Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency

•Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 368; p. 114310
Main Authors Saha, Abhisekh, Rattan, Bharat, Sekharan, Sreedeep, Manna, Uttam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum WAP application rate considering irrigation water requirement. Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition.
AbstractList •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured soil.•Quantified the improvement factor for PAWC and plant survival time.•PAWC variation is minimal for clay content exceeding 30%.•Quantified optimum WAP application rate considering irrigation water requirement. Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition.
Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to enhance water use efficiency. Water absorbing polymers (WAP) are chemically cross-linked structures capable of absorbing and storing huge quantities of water within its three-dimensional network. Due to high water absorbency, these polymers are used for improving the water retention characteristics (WRC) of the soil during drought conditions. For this purpose, it is important to quantify the interactive effect of water absorbency of WAP and soil texture on water use efficiency. This study investigated the effect of WAP amendment on the drying water retention characteristic curve (WRCC) of three different textured soils. The study proved that the inter pore space of a fine-textured soil restricted the swelling of WAP to its full capacity. The combined WRCC and microstructural observations of bare and WAP amended soils added to the experimental reasoning for the comparatively low improvement in water absorption capacity (WAC) of fine-textured soil. At the maximum concentration of WAP application, the increase in plant available water content (PAWC) for coarse to fine-textured soil varied from 3.3 to 1.2 times, respectively. This study further demonstrated that the PAWC improvement factor is predominantly texture dependent and can be determined solely from the WRCC of a given soil. An empirical relationship was proposed for estimating PAWC and wilting time improvement factor based on particle size fraction of soil (texture). Based on the empirical models, it was concluded that the variation in wilting time and PAWC improvement factor was minimal for soils with clay content and fine content exceeding 30% and 60%, respectively. Based on the irrigation water requirement, the optimum WAP application rate for coarse-textured soils (sand, silt loam) was 0.1% while for fine-textured soil (clay loam) the application rate was 0.2%. The quantification presented in this study suggests the need to develop guidelines for WAP application by considering the soil texture to ensure optimal irrigation during drought condition.
ArticleNumber 114310
Author Manna, Uttam
Sekharan, Sreedeep
Saha, Abhisekh
Rattan, Bharat
Author_xml – sequence: 1
  givenname: Abhisekh
  surname: Saha
  fullname: Saha, Abhisekh
  email: abhisekh@iitg.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India
– sequence: 2
  givenname: Bharat
  surname: Rattan
  fullname: Rattan, Bharat
  email: b.rattan@iitg.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India
– sequence: 3
  givenname: Sreedeep
  surname: Sekharan
  fullname: Sekharan, Sreedeep
  email: srees@iitg.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India
– sequence: 4
  givenname: Uttam
  surname: Manna
  fullname: Manna, Uttam
  email: umanna@iitg.ac.in
  organization: Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
BookMark eNqFkcFuGyEURVGVSHWS_kLF0l2MCwwzzEhdNIqSNpKlJFKiLhEDb1ys8eACduJfyFf3OXY33WSF3tW5lwf3jJyMYQRCPnM244zXX5ezBQQHcWVmggkUuSw5-0AmvFGiqEXVnpAJQ7JQrOYfyVlKSxwVshPy-rAxY_b9zo8Lmn8D9WOGaGz2W6DQ92AzDT19NqhS06UQuz25DsNuhcr01-X9lyIFP9AML3kTgYaRrgfMpGZr_GC6AY5uGzB6r4-O-hj9wmSPcB_hzwZGu7sgp70ZEnw6nufk6eb68epnMb_7cXt1OS9sKatccNXKsqslyLZ0qmW2ah1rpFLSiI4Z5wRIpxouKtaKBidTATddV1peWajr8pxMD7nrGPDmlPXKJwsDLg1hk7Qom0ZJJXiJ6LcDamNIKUKvrc9va-eIj9Oc6X0Feqn_VaD3FehDBWiv_7Ovo1-ZuHvf-P1gBPyHrYeok_X4R-B8xEa0C_69iL9JlalP
CitedBy_id crossref_primary_10_1061__ASCE_GT_1943_5606_0002764
crossref_primary_10_1520_ACEM20230041
crossref_primary_10_1007_s11104_023_06474_w
crossref_primary_10_3390_ma13225071
crossref_primary_10_1016_j_still_2020_104736
crossref_primary_10_1007_s40098_024_00867_z
crossref_primary_10_1515_ijcre_2021_0124
crossref_primary_10_3390_ma15134465
crossref_primary_10_3390_su16198439
crossref_primary_10_1080_15324982_2024_2441726
crossref_primary_10_3390_polym14214721
crossref_primary_10_1002_saj2_20480
crossref_primary_10_1007_s11104_024_06658_y
crossref_primary_10_1007_s42729_022_01121_2
crossref_primary_10_1016_j_agwat_2024_108741
crossref_primary_10_1016_j_agwat_2024_109176
crossref_primary_10_1016_j_catena_2021_106007
crossref_primary_10_1007_s00271_021_00766_8
crossref_primary_10_1007_s12517_021_06720_4
crossref_primary_10_1080_10584587_2022_2065577
crossref_primary_10_1007_s12649_021_01489_9
crossref_primary_10_1016_j_still_2024_106371
crossref_primary_10_1016_j_jece_2024_112260
crossref_primary_10_1111_ejss_13145
crossref_primary_10_1007_s10965_021_02795_5
crossref_primary_10_1007_s42729_024_01936_1
crossref_primary_10_1038_s41598_020_75674_6
crossref_primary_10_1680_jgele_21_00015
crossref_primary_10_1016_j_jhydrol_2021_127040
crossref_primary_10_1002_ird_2580
crossref_primary_10_1002_ird_3098
crossref_primary_10_1016_j_enggeo_2024_107433
crossref_primary_10_1111_rec_14009
crossref_primary_10_1016_j_eti_2024_103650
crossref_primary_10_1016_j_still_2022_105449
crossref_primary_10_3390_polym15132763
crossref_primary_10_1016_j_jes_2021_08_053
crossref_primary_10_1002_app_53655
crossref_primary_10_1061__ASCE_MT_1943_5533_0004422
crossref_primary_10_3390_w16223186
crossref_primary_10_3390_ma14216658
Cites_doi 10.1016/0378-3774(91)90035-H
10.1039/C7RA07104C
10.1080/01904160701853928
10.1021/jf5021279
10.1061/(ASCE)1090-0241(2005)131:5(666)
10.1002/clen.200900245
10.1016/j.geoderma.2014.09.026
10.1016/j.geoderma.2014.04.035
10.1016/j.ecoleng.2013.10.019
10.21273/HORTSCI.26.8.1063
10.1016/0933-3630(95)00030-5
10.1139/t00-084
10.1002/pc.21046
10.1016/S0167-1987(99)00023-9
10.1016/j.scienta.2009.12.031
10.1002/jpln.201500128
10.1061/(ASCE)GT.1943-5606.0001325
10.1016/j.biosystemseng.2010.05.019
10.3390/polym10121296
10.1016/j.geoderma.2015.04.006
10.1002/jsfa.4408
10.2136/sssaj1958.03615995002200030001x
10.1097/00010694-194704000-00003
10.2136/sssaj2006.0138
10.24200/jams.vol3iss2pp69-74
10.1016/j.geoderma.2010.05.013
10.1103/PhysRevE.87.053013
10.1016/j.cej.2016.10.101
10.17221/4059-PSE
10.2478/v10104-009-0005-0
10.2136/sssaj2007.0426
10.1016/j.eurpolymj.2004.01.039
10.1097/00010694-197808000-00005
10.1016/j.geoderma.2015.12.008
10.4236/jep.2013.47082
10.1097/00010694-195606000-00005
10.3390/polym10101069
10.1080/00914037.2012.719141
10.1016/j.geoderma.2014.11.019
10.1016/j.carbpol.2011.11.028
10.1021/ie502248n
10.1080/15324982.2018.1506526
10.1097/00010694-193109000-00003
10.1111/j.1365-2389.1981.tb01708.x
10.1520/ACEM20180091
10.1038/srep44552
10.1016/j.carbpol.2010.10.061
10.1016/j.jhydrol.2009.04.020
10.1002/app.20571
10.18520/cs/v111/i11/1773-1779
10.1016/j.geoderma.2012.03.002
10.2136/vzj2018.11.0205
10.1002/clen.201000017
10.1002/clen.201700251
10.1002/jsfa.2740351110
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114310
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114310
S001670611932840X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-17943b64e493d790c59d084774a2b0add2e4d781250928d2ea5e1abb3c15ce663
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 04:15:51 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Fri Feb 23 02:48:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water-absorbing polymer
Soil texture
Plant available water
Amendment
Soil suction
Field capacity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-17943b64e493d790c59d084774a2b0add2e4d781250928d2ea5e1abb3c15ce663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388747213
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388747213
crossref_citationtrail_10_1016_j_geoderma_2020_114310
crossref_primary_10_1016_j_geoderma_2020_114310
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bowman, Evans (b0090) 1991; 26
METER Group, Inc. (2017). Operator’s manual, 5TM ECH2O Water content and temperature sensor, Pullman, WA.
UMS GmbH (Umwelt-Monitoring-Systeme). (2001). T5 user manual, Munich, Germany.
ASTM (2017). D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA, USA: ASTM international.
Lentz (b0235) 2015; 241
Bhardwaj, Shainberg, Goldstein, Warrington, Levy (b0080) 2007; 71
Rahmati, Pohlmeier, Abasiyan, Weihermüller, Vereecken (b0305) 2019; 18, No
Orikiriza, Agaba, Eilu, Kabasa, Worbes, Hüttermann (b0300) 2013; 4
Akhter, Mahmood, Malik, Mardan, Ahmad, Iqbal (b0020) 2004; 50
ASTM (2018). D7503: Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils. West Conshohocken, PA, USA: ASTM international.
El-Asmar, Jaafar, Bashour, Farran, Saoud (b0130) 2017; 45
Bao, Ma, Li (b0070) 2011; 84
Colman (b0120) 1947; 63
Veihmeyer, Hendrickson (b0355) 1931; 32
Narjary, Aggarwal, Singh, Chakraborty, Singh (b0290) 2012; 187
Feddes (b0145) 1982
Banedjschafie, Durner (b0065) 2015; 178
Kabiri, Omidian, Zohuriaan-Mehr, Doroudiani (b0210) 2011; 32
Shaikh, Yamsani, Sekharan, Rakesh (b0330) 2019; 8
Zhuang, Li, Liu (b0395) 2013; Vol. 2, No. S1
Burger, Shackelford (b0095) 2001; 38
Islam, Hu, Mao, Mao, Eneji, Xue (b0190) 2011; 91
Mohawesh, Durner (b0280) 2017
Rivers, Shipp (b0310) 1977; 126
Saha, Rattan, Sreedeep, Manna (b0315) 2020
ASTM (2011). D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA, USA: ASTM international.
Lu, N., Khorshidi, M. (2015). Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. Geotech. Geoenviron. Eng. 141, No. 8.
Wei, Durian (b0360) 2013; 87
Ismail, Irani, Ahmad (b0185) 2013; 62
Koupai, Eslamian, Kazemi (b0225) 2008; 8
Choudhary, AI-Omran, Shalaby (b0115) 1998; 3
Liang, Du, Ma, Shen, Wu, Zhou (b0245) 2018; 10
Jamison (b0195) 1956; 81
Zhang, Chen (b0385) 2005; 131
Dorraji, Golchin, Ahmadi (b0125) 2010; 38
Sepaskhah, Shahabizad (b0325) 2010; 106
Liao, Wu, Ren, Yang (b0250) 2016
Cheng, Pei, Wang, Hu (b0110) 2017; 7
Johnson (b0205) 1984; 35
Jamison, Kroth (b0200) 1958; 22
ASTM (2014). D854: Standard test method for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA: ASTM international.
Emami, Astaraei (b0140) 2012; 14
Kalhapure, Kumar, Singh, Pandey (b0220) 2016; 111
Chang, Prasidhi, Im, Shin, Cho (b0105) 2015; 253
Zhang, Cheng, Zhao, Liu, Hu, Li (bib396) 2014; 62
Bian, Zeng, Deng, Li (b0085) 2018; 10
USDA, N. (2010). Keys to soil taxonomy. USDA, Washington DC, 197-240.
Shi, Li, Shao, Deng, Wang, Li, Sun, Zhang, Zhu, Zhang, Zheng (b0340) 2010; 124
Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1—Physical and mineralogical methods, 901-926.
Hüttermann, Zommorodi, Reise (b0175) 1999; 50
Wu, Zhang, Liu, Yao (b0370) 2012; 87
Fullen, Catt (b0155) 2014
Galeş, Trincă, Cazacu, Peptu, Jităreanu (b0160) 2016; 267
Woodhouse, Johnson (b0365) 1991; 20
Laird, Fleming, Davis, Horton, Wang, Karlen (b0230) 2010; 158
Nimmo (b0295) 2004; 3
Lu, N., Likos, W. (2004). Unsaturated Soil Mechanics. New York.
Mahdavinia, Pourjavadi, Hosseinzadeh, Zohuriaan (b0265) 2004; 40
Xiao, Yu, Xie, Bao, Liu, Ji, Chen (b0375) 2017; 309
Al-Darby (b0025) 1996; 9
Sekharan, Gadi, Bordoloi, Saha, Kumar, Hazra, Garg (b0320) 2019
Abedi-Koupai, Sohrab, Swarbrick (b0005) 2008; 31
Sharma, Kaith, Kumar, Kalia, Kumar, Swart (b0335) 2014; 232
Inbar, Ben-Hur, Sternberg, Lado (b0180) 2015; 239
Zhang, Obringer, Wei, Chen, Niyogi (b0390) 2017; 7
Greenland (b0165) 1981; 32
METER Group, Inc (b0275) 2019
Bhardwaj, McLaughlin, Shainberg, Levy (b0075) 2009; 73
Kala (b0215) 2017; 5
Abrisham, Jafari, Tavili, Rabii, Zare Chahoki, Zare, Egan, Yazdanshenas, Ghasemian, Tahmoures (b0010) 2018; 32
ASTM (2007). D422-63: Standard test method for particle-size analysis of soils. West Conshohocken, PA, USA: ASTM international.
Feng, Bai, Ding, Wang, Suo (b0150) 2014; 53
Yang, Yang, Chen, Guo, Li (b0380) 2014; 62
Agaba, Baguma Orikiriza, Osoto Esegu, Obua, Kabasa, Hüttermann (b0015) 2010; 38
El-Rehim, Hegazy, El-Mohdy (b0135) 2004; 93
Montesano, Parente, Santamaria, Sannino, Serio (b0285) 2015; 4
Andry, Yamamoto, Irie, Moritani, Inoue, Fujiyama (b0030) 2009; 373
Hüttermann (10.1016/j.geoderma.2020.114310_b0175) 1999; 50
10.1016/j.geoderma.2020.114310_b0035
Galeş (10.1016/j.geoderma.2020.114310_b0160) 2016; 267
Mohawesh (10.1016/j.geoderma.2020.114310_b0280) 2017
Feddes (10.1016/j.geoderma.2020.114310_b0145) 1982
Greenland (10.1016/j.geoderma.2020.114310_b0165) 1981; 32
Johnson (10.1016/j.geoderma.2020.114310_b0205) 1984; 35
Bhardwaj (10.1016/j.geoderma.2020.114310_b0080) 2007; 71
10.1016/j.geoderma.2020.114310_b0350
10.1016/j.geoderma.2020.114310_b0270
Rivers (10.1016/j.geoderma.2020.114310_b0310) 1977; 126
Abedi-Koupai (10.1016/j.geoderma.2020.114310_b0005) 2008; 31
Feng (10.1016/j.geoderma.2020.114310_b0150) 2014; 53
Emami (10.1016/j.geoderma.2020.114310_b0140) 2012; 14
Shi (10.1016/j.geoderma.2020.114310_b0340) 2010; 124
Bhardwaj (10.1016/j.geoderma.2020.114310_b0075) 2009; 73
Kalhapure (10.1016/j.geoderma.2020.114310_b0220) 2016; 111
10.1016/j.geoderma.2020.114310_b0045
Lentz (10.1016/j.geoderma.2020.114310_b0235) 2015; 241
Burger (10.1016/j.geoderma.2020.114310_b0095) 2001; 38
Cheng (10.1016/j.geoderma.2020.114310_b0110) 2017; 7
Al-Darby (10.1016/j.geoderma.2020.114310_b0025) 1996; 9
Andry (10.1016/j.geoderma.2020.114310_b0030) 2009; 373
Nimmo (10.1016/j.geoderma.2020.114310_b0295) 2004; 3
Liang (10.1016/j.geoderma.2020.114310_b0245) 2018; 10
Mahdavinia (10.1016/j.geoderma.2020.114310_b0265) 2004; 40
Jamison (10.1016/j.geoderma.2020.114310_b0200) 1958; 22
Laird (10.1016/j.geoderma.2020.114310_b0230) 2010; 158
Inbar (10.1016/j.geoderma.2020.114310_b0180) 2015; 239
Zhang (10.1016/j.geoderma.2020.114310_b0385) 2005; 131
Rahmati (10.1016/j.geoderma.2020.114310_b0305) 2019; 18, No
Zhuang (10.1016/j.geoderma.2020.114310_b0395) 2013; Vol. 2, No. S1
10.1016/j.geoderma.2020.114310_b0040
Zhang (10.1016/j.geoderma.2020.114310_bib396) 2014; 62
Veihmeyer (10.1016/j.geoderma.2020.114310_b0355) 1931; 32
Orikiriza (10.1016/j.geoderma.2020.114310_b0300) 2013; 4
Fullen (10.1016/j.geoderma.2020.114310_b0155) 2014
Koupai (10.1016/j.geoderma.2020.114310_b0225) 2008; 8
Sepaskhah (10.1016/j.geoderma.2020.114310_b0325) 2010; 106
10.1016/j.geoderma.2020.114310_b0255
10.1016/j.geoderma.2020.114310_b0055
Colman (10.1016/j.geoderma.2020.114310_b0120) 1947; 63
Wei (10.1016/j.geoderma.2020.114310_b0360) 2013; 87
Bian (10.1016/j.geoderma.2020.114310_b0085) 2018; 10
Kala (10.1016/j.geoderma.2020.114310_b0215) 2017; 5
Abrisham (10.1016/j.geoderma.2020.114310_b0010) 2018; 32
Kabiri (10.1016/j.geoderma.2020.114310_b0210) 2011; 32
Bowman (10.1016/j.geoderma.2020.114310_b0090) 1991; 26
Ismail (10.1016/j.geoderma.2020.114310_b0185) 2013; 62
Wu (10.1016/j.geoderma.2020.114310_b0370) 2012; 87
Montesano (10.1016/j.geoderma.2020.114310_b0285) 2015; 4
Dorraji (10.1016/j.geoderma.2020.114310_b0125) 2010; 38
Saha (10.1016/j.geoderma.2020.114310_b0315) 2020
El-Asmar (10.1016/j.geoderma.2020.114310_b0130) 2017; 45
Woodhouse (10.1016/j.geoderma.2020.114310_b0365) 1991; 20
Sharma (10.1016/j.geoderma.2020.114310_b0335) 2014; 232
Yang (10.1016/j.geoderma.2020.114310_b0380) 2014; 62
10.1016/j.geoderma.2020.114310_b0100
Jamison (10.1016/j.geoderma.2020.114310_b0195) 1956; 81
METER Group, Inc (10.1016/j.geoderma.2020.114310_b0275) 2019
Islam (10.1016/j.geoderma.2020.114310_b0190) 2011; 91
Liao (10.1016/j.geoderma.2020.114310_b0250) 2016
Zhang (10.1016/j.geoderma.2020.114310_b0390) 2017; 7
Akhter (10.1016/j.geoderma.2020.114310_b0020) 2004; 50
10.1016/j.geoderma.2020.114310_b0345
10.1016/j.geoderma.2020.114310_b0060
Banedjschafie (10.1016/j.geoderma.2020.114310_b0065) 2015; 178
Choudhary (10.1016/j.geoderma.2020.114310_b0115) 1998; 3
El-Rehim (10.1016/j.geoderma.2020.114310_b0135) 2004; 93
Agaba (10.1016/j.geoderma.2020.114310_b0015) 2010; 38
Bao (10.1016/j.geoderma.2020.114310_b0070) 2011; 84
10.1016/j.geoderma.2020.114310_b0260
Sekharan (10.1016/j.geoderma.2020.114310_b0320) 2019
Shaikh (10.1016/j.geoderma.2020.114310_b0330) 2019; 8
Narjary (10.1016/j.geoderma.2020.114310_b0290) 2012; 187
Xiao (10.1016/j.geoderma.2020.114310_b0375) 2017; 309
Chang (10.1016/j.geoderma.2020.114310_b0105) 2015; 253
References_xml – volume: 14
  start-page: 1625
  year: 2012
  end-page: 2636
  ident: b0140
  article-title: Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil
  publication-title: J. Agr. Sci. Tech.
– volume: 10
  start-page: 1069
  year: 2018
  ident: b0085
  article-title: The role of superabsorbent polymer on strength and microstructure development in cemented dredged clay with high water content
  publication-title: Polym.
– volume: 38
  start-page: 53
  year: 2001
  end-page: 66
  ident: b0095
  article-title: Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions
  publication-title: Can. Geotech. J.
– volume: 373
  start-page: 177
  year: 2009
  end-page: 183
  ident: b0030
  article-title: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality
  publication-title: J. Hydrol.
– year: 2014
  ident: b0155
  article-title: Soil management: problems and solutions
– volume: 81
  start-page: 459
  year: 1956
  end-page: 472
  ident: b0195
  article-title: Pertinent factors governing the availability of soil moisture to plants
  publication-title: Soil Sci.
– volume: 26
  start-page: 1063
  year: 1991
  end-page: 1065
  ident: b0090
  article-title: Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium
  publication-title: HortScience
– volume: 106
  start-page: 513
  year: 2010
  end-page: 520
  ident: b0325
  article-title: Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator
  publication-title: Biosyst. Eng.
– volume: 91
  start-page: 1998
  year: 2011
  end-page: 2005
  ident: b0190
  article-title: Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters
  publication-title: J. Sci. Food Agric.
– volume: 239
  start-page: 107
  year: 2015
  end-page: 114
  ident: b0180
  article-title: Using polyacrylamide to mitigate post-fire soil erosion
  publication-title: Geoderma
– volume: 232
  start-page: 45
  year: 2014
  end-page: 55
  ident: b0335
  article-title: Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels
  publication-title: Geoderma
– reference: ASTM (2014). D854: Standard test method for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA: ASTM international.
– reference: ASTM (2007). D422-63: Standard test method for particle-size analysis of soils. West Conshohocken, PA, USA: ASTM international.
– volume: 3
  start-page: 295
  year: 2004
  end-page: 303
  ident: b0295
  article-title: Porosity and pore size distribution
  publication-title: Encyclopedia of Soils in the Environment
– start-page: 37
  year: 2016
  ident: b0250
  article-title: Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil
  publication-title: J. Nanomater.
– volume: 10
  start-page: 1296
  year: 2018
  ident: b0245
  article-title: Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS
  publication-title: Polym.
– volume: 4
  start-page: 451
  year: 2015
  end-page: 458
  ident: b0285
  article-title: Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth
  publication-title: Agric. Agric. Sci. Procedia
– volume: 62
  start-page: 27
  year: 2014
  end-page: 32
  ident: b0380
  article-title: Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering
  publication-title: Ecol. Eng.
– volume: 71
  start-page: 406
  year: 2007
  end-page: 412
  ident: b0080
  article-title: Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 62
  start-page: 411
  year: 2013
  end-page: 420
  ident: b0185
  article-title: Starch-based hydrogels: present status and applications
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
– volume: 53
  start-page: 12760
  year: 2014
  end-page: 12769
  ident: b0150
  article-title: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer
  publication-title: Ind. Eng. Chem. Res.
– reference: USDA, N. (2010). Keys to soil taxonomy. USDA, Washington DC, 197-240.
– volume: 50
  start-page: 463
  year: 2004
  end-page: 469
  ident: b0020
  article-title: Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea
  publication-title: Plant Soil and Environ.
– volume: 9
  start-page: 15
  year: 1996
  end-page: 28
  ident: b0025
  article-title: The hydraulic properties of a sandy soil treated with gel-forming soil conditioner
  publication-title: Soil Technol.
– volume: 178
  start-page: 798
  year: 2015
  end-page: 806
  ident: b0065
  article-title: Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 87
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0360
  article-title: Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model
  publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
– volume: 20
  start-page: 63
  year: 1991
  end-page: 70
  ident: b0365
  article-title: Effect of superabsorbent polymers on survival and growth of crop seedlings
  publication-title: Agric. Water Manag.
– volume: 87
  start-page: 2519
  year: 2012
  end-page: 2525
  ident: b0370
  article-title: Synthesis and characterization of a novel cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste
  publication-title: Carbohydr. Polym.
– volume: 131
  start-page: 666
  year: 2005
  end-page: 670
  ident: b0385
  article-title: Predicting bimodal soil–water characteristic curves
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 35
  start-page: 1196
  year: 1984
  end-page: 1200
  ident: b0205
  article-title: The effects of gel-forming polyacrylamides on moisture storage in sandy soils
  publication-title: J. Sci. Food Agric.
– volume: 73
  start-page: 910
  year: 2009
  end-page: 918
  ident: b0075
  article-title: Hydraulic characteristics of depositional seals as affected by exchangeable cations, clay mineralogy, and polyacrylamide
  publication-title: Soil Sci. Soc. Am. J.
– volume: 7
  start-page: 42036
  year: 2017
  end-page: 42046
  ident: b0110
  article-title: Advances in chitosan-based superabsorbent hydrogels
  publication-title: RSC Adv.
– volume: 241
  start-page: 289
  year: 2015
  end-page: 294
  ident: b0235
  article-title: Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam
  publication-title: Geoderma
– volume: 32
  start-page: 277
  year: 2011
  end-page: 289
  ident: b0210
  article-title: Superabsorbent hydrogel composites and nanocomposites: a review
  publication-title: Polym. Compos.
– year: 2017
  ident: b0280
  article-title: Effect of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness
  publication-title: Pedosphere
– volume: 187
  start-page: 94
  year: 2012
  end-page: 101
  ident: b0290
  article-title: Water availability in different soils in relation to hydrogel application
  publication-title: Geoderma
– volume: 22
  start-page: 189
  year: 1958
  end-page: 192
  ident: b0200
  article-title: Available Moisture Storage Capacity in Relation to Textural Composition and Organic Matter Content of Several Missouri Soils 1
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 194
  year: 1982
  end-page: 209
  ident: b0145
  article-title: Simulation of field water use and crop yield
  publication-title: Pudoc
– reference: METER Group, Inc. (2017). Operator’s manual, 5TM ECH2O Water content and temperature sensor, Pullman, WA.
– volume: 18, No
  start-page: 1
  year: 2019
  ident: b0305
  article-title: Water retention and pore size distribution of a biopolymeric-amended loam soil
  publication-title: Vadose Zone J.
– volume: 3
  start-page: 69
  year: 1998
  end-page: 74
  ident: b0115
  article-title: Physical properties of sandy soil affected by soil conditioner under wetting and drying cycles
  publication-title: J. Agric. Mar. Sci.
– reference: ASTM (2017). D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA, USA: ASTM international.
– volume: 62
  start-page: 8867
  year: 2014
  end-page: 8874
  ident: bib396
  article-title: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel
  publication-title: J. Agric. Food Chem.
– volume: 7
  start-page: 44552
  year: 2017
  ident: b0390
  article-title: Droughts in India from 1981 to 2013 and Implications to Wheat Production
  publication-title: Scientific reports
– volume: 38
  start-page: 584
  year: 2010
  end-page: 591
  ident: b0125
  article-title: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils
  publication-title: Clean - Soil, Air, Water
– start-page: 313
  year: 2019
  end-page: 331
  ident: b0320
  article-title: Sustainable geotechnics: a bio-geotechnical perspective
  publication-title: Frontiers in Geotechnical Engineering
– volume: 32
  start-page: 181
  year: 1931
  end-page: 194
  ident: b0355
  article-title: The moisture equivalent as a measure of the field capacity of soils
  publication-title: Soil Sci.
– volume: Vol. 2, No. S1
  start-page: p. S11).
  year: 2013
  ident: b0395
  publication-title: Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. In SpringerPlus
– volume: 32
  start-page: 301
  year: 1981
  end-page: 322
  ident: b0165
  article-title: Soil management and soil degradation
  publication-title: J. Soil Sci.
– start-page: 185
  year: 2020
  end-page: 195
  ident: b0315
  article-title: Effect of Water Absorbing Polymer Amendment on Water Retention Properties of Cohesionless Soil
  publication-title: Advances in Computer Methods and Geomechanics
– volume: 8
  start-page: 67
  year: 2008
  end-page: 75
  ident: b0225
  article-title: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices
  publication-title: Ecohydrol. Hydrobiol.
– reference: UMS GmbH (Umwelt-Monitoring-Systeme). (2001). T5 user manual, Munich, Germany.
– volume: 4
  start-page: 713
  year: 2013
  end-page: 721
  ident: b0300
  article-title: Effects of hydrogels on tree seedling performance in temperate soils before and after water stress
  publication-title: J. Environ. Prot.
– year: 2019
  ident: b0275
  article-title: Operator’s manual, TEROS21
– reference: Lu, N., Likos, W. (2004). Unsaturated Soil Mechanics. New York.
– volume: 40
  start-page: 1399
  year: 2004
  end-page: 1407
  ident: b0265
  article-title: Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties
  publication-title: Eur. Polym. J.
– volume: 93
  start-page: 1360
  year: 2004
  end-page: 1371
  ident: b0135
  article-title: Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance
  publication-title: J. Appl. Polym. Sci.
– volume: 32
  start-page: 407
  year: 2018
  end-page: 420
  ident: b0010
  article-title: Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation
  publication-title: Arid Land Res. Manag.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: b0230
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– reference: ASTM (2018). D7503: Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils. West Conshohocken, PA, USA: ASTM international.
– volume: 267
  start-page: 102
  year: 2016
  end-page: 111
  ident: b0160
  article-title: Effects of a hydrogel on the cambic chernozem soil's hydrophysic indicators and plant morphophysiological parameters
  publication-title: Geoderma
– volume: 8
  start-page: 322
  year: 2019
  end-page: 335
  ident: b0330
  article-title: Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system
  publication-title: Adv. Civ. Eng. Mater.
– volume: 124
  start-page: 268
  year: 2010
  end-page: 273
  ident: b0340
  article-title: Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis
  publication-title: Scientia horticulturae
– volume: 31
  start-page: 317
  year: 2008
  end-page: 331
  ident: b0005
  article-title: Evaluation of hydrogel application on soil water retention characteristics
  publication-title: J. Plant Nutr.
– volume: 50
  start-page: 295
  year: 1999
  end-page: 304
  ident: b0175
  article-title: Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought
  publication-title: Soil Till. Res.
– reference: Lu, N., Khorshidi, M. (2015). Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. Geotech. Geoenviron. Eng. 141, No. 8.
– volume: 309
  start-page: 607
  year: 2017
  end-page: 616
  ident: b0375
  article-title: One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer
  publication-title: Chem. Eng. J.
– volume: 126
  start-page: 94
  year: 1977
  end-page: 100
  ident: b0310
  article-title: Soil water retention as related to particle size in selected sands and loamy sands
  publication-title: Soil Sci.
– volume: 253
  start-page: 39
  year: 2015
  end-page: 47
  ident: b0105
  article-title: Soil treatment using microbial biopolymers for anti-desertification purposes
  publication-title: Geoderma
– volume: 63
  start-page: 277
  year: 1947
  end-page: 284
  ident: b0120
  article-title: A laboratory procedure for determining the field capacity of soils
  publication-title: Soil Sci.
– reference: ASTM (2011). D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA, USA: ASTM international.
– reference: Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1—Physical and mineralogical methods, 901-926.
– volume: 5
  start-page: 43
  year: 2017
  end-page: 48
  ident: b0215
  article-title: Environmental and Socioeconomic Impacts of Drought in India: Lessons for Drought Management
  publication-title: Sci. Educ.
– volume: 38
  start-page: 328
  year: 2010
  end-page: 335
  ident: b0015
  article-title: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions
  publication-title: Clean-Soil, Air, Water
– volume: 45
  start-page: 1700251
  year: 2017
  ident: b0130
  article-title: Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils
  publication-title: Clean-Soil, Air, Water.
– volume: 84
  start-page: 76
  year: 2011
  end-page: 82
  ident: b0070
  article-title: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel
  publication-title: Carbohydr. Polym.
– volume: 111
  start-page: 1773
  year: 2016
  end-page: 1779
  ident: b0220
  article-title: Hydrogels: a boon for increasing agricultural productivity in water-stressed environment
  publication-title: Current Science
– ident: 10.1016/j.geoderma.2020.114310_b0035
– ident: 10.1016/j.geoderma.2020.114310_b0060
– volume: 20
  start-page: 63
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2020.114310_b0365
  article-title: Effect of superabsorbent polymers on survival and growth of crop seedlings
  publication-title: Agric. Water Manag.
  doi: 10.1016/0378-3774(91)90035-H
– volume: 4
  start-page: 451
  year: 2015
  ident: 10.1016/j.geoderma.2020.114310_b0285
  article-title: Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth
  publication-title: Agric. Agric. Sci. Procedia
– volume: 7
  start-page: 42036
  issue: 67
  year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0110
  article-title: Advances in chitosan-based superabsorbent hydrogels
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07104C
– volume: 31
  start-page: 317
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2020.114310_b0005
  article-title: Evaluation of hydrogel application on soil water retention characteristics
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160701853928
– volume: 62
  start-page: 8867
  issue: 35
  year: 2014
  ident: 10.1016/j.geoderma.2020.114310_bib396
  article-title: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf5021279
– year: 2019
  ident: 10.1016/j.geoderma.2020.114310_b0275
– volume: 131
  start-page: 666
  issue: 5
  year: 2005
  ident: 10.1016/j.geoderma.2020.114310_b0385
  article-title: Predicting bimodal soil–water characteristic curves
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2005)131:5(666)
– volume: 38
  start-page: 328
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2020.114310_b0015
  article-title: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions
  publication-title: Clean-Soil, Air, Water
  doi: 10.1002/clen.200900245
– volume: 239
  start-page: 107
  year: 2015
  ident: 10.1016/j.geoderma.2020.114310_b0180
  article-title: Using polyacrylamide to mitigate post-fire soil erosion
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.026
– volume: 232
  start-page: 45
  year: 2014
  ident: 10.1016/j.geoderma.2020.114310_b0335
  article-title: Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.035
– volume: 62
  start-page: 27
  year: 2014
  ident: 10.1016/j.geoderma.2020.114310_b0380
  article-title: Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.10.019
– volume: 26
  start-page: 1063
  issue: 8
  year: 1991
  ident: 10.1016/j.geoderma.2020.114310_b0090
  article-title: Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium
  publication-title: HortScience
  doi: 10.21273/HORTSCI.26.8.1063
– year: 2014
  ident: 10.1016/j.geoderma.2020.114310_b0155
– volume: 9
  start-page: 15
  year: 1996
  ident: 10.1016/j.geoderma.2020.114310_b0025
  article-title: The hydraulic properties of a sandy soil treated with gel-forming soil conditioner
  publication-title: Soil Technol.
  doi: 10.1016/0933-3630(95)00030-5
– volume: 38
  start-page: 53
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2020.114310_b0095
  article-title: Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions
  publication-title: Can. Geotech. J.
  doi: 10.1139/t00-084
– volume: 14
  start-page: 1625
  year: 2012
  ident: 10.1016/j.geoderma.2020.114310_b0140
  article-title: Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil
  publication-title: J. Agr. Sci. Tech.
– volume: 32
  start-page: 277
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2020.114310_b0210
  article-title: Superabsorbent hydrogel composites and nanocomposites: a review
  publication-title: Polym. Compos.
  doi: 10.1002/pc.21046
– volume: 50
  start-page: 295
  year: 1999
  ident: 10.1016/j.geoderma.2020.114310_b0175
  article-title: Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought
  publication-title: Soil Till. Res.
  doi: 10.1016/S0167-1987(99)00023-9
– volume: 124
  start-page: 268
  issue: 2
  year: 2010
  ident: 10.1016/j.geoderma.2020.114310_b0340
  article-title: Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis
  publication-title: Scientia horticulturae
  doi: 10.1016/j.scienta.2009.12.031
– volume: 5
  start-page: 43
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0215
  article-title: Environmental and Socioeconomic Impacts of Drought in India: Lessons for Drought Management
  publication-title: Sci. Educ.
– volume: 178
  start-page: 798
  issue: 5
  year: 2015
  ident: 10.1016/j.geoderma.2020.114310_b0065
  article-title: Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201500128
– ident: 10.1016/j.geoderma.2020.114310_b0255
  doi: 10.1061/(ASCE)GT.1943-5606.0001325
– volume: 106
  start-page: 513
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2020.114310_b0325
  article-title: Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2010.05.019
– volume: 10
  start-page: 1296
  issue: 12
  year: 2018
  ident: 10.1016/j.geoderma.2020.114310_b0245
  article-title: Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS
  publication-title: Polym.
  doi: 10.3390/polym10121296
– volume: 253
  start-page: 39
  year: 2015
  ident: 10.1016/j.geoderma.2020.114310_b0105
  article-title: Soil treatment using microbial biopolymers for anti-desertification purposes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.006
– volume: 91
  start-page: 1998
  issue: 11
  year: 2011
  ident: 10.1016/j.geoderma.2020.114310_b0190
  article-title: Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.4408
– volume: 22
  start-page: 189
  issue: 3
  year: 1958
  ident: 10.1016/j.geoderma.2020.114310_b0200
  article-title: Available Moisture Storage Capacity in Relation to Textural Composition and Organic Matter Content of Several Missouri Soils 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1958.03615995002200030001x
– volume: 63
  start-page: 277
  issue: 4
  year: 1947
  ident: 10.1016/j.geoderma.2020.114310_b0120
  article-title: A laboratory procedure for determining the field capacity of soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194704000-00003
– volume: 71
  start-page: 406
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2020.114310_b0080
  article-title: Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0138
– volume: 3
  start-page: 69
  issue: 2
  year: 1998
  ident: 10.1016/j.geoderma.2020.114310_b0115
  article-title: Physical properties of sandy soil affected by soil conditioner under wetting and drying cycles
  publication-title: J. Agric. Mar. Sci.
  doi: 10.24200/jams.vol3iss2pp69-74
– volume: 158
  start-page: 443
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2020.114310_b0230
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 87
  start-page: 1
  issue: 5
  year: 2013
  ident: 10.1016/j.geoderma.2020.114310_b0360
  article-title: Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model
  publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.87.053013
– volume: 309
  start-page: 607
  year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0375
  article-title: One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.101
– year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0280
  article-title: Effect of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness
  publication-title: Pedosphere
– volume: 50
  start-page: 463
  issue: 10
  year: 2004
  ident: 10.1016/j.geoderma.2020.114310_b0020
  article-title: Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea
  publication-title: Plant Soil and Environ.
  doi: 10.17221/4059-PSE
– volume: 8
  start-page: 67
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2020.114310_b0225
  article-title: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.2478/v10104-009-0005-0
– volume: 73
  start-page: 910
  issue: 3
  year: 2009
  ident: 10.1016/j.geoderma.2020.114310_b0075
  article-title: Hydraulic characteristics of depositional seals as affected by exchangeable cations, clay mineralogy, and polyacrylamide
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0426
– volume: 40
  start-page: 1399
  issue: 7
  year: 2004
  ident: 10.1016/j.geoderma.2020.114310_b0265
  article-title: Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2004.01.039
– volume: 126
  start-page: 94
  year: 1977
  ident: 10.1016/j.geoderma.2020.114310_b0310
  article-title: Soil water retention as related to particle size in selected sands and loamy sands
  publication-title: Soil Sci.
  doi: 10.1097/00010694-197808000-00005
– volume: 267
  start-page: 102
  year: 2016
  ident: 10.1016/j.geoderma.2020.114310_b0160
  article-title: Effects of a hydrogel on the cambic chernozem soil's hydrophysic indicators and plant morphophysiological parameters
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.008
– ident: 10.1016/j.geoderma.2020.114310_b0100
– volume: 4
  start-page: 713
  issue: 7
  year: 2013
  ident: 10.1016/j.geoderma.2020.114310_b0300
  article-title: Effects of hydrogels on tree seedling performance in temperate soils before and after water stress
  publication-title: J. Environ. Prot.
  doi: 10.4236/jep.2013.47082
– volume: Vol. 2, No. S1
  start-page: p. S11).
  year: 2013
  ident: 10.1016/j.geoderma.2020.114310_b0395
  publication-title: Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. In SpringerPlus
– volume: 81
  start-page: 459
  issue: 6
  year: 1956
  ident: 10.1016/j.geoderma.2020.114310_b0195
  article-title: Pertinent factors governing the availability of soil moisture to plants
  publication-title: Soil Sci.
  doi: 10.1097/00010694-195606000-00005
– ident: 10.1016/j.geoderma.2020.114310_b0270
– ident: 10.1016/j.geoderma.2020.114310_b0345
– volume: 10
  start-page: 1069
  issue: 10
  year: 2018
  ident: 10.1016/j.geoderma.2020.114310_b0085
  article-title: The role of superabsorbent polymer on strength and microstructure development in cemented dredged clay with high water content
  publication-title: Polym.
  doi: 10.3390/polym10101069
– volume: 62
  start-page: 411
  issue: 7
  year: 2013
  ident: 10.1016/j.geoderma.2020.114310_b0185
  article-title: Starch-based hydrogels: present status and applications
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2012.719141
– volume: 3
  start-page: 295
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2020.114310_b0295
  article-title: Porosity and pore size distribution
  publication-title: Encyclopedia of Soils in the Environment
– volume: 241
  start-page: 289
  year: 2015
  ident: 10.1016/j.geoderma.2020.114310_b0235
  article-title: Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.019
– start-page: 185
  year: 2020
  ident: 10.1016/j.geoderma.2020.114310_b0315
  article-title: Effect of Water Absorbing Polymer Amendment on Water Retention Properties of Cohesionless Soil
– volume: 87
  start-page: 2519
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2020.114310_b0370
  article-title: Synthesis and characterization of a novel cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.11.028
– ident: 10.1016/j.geoderma.2020.114310_b0260
– ident: 10.1016/j.geoderma.2020.114310_b0350
– volume: 53
  start-page: 12760
  issue: 32
  year: 2014
  ident: 10.1016/j.geoderma.2020.114310_b0150
  article-title: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie502248n
– start-page: 313
  year: 2019
  ident: 10.1016/j.geoderma.2020.114310_b0320
  article-title: Sustainable geotechnics: a bio-geotechnical perspective
– volume: 32
  start-page: 407
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2020.114310_b0010
  article-title: Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation
  publication-title: Arid Land Res. Manag.
  doi: 10.1080/15324982.2018.1506526
– volume: 32
  start-page: 181
  issue: 3
  year: 1931
  ident: 10.1016/j.geoderma.2020.114310_b0355
  article-title: The moisture equivalent as a measure of the field capacity of soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193109000-00003
– volume: 32
  start-page: 301
  issue: 3
  year: 1981
  ident: 10.1016/j.geoderma.2020.114310_b0165
  article-title: Soil management and soil degradation
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1981.tb01708.x
– volume: 8
  start-page: 322
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114310_b0330
  article-title: Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system
  publication-title: Adv. Civ. Eng. Mater.
  doi: 10.1520/ACEM20180091
– volume: 7
  start-page: 44552
  year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0390
  article-title: Droughts in India from 1981 to 2013 and Implications to Wheat Production
  publication-title: Scientific reports
  doi: 10.1038/srep44552
– ident: 10.1016/j.geoderma.2020.114310_b0040
– volume: 84
  start-page: 76
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2020.114310_b0070
  article-title: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.10.061
– volume: 373
  start-page: 177
  year: 2009
  ident: 10.1016/j.geoderma.2020.114310_b0030
  article-title: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.04.020
– volume: 93
  start-page: 1360
  issue: 3
  year: 2004
  ident: 10.1016/j.geoderma.2020.114310_b0135
  article-title: Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20571
– volume: 111
  start-page: 1773
  issue: 11
  year: 2016
  ident: 10.1016/j.geoderma.2020.114310_b0220
  article-title: Hydrogels: a boon for increasing agricultural productivity in water-stressed environment
  publication-title: Current Science
  doi: 10.18520/cs/v111/i11/1773-1779
– ident: 10.1016/j.geoderma.2020.114310_b0045
– volume: 187
  start-page: 94
  year: 2012
  ident: 10.1016/j.geoderma.2020.114310_b0290
  article-title: Water availability in different soils in relation to hydrogel application
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.03.002
– start-page: 37
  year: 2016
  ident: 10.1016/j.geoderma.2020.114310_b0250
  article-title: Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil
  publication-title: J. Nanomater.
– volume: 18, No
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114310_b0305
  article-title: Water retention and pore size distribution of a biopolymeric-amended loam soil
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2018.11.0205
– volume: 38
  start-page: 584
  issue: 7
  year: 2010
  ident: 10.1016/j.geoderma.2020.114310_b0125
  article-title: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils
  publication-title: Clean - Soil, Air, Water
  doi: 10.1002/clen.201000017
– volume: 45
  start-page: 1700251
  issue: 7
  year: 2017
  ident: 10.1016/j.geoderma.2020.114310_b0130
  article-title: Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils
  publication-title: Clean-Soil, Air, Water.
  doi: 10.1002/clen.201700251
– start-page: 194
  year: 1982
  ident: 10.1016/j.geoderma.2020.114310_b0145
  article-title: Simulation of field water use and crop yield
  publication-title: Pudoc
– ident: 10.1016/j.geoderma.2020.114310_b0055
– volume: 35
  start-page: 1196
  year: 1984
  ident: 10.1016/j.geoderma.2020.114310_b0205
  article-title: The effects of gel-forming polyacrylamides on moisture storage in sandy soils
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740351110
SSID ssj0017020
Score 2.502762
Snippet •Quantified interactive effect of water absorbing polymer (WAP) and soil texture.•Experimental reasoning for low improvement of WAP in fine textured...
Past decades have witnessed the impact of climate change resulting in extreme drought conditions, which necessitates innovative and sustainable approaches to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114310
SubjectTerms Amendment
application rate
clay fraction
clay loam soils
climate change
coarse-textured soils
crosslinking
drought
drying
empirical models
Field capacity
fine-textured soils
guidelines
irrigation scheduling
irrigation water
particle size
Plant available water
polymers
sand
silt loam soils
soil amendments
Soil suction
Soil texture
texture
water binding capacity
water content
water use efficiency
Water-absorbing polymer
wilting
Title Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency
URI https://dx.doi.org/10.1016/j.geoderma.2020.114310
https://www.proquest.com/docview/2388747213
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhuTSHkrQp-eqiQg_NwV1LliX7uCwN25aGFhKyNyHZcvDi2It3NyGX_oD-6s7YcmhLIIdeDBIaYTTyzLP95omQ91mRGRYaFQjJHVzyHI95UYGNJMsLLmRi8NPAtws5uxJf5vF8i0yHWhikVfrY38f0Llr7nrFfzfGyLLHGl0kF6QghCLymzLGCXSjc5R9_PtI8mAq9NCOTAY7-o0p4AT7CA8c6_SHeyeZGWEn7dIL6J1R3-ed8j7z0wJFO-nvbJ1uufkV2JzetF89wr8mvHxuD3B-sXKIA7ChqQXRVUHeO9sQN2hT0HuBlS41dNa3FkcumeriFng_Xk-9nwaopK4p0EJiSNjVdVjAnNXemrLDKylsjw91hf53Tsm07nQ4YXLQ9M_vhgFydf7qczgJ_1kKQRSJeB51QnJXCiTTKVRpmcZqHkLmUMNyGEAS5E7kCNAAAgyfQMrFjxtooY3HmALa8Idt1U7tDQouM84LLxKJ4PVcuSVLhiihijuVCGXlE4mGBdeaFyPE8jEoPjLOFHhyj0TG6d8wRGT_aLXspjmct0sF_-q9NpSFfPGv7bnC4hicOf6OY2jWblQaQk8BLGGfR8X_Mf0JeYKtnnZ2S7XW7cW8B36ztqNvAI7Iz-fx1dvEb2Dv8wQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbp5tDmEPokj7ZRoYf2YNaSZck-LqFh81paSOjehGTLwcGxF-9uQv5CfnVnbDm0pZBDLwbLGmE08swna-YbQj5nRWZYaFQgJHdwyXMs86ICG0mWF1zIxOCvgfOZnF6Kk3k83yCHQy4MhlV629_b9M5a-5axn83xoiwxx5dJBe4IIQhsU-bPyCayU8Ujsjk5Pp3OHg8TVOjZGZkMUOC3ROFrUBPWHOsoiHjHnBthMu2_fdRf1rpzQUcvybbHjnTSv94rsuHq12RrctV6_gz3hjz8WBsM_8HkJQrYjiIdRJcIdetoH7tBm4LeAcJsqbHLprXYc9FU9zfQ8uXn5PvXYNmUFcWIEBiSNjVdVDAmNbemrDDRyktjkLvD9jqnZdt2VB3QuWj74Oz7t-Ty6NvF4TTw5RaCLBLxKui44qwUTqRRrtIwi9M8BOelhOE2BDvIncgVAALAGDyBOxM7ZqyNMhZnDpDLOzKqm9rtEFpknBdcJhb567lySZIKV0QRcywXyshdEg8TrDPPRY4lMSo9BJ1d60ExGhWje8XskvGj3KJn43hSIh30p_9YVxpcxpOynwaFa_jo8CTF1K5ZLzXgnAT2YZxFe_8x_gF5Pr04P9Nnx7PTffICn_RBaO_JaNWu3QeAOyv70S_nX3jE_3I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+interactive+effect+of+water+absorbing+polymer+%28WAP%29-soil+texture+on+plant+available+water+content+and+irrigation+frequency&rft.jtitle=Geoderma&rft.au=Saha%2C+Abhisekh&rft.au=Rattan%2C+Bharat&rft.au=Sekharan%2C+Sreedeep&rft.au=Manna%2C+Uttam&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=368&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114310&rft.externalDocID=S001670611932840X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon