Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency
•Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum...
Saved in:
Published in | Geoderma Vol. 368; p. 114310 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum WAP application rate considering irrigation water requirement.
Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition. |
---|---|
AbstractList | •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum WAP application rate considering irrigation water requirement.
Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition. Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition. |
ArticleNumber | 114310 |
Author | Manna, Uttam Sekharan, Sreedeep Saha, Abhisekh Rattan, Bharat |
Author_xml | – sequence: 1 givenname: Abhisekh surname: Saha fullname: Saha, Abhisekh email: abhisekh@iitg.ac.in organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India – sequence: 2 givenname: Bharat surname: Rattan fullname: Rattan, Bharat email: b.rattan@iitg.ac.in organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India – sequence: 3 givenname: Sreedeep surname: Sekharan fullname: Sekharan, Sreedeep email: srees@iitg.ac.in organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India – sequence: 4 givenname: Uttam surname: Manna fullname: Manna, Uttam email: umanna@iitg.ac.in organization: Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India |
BookMark | eNqFkcFuGyEURVGVSHWS_kLF0l2MCwwzzEhdNIqSNpKlJFKiLhEDb1ys8eACduJfyFf3OXY33WSF3tW5lwf3jJyMYQRCPnM244zXX5ezBQQHcWVmggkUuSw5-0AmvFGiqEXVnpAJQ7JQrOYfyVlKSxwVshPy-rAxY_b9zo8Lmn8D9WOGaGz2W6DQ92AzDT19NqhS06UQuz25DsNuhcr01-X9lyIFP9AML3kTgYaRrgfMpGZr_GC6AY5uGzB6r4-O-hj9wmSPcB_hzwZGu7sgp70ZEnw6nufk6eb68epnMb_7cXt1OS9sKatccNXKsqslyLZ0qmW2ah1rpFLSiI4Z5wRIpxouKtaKBidTATddV1peWajr8pxMD7nrGPDmlPXKJwsDLg1hk7Qom0ZJJXiJ6LcDamNIKUKvrc9va-eIj9Oc6X0Feqn_VaD3FehDBWiv_7Ovo1-ZuHvf-P1gBPyHrYeok_X4R-B8xEa0C_69iL9JlalP |
CitedBy_id | crossref_primary_10_1061__ASCE_GT_1943_5606_0002764 crossref_primary_10_1520_ACEM20230041 crossref_primary_10_1007_s11104_023_06474_w crossref_primary_10_3390_ma13225071 crossref_primary_10_1016_j_still_2020_104736 crossref_primary_10_1007_s40098_024_00867_z crossref_primary_10_1515_ijcre_2021_0124 crossref_primary_10_3390_ma15134465 crossref_primary_10_3390_su16198439 crossref_primary_10_1080_15324982_2024_2441726 crossref_primary_10_3390_polym14214721 crossref_primary_10_1002_saj2_20480 crossref_primary_10_1007_s11104_024_06658_y crossref_primary_10_1007_s42729_022_01121_2 crossref_primary_10_1016_j_agwat_2024_108741 crossref_primary_10_1016_j_agwat_2024_109176 crossref_primary_10_1016_j_catena_2021_106007 crossref_primary_10_1007_s00271_021_00766_8 crossref_primary_10_1007_s12517_021_06720_4 crossref_primary_10_1080_10584587_2022_2065577 crossref_primary_10_1007_s12649_021_01489_9 crossref_primary_10_1016_j_still_2024_106371 crossref_primary_10_1016_j_jece_2024_112260 crossref_primary_10_1111_ejss_13145 crossref_primary_10_1007_s10965_021_02795_5 crossref_primary_10_1007_s42729_024_01936_1 crossref_primary_10_1038_s41598_020_75674_6 crossref_primary_10_1680_jgele_21_00015 crossref_primary_10_1016_j_jhydrol_2021_127040 crossref_primary_10_1002_ird_2580 crossref_primary_10_1002_ird_3098 crossref_primary_10_1016_j_enggeo_2024_107433 crossref_primary_10_1111_rec_14009 crossref_primary_10_1016_j_eti_2024_103650 crossref_primary_10_1016_j_still_2022_105449 crossref_primary_10_3390_polym15132763 crossref_primary_10_1016_j_jes_2021_08_053 crossref_primary_10_1002_app_53655 crossref_primary_10_1061__ASCE_MT_1943_5533_0004422 crossref_primary_10_3390_w16223186 crossref_primary_10_3390_ma14216658 |
Cites_doi | 10.1016/0378-3774(91)90035-H 10.1039/C7RA07104C 10.1080/01904160701853928 10.1021/jf5021279 10.1061/(ASCE)1090-0241(2005)131:5(666) 10.1002/clen.200900245 10.1016/j.geoderma.2014.09.026 10.1016/j.geoderma.2014.04.035 10.1016/j.ecoleng.2013.10.019 10.21273/HORTSCI.26.8.1063 10.1016/0933-3630(95)00030-5 10.1139/t00-084 10.1002/pc.21046 10.1016/S0167-1987(99)00023-9 10.1016/j.scienta.2009.12.031 10.1002/jpln.201500128 10.1061/(ASCE)GT.1943-5606.0001325 10.1016/j.biosystemseng.2010.05.019 10.3390/polym10121296 10.1016/j.geoderma.2015.04.006 10.1002/jsfa.4408 10.2136/sssaj1958.03615995002200030001x 10.1097/00010694-194704000-00003 10.2136/sssaj2006.0138 10.24200/jams.vol3iss2pp69-74 10.1016/j.geoderma.2010.05.013 10.1103/PhysRevE.87.053013 10.1016/j.cej.2016.10.101 10.17221/4059-PSE 10.2478/v10104-009-0005-0 10.2136/sssaj2007.0426 10.1016/j.eurpolymj.2004.01.039 10.1097/00010694-197808000-00005 10.1016/j.geoderma.2015.12.008 10.4236/jep.2013.47082 10.1097/00010694-195606000-00005 10.3390/polym10101069 10.1080/00914037.2012.719141 10.1016/j.geoderma.2014.11.019 10.1016/j.carbpol.2011.11.028 10.1021/ie502248n 10.1080/15324982.2018.1506526 10.1097/00010694-193109000-00003 10.1111/j.1365-2389.1981.tb01708.x 10.1520/ACEM20180091 10.1038/srep44552 10.1016/j.carbpol.2010.10.061 10.1016/j.jhydrol.2009.04.020 10.1002/app.20571 10.18520/cs/v111/i11/1773-1779 10.1016/j.geoderma.2012.03.002 10.2136/vzj2018.11.0205 10.1002/clen.201000017 10.1002/clen.201700251 10.1002/jsfa.2740351110 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114310 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114310 S001670611932840X |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-17943b64e493d790c59d084774a2b0add2e4d781250928d2ea5e1abb3c15ce663 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 04:15:51 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Fri Feb 23 02:48:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water-absorbing polymer Soil texture Plant available water Amendment Soil suction Field capacity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-17943b64e493d790c59d084774a2b0add2e4d781250928d2ea5e1abb3c15ce663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388747213 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388747213 crossref_citationtrail_10_1016_j_geoderma_2020_114310 crossref_primary_10_1016_j_geoderma_2020_114310 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bowman, Evans (b0090) 1991; 26 METER Group, Inc. (2017). Operator’s manual, 5TM ECH2O Water content and temperature sensor, Pullman, WA. UMS GmbH (Umwelt-Monitoring-Systeme). (2001). T5 user manual, Munich, Germany. ASTM (2017). D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA, USA: ASTM international. Lentz (b0235) 2015; 241 Bhardwaj, Shainberg, Goldstein, Warrington, Levy (b0080) 2007; 71 Rahmati, Pohlmeier, Abasiyan, Weihermüller, Vereecken (b0305) 2019; 18, No Orikiriza, Agaba, Eilu, Kabasa, Worbes, Hüttermann (b0300) 2013; 4 Akhter, Mahmood, Malik, Mardan, Ahmad, Iqbal (b0020) 2004; 50 ASTM (2018). D7503: Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils. West Conshohocken, PA, USA: ASTM international. El-Asmar, Jaafar, Bashour, Farran, Saoud (b0130) 2017; 45 Bao, Ma, Li (b0070) 2011; 84 Colman (b0120) 1947; 63 Veihmeyer, Hendrickson (b0355) 1931; 32 Narjary, Aggarwal, Singh, Chakraborty, Singh (b0290) 2012; 187 Feddes (b0145) 1982 Banedjschafie, Durner (b0065) 2015; 178 Kabiri, Omidian, Zohuriaan-Mehr, Doroudiani (b0210) 2011; 32 Shaikh, Yamsani, Sekharan, Rakesh (b0330) 2019; 8 Zhuang, Li, Liu (b0395) 2013; Vol. 2, No. S1 Burger, Shackelford (b0095) 2001; 38 Islam, Hu, Mao, Mao, Eneji, Xue (b0190) 2011; 91 Mohawesh, Durner (b0280) 2017 Rivers, Shipp (b0310) 1977; 126 Saha, Rattan, Sreedeep, Manna (b0315) 2020 ASTM (2011). D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA, USA: ASTM international. Lu, N., Khorshidi, M. (2015). Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. Geotech. Geoenviron. Eng. 141, No. 8. Wei, Durian (b0360) 2013; 87 Ismail, Irani, Ahmad (b0185) 2013; 62 Koupai, Eslamian, Kazemi (b0225) 2008; 8 Choudhary, AI-Omran, Shalaby (b0115) 1998; 3 Liang, Du, Ma, Shen, Wu, Zhou (b0245) 2018; 10 Jamison (b0195) 1956; 81 Zhang, Chen (b0385) 2005; 131 Dorraji, Golchin, Ahmadi (b0125) 2010; 38 Sepaskhah, Shahabizad (b0325) 2010; 106 Liao, Wu, Ren, Yang (b0250) 2016 Cheng, Pei, Wang, Hu (b0110) 2017; 7 Johnson (b0205) 1984; 35 Jamison, Kroth (b0200) 1958; 22 ASTM (2014). D854: Standard test method for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA: ASTM international. Emami, Astaraei (b0140) 2012; 14 Kalhapure, Kumar, Singh, Pandey (b0220) 2016; 111 Chang, Prasidhi, Im, Shin, Cho (b0105) 2015; 253 Zhang, Cheng, Zhao, Liu, Hu, Li (bib396) 2014; 62 Bian, Zeng, Deng, Li (b0085) 2018; 10 USDA, N. (2010). Keys to soil taxonomy. USDA, Washington DC, 197-240. Shi, Li, Shao, Deng, Wang, Li, Sun, Zhang, Zhu, Zhang, Zheng (b0340) 2010; 124 Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1—Physical and mineralogical methods, 901-926. Hüttermann, Zommorodi, Reise (b0175) 1999; 50 Wu, Zhang, Liu, Yao (b0370) 2012; 87 Fullen, Catt (b0155) 2014 Galeş, Trincă, Cazacu, Peptu, Jităreanu (b0160) 2016; 267 Woodhouse, Johnson (b0365) 1991; 20 Laird, Fleming, Davis, Horton, Wang, Karlen (b0230) 2010; 158 Nimmo (b0295) 2004; 3 Lu, N., Likos, W. (2004). Unsaturated Soil Mechanics. New York. Mahdavinia, Pourjavadi, Hosseinzadeh, Zohuriaan (b0265) 2004; 40 Xiao, Yu, Xie, Bao, Liu, Ji, Chen (b0375) 2017; 309 Al-Darby (b0025) 1996; 9 Sekharan, Gadi, Bordoloi, Saha, Kumar, Hazra, Garg (b0320) 2019 Abedi-Koupai, Sohrab, Swarbrick (b0005) 2008; 31 Sharma, Kaith, Kumar, Kalia, Kumar, Swart (b0335) 2014; 232 Inbar, Ben-Hur, Sternberg, Lado (b0180) 2015; 239 Zhang, Obringer, Wei, Chen, Niyogi (b0390) 2017; 7 Greenland (b0165) 1981; 32 METER Group, Inc (b0275) 2019 Bhardwaj, McLaughlin, Shainberg, Levy (b0075) 2009; 73 Kala (b0215) 2017; 5 Abrisham, Jafari, Tavili, Rabii, Zare Chahoki, Zare, Egan, Yazdanshenas, Ghasemian, Tahmoures (b0010) 2018; 32 ASTM (2007). D422-63: Standard test method for particle-size analysis of soils. West Conshohocken, PA, USA: ASTM international. Feng, Bai, Ding, Wang, Suo (b0150) 2014; 53 Yang, Yang, Chen, Guo, Li (b0380) 2014; 62 Agaba, Baguma Orikiriza, Osoto Esegu, Obua, Kabasa, Hüttermann (b0015) 2010; 38 El-Rehim, Hegazy, El-Mohdy (b0135) 2004; 93 Montesano, Parente, Santamaria, Sannino, Serio (b0285) 2015; 4 Andry, Yamamoto, Irie, Moritani, Inoue, Fujiyama (b0030) 2009; 373 Hüttermann (10.1016/j.geoderma.2020.114310_b0175) 1999; 50 10.1016/j.geoderma.2020.114310_b0035 Galeş (10.1016/j.geoderma.2020.114310_b0160) 2016; 267 Mohawesh (10.1016/j.geoderma.2020.114310_b0280) 2017 Feddes (10.1016/j.geoderma.2020.114310_b0145) 1982 Greenland (10.1016/j.geoderma.2020.114310_b0165) 1981; 32 Johnson (10.1016/j.geoderma.2020.114310_b0205) 1984; 35 Bhardwaj (10.1016/j.geoderma.2020.114310_b0080) 2007; 71 10.1016/j.geoderma.2020.114310_b0350 10.1016/j.geoderma.2020.114310_b0270 Rivers (10.1016/j.geoderma.2020.114310_b0310) 1977; 126 Abedi-Koupai (10.1016/j.geoderma.2020.114310_b0005) 2008; 31 Feng (10.1016/j.geoderma.2020.114310_b0150) 2014; 53 Emami (10.1016/j.geoderma.2020.114310_b0140) 2012; 14 Shi (10.1016/j.geoderma.2020.114310_b0340) 2010; 124 Bhardwaj (10.1016/j.geoderma.2020.114310_b0075) 2009; 73 Kalhapure (10.1016/j.geoderma.2020.114310_b0220) 2016; 111 10.1016/j.geoderma.2020.114310_b0045 Lentz (10.1016/j.geoderma.2020.114310_b0235) 2015; 241 Burger (10.1016/j.geoderma.2020.114310_b0095) 2001; 38 Cheng (10.1016/j.geoderma.2020.114310_b0110) 2017; 7 Al-Darby (10.1016/j.geoderma.2020.114310_b0025) 1996; 9 Andry (10.1016/j.geoderma.2020.114310_b0030) 2009; 373 Nimmo (10.1016/j.geoderma.2020.114310_b0295) 2004; 3 Liang (10.1016/j.geoderma.2020.114310_b0245) 2018; 10 Mahdavinia (10.1016/j.geoderma.2020.114310_b0265) 2004; 40 Jamison (10.1016/j.geoderma.2020.114310_b0200) 1958; 22 Laird (10.1016/j.geoderma.2020.114310_b0230) 2010; 158 Inbar (10.1016/j.geoderma.2020.114310_b0180) 2015; 239 Zhang (10.1016/j.geoderma.2020.114310_b0385) 2005; 131 Rahmati (10.1016/j.geoderma.2020.114310_b0305) 2019; 18, No Zhuang (10.1016/j.geoderma.2020.114310_b0395) 2013; Vol. 2, No. S1 10.1016/j.geoderma.2020.114310_b0040 Zhang (10.1016/j.geoderma.2020.114310_bib396) 2014; 62 Veihmeyer (10.1016/j.geoderma.2020.114310_b0355) 1931; 32 Orikiriza (10.1016/j.geoderma.2020.114310_b0300) 2013; 4 Fullen (10.1016/j.geoderma.2020.114310_b0155) 2014 Koupai (10.1016/j.geoderma.2020.114310_b0225) 2008; 8 Sepaskhah (10.1016/j.geoderma.2020.114310_b0325) 2010; 106 10.1016/j.geoderma.2020.114310_b0255 10.1016/j.geoderma.2020.114310_b0055 Colman (10.1016/j.geoderma.2020.114310_b0120) 1947; 63 Wei (10.1016/j.geoderma.2020.114310_b0360) 2013; 87 Bian (10.1016/j.geoderma.2020.114310_b0085) 2018; 10 Kala (10.1016/j.geoderma.2020.114310_b0215) 2017; 5 Abrisham (10.1016/j.geoderma.2020.114310_b0010) 2018; 32 Kabiri (10.1016/j.geoderma.2020.114310_b0210) 2011; 32 Bowman (10.1016/j.geoderma.2020.114310_b0090) 1991; 26 Ismail (10.1016/j.geoderma.2020.114310_b0185) 2013; 62 Wu (10.1016/j.geoderma.2020.114310_b0370) 2012; 87 Montesano (10.1016/j.geoderma.2020.114310_b0285) 2015; 4 Dorraji (10.1016/j.geoderma.2020.114310_b0125) 2010; 38 Saha (10.1016/j.geoderma.2020.114310_b0315) 2020 El-Asmar (10.1016/j.geoderma.2020.114310_b0130) 2017; 45 Woodhouse (10.1016/j.geoderma.2020.114310_b0365) 1991; 20 Sharma (10.1016/j.geoderma.2020.114310_b0335) 2014; 232 Yang (10.1016/j.geoderma.2020.114310_b0380) 2014; 62 10.1016/j.geoderma.2020.114310_b0100 Jamison (10.1016/j.geoderma.2020.114310_b0195) 1956; 81 METER Group, Inc (10.1016/j.geoderma.2020.114310_b0275) 2019 Islam (10.1016/j.geoderma.2020.114310_b0190) 2011; 91 Liao (10.1016/j.geoderma.2020.114310_b0250) 2016 Zhang (10.1016/j.geoderma.2020.114310_b0390) 2017; 7 Akhter (10.1016/j.geoderma.2020.114310_b0020) 2004; 50 10.1016/j.geoderma.2020.114310_b0345 10.1016/j.geoderma.2020.114310_b0060 Banedjschafie (10.1016/j.geoderma.2020.114310_b0065) 2015; 178 Choudhary (10.1016/j.geoderma.2020.114310_b0115) 1998; 3 El-Rehim (10.1016/j.geoderma.2020.114310_b0135) 2004; 93 Agaba (10.1016/j.geoderma.2020.114310_b0015) 2010; 38 Bao (10.1016/j.geoderma.2020.114310_b0070) 2011; 84 10.1016/j.geoderma.2020.114310_b0260 Sekharan (10.1016/j.geoderma.2020.114310_b0320) 2019 Shaikh (10.1016/j.geoderma.2020.114310_b0330) 2019; 8 Narjary (10.1016/j.geoderma.2020.114310_b0290) 2012; 187 Xiao (10.1016/j.geoderma.2020.114310_b0375) 2017; 309 Chang (10.1016/j.geoderma.2020.114310_b0105) 2015; 253 |
References_xml | – volume: 14 start-page: 1625 year: 2012 end-page: 2636 ident: b0140 article-title: Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil publication-title: J. Agr. Sci. Tech. – volume: 10 start-page: 1069 year: 2018 ident: b0085 article-title: The role of superabsorbent polymer on strength and microstructure development in cemented dredged clay with high water content publication-title: Polym. – volume: 38 start-page: 53 year: 2001 end-page: 66 ident: b0095 article-title: Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions publication-title: Can. Geotech. J. – volume: 373 start-page: 177 year: 2009 end-page: 183 ident: b0030 article-title: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality publication-title: J. Hydrol. – year: 2014 ident: b0155 article-title: Soil management: problems and solutions – volume: 81 start-page: 459 year: 1956 end-page: 472 ident: b0195 article-title: Pertinent factors governing the availability of soil moisture to plants publication-title: Soil Sci. – volume: 26 start-page: 1063 year: 1991 end-page: 1065 ident: b0090 article-title: Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium publication-title: HortScience – volume: 106 start-page: 513 year: 2010 end-page: 520 ident: b0325 article-title: Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator publication-title: Biosyst. Eng. – volume: 91 start-page: 1998 year: 2011 end-page: 2005 ident: b0190 article-title: Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters publication-title: J. Sci. Food Agric. – volume: 239 start-page: 107 year: 2015 end-page: 114 ident: b0180 article-title: Using polyacrylamide to mitigate post-fire soil erosion publication-title: Geoderma – volume: 232 start-page: 45 year: 2014 end-page: 55 ident: b0335 article-title: Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels publication-title: Geoderma – reference: ASTM (2014). D854: Standard test method for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA: ASTM international. – reference: ASTM (2007). D422-63: Standard test method for particle-size analysis of soils. West Conshohocken, PA, USA: ASTM international. – volume: 3 start-page: 295 year: 2004 end-page: 303 ident: b0295 article-title: Porosity and pore size distribution publication-title: Encyclopedia of Soils in the Environment – start-page: 37 year: 2016 ident: b0250 article-title: Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil publication-title: J. Nanomater. – volume: 10 start-page: 1296 year: 2018 ident: b0245 article-title: Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS publication-title: Polym. – volume: 4 start-page: 451 year: 2015 end-page: 458 ident: b0285 article-title: Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth publication-title: Agric. Agric. Sci. Procedia – volume: 62 start-page: 27 year: 2014 end-page: 32 ident: b0380 article-title: Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering publication-title: Ecol. Eng. – volume: 71 start-page: 406 year: 2007 end-page: 412 ident: b0080 article-title: Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils publication-title: Soil Sci. Soc. Am. J. – volume: 62 start-page: 411 year: 2013 end-page: 420 ident: b0185 article-title: Starch-based hydrogels: present status and applications publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 53 start-page: 12760 year: 2014 end-page: 12769 ident: b0150 article-title: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer publication-title: Ind. Eng. Chem. Res. – reference: USDA, N. (2010). Keys to soil taxonomy. USDA, Washington DC, 197-240. – volume: 50 start-page: 463 year: 2004 end-page: 469 ident: b0020 article-title: Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea publication-title: Plant Soil and Environ. – volume: 9 start-page: 15 year: 1996 end-page: 28 ident: b0025 article-title: The hydraulic properties of a sandy soil treated with gel-forming soil conditioner publication-title: Soil Technol. – volume: 178 start-page: 798 year: 2015 end-page: 806 ident: b0065 article-title: Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality publication-title: J. Plant Nutr. Soil Sci. – volume: 87 start-page: 1 year: 2013 end-page: 10 ident: b0360 article-title: Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. – volume: 20 start-page: 63 year: 1991 end-page: 70 ident: b0365 article-title: Effect of superabsorbent polymers on survival and growth of crop seedlings publication-title: Agric. Water Manag. – volume: 87 start-page: 2519 year: 2012 end-page: 2525 ident: b0370 article-title: Synthesis and characterization of a novel cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste publication-title: Carbohydr. Polym. – volume: 131 start-page: 666 year: 2005 end-page: 670 ident: b0385 article-title: Predicting bimodal soil–water characteristic curves publication-title: J. Geotech. Geoenviron. Eng. – volume: 35 start-page: 1196 year: 1984 end-page: 1200 ident: b0205 article-title: The effects of gel-forming polyacrylamides on moisture storage in sandy soils publication-title: J. Sci. Food Agric. – volume: 73 start-page: 910 year: 2009 end-page: 918 ident: b0075 article-title: Hydraulic characteristics of depositional seals as affected by exchangeable cations, clay mineralogy, and polyacrylamide publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 42036 year: 2017 end-page: 42046 ident: b0110 article-title: Advances in chitosan-based superabsorbent hydrogels publication-title: RSC Adv. – volume: 241 start-page: 289 year: 2015 end-page: 294 ident: b0235 article-title: Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam publication-title: Geoderma – volume: 32 start-page: 277 year: 2011 end-page: 289 ident: b0210 article-title: Superabsorbent hydrogel composites and nanocomposites: a review publication-title: Polym. Compos. – year: 2017 ident: b0280 article-title: Effect of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness publication-title: Pedosphere – volume: 187 start-page: 94 year: 2012 end-page: 101 ident: b0290 article-title: Water availability in different soils in relation to hydrogel application publication-title: Geoderma – volume: 22 start-page: 189 year: 1958 end-page: 192 ident: b0200 article-title: Available Moisture Storage Capacity in Relation to Textural Composition and Organic Matter Content of Several Missouri Soils 1 publication-title: Soil Sci. Soc. Am. J. – start-page: 194 year: 1982 end-page: 209 ident: b0145 article-title: Simulation of field water use and crop yield publication-title: Pudoc – reference: METER Group, Inc. (2017). Operator’s manual, 5TM ECH2O Water content and temperature sensor, Pullman, WA. – volume: 18, No start-page: 1 year: 2019 ident: b0305 article-title: Water retention and pore size distribution of a biopolymeric-amended loam soil publication-title: Vadose Zone J. – volume: 3 start-page: 69 year: 1998 end-page: 74 ident: b0115 article-title: Physical properties of sandy soil affected by soil conditioner under wetting and drying cycles publication-title: J. Agric. Mar. Sci. – reference: ASTM (2017). D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA, USA: ASTM international. – volume: 62 start-page: 8867 year: 2014 end-page: 8874 ident: bib396 article-title: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel publication-title: J. Agric. Food Chem. – volume: 7 start-page: 44552 year: 2017 ident: b0390 article-title: Droughts in India from 1981 to 2013 and Implications to Wheat Production publication-title: Scientific reports – volume: 38 start-page: 584 year: 2010 end-page: 591 ident: b0125 article-title: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils publication-title: Clean - Soil, Air, Water – start-page: 313 year: 2019 end-page: 331 ident: b0320 article-title: Sustainable geotechnics: a bio-geotechnical perspective publication-title: Frontiers in Geotechnical Engineering – volume: 32 start-page: 181 year: 1931 end-page: 194 ident: b0355 article-title: The moisture equivalent as a measure of the field capacity of soils publication-title: Soil Sci. – volume: Vol. 2, No. S1 start-page: p. S11). year: 2013 ident: b0395 publication-title: Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. In SpringerPlus – volume: 32 start-page: 301 year: 1981 end-page: 322 ident: b0165 article-title: Soil management and soil degradation publication-title: J. Soil Sci. – start-page: 185 year: 2020 end-page: 195 ident: b0315 article-title: Effect of Water Absorbing Polymer Amendment on Water Retention Properties of Cohesionless Soil publication-title: Advances in Computer Methods and Geomechanics – volume: 8 start-page: 67 year: 2008 end-page: 75 ident: b0225 article-title: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices publication-title: Ecohydrol. Hydrobiol. – reference: UMS GmbH (Umwelt-Monitoring-Systeme). (2001). T5 user manual, Munich, Germany. – volume: 4 start-page: 713 year: 2013 end-page: 721 ident: b0300 article-title: Effects of hydrogels on tree seedling performance in temperate soils before and after water stress publication-title: J. Environ. Prot. – year: 2019 ident: b0275 article-title: Operator’s manual, TEROS21 – reference: Lu, N., Likos, W. (2004). Unsaturated Soil Mechanics. New York. – volume: 40 start-page: 1399 year: 2004 end-page: 1407 ident: b0265 article-title: Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties publication-title: Eur. Polym. J. – volume: 93 start-page: 1360 year: 2004 end-page: 1371 ident: b0135 article-title: Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance publication-title: J. Appl. Polym. Sci. – volume: 32 start-page: 407 year: 2018 end-page: 420 ident: b0010 article-title: Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation publication-title: Arid Land Res. Manag. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: b0230 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – reference: ASTM (2018). D7503: Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils. West Conshohocken, PA, USA: ASTM international. – volume: 267 start-page: 102 year: 2016 end-page: 111 ident: b0160 article-title: Effects of a hydrogel on the cambic chernozem soil's hydrophysic indicators and plant morphophysiological parameters publication-title: Geoderma – volume: 8 start-page: 322 year: 2019 end-page: 335 ident: b0330 article-title: Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system publication-title: Adv. Civ. Eng. Mater. – volume: 124 start-page: 268 year: 2010 end-page: 273 ident: b0340 article-title: Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis publication-title: Scientia horticulturae – volume: 31 start-page: 317 year: 2008 end-page: 331 ident: b0005 article-title: Evaluation of hydrogel application on soil water retention characteristics publication-title: J. Plant Nutr. – volume: 50 start-page: 295 year: 1999 end-page: 304 ident: b0175 article-title: Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought publication-title: Soil Till. Res. – reference: Lu, N., Khorshidi, M. (2015). Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. Geotech. Geoenviron. Eng. 141, No. 8. – volume: 309 start-page: 607 year: 2017 end-page: 616 ident: b0375 article-title: One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer publication-title: Chem. Eng. J. – volume: 126 start-page: 94 year: 1977 end-page: 100 ident: b0310 article-title: Soil water retention as related to particle size in selected sands and loamy sands publication-title: Soil Sci. – volume: 253 start-page: 39 year: 2015 end-page: 47 ident: b0105 article-title: Soil treatment using microbial biopolymers for anti-desertification purposes publication-title: Geoderma – volume: 63 start-page: 277 year: 1947 end-page: 284 ident: b0120 article-title: A laboratory procedure for determining the field capacity of soils publication-title: Soil Sci. – reference: ASTM (2011). D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA, USA: ASTM international. – reference: Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1—Physical and mineralogical methods, 901-926. – volume: 5 start-page: 43 year: 2017 end-page: 48 ident: b0215 article-title: Environmental and Socioeconomic Impacts of Drought in India: Lessons for Drought Management publication-title: Sci. Educ. – volume: 38 start-page: 328 year: 2010 end-page: 335 ident: b0015 article-title: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions publication-title: Clean-Soil, Air, Water – volume: 45 start-page: 1700251 year: 2017 ident: b0130 article-title: Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils publication-title: Clean-Soil, Air, Water. – volume: 84 start-page: 76 year: 2011 end-page: 82 ident: b0070 article-title: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel publication-title: Carbohydr. Polym. – volume: 111 start-page: 1773 year: 2016 end-page: 1779 ident: b0220 article-title: Hydrogels: a boon for increasing agricultural productivity in water-stressed environment publication-title: Current Science – ident: 10.1016/j.geoderma.2020.114310_b0035 – ident: 10.1016/j.geoderma.2020.114310_b0060 – volume: 20 start-page: 63 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2020.114310_b0365 article-title: Effect of superabsorbent polymers on survival and growth of crop seedlings publication-title: Agric. Water Manag. doi: 10.1016/0378-3774(91)90035-H – volume: 4 start-page: 451 year: 2015 ident: 10.1016/j.geoderma.2020.114310_b0285 article-title: Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth publication-title: Agric. Agric. Sci. Procedia – volume: 7 start-page: 42036 issue: 67 year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0110 article-title: Advances in chitosan-based superabsorbent hydrogels publication-title: RSC Adv. doi: 10.1039/C7RA07104C – volume: 31 start-page: 317 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2020.114310_b0005 article-title: Evaluation of hydrogel application on soil water retention characteristics publication-title: J. Plant Nutr. doi: 10.1080/01904160701853928 – volume: 62 start-page: 8867 issue: 35 year: 2014 ident: 10.1016/j.geoderma.2020.114310_bib396 article-title: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel publication-title: J. Agric. Food Chem. doi: 10.1021/jf5021279 – year: 2019 ident: 10.1016/j.geoderma.2020.114310_b0275 – volume: 131 start-page: 666 issue: 5 year: 2005 ident: 10.1016/j.geoderma.2020.114310_b0385 article-title: Predicting bimodal soil–water characteristic curves publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2005)131:5(666) – volume: 38 start-page: 328 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2020.114310_b0015 article-title: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions publication-title: Clean-Soil, Air, Water doi: 10.1002/clen.200900245 – volume: 239 start-page: 107 year: 2015 ident: 10.1016/j.geoderma.2020.114310_b0180 article-title: Using polyacrylamide to mitigate post-fire soil erosion publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.026 – volume: 232 start-page: 45 year: 2014 ident: 10.1016/j.geoderma.2020.114310_b0335 article-title: Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.035 – volume: 62 start-page: 27 year: 2014 ident: 10.1016/j.geoderma.2020.114310_b0380 article-title: Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.10.019 – volume: 26 start-page: 1063 issue: 8 year: 1991 ident: 10.1016/j.geoderma.2020.114310_b0090 article-title: Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium publication-title: HortScience doi: 10.21273/HORTSCI.26.8.1063 – year: 2014 ident: 10.1016/j.geoderma.2020.114310_b0155 – volume: 9 start-page: 15 year: 1996 ident: 10.1016/j.geoderma.2020.114310_b0025 article-title: The hydraulic properties of a sandy soil treated with gel-forming soil conditioner publication-title: Soil Technol. doi: 10.1016/0933-3630(95)00030-5 – volume: 38 start-page: 53 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2020.114310_b0095 article-title: Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions publication-title: Can. Geotech. J. doi: 10.1139/t00-084 – volume: 14 start-page: 1625 year: 2012 ident: 10.1016/j.geoderma.2020.114310_b0140 article-title: Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil publication-title: J. Agr. Sci. Tech. – volume: 32 start-page: 277 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2020.114310_b0210 article-title: Superabsorbent hydrogel composites and nanocomposites: a review publication-title: Polym. Compos. doi: 10.1002/pc.21046 – volume: 50 start-page: 295 year: 1999 ident: 10.1016/j.geoderma.2020.114310_b0175 article-title: Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(99)00023-9 – volume: 124 start-page: 268 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2020.114310_b0340 article-title: Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis publication-title: Scientia horticulturae doi: 10.1016/j.scienta.2009.12.031 – volume: 5 start-page: 43 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0215 article-title: Environmental and Socioeconomic Impacts of Drought in India: Lessons for Drought Management publication-title: Sci. Educ. – volume: 178 start-page: 798 issue: 5 year: 2015 ident: 10.1016/j.geoderma.2020.114310_b0065 article-title: Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201500128 – ident: 10.1016/j.geoderma.2020.114310_b0255 doi: 10.1061/(ASCE)GT.1943-5606.0001325 – volume: 106 start-page: 513 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2020.114310_b0325 article-title: Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2010.05.019 – volume: 10 start-page: 1296 issue: 12 year: 2018 ident: 10.1016/j.geoderma.2020.114310_b0245 article-title: Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS publication-title: Polym. doi: 10.3390/polym10121296 – volume: 253 start-page: 39 year: 2015 ident: 10.1016/j.geoderma.2020.114310_b0105 article-title: Soil treatment using microbial biopolymers for anti-desertification purposes publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.006 – volume: 91 start-page: 1998 issue: 11 year: 2011 ident: 10.1016/j.geoderma.2020.114310_b0190 article-title: Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.4408 – volume: 22 start-page: 189 issue: 3 year: 1958 ident: 10.1016/j.geoderma.2020.114310_b0200 article-title: Available Moisture Storage Capacity in Relation to Textural Composition and Organic Matter Content of Several Missouri Soils 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1958.03615995002200030001x – volume: 63 start-page: 277 issue: 4 year: 1947 ident: 10.1016/j.geoderma.2020.114310_b0120 article-title: A laboratory procedure for determining the field capacity of soils publication-title: Soil Sci. doi: 10.1097/00010694-194704000-00003 – volume: 71 start-page: 406 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2020.114310_b0080 article-title: Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0138 – volume: 3 start-page: 69 issue: 2 year: 1998 ident: 10.1016/j.geoderma.2020.114310_b0115 article-title: Physical properties of sandy soil affected by soil conditioner under wetting and drying cycles publication-title: J. Agric. Mar. Sci. doi: 10.24200/jams.vol3iss2pp69-74 – volume: 158 start-page: 443 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2020.114310_b0230 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 87 start-page: 1 issue: 5 year: 2013 ident: 10.1016/j.geoderma.2020.114310_b0360 article-title: Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.87.053013 – volume: 309 start-page: 607 year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0375 article-title: One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.101 – year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0280 article-title: Effect of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness publication-title: Pedosphere – volume: 50 start-page: 463 issue: 10 year: 2004 ident: 10.1016/j.geoderma.2020.114310_b0020 article-title: Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea publication-title: Plant Soil and Environ. doi: 10.17221/4059-PSE – volume: 8 start-page: 67 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2020.114310_b0225 article-title: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices publication-title: Ecohydrol. Hydrobiol. doi: 10.2478/v10104-009-0005-0 – volume: 73 start-page: 910 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2020.114310_b0075 article-title: Hydraulic characteristics of depositional seals as affected by exchangeable cations, clay mineralogy, and polyacrylamide publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0426 – volume: 40 start-page: 1399 issue: 7 year: 2004 ident: 10.1016/j.geoderma.2020.114310_b0265 article-title: Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2004.01.039 – volume: 126 start-page: 94 year: 1977 ident: 10.1016/j.geoderma.2020.114310_b0310 article-title: Soil water retention as related to particle size in selected sands and loamy sands publication-title: Soil Sci. doi: 10.1097/00010694-197808000-00005 – volume: 267 start-page: 102 year: 2016 ident: 10.1016/j.geoderma.2020.114310_b0160 article-title: Effects of a hydrogel on the cambic chernozem soil's hydrophysic indicators and plant morphophysiological parameters publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.008 – ident: 10.1016/j.geoderma.2020.114310_b0100 – volume: 4 start-page: 713 issue: 7 year: 2013 ident: 10.1016/j.geoderma.2020.114310_b0300 article-title: Effects of hydrogels on tree seedling performance in temperate soils before and after water stress publication-title: J. Environ. Prot. doi: 10.4236/jep.2013.47082 – volume: Vol. 2, No. S1 start-page: p. S11). year: 2013 ident: 10.1016/j.geoderma.2020.114310_b0395 publication-title: Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. In SpringerPlus – volume: 81 start-page: 459 issue: 6 year: 1956 ident: 10.1016/j.geoderma.2020.114310_b0195 article-title: Pertinent factors governing the availability of soil moisture to plants publication-title: Soil Sci. doi: 10.1097/00010694-195606000-00005 – ident: 10.1016/j.geoderma.2020.114310_b0270 – ident: 10.1016/j.geoderma.2020.114310_b0345 – volume: 10 start-page: 1069 issue: 10 year: 2018 ident: 10.1016/j.geoderma.2020.114310_b0085 article-title: The role of superabsorbent polymer on strength and microstructure development in cemented dredged clay with high water content publication-title: Polym. doi: 10.3390/polym10101069 – volume: 62 start-page: 411 issue: 7 year: 2013 ident: 10.1016/j.geoderma.2020.114310_b0185 article-title: Starch-based hydrogels: present status and applications publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2012.719141 – volume: 3 start-page: 295 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2020.114310_b0295 article-title: Porosity and pore size distribution publication-title: Encyclopedia of Soils in the Environment – volume: 241 start-page: 289 year: 2015 ident: 10.1016/j.geoderma.2020.114310_b0235 article-title: Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.019 – start-page: 185 year: 2020 ident: 10.1016/j.geoderma.2020.114310_b0315 article-title: Effect of Water Absorbing Polymer Amendment on Water Retention Properties of Cohesionless Soil – volume: 87 start-page: 2519 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2020.114310_b0370 article-title: Synthesis and characterization of a novel cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.11.028 – ident: 10.1016/j.geoderma.2020.114310_b0260 – ident: 10.1016/j.geoderma.2020.114310_b0350 – volume: 53 start-page: 12760 issue: 32 year: 2014 ident: 10.1016/j.geoderma.2020.114310_b0150 article-title: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502248n – start-page: 313 year: 2019 ident: 10.1016/j.geoderma.2020.114310_b0320 article-title: Sustainable geotechnics: a bio-geotechnical perspective – volume: 32 start-page: 407 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2020.114310_b0010 article-title: Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation publication-title: Arid Land Res. Manag. doi: 10.1080/15324982.2018.1506526 – volume: 32 start-page: 181 issue: 3 year: 1931 ident: 10.1016/j.geoderma.2020.114310_b0355 article-title: The moisture equivalent as a measure of the field capacity of soils publication-title: Soil Sci. doi: 10.1097/00010694-193109000-00003 – volume: 32 start-page: 301 issue: 3 year: 1981 ident: 10.1016/j.geoderma.2020.114310_b0165 article-title: Soil management and soil degradation publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1981.tb01708.x – volume: 8 start-page: 322 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114310_b0330 article-title: Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system publication-title: Adv. Civ. Eng. Mater. doi: 10.1520/ACEM20180091 – volume: 7 start-page: 44552 year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0390 article-title: Droughts in India from 1981 to 2013 and Implications to Wheat Production publication-title: Scientific reports doi: 10.1038/srep44552 – ident: 10.1016/j.geoderma.2020.114310_b0040 – volume: 84 start-page: 76 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2020.114310_b0070 article-title: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.10.061 – volume: 373 start-page: 177 year: 2009 ident: 10.1016/j.geoderma.2020.114310_b0030 article-title: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.04.020 – volume: 93 start-page: 1360 issue: 3 year: 2004 ident: 10.1016/j.geoderma.2020.114310_b0135 article-title: Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20571 – volume: 111 start-page: 1773 issue: 11 year: 2016 ident: 10.1016/j.geoderma.2020.114310_b0220 article-title: Hydrogels: a boon for increasing agricultural productivity in water-stressed environment publication-title: Current Science doi: 10.18520/cs/v111/i11/1773-1779 – ident: 10.1016/j.geoderma.2020.114310_b0045 – volume: 187 start-page: 94 year: 2012 ident: 10.1016/j.geoderma.2020.114310_b0290 article-title: Water availability in different soils in relation to hydrogel application publication-title: Geoderma doi: 10.1016/j.geoderma.2012.03.002 – start-page: 37 year: 2016 ident: 10.1016/j.geoderma.2020.114310_b0250 article-title: Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil publication-title: J. Nanomater. – volume: 18, No start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114310_b0305 article-title: Water retention and pore size distribution of a biopolymeric-amended loam soil publication-title: Vadose Zone J. doi: 10.2136/vzj2018.11.0205 – volume: 38 start-page: 584 issue: 7 year: 2010 ident: 10.1016/j.geoderma.2020.114310_b0125 article-title: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils publication-title: Clean - Soil, Air, Water doi: 10.1002/clen.201000017 – volume: 45 start-page: 1700251 issue: 7 year: 2017 ident: 10.1016/j.geoderma.2020.114310_b0130 article-title: Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils publication-title: Clean-Soil, Air, Water. doi: 10.1002/clen.201700251 – start-page: 194 year: 1982 ident: 10.1016/j.geoderma.2020.114310_b0145 article-title: Simulation of field water use and crop yield publication-title: Pudoc – ident: 10.1016/j.geoderma.2020.114310_b0055 – volume: 35 start-page: 1196 year: 1984 ident: 10.1016/j.geoderma.2020.114310_b0205 article-title: The effects of gel-forming polyacrylamides on moisture storage in sandy soils publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2740351110 |
SSID | ssj0017020 |
Score | 2.502762 |
Snippet | •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured... Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114310 |
SubjectTerms | Amendment application rate clay fraction clay loam soils climate change coarse-textured soils crosslinking drought drying empirical models Field capacity fine-textured soils guidelines irrigation scheduling irrigation water particle size Plant available water polymers sand silt loam soils soil amendments Soil suction Soil texture texture water binding capacity water content water use efficiency Water-absorbing polymer wilting |
Title | Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114310 https://www.proquest.com/docview/2388747213 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhuTSHkrQp-eqiQg_NwV1LliX7uCwN25aGFhKyNyHZcvDi2It3NyGX_oD-6s7YcmhLIIdeDBIaYTTyzLP95omQ91mRGRYaFQjJHVzyHI95UYGNJMsLLmRi8NPAtws5uxJf5vF8i0yHWhikVfrY38f0Llr7nrFfzfGyLLHGl0kF6QghCLymzLGCXSjc5R9_PtI8mAq9NCOTAY7-o0p4AT7CA8c6_SHeyeZGWEn7dIL6J1R3-ed8j7z0wJFO-nvbJ1uufkV2JzetF89wr8mvHxuD3B-sXKIA7ChqQXRVUHeO9sQN2hT0HuBlS41dNa3FkcumeriFng_Xk-9nwaopK4p0EJiSNjVdVjAnNXemrLDKylsjw91hf53Tsm07nQ4YXLQ9M_vhgFydf7qczgJ_1kKQRSJeB51QnJXCiTTKVRpmcZqHkLmUMNyGEAS5E7kCNAAAgyfQMrFjxtooY3HmALa8Idt1U7tDQouM84LLxKJ4PVcuSVLhiihijuVCGXlE4mGBdeaFyPE8jEoPjLOFHhyj0TG6d8wRGT_aLXspjmct0sF_-q9NpSFfPGv7bnC4hicOf6OY2jWblQaQk8BLGGfR8X_Mf0JeYKtnnZ2S7XW7cW8B36ztqNvAI7Iz-fx1dvEb2Dv8wQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbp5tDmEPokj7ZRoYf2YNaSZck-LqFh81paSOjehGTLwcGxF-9uQv5CfnVnbDm0pZBDLwbLGmE08swna-YbQj5nRWZYaFQgJHdwyXMs86ICG0mWF1zIxOCvgfOZnF6Kk3k83yCHQy4MhlV629_b9M5a-5axn83xoiwxx5dJBe4IIQhsU-bPyCayU8Ujsjk5Pp3OHg8TVOjZGZkMUOC3ROFrUBPWHOsoiHjHnBthMu2_fdRf1rpzQUcvybbHjnTSv94rsuHq12RrctV6_gz3hjz8WBsM_8HkJQrYjiIdRJcIdetoH7tBm4LeAcJsqbHLprXYc9FU9zfQ8uXn5PvXYNmUFcWIEBiSNjVdVDAmNbemrDDRyktjkLvD9jqnZdt2VB3QuWj74Oz7t-Ty6NvF4TTw5RaCLBLxKui44qwUTqRRrtIwi9M8BOelhOE2BDvIncgVAALAGDyBOxM7ZqyNMhZnDpDLOzKqm9rtEFpknBdcJhb567lySZIKV0QRcywXyshdEg8TrDPPRY4lMSo9BJ1d60ExGhWje8XskvGj3KJn43hSIh30p_9YVxpcxpOynwaFa_jo8CTF1K5ZLzXgnAT2YZxFe_8x_gF5Pr04P9Nnx7PTffICn_RBaO_JaNWu3QeAOyv70S_nX3jE_3I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+interactive+effect+of+water+absorbing+polymer+%28WAP%29-soil+texture+on+plant+available+water+content+and+irrigation+frequency&rft.jtitle=Geoderma&rft.au=Saha%2C+Abhisekh&rft.au=Rattan%2C+Bharat&rft.au=Sekharan%2C+Sreedeep&rft.au=Manna%2C+Uttam&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=368&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114310&rft.externalDocID=S001670611932840X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |