Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity
•No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favora...
Saved in:
Published in | Geoderma Vol. 405; p. 115443 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favorable climate and soil type.
Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy. |
---|---|
AbstractList | •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly evident in 0–10 cm, and limited to 20 cm depth.•Duration of no-tillage has an additive effect.•Large uncertainties prevail over the most favorable climate and soil type.
Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy. Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil physical condition. No-tillage (NT) practice can essentially contribute to develop a sustainable, low carbon and resource efficient agriculture, and encourage the use of crop residues for added soil benefits. Soil aggregation and pore size distribution, two most important soil physical factors controlling the mass and energy transport processes within the soil and between soil and environment, were evaluated under the NT through a global meta-analysis of 5065 pairs of data points from 419 peer-reviewed studies. Compared to conventional tillage (CT), NT increased mean weight diameter of aggregates, water stable aggregates, and macroaggregates by averages (0–30 cm) of 25, 10 and 22%, respectively, although predominantly in 0–10 and/or 10–20 cm layers, with an accompanying reduction in microaggregates. A small but significant 3% decrease in total porosity, a large reduction (20–32%) in macroporosity and a moderate increase (4–7%) in microporosity were realized under NT up to 20 cm soil depth. Bulk density remained stable, although a very large decrease (70% change over CT) in saturated hydraulic conductivity was recorded in 10–20 and >30 cm soil layers. Years of adoption of NT had an additive effect on mean weight diameter and macroaggregates, and the total and macroporosity. Increase in latitudes favoured soil aggregation and micropore volume under NT, while clay content was unfavourable to macro- and water stable aggregate contents. Improvement in structure and water retention properties relate to long-term sustainable development of soils by following no-till practice, which has far-reaching implications beyond the boundaries of agronomy. |
ArticleNumber | 115443 |
Author | Chakraborty, Debashis Mondal, Surajit |
Author_xml | – sequence: 1 givenname: Surajit surname: Mondal fullname: Mondal, Surajit email: surajit.icar@gmail.com organization: ICAR – Research Complex for Eastern Region, Patna 800 014, Bihar, India – sequence: 2 givenname: Debashis surname: Chakraborty fullname: Chakraborty, Debashis email: debashisiari@gmail.com organization: Division of Agricultural Physics, ICAR – Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India |
BookMark | eNqFkMFqGzEQhkVJoHaSVwg69rKutNqV1tBDi2mTQqCX9hYQs9KsIyNLrqQ1-O2j4PaSiy8zDHz_8PMtyVWIAQm552zFGZefd6stRotpD6uWtXzFed914gNZ8EG1jWz79RVZsEo2ikn-kSxz3tVTsZYtyPODjyN4uscCDQTwp-wyzfN2i7lkWl6g0BCb4ryHLdIJjnFOMPoTNS8QKkRzdJ7mkmZT5oQUgqWHmGJ25XRLrifwGe_-7Rvy58f335vH5unXw8_Nt6fGiK4vDZ8GNthBqWmULdZhpJjGgSuQnRFW8BEUn4RZc2WFNetxEnbdDZb1HAwTQtyQT-e_hxT_zrW43rtssFYOGOesWymkZKrnXUW_nFFTK-aEkzauQHExlATOa870m1S90_-l6jep-iy1xuW7-CG5PaTT5eDXcxCrh6PDpLNxGAxal9AUbaO79OIVvouZgA |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2023_105088 crossref_primary_10_1016_j_geoderma_2025_117204 crossref_primary_10_1016_j_still_2024_106162 crossref_primary_10_1016_j_agee_2025_109555 crossref_primary_10_1111_sum_70026 crossref_primary_10_1016_j_agee_2022_108265 crossref_primary_10_1155_2024_8682240 crossref_primary_10_1016_j_geodrs_2025_e00932 crossref_primary_10_3390_soilsystems8010006 crossref_primary_10_1016_j_iswcr_2023_07_007 crossref_primary_10_3389_fpls_2022_975169 crossref_primary_10_1016_j_catena_2022_106563 crossref_primary_10_1002_saj2_20477 crossref_primary_10_1111_gcb_16618 crossref_primary_10_1111_ejss_13485 crossref_primary_10_1139_cjss_2023_0075 crossref_primary_10_1016_j_jclepro_2024_143186 crossref_primary_10_3390_agronomy13030710 crossref_primary_10_17221_29_2022_RAE crossref_primary_10_1016_j_jhydrol_2023_130516 crossref_primary_10_1016_j_soilad_2024_100014 crossref_primary_10_3390_agriculture13112128 crossref_primary_10_1007_s42729_022_00945_2 crossref_primary_10_3390_agronomy14040788 crossref_primary_10_1002_ldr_4931 crossref_primary_10_1016_j_still_2022_105408 crossref_primary_10_1016_j_jafr_2023_100907 crossref_primary_10_1016_j_scitotenv_2023_163570 crossref_primary_10_3390_agriculture13030683 crossref_primary_10_1007_s40333_023_0064_x crossref_primary_10_3390_agriculture13040764 crossref_primary_10_1016_j_agee_2023_108600 crossref_primary_10_1016_j_scitotenv_2024_171782 crossref_primary_10_1016_j_agee_2024_109053 crossref_primary_10_1088_2976_601X_ad7bbe crossref_primary_10_1111_aab_70006 crossref_primary_10_1016_j_jclepro_2022_132874 crossref_primary_10_3390_su141811651 crossref_primary_10_1016_j_jenvman_2023_119070 crossref_primary_10_1016_j_soisec_2021_100028 crossref_primary_10_1029_2024RG000836 crossref_primary_10_1007_s10653_023_01721_6 crossref_primary_10_1016_j_agee_2023_108498 crossref_primary_10_1016_j_geoderma_2023_116565 crossref_primary_10_3390_agronomy14061327 crossref_primary_10_3390_agronomy14112482 crossref_primary_10_1016_j_still_2022_105540 crossref_primary_10_1016_j_still_2025_106496 crossref_primary_10_1111_sum_13040 crossref_primary_10_3390_plants12213762 crossref_primary_10_1080_00103624_2024_2321925 crossref_primary_10_3390_agriengineering6030132 crossref_primary_10_1007_s11368_023_03652_2 crossref_primary_10_3390_agronomy15010001 crossref_primary_10_36783_18069657rbcs20230032 crossref_primary_10_1080_23311932_2023_2294542 crossref_primary_10_1111_ejss_70081 crossref_primary_10_1016_j_still_2023_105849 crossref_primary_10_1016_j_agee_2024_109080 crossref_primary_10_1016_j_still_2023_105649 crossref_primary_10_5194_soil_8_621_2022 crossref_primary_10_1038_s41598_023_41307_x crossref_primary_10_1111_sum_13007 crossref_primary_10_1016_j_apsoil_2023_105260 crossref_primary_10_1016_j_scitotenv_2024_170418 crossref_primary_10_1016_j_scitotenv_2023_168283 |
Cites_doi | 10.1016/j.still.2005.06.004 10.1016/j.still.2011.10.015 10.1016/j.geoderma.2015.06.003 10.1038/nclimate2292 10.1111/j.1365-2389.2007.00915.x 10.1038/s41598-019-47861-7 10.1016/j.agee.2010.08.006 10.1111/gcb.12517 10.1038/s41598-017-09742-9 10.1016/j.geoderma.2008.04.005 10.1038/s41893-020-0500-2 10.1002/ldr.2689 10.1016/S0167-1987(99)00107-5 10.1016/j.agwat.2005.07.019 10.1016/j.still.2004.09.011 10.1002/ldr.3470 10.1016/S0167-1987(00)00155-0 10.1016/S0167-1987(02)00019-3 10.1007/s10098-019-01728-7 10.1016/j.still.2019.104385 10.1016/j.still.2013.04.006 10.2136/sssaj2002.1930 10.1016/j.geoderma.2012.12.002 10.1016/j.agee.2014.02.014 10.3389/fenvs.2018.00140 10.1016/j.soilbio.2010.09.008 10.2136/sssaj2009.0079 10.1017/S1355770X20000066 10.2134/agronj14.0465 10.1002/ldr.635 10.1016/j.still.2019.06.009 10.1016/j.still.2012.06.004 10.1186/s13750-017-0108-9 10.1016/j.geoderma.2018.03.011 10.1016/j.soilbio.2013.06.015 10.1111/ejss.12879 10.18637/jss.v036.i03 10.1127/metz/2016/0816 10.4141/S98-034 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 10.1016/j.still.2011.02.004 10.1016/j.geoderma.2016.02.020 10.1038/nature17174 10.1038/nature10176 10.1038/nature13809 10.1111/j.1529-8817.2003.00730.x 10.1016/j.scitotenv.2017.10.009 10.1023/A:1006271331703 10.1016/j.still.2010.08.015 10.1016/j.still.2017.12.019 10.1016/j.still.2005.02.025 10.1002/jpln.201600451 10.1002/ece3.4586 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1051/agro:2002043 10.1016/bs.agron.2015.06.002 10.1046/j.1354-1013.2002.00486.x 10.1016/S0038-0717(00)00179-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115443 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115443 S0016706121005231 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-1f808d877fb62efb6c63fb817a64c3d31ba71f3c917d3dc9bf3d948d051ac0333 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:29:41 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 01 04:04:56 EDT 2025 Fri Feb 23 02:47:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bulk density Saturated hydraulic conductivity Meta-regression Mean weight diameter Total porosity Macroporosity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-1f808d877fb62efb6c63fb817a64c3d31ba71f3c917d3dc9bf3d948d051ac0333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636607514 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636607514 crossref_citationtrail_10_1016_j_geoderma_2021_115443 crossref_primary_10_1016_j_geoderma_2021_115443 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cavalchini, Rognoni, Tangorra, Costa (b0055) 2013; 44 R Core Team R: A language and environment for statistical computing. Version 1.2.5033. R Foundation for Statistical Computing 2020 Vienna, Austria [Online]. Available. Balesdent, Chenu, Balaban (b0015) 2000; 53 Kay, VandenBygaart (b0140) 2002; 66 Mondal, Chakraborty, Das, Shrivastava, Mishra, Bandyopadhyay, Chaudhari (b0185) 2019; 195 Knowler (b0145) 2004; 15 Adams, Gurevitch, Rosenberg (b0005) 1997; 78 Gurevitch, Curtis, Jones (b0105) 2001; vol. 32 Heger, Zens, Bangalore (b0125) 2020; 25 Nimmo (b0200) 2004; 3 Viechtbauer (b0315) 2010; 36 Hartmann, Zink, Fleige, Horn (b0115) 2012; 124 Chaplain, Defossez, Richard, Tessier, Roger-Estrade (b0070) 2011; 111 Paustian, Six, Elliott, Hunt (b0225) 2000; 48 Liu, Lu, Cui, Li, Fang (b0155) 2014; 20 Haddaway, Hedlund, Jackson, Kätterer, Lugato, Thomsen, Isberg (b0110) 2017; 6 Blanco-Canqui, Ruis (b0035) 2018; 326 Cerdà (b0060) 2000; 57 Caruso, De Vries, Bardgett, Lehmann (b0050) 2018; 8 Powlson, Stirling, Jat, Gerard, Palm, Sanchez, Cassman (b0235) 2014; 4 Schjønning, Thomsen (b0270) 2013; 132 Bronick, Lal (b0045) 2005; 81 Rosenberg, Adams, Gurevitch (b0250) 2000 Barto, Alt, Oelmann, Wilcke, Rillig (b0020) 2010; 42 Zuber, Behnke, Nafziger, Villamil (b0330) 2015; 107 Curaqueo, Barea, Acevedo, Rubio, Cornejo, Borie (b0075) 2011; 113 Six, Elliott, Paustian (b0275) 2000; 32 Soane, Ball, Arvidsson, Basch, Moreno, Roger-Estrade (b0290) 2012; 118 Van Groenigen, Osenberg, Hungate (b0305) 2011; 475 Franzluebbers (b0090) 2010; 74 Somasundaram, Reeves, Wang, Heenan, Dalal (b0295) 2017; 28 Berisso, Schjønning, Keller, Lamandé, Simojoki, Iversen, Forkman (b0030) 2013; 195 Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Kögel-Knabner (b0300) 2018; 181 West, Post (b0320) 2002; 66 Moret, Arrúe, López, Gracia (b0195) 2006; 82 García-Díaz, Allas, Gristina, Cerdà, Pereira, Novara (b0095) 2016; 271 Hedges, Gurevitch, Curtis (b0120) 1999; 80 Nunes, Denardin, Pauletto, Faganello, Pinto (b0205) 2015; 259 Zhao, Zhang, Xue, Pu, Zhang, Liu, Zhang (b0325) 2015; 134 Jarvis (b0130) 2007; 58 Sasal, Andriulo, Taboada (b0265) 2006; 87 Six, Ogle, Breidt, Conant, Mosier, Paustian (b0285) 2004; 10 Álvaro-Fuentes, Arrúe, Gracia, López (b0010) 2008; 145 Dimassi, Mary, Wylleman, Labreuche, Couture, Piraux, Cohan (b0080) 2014; 188 Pittelkow, Liang, Linquist, Van Groenigen, Lee, Lundy, Van Kessel (b0230) 2015; 517 Mondal, Chakraborty, Bandyopadhyay, Aggarwal, Rana (b0180) 2020; 31 Six, Feller, Denef, Ogle, De Moraes Sa, Albrecht (b0280) 2002; 22 Pastorelli, Vignozzi, Landi, Piccolo, Orsini, Seddaiu, Pagliai (b0215) 2013; 66 Guo, Gifford (b0100) 2002; 8 Paustian, Lehmann, Ogle, Reay, Robertson, Smith (b0220) 2016; 532 Rohatgi, A., 2016. WebPlotDigitizer version 3.10. Austin, Texas [Online]. Available: http://arohatgi. info/WebPlotDigitizer. Marandola, Belliggiano, Romagnoli, Ievoli (b0170) 2019; 7 Chakraborty, Ladha, Rana, Jat, Gathala, Yadav, Raman (b0065) 2017; 7 FAO (b0085) 2001 Maroušek, Strunecký, Stehel (b0175) 2019; 21 Rubel, Brugger, Haslinger, Auer (b0255) 2017; 26 VandenBygaart, Protz, Tomlin (b0310) 1999; 79 Mondal, Poonia, Mishra, Bhatt, Karnena, Saurabh, Chakraborty (b0190) 2020; 71 Borie, Rubio, Rouanet, Morales, Borie, Rojas (b0040) 2006; 88 Jat, Chakraborty, Ladha, Rana, Gathala, McDonald, Gerard (b0135) 2020; 3 Liu, Yang, Wang, Huang, Li (b0160) 2018; 618 Ogle, Alsaker, Baldock, Bernoux, Breidt, McConkey, Vazquez-Amabile (b0210) 2019; 9 Li, Li, Cui, Jagadamma, Zhang (b0150) 2019; 194 Luo, Wang, Sun (b0165) 2010; 139 Sarker, Singh, Cowie, Fang, Collins, Badgery, Dalal (b0260) 2018; 178 Baumert, Vasilyeva, Vladimirov, Meier, Kögel-Knabner, Mueller (b0025) 2018; 6 Mondal (10.1016/j.geoderma.2021.115443_b0180) 2020; 31 Nunes (10.1016/j.geoderma.2021.115443_b0205) 2015; 259 Dimassi (10.1016/j.geoderma.2021.115443_b0080) 2014; 188 Curaqueo (10.1016/j.geoderma.2021.115443_b0075) 2011; 113 10.1016/j.geoderma.2021.115443_b0245 Somasundaram (10.1016/j.geoderma.2021.115443_b0295) 2017; 28 Barto (10.1016/j.geoderma.2021.115443_b0020) 2010; 42 FAO (10.1016/j.geoderma.2021.115443_b0085) 2001 10.1016/j.geoderma.2021.115443_b0240 Pittelkow (10.1016/j.geoderma.2021.115443_b0230) 2015; 517 Baumert (10.1016/j.geoderma.2021.115443_b0025) 2018; 6 Blanco-Canqui (10.1016/j.geoderma.2021.115443_b0035) 2018; 326 Nimmo (10.1016/j.geoderma.2021.115443_b0200) 2004; 3 Liu (10.1016/j.geoderma.2021.115443_b0155) 2014; 20 VandenBygaart (10.1016/j.geoderma.2021.115443_b0310) 1999; 79 Chaplain (10.1016/j.geoderma.2021.115443_b0070) 2011; 111 West (10.1016/j.geoderma.2021.115443_b0320) 2002; 66 Sarker (10.1016/j.geoderma.2021.115443_b0260) 2018; 178 Hartmann (10.1016/j.geoderma.2021.115443_b0115) 2012; 124 Rubel (10.1016/j.geoderma.2021.115443_b0255) 2017; 26 Sasal (10.1016/j.geoderma.2021.115443_b0265) 2006; 87 García-Díaz (10.1016/j.geoderma.2021.115443_b0095) 2016; 271 Mondal (10.1016/j.geoderma.2021.115443_b0185) 2019; 195 Luo (10.1016/j.geoderma.2021.115443_b0165) 2010; 139 Pastorelli (10.1016/j.geoderma.2021.115443_b0215) 2013; 66 Moret (10.1016/j.geoderma.2021.115443_b0195) 2006; 82 Six (10.1016/j.geoderma.2021.115443_b0285) 2004; 10 Balesdent (10.1016/j.geoderma.2021.115443_b0015) 2000; 53 Powlson (10.1016/j.geoderma.2021.115443_b0235) 2014; 4 Paustian (10.1016/j.geoderma.2021.115443_b0220) 2016; 532 Caruso (10.1016/j.geoderma.2021.115443_b0050) 2018; 8 Haddaway (10.1016/j.geoderma.2021.115443_b0110) 2017; 6 Six (10.1016/j.geoderma.2021.115443_b0275) 2000; 32 Ogle (10.1016/j.geoderma.2021.115443_b0210) 2019; 9 Franzluebbers (10.1016/j.geoderma.2021.115443_b0090) 2010; 74 Guo (10.1016/j.geoderma.2021.115443_b0100) 2002; 8 Hedges (10.1016/j.geoderma.2021.115443_b0120) 1999; 80 Knowler (10.1016/j.geoderma.2021.115443_b0145) 2004; 15 Van Groenigen (10.1016/j.geoderma.2021.115443_b0305) 2011; 475 Heger (10.1016/j.geoderma.2021.115443_b0125) 2020; 25 Li (10.1016/j.geoderma.2021.115443_b0150) 2019; 194 Adams (10.1016/j.geoderma.2021.115443_b0005) 1997; 78 Berisso (10.1016/j.geoderma.2021.115443_b0030) 2013; 195 Rosenberg (10.1016/j.geoderma.2021.115443_b0250) 2000 Kay (10.1016/j.geoderma.2021.115443_b0140) 2002; 66 Borie (10.1016/j.geoderma.2021.115443_b0040) 2006; 88 Liu (10.1016/j.geoderma.2021.115443_b0160) 2018; 618 Jat (10.1016/j.geoderma.2021.115443_b0135) 2020; 3 Paustian (10.1016/j.geoderma.2021.115443_b0225) 2000; 48 Schjønning (10.1016/j.geoderma.2021.115443_b0270) 2013; 132 Gurevitch (10.1016/j.geoderma.2021.115443_b0105) 2001; vol. 32 Six (10.1016/j.geoderma.2021.115443_b0280) 2002; 22 Cerdà (10.1016/j.geoderma.2021.115443_b0060) 2000; 57 Zuber (10.1016/j.geoderma.2021.115443_b0330) 2015; 107 Jarvis (10.1016/j.geoderma.2021.115443_b0130) 2007; 58 Soane (10.1016/j.geoderma.2021.115443_b0290) 2012; 118 Viechtbauer (10.1016/j.geoderma.2021.115443_b0315) 2010; 36 Maroušek (10.1016/j.geoderma.2021.115443_b0175) 2019; 21 Mondal (10.1016/j.geoderma.2021.115443_b0190) 2020; 71 Bronick (10.1016/j.geoderma.2021.115443_b0045) 2005; 81 Totsche (10.1016/j.geoderma.2021.115443_b0300) 2018; 181 Álvaro-Fuentes (10.1016/j.geoderma.2021.115443_b0010) 2008; 145 Marandola (10.1016/j.geoderma.2021.115443_b0170) 2019; 7 Chakraborty (10.1016/j.geoderma.2021.115443_b0065) 2017; 7 Zhao (10.1016/j.geoderma.2021.115443_b0325) 2015; 134 Cavalchini (10.1016/j.geoderma.2021.115443_b0055) 2013; 44 |
References_xml | – volume: 8 start-page: 11169 year: 2018 end-page: 11178 ident: b0050 article-title: Soil organic carbon dynamics matching ecological equilibrium theory publication-title: Ecol. Evol. – volume: 15 start-page: 543 year: 2004 end-page: 561 ident: b0145 article-title: The economics of soil productivity: Local, national and global perspectives publication-title: Land Degrad. Dev. – volume: 139 start-page: 224 year: 2010 end-page: 231 ident: b0165 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agric. Ecosyst. Environ. – volume: 326 start-page: 164 year: 2018 end-page: 200 ident: b0035 article-title: No-tillage and soil physical environment publication-title: Geoderma. – volume: 25 start-page: 315 year: 2020 end-page: 333 ident: b0125 article-title: Land and poverty: the role of soil fertility and vegetation quality in poverty reduction publication-title: Environ. Develop. Econ. – volume: 66 start-page: 1930 year: 2002 end-page: 1946 ident: b0320 article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis publication-title: Soil Sci. Soc. Am. J. – reference: R Core Team R: A language and environment for statistical computing. Version 1.2.5033. R Foundation for Statistical Computing 2020 Vienna, Austria [Online]. Available. – volume: 107 start-page: 971 year: 2015 end-page: 978 ident: b0330 article-title: Crop rotation and tillage effects on soil physical and chemical properties in Illinois publication-title: Agron. J. – volume: 8 start-page: 345 year: 2002 end-page: 360 ident: b0100 article-title: Soil carbon stocks and land use change: a meta-analysis publication-title: Glob. Change Biol. – volume: 82 start-page: 161 year: 2006 end-page: 176 ident: b0195 article-title: Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain) publication-title: Agr. Water Manage. – year: 2000 ident: b0250 article-title: MetaWin: Statistical software for meta-analysis – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: b0220 article-title: Climate-smart soils publication-title: Nature. – volume: 618 start-page: 1658 year: 2018 end-page: 1664 ident: b0160 article-title: Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis publication-title: Sci. Total Environ. – volume: 132 start-page: 12 year: 2013 end-page: 20 ident: b0270 article-title: Shallow tillage effects on soil properties for temperate-region hard-setting soils publication-title: Soil Till. Res. – volume: 66 start-page: 107 year: 2002 end-page: 118 ident: b0140 article-title: Conservation tillage and depth stratification of porosity and soil organic matter publication-title: Soil Till. Res. – volume: 194 year: 2019 ident: b0150 article-title: Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis publication-title: Soil Till. Res. – volume: 31 start-page: 557 year: 2020 end-page: 567 ident: b0180 article-title: A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response publication-title: Land Degrad. Dev. – volume: 21 start-page: 1389 year: 2019 end-page: 1395 ident: b0175 article-title: Biochar farming: Defining economically perspective applications publication-title: Clean Technol. Environ. Policy. – volume: 3 start-page: 295 year: 2004 end-page: 303 ident: b0200 article-title: Porosity and pore size distribution publication-title: Encyclopedia of Soils in the Environment. – volume: 145 start-page: 390 year: 2008 end-page: 396 ident: b0010 article-title: Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions publication-title: Geoderma. – volume: 113 start-page: 11 year: 2011 end-page: 18 ident: b0075 article-title: Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central chile publication-title: Soil Till. Res. – volume: 181 start-page: 104 year: 2018 end-page: 136 ident: b0300 article-title: Microaggregates in soils publication-title: J. Plant Nutr. Soil Sci. – volume: 81 start-page: 239 year: 2005 end-page: 252 ident: b0045 article-title: Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA publication-title: Soil Till. Res. – volume: 134 start-page: 1 year: 2015 end-page: 50 ident: b0325 article-title: Management-induced changes to soil organic carbon in China: A meta-analysis publication-title: Adv. Agron. – volume: 88 start-page: 253 year: 2006 end-page: 261 ident: b0040 article-title: Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol publication-title: Soil Till. Res. – volume: 26 start-page: 115 year: 2017 end-page: 125 ident: b0255 article-title: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100 publication-title: Meteorol. Z. – volume: 22 start-page: 755 year: 2002 end-page: 775 ident: b0280 article-title: Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage publication-title: Agronomie. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: b0065 article-title: A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production publication-title: Sci. Rep. – volume: 66 start-page: 78 year: 2013 end-page: 93 ident: b0215 article-title: Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy publication-title: Soil Biol. Biochem. – volume: 6 start-page: 140 year: 2018 ident: b0025 article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil publication-title: Front. Environ. Sci. – volume: 53 start-page: 215 year: 2000 end-page: 230 ident: b0015 article-title: Relationship of soil organic matter dynamics to physical protection and tillage publication-title: Soil Till. Res. – volume: 195 year: 2019 ident: b0185 article-title: Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period publication-title: Soil Tillage Res. – volume: 178 start-page: 209 year: 2018 end-page: 223 ident: b0260 article-title: Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils publication-title: Soil Till. Res. – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: b0210 article-title: Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions publication-title: Sci. Rep. – volume: 20 start-page: 1366 year: 2014 end-page: 1381 ident: b0155 article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis publication-title: Global Change Biol. – volume: 195 start-page: 184 year: 2013 end-page: 191 ident: b0030 article-title: Gas transport and subsoil pore characteristics: Anisotropy and long-term effects of compaction publication-title: Geoderma. – volume: 57 start-page: 159 year: 2000 end-page: 166 ident: b0060 article-title: Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia publication-title: Soil Till. Res. – volume: 74 start-page: 347 year: 2010 end-page: 357 ident: b0090 article-title: Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States publication-title: Soil Sci. Soc. Am. J. – volume: 28 start-page: 1589 year: 2017 end-page: 1602 ident: b0295 article-title: Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol publication-title: Land Degrad. Dev. – volume: 124 start-page: 211 year: 2012 end-page: 218 ident: b0115 article-title: Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany publication-title: Soil Till. Res. – volume: 87 start-page: 9 year: 2006 end-page: 18 ident: b0265 article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas publication-title: Soil Till. Res. – volume: 36 start-page: 1 year: 2010 end-page: 48 ident: b0315 article-title: Conducting meta-analyses in R with the metaphor package publication-title: J. Stat. Software. – volume: 259 start-page: 149 year: 2015 end-page: 155 ident: b0205 article-title: Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage publication-title: Geoderma. – volume: 32 start-page: 2103 year: 2000 ident: b0275 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – volume: 475 start-page: 214 year: 2011 end-page: 216 ident: b0305 article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO publication-title: Nature. – volume: 3 start-page: 336 year: 2020 end-page: 343 ident: b0135 article-title: Conservation agriculture for sustainable intensification in South Asia publication-title: Nat. Sustain. – volume: 517 start-page: 365 year: 2015 end-page: 368 ident: b0230 article-title: Productivity limits and potentials of the principles of conservation agriculture publication-title: Nature. – volume: 4 start-page: 678 year: 2014 end-page: 683 ident: b0235 article-title: Limited potential of no-till agriculture for climate change mitigation publication-title: Nat. Clim. Change. – volume: 44 year: 2013 ident: b0055 article-title: Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing publication-title: J. Agr. Eng. – volume: 118 start-page: 66 year: 2012 end-page: 87 ident: b0290 article-title: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment publication-title: Soil Till. Res. – volume: 111 start-page: 105 year: 2011 end-page: 114 ident: b0070 article-title: Contrasted effects of no-till on bulk density of soil and mechanical resistance publication-title: Soil Till. Res. – volume: 271 start-page: 144 year: 2016 end-page: 149 ident: b0095 article-title: Carbon input threshold for soil carbon budget optimization in eroding vineyards publication-title: Geoderma. – volume: 78 start-page: 1277 year: 1997 end-page: 1283 ident: b0005 article-title: Resampling tests for meta-analysis of ecological data publication-title: Ecology. – volume: 10 start-page: 155 year: 2004 end-page: 160 ident: b0285 article-title: The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term publication-title: Glob. Change Biol. – volume: 42 start-page: 2316 year: 2010 end-page: 2324 ident: b0020 article-title: Contributions of biotic and abiotic factors to soil aggregation across a land use gradient publication-title: Soil Biol. Biochem. – volume: 80 start-page: 1150 year: 1999 end-page: 1156 ident: b0120 article-title: The meta-analysis of response ratios in experimental ecology publication-title: Ecology. – reference: Rohatgi, A., 2016. WebPlotDigitizer version 3.10. Austin, Texas [Online]. Available: http://arohatgi. info/WebPlotDigitizer. – volume: vol. 32 start-page: 199 year: 2001 end-page: 247 ident: b0105 article-title: Meta-analysis in ecology publication-title: Advances in Ecological Research – volume: 6 start-page: 30 year: 2017 ident: b0110 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evidence. – volume: 58 start-page: 523 year: 2007 end-page: 546 ident: b0130 article-title: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality publication-title: Eur. J. Soil Sci. – volume: 188 start-page: 134 year: 2014 end-page: 146 ident: b0080 article-title: Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years publication-title: Agric. Ecosys. Environ. – year: 2001 ident: b0085 article-title: The economics of conservation agriculture – volume: 48 start-page: 147 year: 2000 end-page: 163 ident: b0225 article-title: Management options for reducing CO publication-title: Biogeochemistry. – volume: 79 start-page: 149 year: 1999 end-page: 160 ident: b0310 article-title: Changes in pore structure in a no-till chronosequence of silt loam soils, southern Ontario publication-title: Can. J. Soil Sci. – volume: 71 start-page: 1076 year: 2020 end-page: 1089 ident: b0190 article-title: Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the Indo-Gangetic plains of Bihar publication-title: Eur. J. Soil Sci. – volume: 7 start-page: 1 year: 2019 end-page: 22 ident: b0170 article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making publication-title: Agr. Food Econ. – volume: 88 start-page: 253 year: 2006 ident: 10.1016/j.geoderma.2021.115443_b0040 article-title: Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol publication-title: Soil Till. Res. doi: 10.1016/j.still.2005.06.004 – volume: 118 start-page: 66 year: 2012 ident: 10.1016/j.geoderma.2021.115443_b0290 article-title: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment publication-title: Soil Till. Res. doi: 10.1016/j.still.2011.10.015 – volume: 259 start-page: 149 year: 2015 ident: 10.1016/j.geoderma.2021.115443_b0205 article-title: Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage publication-title: Geoderma. doi: 10.1016/j.geoderma.2015.06.003 – volume: 4 start-page: 678 year: 2014 ident: 10.1016/j.geoderma.2021.115443_b0235 article-title: Limited potential of no-till agriculture for climate change mitigation publication-title: Nat. Clim. Change. doi: 10.1038/nclimate2292 – ident: 10.1016/j.geoderma.2021.115443_b0240 – volume: 58 start-page: 523 year: 2007 ident: 10.1016/j.geoderma.2021.115443_b0130 article-title: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00915.x – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115443_b0210 article-title: Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions publication-title: Sci. Rep. doi: 10.1038/s41598-019-47861-7 – volume: 139 start-page: 224 year: 2010 ident: 10.1016/j.geoderma.2021.115443_b0165 article-title: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.08.006 – volume: 20 start-page: 1366 year: 2014 ident: 10.1016/j.geoderma.2021.115443_b0155 article-title: Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis publication-title: Global Change Biol. doi: 10.1111/gcb.12517 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2021.115443_b0065 article-title: A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production publication-title: Sci. Rep. doi: 10.1038/s41598-017-09742-9 – volume: 145 start-page: 390 year: 2008 ident: 10.1016/j.geoderma.2021.115443_b0010 article-title: Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions publication-title: Geoderma. doi: 10.1016/j.geoderma.2008.04.005 – volume: 3 start-page: 336 year: 2020 ident: 10.1016/j.geoderma.2021.115443_b0135 article-title: Conservation agriculture for sustainable intensification in South Asia publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0500-2 – volume: 28 start-page: 1589 year: 2017 ident: 10.1016/j.geoderma.2021.115443_b0295 article-title: Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2689 – volume: 53 start-page: 215 year: 2000 ident: 10.1016/j.geoderma.2021.115443_b0015 article-title: Relationship of soil organic matter dynamics to physical protection and tillage publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(99)00107-5 – volume: 82 start-page: 161 year: 2006 ident: 10.1016/j.geoderma.2021.115443_b0195 article-title: Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain) publication-title: Agr. Water Manage. doi: 10.1016/j.agwat.2005.07.019 – volume: 81 start-page: 239 year: 2005 ident: 10.1016/j.geoderma.2021.115443_b0045 article-title: Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA publication-title: Soil Till. Res. doi: 10.1016/j.still.2004.09.011 – volume: 31 start-page: 557 issue: 5 year: 2020 ident: 10.1016/j.geoderma.2021.115443_b0180 article-title: A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3470 – volume: 57 start-page: 159 year: 2000 ident: 10.1016/j.geoderma.2021.115443_b0060 article-title: Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(00)00155-0 – volume: 66 start-page: 107 year: 2002 ident: 10.1016/j.geoderma.2021.115443_b0140 article-title: Conservation tillage and depth stratification of porosity and soil organic matter publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(02)00019-3 – volume: 21 start-page: 1389 year: 2019 ident: 10.1016/j.geoderma.2021.115443_b0175 article-title: Biochar farming: Defining economically perspective applications publication-title: Clean Technol. Environ. Policy. doi: 10.1007/s10098-019-01728-7 – volume: 195 year: 2019 ident: 10.1016/j.geoderma.2021.115443_b0185 article-title: Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104385 – volume: 132 start-page: 12 year: 2013 ident: 10.1016/j.geoderma.2021.115443_b0270 article-title: Shallow tillage effects on soil properties for temperate-region hard-setting soils publication-title: Soil Till. Res. doi: 10.1016/j.still.2013.04.006 – volume: 66 start-page: 1930 year: 2002 ident: 10.1016/j.geoderma.2021.115443_b0320 article-title: Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1930 – volume: 195 start-page: 184 year: 2013 ident: 10.1016/j.geoderma.2021.115443_b0030 article-title: Gas transport and subsoil pore characteristics: Anisotropy and long-term effects of compaction publication-title: Geoderma. doi: 10.1016/j.geoderma.2012.12.002 – volume: 188 start-page: 134 year: 2014 ident: 10.1016/j.geoderma.2021.115443_b0080 article-title: Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years publication-title: Agric. Ecosys. Environ. doi: 10.1016/j.agee.2014.02.014 – volume: 6 start-page: 140 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0025 article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2018.00140 – volume: vol. 32 start-page: 199 year: 2001 ident: 10.1016/j.geoderma.2021.115443_b0105 article-title: Meta-analysis in ecology – volume: 42 start-page: 2316 year: 2010 ident: 10.1016/j.geoderma.2021.115443_b0020 article-title: Contributions of biotic and abiotic factors to soil aggregation across a land use gradient publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.09.008 – volume: 74 start-page: 347 year: 2010 ident: 10.1016/j.geoderma.2021.115443_b0090 article-title: Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0079 – volume: 25 start-page: 315 year: 2020 ident: 10.1016/j.geoderma.2021.115443_b0125 article-title: Land and poverty: the role of soil fertility and vegetation quality in poverty reduction publication-title: Environ. Develop. Econ. doi: 10.1017/S1355770X20000066 – volume: 107 start-page: 971 year: 2015 ident: 10.1016/j.geoderma.2021.115443_b0330 article-title: Crop rotation and tillage effects on soil physical and chemical properties in Illinois publication-title: Agron. J. doi: 10.2134/agronj14.0465 – volume: 15 start-page: 543 year: 2004 ident: 10.1016/j.geoderma.2021.115443_b0145 article-title: The economics of soil productivity: Local, national and global perspectives publication-title: Land Degrad. Dev. doi: 10.1002/ldr.635 – volume: 194 year: 2019 ident: 10.1016/j.geoderma.2021.115443_b0150 article-title: Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis publication-title: Soil Till. Res. doi: 10.1016/j.still.2019.06.009 – volume: 3 start-page: 295 year: 2004 ident: 10.1016/j.geoderma.2021.115443_b0200 article-title: Porosity and pore size distribution publication-title: Encyclopedia of Soils in the Environment. – volume: 124 start-page: 211 year: 2012 ident: 10.1016/j.geoderma.2021.115443_b0115 article-title: Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany publication-title: Soil Till. Res. doi: 10.1016/j.still.2012.06.004 – volume: 6 start-page: 30 year: 2017 ident: 10.1016/j.geoderma.2021.115443_b0110 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evidence. doi: 10.1186/s13750-017-0108-9 – volume: 326 start-page: 164 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0035 article-title: No-tillage and soil physical environment publication-title: Geoderma. doi: 10.1016/j.geoderma.2018.03.011 – volume: 66 start-page: 78 year: 2013 ident: 10.1016/j.geoderma.2021.115443_b0215 article-title: Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.06.015 – volume: 71 start-page: 1076 year: 2020 ident: 10.1016/j.geoderma.2021.115443_b0190 article-title: Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the Indo-Gangetic plains of Bihar publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12879 – volume: 36 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2021.115443_b0315 article-title: Conducting meta-analyses in R with the metaphor package publication-title: J. Stat. Software. doi: 10.18637/jss.v036.i03 – volume: 26 start-page: 115 year: 2017 ident: 10.1016/j.geoderma.2021.115443_b0255 article-title: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100 publication-title: Meteorol. Z. doi: 10.1127/metz/2016/0816 – volume: 79 start-page: 149 year: 1999 ident: 10.1016/j.geoderma.2021.115443_b0310 article-title: Changes in pore structure in a no-till chronosequence of silt loam soils, southern Ontario publication-title: Can. J. Soil Sci. doi: 10.4141/S98-034 – volume: 44 issue: s2 year: 2013 ident: 10.1016/j.geoderma.2021.115443_b0055 article-title: Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing publication-title: J. Agr. Eng. – volume: 78 start-page: 1277 year: 1997 ident: 10.1016/j.geoderma.2021.115443_b0005 article-title: Resampling tests for meta-analysis of ecological data publication-title: Ecology. doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115443_b0170 article-title: The spread of no-till in conservation agriculture systems in Italy: indications for rural development policy-making publication-title: Agr. Food Econ. – volume: 113 start-page: 11 year: 2011 ident: 10.1016/j.geoderma.2021.115443_b0075 article-title: Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central chile publication-title: Soil Till. Res. doi: 10.1016/j.still.2011.02.004 – volume: 271 start-page: 144 year: 2016 ident: 10.1016/j.geoderma.2021.115443_b0095 article-title: Carbon input threshold for soil carbon budget optimization in eroding vineyards publication-title: Geoderma. doi: 10.1016/j.geoderma.2016.02.020 – year: 2000 ident: 10.1016/j.geoderma.2021.115443_b0250 – ident: 10.1016/j.geoderma.2021.115443_b0245 – volume: 532 start-page: 49 year: 2016 ident: 10.1016/j.geoderma.2021.115443_b0220 article-title: Climate-smart soils publication-title: Nature. doi: 10.1038/nature17174 – volume: 475 start-page: 214 year: 2011 ident: 10.1016/j.geoderma.2021.115443_b0305 article-title: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 publication-title: Nature. doi: 10.1038/nature10176 – volume: 517 start-page: 365 year: 2015 ident: 10.1016/j.geoderma.2021.115443_b0230 article-title: Productivity limits and potentials of the principles of conservation agriculture publication-title: Nature. doi: 10.1038/nature13809 – volume: 10 start-page: 155 year: 2004 ident: 10.1016/j.geoderma.2021.115443_b0285 article-title: The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term publication-title: Glob. Change Biol. doi: 10.1111/j.1529-8817.2003.00730.x – volume: 618 start-page: 1658 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0160 article-title: Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.009 – volume: 48 start-page: 147 year: 2000 ident: 10.1016/j.geoderma.2021.115443_b0225 article-title: Management options for reducing CO2 emissions from agricultural soils publication-title: Biogeochemistry. doi: 10.1023/A:1006271331703 – volume: 111 start-page: 105 year: 2011 ident: 10.1016/j.geoderma.2021.115443_b0070 article-title: Contrasted effects of no-till on bulk density of soil and mechanical resistance publication-title: Soil Till. Res. doi: 10.1016/j.still.2010.08.015 – volume: 178 start-page: 209 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0260 article-title: Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils publication-title: Soil Till. Res. doi: 10.1016/j.still.2017.12.019 – volume: 87 start-page: 9 year: 2006 ident: 10.1016/j.geoderma.2021.115443_b0265 article-title: Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas publication-title: Soil Till. Res. doi: 10.1016/j.still.2005.02.025 – volume: 181 start-page: 104 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0300 article-title: Microaggregates in soils publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600451 – volume: 8 start-page: 11169 year: 2018 ident: 10.1016/j.geoderma.2021.115443_b0050 article-title: Soil organic carbon dynamics matching ecological equilibrium theory publication-title: Ecol. Evol. doi: 10.1002/ece3.4586 – volume: 80 start-page: 1150 year: 1999 ident: 10.1016/j.geoderma.2021.115443_b0120 article-title: The meta-analysis of response ratios in experimental ecology publication-title: Ecology. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – year: 2001 ident: 10.1016/j.geoderma.2021.115443_b0085 – volume: 22 start-page: 755 year: 2002 ident: 10.1016/j.geoderma.2021.115443_b0280 article-title: Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage publication-title: Agronomie. doi: 10.1051/agro:2002043 – volume: 134 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115443_b0325 article-title: Management-induced changes to soil organic carbon in China: A meta-analysis publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.06.002 – volume: 8 start-page: 345 year: 2002 ident: 10.1016/j.geoderma.2021.115443_b0100 article-title: Soil carbon stocks and land use change: a meta-analysis publication-title: Glob. Change Biol. doi: 10.1046/j.1354-1013.2002.00486.x – volume: 32 start-page: 2103 year: 2000 ident: 10.1016/j.geoderma.2021.115443_b0275 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 |
SSID | ssj0017020 |
Score | 2.5832136 |
Snippet | •No-tillage improves mean weight diameter and water stability of aggregates.•Total and macroporosity decrease, but microporosity increases.•Effect is mostly... Role of soil to meet global food security, sustainable intensification and food nutritional quality has got renewed attention with a larger focus on soil... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115443 |
SubjectTerms | additive effect agronomy Bulk density carbon clay fraction conventional tillage energy food security Macroporosity Mean weight diameter meta-analysis Meta-regression microaggregates no-tillage nutritive value porosity Saturated hydraulic conductivity soil aggregation soil depth soil structure Total porosity |
Title | Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115443 https://www.proquest.com/docview/2636607514 |
Volume | 405 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz2IT3yWCF7TNpvdZHssxVIVPSl4EEKySWql7ha7Cl787U52s0UF6cHLHkISlvmSmUky8w1C5yr1dl3A_lbakZjplGgwSyTKukxFTsORxOc739zy0X189ZA8rKBBkwvjwyqD7q91eqWtQ0snSLMzm0x8ji_lolsxYPm7zSqDPRZ-lbc_F2EeVHQDNSPlxPf-liX8DBj5gmMV_1BE2xUzDfvLQP1S1ZX9GW6hzeA44n79b9toxeY7aKM_fg3kGXYXPdYE_vjFloqowDaC529j_4Y0x-WTKnFekNIXGhpb7NQ7TKr09APX6b_Qt5hMcU0pCzNilRsM_rmP6_rYQ_fDi7vBiITqCSRjcVIS6gAGkwrhNI8sfDLOnE6pUDzOmGFUK0Edy-C8ZpjJetox04tTA7tUAVCM7aPVvMjtAcJRZEExmK5LuImF4zpNLQNEhWez6aXJIUoakcksUIv7ChdT2cSQPctG1NKLWtaiPkSdxbhZTa6xdESvQUT-WCYSLMDSsWcNhBL2kH8YUbkt3uYy4oxz8J1ofPSP-Y_ReuRzI6r7mRO0CmDZU_BYSt2qlmQLrfUvr0e3X8SU68w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SHtSD-MS3EbzGdje7yfZYiqW-erLQgxCSTVJb6lbsVui_d7KbFRWkBy97WHbCMl8yM8lkvkHoSibOr3NY31JZElGVEAVuiYRpk8rQKtiSuHrnxz7rDaK7YTxcQ52qFsZdq_S2v7TphbX2bxpem4238djV-AaMNwsGLHe2CVugumOnimuo3r697_W_kgm86dkZA0acwLdC4QnA5HqOFRREYXBdkNPQv3zUL2tduKDuNtrysSNul7-3g9ZMtos226N3z59h9tBzyeGPX00uifSEI3i-GLk00hznLzLH2YzkrtfQyGArP2BQqaZLXFYAw7ez8RSXrLIwIpaZxhCiu6tdy3006N48dXrEN1AgKY3inAQWkNAJ51ax0MAjZdSqJOCSRSnVNFCSB5amsGXTVKctZaluRYmGhSoBK0oPUC2bZeYQ4TA0YBt008ZMR9wylSSGAqjcEdq0kvgIxZXKROrZxV2Ti6morpFNRKVq4VQtSlUfocaX3FvJr7FSolUhIn7MFAFOYKXsZQWhgGXkciMyM7PFXISMMgbhUxAd_2P8C7Tee3p8EA-3_fsTtBG6UoniuOYU1QA4cwYBTK7O_QT9BNpV7n0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+meta-analysis+suggests+that+no-tillage+favourably+changes+soil+structure+and+porosity&rft.jtitle=Geoderma&rft.au=Mondal%2C+Surajit&rft.au=Chakraborty%2C+Debashis&rft.date=2022-01-01&rft.issn=0016-7061&rft.volume=405+p.115443-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115443&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |