.geoderma.2021.115443_b0150) 2019; 194
Adams (10.1016/j.geoderma.2021.115443_b0005) 1997; 78
Berisso (10.1016/j.geoderma.2021.115443_b0030) 2013; 195
Rosenberg (10.1016/j.geoderma.2021.115443_b0250) 2000
Kay (10.1016/j.geoderma.2021.115443_b0140) 2002; 66
Borie (10.1016/j.geoderma.2021.115443_b0040) 2006; 88
Liu (10.1016/j.geoderma.2021.115443_b0160) 2018; 618
Jat (10.1016/j.geoderma.2021.115443_b0135) 2020; 3
Paustian (10.1016/j.geoderma.2021.115443_b0225) 2000; 48
Schjønning (10.1016/j.geoderma.2021.115443_b0270) 2013; 132
Gurevitch (10.1016/j.geoderma.2021.115443_b0105) 2001; vol. 32
Six (10.1016/j.geoderma.2021.115443_b0280) 2002; 22
Cerdà (10.1016/j.geoderma.2021.115443_b0060) 2000; 57
Zuber (10.1016/j.geoderma.2021.115443_b0330) 2015; 107
Jarvis (10.1016/j.geoderma.2021.115443_b0130) 2007; 58
Soane (10.1016/j.geoderma.2021.115443_b0290) 2012; 118
Viechtbauer (10.1016/j.geoderma.2021.115443_b0315) 2010; 36
Maroušek (10.1016/j.geoderma.2021.115443_b0175) 2019; 21
Mondal (10.1016/j.geoderma.2021.115443_b0190) 2020; 71
Bronick (10.1016/j.geoderma.2021.115443_b0045) 2005; 81
Totsche (10.1016/j.geoderma.2021.115443_b0300) 2018; 181
Álvaro-Fuentes (10.1016/j.geoderma.2021.115443_b0010) 2008; 145
Marandola (10.1016/j.geoderma.2021.115443_b0170) 2019; 7
Chakraborty (10.1016/j.geoderma.2021.115443_b0065) 2017; 7
Zhao (10.1016/j.geoderma.2021.115443_b0325) 2015; 134
Cavalchini (10.1016/j.geoderma.2021.115443_b0055) 2013; 44
References_xml – volume: 8
  start-page: 11169
  year: 2018
  end-page: 11178
  ident: b0050
  article-title: Soil organic carbon dynamics matching ecological equilibrium theory
  publication-title: Ecol. Evol.
– volume: 15
  start-page: 543
  year: 2004
  end-page: 561
  ident: b0145
  article-title: The economics of soil productivity: Local, national and global perspectives
  publication-title: Land Degrad. Dev.
– volume: 139
  start-page: 224
  year: 2010
  end-page: 231
  ident: b0165
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agric. Ecosyst. Environ.
– volume: 326
  start-page: 164
  year: 2018
  end-page: 200
  ident: b0035
  article-title: No-tillage and soil physical environment
  publication-title: Geoderma.
– volume: 25
  start-page: 315
  year: 2020
  end-page: 333
  ident: b0125
  article-title: Land and poverty: the role of soil fertility and vegetation quality in poverty reduction
  publication-title: Environ. Develop. Econ.
– volume: 66
  start-page: 1930
  year: 2002
  end-page: 1946
  ident: b0320
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis
  publication-title: Soil Sci. Soc. Am. J.
– reference: R Core Team R: A language and environment for statistical computing. Version 1.2.5033. R Foundation for Statistical Computing 2020 Vienna, Austria [Online]. Available.
– volume: 107
  start-page: 971
  year: 2015
  end-page: 978
  ident: b0330
  article-title: Crop rotation and tillage effects on soil physical and chemical properties in Illinois
  publication-title: Agron. J.
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  ident: b0100
  article-title: Soil carbon stocks and land use change: a meta-analysis
  publication-title: Glob. Change Biol.
– volume: 82
  start-page: 161
  year: 2006
  end-page: 176
  ident: b0195
  article-title: Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain)
  publication-title: Agr. Water Manage.
– year: 2000
  ident: b0250
  article-title: MetaWin: Statistical software for meta-analysis
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  ident: b0220
  article-title: Climate-smart soils
  publication-title: Nature.
– volume: 618
  start-page: 1658
  year: 2018
  end-page: 1664
  ident: b0160
  article-title: Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis
  publication-title: Sci. Total Environ.
– volume: 132
  start-page: 12
  year: 2013
  end-page: 20
  ident: b0270
  article-title: Shallow tillage effects on soil properties for temperate-region hard-setting soils
  publication-title: Soil Till. Res.
– volume: 66
  start-page: 107
  year: 2002
  end-page: 118
  ident: b0140
  article-title: Conservation tillage and depth stratification of porosity and soil organic matter
  publication-title: Soil Till. Res.
– volume: 194
  year: 2019
  ident: b0150
  article-title: Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis
  publication-title: Soil Till. Res.
– volume: 31
  start-page: 557
  year: 2020
  end-page: 567
  ident: b0180
  article-title: A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response
  publication-title: Land Degrad. Dev.
– volume: 21
  start-page: 1389
  year: 2019
  end-page: 1395
  ident: b0175
  article-title: Biochar farming: Defining economically perspective applications
  publication-title: Clean Technol. Environ. Policy.
– volume: 3
  start-page: 295
  year: 2004
  end-page: 303
  ident: b0200
  article-title: Porosity and pore size distribution
  publication-title: Encyclopedia of Soils in the Environment.
– volume: 145
  start-page: 390
  year: 2008
  end-page: 396
  ident: b0010
  article-title: Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions
  publication-title: Geoderma.
– volume: 113
  start-page: 11
  year: 2011
  end-page: 18
  ident: b0075
  article-title: Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central chile
  publication-title: Soil Till. Res.
– volume: 181
  start-page: 104
  year: 2018
  end-page: 136
  ident: b0300
  article-title: Microaggregates in soils
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 81
  start-page: 239
  year: 2005
  end-page: 252
  ident: b0045
  article-title: Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA
  publication-title: Soil Till. Res.
– volume: 134
  start-page: 1
  year: 2015
  end-page: 50
  ident: b0325
  article-title: Management-induced changes to soil organic carbon in China: A meta-analysis
  publication-title: Adv. Agron.
– volume: 88
  start-page: 253
  year: 2006
  end-page: 261
  ident: b0040
  article-title: Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol
  publication-title: Soil Till. Res.
– volume: 26
  start-page: 115
  year: 2017
  end-page: 125
  ident: b0255
  article-title: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100
  publication-title: Meteorol. Z.
– volume: 22
  start-page: 755
  year: 2002
  end-page: 775
  ident: b0280
  article-title: Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage
  publication-title: Agronomie.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0065
  article-title: A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production
  publication-title: Sci. Rep.
– volume: 66
  start-page: 78
  year: 2013
  end-page: 93
  ident: b0215
  article-title: Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy
  publication-title: Soil Biol. Biochem.
– volume: 6
  start-page: 140
  year: 2018
  ident: b0025
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
– volume: 53
  start-page: 215
  year: 2000
  end-page: 230
  ident: b0015
  article-title: Relationship of soil organic matter dynamics to physical protection and tillage
  publication-title: Soil Till. Res.
– volume: 195
  year: 2019
  ident: b0185
  article-title: Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period
  publication-title: Soil Tillage Res.
– volume: 178
  start-page: 209
  year: 2018
  end-page: 223
  ident: b0260
  article-title: Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils
  publication-title: Soil Till. Res.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0210
  article-title: Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions
  publication-title: Sci. Rep.
– volume: 20
  start-page: 1366
  year: 2014
  end-page: 1381
  ident: b0155
  article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis
  publication-title: Global Change Biol.
– volume: 195
  start-page: 184
  year: 2013
  end-page: 191
  ident: b0030
  article-title: Gas transport and subsoil pore characteristics: Anisotropy and long-term effects of compaction
  publication-title: Geoderma.
– volume: 57
  start-page: 159
  year: 2000
  end-page: 166
  ident: b0060
  article-title: Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia
  publication-title: Soil Till. Res.
– volume: 74
  start-page: 347
  year: 2010
  end-page: 357
  ident: b0090
  article-title: Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States
  publication-title: Soil Sci. Soc. Am. J.
– volume: 28
  start-page: 1589
  year: 2017
  end-page: 1602
  ident: b0295
  article-title: Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol
  publication-title: Land Degrad. Dev.
– volume: 124
  start-page: 211
  year: 2012
  end-page: 218
  ident: b0115
  article-title: Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany
  publication-title: Soil Till. Res.
– volume: 87
  start-page: 9
  year: 2006
  end-page: 18
  ident: b0265
  article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas
  publication-title: Soil Till. Res.
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  ident: b0315
  article-title: Conducting meta-analyses in R with the metaphor package
  publication-title: J. Stat. Software.
– volume: 259
  start-page: 149
  year: 2015
  end-page: 155
  ident: b0205
  article-title: Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage
  publication-title: Geoderma.
– volume: 32
  start-page: 2103
  year: 2000
  ident: b0275
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 475
  start-page: 214
  year: 2011
  end-page: 216
  ident: b0305
  article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO
  publication-title: Nature.
– volume: 3
  start-page: 336
  year: 2020
  end-page: 343
  ident: b0135
  article-title: Conservation agriculture for sustainable intensification in South Asia
  publication-title: Nat. Sustain.
– volume: 517
  start-page: 365
  year: 2015
  end-page: 368
  ident: b0230
  article-title: Productivity limits and potentials of the principles of conservation agriculture
  publication-title: Nature.
– volume: 4
  start-page: 678
  year: 2014
  end-page: 683
  ident: b0235
  article-title: Limited potential of no-till agriculture for climate change mitigation
  publication-title: Nat. Clim. Change.
– volume: 44
  year: 2013
  ident: b0055
  article-title: Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing
  publication-title: J. Agr. Eng.
– volume: 118
  start-page: 66
  year: 2012
  end-page: 87
  ident: b0290
  article-title: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment
  publication-title: Soil Till. Res.
– volume: 111
  start-page: 105
  year: 2011
  end-page: 114
  ident: b0070
  article-title: Contrasted effects of no-till on bulk density of soil and mechanical resistance
  publication-title: Soil Till. Res.
– volume: 271
  start-page: 144
  year: 2016
  end-page: 149
  ident: b0095
  article-title: Carbon input threshold for soil carbon budget optimization in eroding vineyards
  publication-title: Geoderma.
– volume: 78
  start-page: 1277
  year: 1997
  end-page: 1283
  ident: b0005
  article-title: Resampling tests for meta-analysis of ecological data
  publication-title: Ecology.
– volume: 10
  start-page: 155
  year: 2004
  end-page: 160
  ident: b0285
  article-title: The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term
  publication-title: Glob. Change Biol.
– volume: 42
  start-page: 2316
  year: 2010
  end-page: 2324
  ident: b0020
  article-title: Contributions of biotic and abiotic factors to soil aggregation across a land use gradient
  publication-title: Soil Biol. Biochem.
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  ident: b0120
  article-title: The meta-analysis of response ratios in experimental ecology
  publication-title: Ecology.
– reference: Rohatgi, A., 2016. WebPlotDigitizer version 3.10. Austin, Texas [Online]. Available: http://arohatgi. info/WebPlotDigitizer.
– volume: vol. 32
  start-page: 199
  year: 2001
  end-page: 247
  ident: b0105
  article-title: Meta-analysis in ecology
  publication-title: Advances in Ecological Research
– volume: 6
  start-page: 30
  year: 2017
  ident: b0110
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evidence.
– volume: 58
  start-page: 523
  year: 2007
  end-page: 546
  ident: b0130
  article-title: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality
  publication-title: Eur. J. Soil Sci.
– volume: 188
  start-page: 134
  year: 2014
  end-page: 146
  ident: b0080
  article-title: Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years
  publication-title: Agric. Ecosys. Environ.
– year: 2001
  ident: b0085
  article-title: The economics of conservation agriculture
– volume: 48
  start-page: 147
  year: 2000
  end-page: 163
  ident: b0225
  article-title: Management options for reducing CO
  publication-title: Biogeochemistry.
– volume: 79
  start-page: 149
  year: 1999
  end-page: 160
  ident: b0310
  article-title: Changes in pore structure in a no-till chronosequence of silt loam soils, southern Ontario
  publication-title: Can. J. Soil Sci.
– volume: 71
  start-page: 1076
  year: 2020
  end-page: 1089
  ident: b0190
  article-title: Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the Indo-Gangetic plains of Bihar
  publication-title: Eur. J. Soil Sci.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 22
  ident: b0170
  article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making
  publication-title: Agr. Food Econ.
– volume: 88
  start-page: 253
  year: 2006
  ident: 10.1016/j.geoderma.2021.115443_b0040
  article-title: Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2005.06.004
– volume: 118
  start-page: 66
  year: 2012
  ident: 10.1016/j.geoderma.2021.115443_b0290
  article-title: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2011.10.015
– volume: 259
  start-page: 149
  year: 2015
  ident: 10.1016/j.geoderma.2021.115443_b0205
  article-title: Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2015.06.003
– volume: 4
  start-page: 678
  year: 2014
  ident: 10.1016/j.geoderma.2021.115443_b0235
  article-title: Limited potential of no-till agriculture for climate change mitigation
  publication-title: Nat. Clim. Change.
  doi: 10.1038/nclimate2292
– ident: 10.1016/j.geoderma.2021.115443_b0240
– volume: 58
  start-page: 523
  year: 2007
  ident: 10.1016/j.geoderma.2021.115443_b0130
  article-title: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2007.00915.x
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115443_b0210
  article-title: Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47861-7
– volume: 139
  start-page: 224
  year: 2010
  ident: 10.1016/j.geoderma.2021.115443_b0165
  article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.08.006
– volume: 20
  start-page: 1366
  year: 2014
  ident: 10.1016/j.geoderma.2021.115443_b0155
  article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.12517
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2021.115443_b0065
  article-title: A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09742-9
– volume: 145
  start-page: 390
  year: 2008
  ident: 10.1016/j.geoderma.2021.115443_b0010
  article-title: Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2008.04.005
– volume: 3
  start-page: 336
  year: 2020
  ident: 10.1016/j.geoderma.2021.115443_b0135
  article-title: Conservation agriculture for sustainable intensification in South Asia
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0500-2
– volume: 28
  start-page: 1589
  year: 2017
  ident: 10.1016/j.geoderma.2021.115443_b0295
  article-title: Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2689
– volume: 53
  start-page: 215
  year: 2000
  ident: 10.1016/j.geoderma.2021.115443_b0015
  article-title: Relationship of soil organic matter dynamics to physical protection and tillage
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(99)00107-5
– volume: 82
  start-page: 161
  year: 2006
  ident: 10.1016/j.geoderma.2021.115443_b0195
  article-title: Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain)
  publication-title: Agr. Water Manage.
  doi: 10.1016/j.agwat.2005.07.019
– volume: 81
  start-page: 239
  year: 2005
  ident: 10.1016/j.geoderma.2021.115443_b0045
  article-title: Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2004.09.011
– volume: 31
  start-page: 557
  issue: 5
  year: 2020
  ident: 10.1016/j.geoderma.2021.115443_b0180
  article-title: A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3470
– volume: 57
  start-page: 159
  year: 2000
  ident: 10.1016/j.geoderma.2021.115443_b0060
  article-title: Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(00)00155-0
– volume: 66
  start-page: 107
  year: 2002
  ident: 10.1016/j.geoderma.2021.115443_b0140
  article-title: Conservation tillage and depth stratification of porosity and soil organic matter
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(02)00019-3
– volume: 21
  start-page: 1389
  year: 2019
  ident: 10.1016/j.geoderma.2021.115443_b0175
  article-title: Biochar farming: Defining economically perspective applications
  publication-title: Clean Technol. Environ. Policy.
  doi: 10.1007/s10098-019-01728-7
– volume: 195
  year: 2019
  ident: 10.1016/j.geoderma.2021.115443_b0185
  article-title: Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104385
– volume: 132
  start-page: 12
  year: 2013
  ident: 10.1016/j.geoderma.2021.115443_b0270
  article-title: Shallow tillage effects on soil properties for temperate-region hard-setting soils
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2013.04.006
– volume: 66
  start-page: 1930
  year: 2002
  ident: 10.1016/j.geoderma.2021.115443_b0320
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1930
– volume: 195
  start-page: 184
  year: 2013
  ident: 10.1016/j.geoderma.2021.115443_b0030
  article-title: Gas transport and subsoil pore characteristics: Anisotropy and long-term effects of compaction
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2012.12.002
– volume: 188
  start-page: 134
  year: 2014
  ident: 10.1016/j.geoderma.2021.115443_b0080
  article-title: Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/j.agee.2014.02.014
– volume: 6
  start-page: 140
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0025
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00140
– volume: vol. 32
  start-page: 199
  year: 2001
  ident: 10.1016/j.geoderma.2021.115443_b0105
  article-title: Meta-analysis in ecology
– volume: 42
  start-page: 2316
  year: 2010
  ident: 10.1016/j.geoderma.2021.115443_b0020
  article-title: Contributions of biotic and abiotic factors to soil aggregation across a land use gradient
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.09.008
– volume: 74
  start-page: 347
  year: 2010
  ident: 10.1016/j.geoderma.2021.115443_b0090
  article-title: Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0079
– volume: 25
  start-page: 315
  year: 2020
  ident: 10.1016/j.geoderma.2021.115443_b0125
  article-title: Land and poverty: the role of soil fertility and vegetation quality in poverty reduction
  publication-title: Environ. Develop. Econ.
  doi: 10.1017/S1355770X20000066
– volume: 107
  start-page: 971
  year: 2015
  ident: 10.1016/j.geoderma.2021.115443_b0330
  article-title: Crop rotation and tillage effects on soil physical and chemical properties in Illinois
  publication-title: Agron. J.
  doi: 10.2134/agronj14.0465
– volume: 15
  start-page: 543
  year: 2004
  ident: 10.1016/j.geoderma.2021.115443_b0145
  article-title: The economics of soil productivity: Local, national and global perspectives
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.635
– volume: 194
  year: 2019
  ident: 10.1016/j.geoderma.2021.115443_b0150
  article-title: Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2019.06.009
– volume: 3
  start-page: 295
  year: 2004
  ident: 10.1016/j.geoderma.2021.115443_b0200
  article-title: Porosity and pore size distribution
  publication-title: Encyclopedia of Soils in the Environment.
– volume: 124
  start-page: 211
  year: 2012
  ident: 10.1016/j.geoderma.2021.115443_b0115
  article-title: Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2012.06.004
– volume: 6
  start-page: 30
  year: 2017
  ident: 10.1016/j.geoderma.2021.115443_b0110
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evidence.
  doi: 10.1186/s13750-017-0108-9
– volume: 326
  start-page: 164
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0035
  article-title: No-tillage and soil physical environment
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2018.03.011
– volume: 66
  start-page: 78
  year: 2013
  ident: 10.1016/j.geoderma.2021.115443_b0215
  article-title: Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.06.015
– volume: 71
  start-page: 1076
  year: 2020
  ident: 10.1016/j.geoderma.2021.115443_b0190
  article-title: Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the Indo-Gangetic plains of Bihar
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12879
– volume: 36
  start-page: 1
  year: 2010
  ident: 10.1016/j.geoderma.2021.115443_b0315
  article-title: Conducting meta-analyses in R with the metaphor package
  publication-title: J. Stat. Software.
  doi: 10.18637/jss.v036.i03
– volume: 26
  start-page: 115
  year: 2017
  ident: 10.1016/j.geoderma.2021.115443_b0255
  article-title: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100
  publication-title: Meteorol. Z.
  doi: 10.1127/metz/2016/0816
– volume: 79
  start-page: 149
  year: 1999
  ident: 10.1016/j.geoderma.2021.115443_b0310
  article-title: Changes in pore structure in a no-till chronosequence of silt loam soils, southern Ontario
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S98-034
– volume: 44
  issue: s2
  year: 2013
  ident: 10.1016/j.geoderma.2021.115443_b0055
  article-title: Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing
  publication-title: J. Agr. Eng.
– volume: 78
  start-page: 1277
  year: 1997
  ident: 10.1016/j.geoderma.2021.115443_b0005
  article-title: Resampling tests for meta-analysis of ecological data
  publication-title: Ecology.
  doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2021.115443_b0170
  article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making
  publication-title: Agr. Food Econ.
– volume: 113
  start-page: 11
  year: 2011
  ident: 10.1016/j.geoderma.2021.115443_b0075
  article-title: Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central chile
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2011.02.004
– volume: 271
  start-page: 144
  year: 2016
  ident: 10.1016/j.geoderma.2021.115443_b0095
  article-title: Carbon input threshold for soil carbon budget optimization in eroding vineyards
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2016.02.020
– year: 2000
  ident: 10.1016/j.geoderma.2021.115443_b0250
– ident: 10.1016/j.geoderma.2021.115443_b0245
– volume: 532
  start-page: 49
  year: 2016
  ident: 10.1016/j.geoderma.2021.115443_b0220
  article-title: Climate-smart soils
  publication-title: Nature.
  doi: 10.1038/nature17174
– volume: 475
  start-page: 214
  year: 2011
  ident: 10.1016/j.geoderma.2021.115443_b0305
  article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2
  publication-title: Nature.
  doi: 10.1038/nature10176
– volume: 517
  start-page: 365
  year: 2015
  ident: 10.1016/j.geoderma.2021.115443_b0230
  article-title: Productivity limits and potentials of the principles of conservation agriculture
  publication-title: Nature.
  doi: 10.1038/nature13809
– volume: 10
  start-page: 155
  year: 2004
  ident: 10.1016/j.geoderma.2021.115443_b0285
  article-title: The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1529-8817.2003.00730.x
– volume: 618
  start-page: 1658
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0160
  article-title: Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.009
– volume: 48
  start-page: 147
  year: 2000
  ident: 10.1016/j.geoderma.2021.115443_b0225
  article-title: Management options for reducing CO2 emissions from agricultural soils
  publication-title: Biogeochemistry.
  doi: 10.1023/A:1006271331703
– volume: 111
  start-page: 105
  year: 2011
  ident: 10.1016/j.geoderma.2021.115443_b0070
  article-title: Contrasted effects of no-till on bulk density of soil and mechanical resistance
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2010.08.015
– volume: 178
  start-page: 209
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0260
  article-title: Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2017.12.019
– volume: 87
  start-page: 9
  year: 2006
  ident: 10.1016/j.geoderma.2021.115443_b0265
  article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2005.02.025
– volume: 181
  start-page: 104
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0300
  article-title: Microaggregates in soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201600451
– volume: 8
  start-page: 11169
  year: 2018
  ident: 10.1016/j.geoderma.2021.115443_b0050
  article-title: Soil organic carbon dynamics matching ecological equilibrium theory
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.4586
– volume: 80
  start-page: 1150
  year: 1999
  ident: 10.1016/j.geoderma.2021.115443_b0120
  article-title: The meta-analysis of response ratios in experimental ecology
  publication-title: Ecology.
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– year: 2001
  ident: 10.1016/j.geoderma.2021.115443_b0085
– volume: 22
  start-page: 755
  year: 2002
  ident: 10.1016/j.geoderma.2021.115443_b0280
  article-title: Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage
  publication-title: Agronomie.
  doi: 10.1051/agro:2002043
– volume: 134
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115443_b0325
  article-title: Management-induced changes to soil organic carbon in China: A meta-analysis
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2015.06.002
– volume: 8
  start-page: 345
  year: 2002
  ident: 10.1016/j.geoderma.2021.115443_b0100
  article-title: Soil carbon stocks and land use change: a meta-analysis
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– volume: 32
  start-page: 2103
  year: 2000
  ident: 10.1016/j.geoderma.2021.115443_b0275
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
SSID ssj0017020
Score 2.5832136
Snippet •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly...
Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115443
SubjectTerms additive effect
agronomy
Bulk density
carbon
clay fraction
conventional tillage
energy
food security
Macroporosity
Mean weight diameter
meta-analysis
Meta-regression
microaggregates
no-tillage
nutritive value
porosity
Saturated hydraulic conductivity
soil aggregation
soil depth
soil structure
Total porosity
Title Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity
URI https://dx.doi.org/10.1016/j.geoderma.2021.115443
https://www.proquest.com/docview/2636607514
Volume 405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz2IT3yWCF7TNpvdZHssxVIVPSl4EEKySWql7ha7Cl787U52s0UF6cHLHkISlvmSmUky8w1C5yr1dl3A_lbakZjplGgwSyTKukxFTsORxOc739zy0X189ZA8rKBBkwvjwyqD7q91eqWtQ0snSLMzm0x8ji_lolsxYPm7zSqDPRZ-lbc_F2EeVHQDNSPlxPf-liX8DBj5gmMV_1BE2xUzDfvLQP1S1ZX9GW6hzeA44n79b9toxeY7aKM_fg3kGXYXPdYE_vjFloqowDaC529j_4Y0x-WTKnFekNIXGhpb7NQ7TKr09APX6b_Qt5hMcU0pCzNilRsM_rmP6_rYQ_fDi7vBiITqCSRjcVIS6gAGkwrhNI8sfDLOnE6pUDzOmGFUK0Edy-C8ZpjJetox04tTA7tUAVCM7aPVvMjtAcJRZEExmK5LuImF4zpNLQNEhWez6aXJIUoakcksUIv7ChdT2cSQPctG1NKLWtaiPkSdxbhZTa6xdESvQUT-WCYSLMDSsWcNhBL2kH8YUbkt3uYy4oxz8J1ofPSP-Y_ReuRzI6r7mRO0CmDZU_BYSt2qlmQLrfUvr0e3X8SU68w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SHtSD-MS3EbzGdje7yfZYiqW-erLQgxCSTVJb6lbsVui_d7KbFRWkBy97WHbCMl8yM8lkvkHoSibOr3NY31JZElGVEAVuiYRpk8rQKtiSuHrnxz7rDaK7YTxcQ52qFsZdq_S2v7TphbX2bxpem4238djV-AaMNwsGLHe2CVugumOnimuo3r697_W_kgm86dkZA0acwLdC4QnA5HqOFRREYXBdkNPQv3zUL2tduKDuNtrysSNul7-3g9ZMtos226N3z59h9tBzyeGPX00uifSEI3i-GLk00hznLzLH2YzkrtfQyGArP2BQqaZLXFYAw7ez8RSXrLIwIpaZxhCiu6tdy3006N48dXrEN1AgKY3inAQWkNAJ51ax0MAjZdSqJOCSRSnVNFCSB5amsGXTVKctZaluRYmGhSoBK0oPUC2bZeYQ4TA0YBt008ZMR9wylSSGAqjcEdq0kvgIxZXKROrZxV2Ti6morpFNRKVq4VQtSlUfocaX3FvJr7FSolUhIn7MFAFOYKXsZQWhgGXkciMyM7PFXISMMgbhUxAd_2P8C7Tee3p8EA-3_fsTtBG6UoniuOYU1QA4cwYBTK7O_QT9BNpV7n0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+meta-analysis+suggests+that+no-tillage+favourably+changes+soil+structure+and+porosity&rft.jtitle=Geoderma&rft.au=Mondal%2C+Surajit&rft.au=Chakraborty%2C+Debashis&rft.date=2022-01-01&rft.issn=0016-7061&rft.volume=405+p.115443-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115443&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon