Polymer materials for constructing therapeutical nanoparticles in photothermal therapy
Photothermal therapy (PTT) ablates tumors by thermal effects of photothermal agents (PTAs), and attracts wide attention due to the non‐invasive characteristic. The ideal PTAs are expected to have high photothermal conversion effect under NIR irradiation, as well as targeting abilities and good bioco...
Saved in:
Published in | Journal of polymer science (2020) Vol. 62; no. 2; pp. 324 - 337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.01.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photothermal therapy (PTT) ablates tumors by thermal effects of photothermal agents (PTAs), and attracts wide attention due to the non‐invasive characteristic. The ideal PTAs are expected to have high photothermal conversion effect under NIR irradiation, as well as targeting abilities and good biocompatibility satisfying the need of application in vivo. Nanoparticles (NPs) are commonly used as anti‐tumor materials, and plenty of researches on therapeutical NPs for PTT treatment have been developed. Among various building blocks for photothermal NPs, polymer materials for biomedical applications have great advantages due to their negligible toxicity, flexibility for functional modification, and ability to integrate multiple therapeutic strategies. This review focuses on the polymer materials utilized in photothermal NP designing, including their application as excellent carriers and powerful PTAs with great PTT effects. Furthermore, the synergy therapy based on polymeric nanoplatform for enhancing PTT therapeutic efficiency will be introduced. |
---|---|
AbstractList | Photothermal therapy (PTT) ablates tumors by thermal effects of photothermal agents (PTAs), and attracts wide attention due to the non‐invasive characteristic. The ideal PTAs are expected to have high photothermal conversion effect under NIR irradiation, as well as targeting abilities and good biocompatibility satisfying the need of application in vivo. Nanoparticles (NPs) are commonly used as anti‐tumor materials, and plenty of researches on therapeutical NPs for PTT treatment have been developed. Among various building blocks for photothermal NPs, polymer materials for biomedical applications have great advantages due to their negligible toxicity, flexibility for functional modification, and ability to integrate multiple therapeutic strategies. This review focuses on the polymer materials utilized in photothermal NP designing, including their application as excellent carriers and powerful PTAs with great PTT effects. Furthermore, the synergy therapy based on polymeric nanoplatform for enhancing PTT therapeutic efficiency will be introduced. |
Author | Zhang, Xian‐Zheng Li, Rui‐Lin Liu, Chuan‐Jun |
Author_xml | – sequence: 1 givenname: Rui‐Lin surname: Li fullname: Li, Rui‐Lin organization: Wuhan University – sequence: 2 givenname: Chuan‐Jun orcidid: 0000-0001-9543-7763 surname: Liu fullname: Liu, Chuan‐Jun email: cjliu@whu.edu.cn organization: Wuhan University – sequence: 3 givenname: Xian‐Zheng surname: Zhang fullname: Zhang, Xian‐Zheng email: xz-zhang@whu.edu.cn organization: Wuhan University |
BookMark | eNp9kEtLAzEUhYNUsGp3_oABt07NazLNshRfUGgX6jZkMolNmUnGTIrMvzdl1IWgq3su9zvnwjkHE-edBuAKwTmCEN92vpljiAlkFJ2AKWYU5xQxPvnRBTwDs77fw4STglHIpuB165uh1SFrZdTByqbPjA-Z8q6P4aCidW9Z3OkgO32IVskmc9L5Toa0NLrPrMu6nY_-yLTpOrLDJTg1KUvPvuYFeLm_e1495uvNw9Nquc4VocUi17XkGNGqklWtamWY0rVBZS1RjU3SNTS8kgqboqSUsRIxY7BSkPPKVKTU5AJcj7ld8O8H3Uex94fg0kuBOaKcFAUnicIjpYLv-6CNUDbKaL2LQdpGICiOFYpUofiuMJlufpm6YFsZhr9wMuIfttHDv6zYbtZLAjldkE9Z5Yft |
CitedBy_id | crossref_primary_10_1002_slct_202405001 |
Cites_doi | 10.1016/j.jconrel.2021.10.028 10.1021/acsnano.7b08725 10.1016/j.smim.2019.101304 10.1039/D0TB00289E 10.1016/j.addr.2016.05.022 10.1039/D1CC02168K 10.1126/sciadv.abe3588 10.1016/j.nantod.2020.101073 10.1016/j.jmst.2022.05.027 10.7150/thno.41317 10.1080/1061186X.2017.1365878 10.1186/s12951-022-01751-9 10.1038/pj.2015.117 10.1002/adfm.202002239 10.1002/pol.20220747 10.1002/adfm.201906311 10.1002/adfm.201700371 10.1039/C8QM00459E 10.1021/acsnano.6b06658 10.1016/j.addr.2022.114415 10.1016/j.cej.2021.130171 10.1021/jacs.7b07818 10.1038/s41467-019-09226-6 10.1016/j.biomaterials.2019.119304 10.1016/j.trecan.2021.04.008 10.1126/sciadv.abc4882 10.3390/molecules27010273 10.1007/s40820-019-0337-2 10.7150/thno.37198 10.1002/adma.201802368 10.1016/j.cclet.2020.11.029 10.3390/ijms23147909 10.1038/s41467-020-15427-1 10.3109/02656736.2016.1157216 10.1038/s41377-020-00388-3 10.1021/acs.chemmater.6b02604 10.1002/smll.202301670 10.1016/j.molcel.2020.05.034 10.1002/adma.202101410 10.1021/acsnano.9b03910 10.1016/j.carbpol.2023.120972 10.1186/s12951-020-00755-7 10.1002/adma.201900192 10.1016/j.cej.2022.139887 10.1039/C7CS00522A 10.1002/adfm.201605094 10.1016/j.bioactmat.2022.12.010 10.1021/acsomega.8b03679 10.1002/anie.202207213 10.1039/C8CS00494C 10.1016/j.nantod.2021.101266 10.1016/j.ccr.2021.214059 10.1007/s00289-021-03535-x 10.1002/adfm.202006098 10.1016/j.apsb.2018.05.011 10.1002/adhm.201901616 10.1039/D0NR03771K 10.1016/j.biomaterials.2019.119472 10.1039/D1PY01634B 10.1021/acsnano.2c06926 10.1021/acsnano.0c08790 10.1016/j.bioactmat.2020.04.003 10.1039/C9CC07821E 10.1016/j.cej.2022.135711 10.1016/j.jcis.2023.04.020 10.1021/acs.nanolett.2c03260 10.1016/j.cclet.2020.06.023 10.1002/adfm.201910283 10.1016/j.biomaterials.2019.02.023 10.1016/j.addr.2019.07.006 10.1002/smll.202103252 10.1002/adma.201801778 10.1039/C9NA00153K 10.1016/j.carbpol.2018.03.067 10.1016/j.addr.2021.114035 10.1002/smll.202000436 10.1016/j.jddst.2023.104266 10.1088/1361-6528/ac85f4 10.1016/j.carbpol.2011.03.019 10.1038/s41586-019-1450-6 10.1002/adfm.202303596 10.1039/C8CS00618K 10.1002/advs.202104793 10.1016/j.apsb.2020.07.013 10.1016/j.jconrel.2018.09.029 10.1016/j.ccell.2019.10.007 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/pol.20230641 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2642-4169 |
EndPage | 337 |
ExternalDocumentID | 10_1002_pol_20230641 POLA30948 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52073219; 52373304 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAXRX ABJNI ACAHQ ACCFJ ACCZN ACXBN ADOZA AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB DCZOG DRFUL DRSTM EBS LATKE LEEKS MEWTI SUPJJ WXSBR AAYXX ADMLS AGHNM AGYGG CITATION HGLYW ROL 1OB 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3458-eda9214bbabdcdcf6cedf17da1d2fcedd0f9bac2f574466716ff2cc099bfb37e3 |
ISSN | 2642-4150 |
IngestDate | Wed Aug 13 08:48:48 EDT 2025 Tue Jul 01 02:08:12 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Wed Jan 22 16:19:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3458-eda9214bbabdcdcf6cedf17da1d2fcedd0f9bac2f574466716ff2cc099bfb37e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9543-7763 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pol.20230641 |
PQID | 2914935593 |
PQPubID | 6303009 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2914935593 crossref_citationtrail_10_1002_pol_20230641 crossref_primary_10_1002_pol_20230641 wiley_primary_10_1002_pol_20230641_POLA30948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 January 2024 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 15 January 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of polymer science (2020) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2022; 130 2023; 33 2021; 445 2019; 10 2019; 13 2022; 23 2019; 203 2016; 32 2020; 16 2016; 105 2020; 12 2020; 56 2020; 11 2020; 10 2022; 22 2018; 290 2022; 27 2023; 83 2018; 47 2020; 8 2023; 21 2021; 37 2020; 5 2018; 8 2023; 24 2021; 32 2021; 33 2023; 453 2020; 9 2022; 79 2018; 30 2022; 33 2016; 48 2021; 40 2021; 7 2019; 9 2019; 4 2019; 3 2019; 31 2017; 25 2019; 1 2017; 27 2021; 424 2023; 19 2019; 36 2023; 643 2019; 223 2021; 340 2020; 78 2022; 439 2019; 144 2023; 61 2017; 139 2022; 188 2021; 57 2021; 15 2018; 193 2022; 2022 2021; 179 2020; 31 2019; 42 2020; 30 2022; 61 2017; 11 2021; 17 2019; 48 2022; 9 2021; 19 2023; 315 2022; 13 2011; 85 2019; 217 2018; 12 2016; 28 2022; 16 2019; 131 2019; 572 e_1_2_7_5_1 Wang H. (e_1_2_7_9_1) 2019; 131 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 Gao Y. (e_1_2_7_67_1) 2022; 2022 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 24 start-page: 136 year: 2023 publication-title: Bioact Mater – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 year: 2020 publication-title: Adv. Healthc. Mater. – volume: 1 start-page: 2123 year: 2019 publication-title: Nanosc Adv – volume: 19 start-page: 1 year: 2021 publication-title: J Nanobiotechnol – volume: 40 year: 2021 publication-title: Nano Today – volume: 453 year: 2023 publication-title: Chem. Eng. J. – volume: 340 start-page: 221 year: 2021 publication-title: J. Control. Release – volume: 57 start-page: 7731 year: 2021 publication-title: Chem. Commun. – volume: 47 start-page: 2280 year: 2018 publication-title: Chem. Soc. Rev. – volume: 439 year: 2022 publication-title: Chem. Eng. J. – volume: 8 start-page: 3959 year: 2020 publication-title: J. Mater. Chem. B – volume: 139 start-page: 16235 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1010 year: 2022 publication-title: Polym. Chem. – volume: 42 year: 2019 publication-title: Semin. Immunol. – volume: 144 start-page: 112 year: 2019 publication-title: Adv. Drug Deliv. Rev. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 179 year: 2021 publication-title: Adv. Drug Deliv. Rev. – volume: 445 year: 2021 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 8073 year: 2019 publication-title: Theranostics – volume: 5 start-page: 522 year: 2020 publication-title: Bioact Mater – volume: 16 year: 2020 publication-title: Small – volume: 643 start-page: 232 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 start-page: 587 year: 2018 publication-title: Acta Pharm. Sin. B – volume: 424 year: 2021 publication-title: Chem. Eng. J. – volume: 27 start-page: 273 year: 2022 publication-title: Molecules – volume: 21 start-page: 1 year: 2023 publication-title: J Nanobiotechnol – volume: 19 year: 2023 publication-title: Small – volume: 22 start-page: 8321 year: 2022 publication-title: Nano Lett. – volume: 3 start-page: 127 year: 2019 publication-title: Mater Chem Front – volume: 85 start-page: 469 year: 2011 publication-title: Carbohydr. Polym. – volume: 79 start-page: 867 year: 2022 publication-title: Polym. Bull. – volume: 105 start-page: 190 year: 2016 publication-title: Adv. Drug Deliv. Rev. – volume: 130 start-page: 208 year: 2022 publication-title: J. Mater. Sci. Technol. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 521 year: 2023 publication-title: J. Polym. Sci. – volume: 11 start-page: 1724 year: 2020 publication-title: Nat. Commun. – volume: 48 start-page: 589 year: 2016 publication-title: Polym. J. – volume: 7 start-page: 731 year: 2021 publication-title: Trends Cancer – volume: 217 year: 2019 publication-title: Biomaterials – volume: 203 start-page: 63 year: 2019 publication-title: Biomaterials – volume: 10 start-page: 1192 year: 2019 publication-title: Nat. Commun. – volume: 290 start-page: 11 year: 2018 publication-title: J. Control. Release – volume: 37 year: 2021 publication-title: Nano Today – volume: 78 start-page: 1019 year: 2020 publication-title: Mol. Cell – volume: 10 start-page: 2260 year: 2020 publication-title: Theranostics – volume: 9 start-page: 161 year: 2020 publication-title: Light Sci Appl – volume: 188 year: 2022 publication-title: Adv. Drug Deliv. Rev. – volume: 17 year: 2021 publication-title: Small – volume: 12 start-page: 19665 year: 2020 publication-title: Nanoscale – volume: 572 start-page: 538 year: 2019 publication-title: Nature – volume: 131 start-page: 1069 year: 2019 publication-title: Am. Ethnol. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 28 start-page: 6584 year: 2016 publication-title: Chem. Mater. – volume: 33 year: 2022 publication-title: Nanotechnology – volume: 16 start-page: 16909 year: 2022 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 48 start-page: 22 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 7345 year: 2019 publication-title: ACS Nano – volume: 11 start-page: 1419 year: 2017 publication-title: ACS Nano – volume: 25 start-page: 781 year: 2017 publication-title: J. Drug Target. – volume: 223 year: 2019 publication-title: Biomaterials – volume: 83 year: 2023 publication-title: J Drug Deliv Sci Technol – volume: 10 start-page: 2037 year: 2020 publication-title: Acta Pharm. Sin. B – volume: 2022 start-page: 2022 year: 2022 publication-title: J Immunol Res – volume: 12 start-page: 1 year: 2020 publication-title: Nano‐Micro Lett – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 193 start-page: 1 year: 2018 publication-title: Carbohydr. Polym. – volume: 4 start-page: 4584 year: 2019 publication-title: ACS Omega – volume: 56 start-page: 1093 year: 2020 publication-title: Chem. Commun. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 315 year: 2023 publication-title: Carbohydr. Polym. – volume: 12 start-page: 2643 year: 2018 publication-title: ACS Nano – volume: 32 start-page: 446 year: 2016 publication-title: Int. J. Hyperth. – volume: 31 start-page: 3121 year: 2020 publication-title: Chin. Chem. Lett. – volume: 23 start-page: 7909 year: 2022 publication-title: Int. J. Mol. Sci. – volume: 32 start-page: 243 year: 2021 publication-title: Chin. Chem. Lett. – volume: 15 start-page: 6517 year: 2021 publication-title: ACS Nano – volume: 48 start-page: 2053 year: 2019 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 582 year: 2019 publication-title: Cancer Cell – ident: e_1_2_7_35_1 doi: 10.1016/j.jconrel.2021.10.028 – ident: e_1_2_7_53_1 doi: 10.1021/acsnano.7b08725 – ident: e_1_2_7_69_1 doi: 10.1016/j.smim.2019.101304 – ident: e_1_2_7_33_1 doi: 10.1039/D0TB00289E – ident: e_1_2_7_46_1 doi: 10.1016/j.addr.2016.05.022 – ident: e_1_2_7_10_1 doi: 10.1039/D1CC02168K – volume: 131 start-page: 1069 year: 2019 ident: e_1_2_7_9_1 publication-title: Am. Ethnol. – ident: e_1_2_7_50_1 doi: 10.1126/sciadv.abe3588 – ident: e_1_2_7_5_1 doi: 10.1016/j.nantod.2020.101073 – ident: e_1_2_7_57_1 doi: 10.1016/j.jmst.2022.05.027 – ident: e_1_2_7_44_1 doi: 10.7150/thno.41317 – ident: e_1_2_7_31_1 doi: 10.1080/1061186X.2017.1365878 – ident: e_1_2_7_13_1 doi: 10.1186/s12951-022-01751-9 – ident: e_1_2_7_24_1 doi: 10.1038/pj.2015.117 – ident: e_1_2_7_37_1 doi: 10.1002/adfm.202002239 – ident: e_1_2_7_87_1 doi: 10.1002/pol.20220747 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201906311 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201700371 – ident: e_1_2_7_78_1 doi: 10.1039/C8QM00459E – ident: e_1_2_7_79_1 doi: 10.1021/acsnano.6b06658 – ident: e_1_2_7_11_1 doi: 10.1016/j.addr.2022.114415 – ident: e_1_2_7_43_1 doi: 10.1016/j.cej.2021.130171 – ident: e_1_2_7_52_1 doi: 10.1021/jacs.7b07818 – volume: 2022 start-page: 2022 year: 2022 ident: e_1_2_7_67_1 publication-title: J Immunol Res – ident: e_1_2_7_7_1 doi: 10.1038/s41467-019-09226-6 – ident: e_1_2_7_62_1 doi: 10.1016/j.biomaterials.2019.119304 – ident: e_1_2_7_71_1 doi: 10.1016/j.trecan.2021.04.008 – ident: e_1_2_7_82_1 doi: 10.1126/sciadv.abc4882 – ident: e_1_2_7_68_1 doi: 10.3390/molecules27010273 – ident: e_1_2_7_63_1 doi: 10.1007/s40820-019-0337-2 – ident: e_1_2_7_32_1 doi: 10.7150/thno.37198 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201802368 – ident: e_1_2_7_26_1 doi: 10.1016/j.cclet.2020.11.029 – ident: e_1_2_7_4_1 doi: 10.3390/ijms23147909 – ident: e_1_2_7_49_1 doi: 10.1038/s41467-020-15427-1 – ident: e_1_2_7_76_1 doi: 10.3109/02656736.2016.1157216 – ident: e_1_2_7_65_1 doi: 10.1038/s41377-020-00388-3 – ident: e_1_2_7_27_1 doi: 10.1021/acs.chemmater.6b02604 – ident: e_1_2_7_18_1 doi: 10.1002/smll.202301670 – ident: e_1_2_7_72_1 doi: 10.1016/j.molcel.2020.05.034 – ident: e_1_2_7_74_1 doi: 10.1002/adma.202101410 – ident: e_1_2_7_56_1 doi: 10.1021/acsnano.9b03910 – ident: e_1_2_7_12_1 doi: 10.1016/j.carbpol.2023.120972 – ident: e_1_2_7_66_1 doi: 10.1186/s12951-020-00755-7 – ident: e_1_2_7_89_1 doi: 10.1002/adma.201900192 – ident: e_1_2_7_83_1 doi: 10.1016/j.cej.2022.139887 – ident: e_1_2_7_8_1 doi: 10.1039/C7CS00522A – ident: e_1_2_7_58_1 doi: 10.1002/adfm.201605094 – ident: e_1_2_7_2_1 doi: 10.1016/j.bioactmat.2022.12.010 – ident: e_1_2_7_41_1 doi: 10.1021/acsomega.8b03679 – ident: e_1_2_7_77_1 doi: 10.1002/anie.202207213 – ident: e_1_2_7_51_1 doi: 10.1039/C8CS00494C – ident: e_1_2_7_84_1 doi: 10.1016/j.nantod.2021.101266 – ident: e_1_2_7_16_1 doi: 10.1016/j.ccr.2021.214059 – ident: e_1_2_7_34_1 doi: 10.1007/s00289-021-03535-x – ident: e_1_2_7_38_1 doi: 10.1002/adfm.202006098 – ident: e_1_2_7_75_1 doi: 10.1016/j.apsb.2018.05.011 – ident: e_1_2_7_21_1 doi: 10.1002/adhm.201901616 – ident: e_1_2_7_54_1 doi: 10.1039/D0NR03771K – ident: e_1_2_7_86_1 doi: 10.1016/j.biomaterials.2019.119472 – ident: e_1_2_7_30_1 doi: 10.1039/D1PY01634B – ident: e_1_2_7_88_1 doi: 10.1021/acsnano.2c06926 – ident: e_1_2_7_47_1 doi: 10.1021/acsnano.0c08790 – ident: e_1_2_7_48_1 doi: 10.1016/j.bioactmat.2020.04.003 – ident: e_1_2_7_55_1 doi: 10.1039/C9CC07821E – ident: e_1_2_7_85_1 doi: 10.1016/j.cej.2022.135711 – ident: e_1_2_7_45_1 doi: 10.1016/j.jcis.2023.04.020 – ident: e_1_2_7_64_1 doi: 10.1021/acs.nanolett.2c03260 – ident: e_1_2_7_25_1 doi: 10.1016/j.cclet.2020.06.023 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201910283 – ident: e_1_2_7_42_1 doi: 10.1016/j.biomaterials.2019.02.023 – ident: e_1_2_7_19_1 doi: 10.1016/j.addr.2019.07.006 – ident: e_1_2_7_59_1 doi: 10.1002/smll.202103252 – ident: e_1_2_7_60_1 doi: 10.1002/adma.201801778 – ident: e_1_2_7_15_1 doi: 10.1039/C9NA00153K – ident: e_1_2_7_20_1 doi: 10.1016/j.carbpol.2018.03.067 – ident: e_1_2_7_3_1 doi: 10.1016/j.addr.2021.114035 – ident: e_1_2_7_6_1 doi: 10.1002/smll.202000436 – ident: e_1_2_7_39_1 doi: 10.1016/j.jddst.2023.104266 – ident: e_1_2_7_29_1 doi: 10.1088/1361-6528/ac85f4 – ident: e_1_2_7_36_1 doi: 10.1016/j.carbpol.2011.03.019 – ident: e_1_2_7_81_1 doi: 10.1038/s41586-019-1450-6 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.202303596 – ident: e_1_2_7_61_1 doi: 10.1039/C8CS00618K – ident: e_1_2_7_73_1 doi: 10.1002/advs.202104793 – ident: e_1_2_7_80_1 doi: 10.1016/j.apsb.2020.07.013 – ident: e_1_2_7_17_1 doi: 10.1016/j.jconrel.2018.09.029 – ident: e_1_2_7_70_1 doi: 10.1016/j.ccell.2019.10.007 |
SSID | ssj0002356406 |
Score | 2.2514212 |
SecondaryResourceType | review_article |
Snippet | Photothermal therapy (PTT) ablates tumors by thermal effects of photothermal agents (PTAs), and attracts wide attention due to the non‐invasive characteristic.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 324 |
SubjectTerms | Ablation Biocompatibility Biomedical materials carrier nanoparticle Nanoparticles Near infrared radiation photothermal agent Photothermal conversion photothermal therapy Polymers synergy therapy Temperature effects Therapy Tumors |
Title | Polymer materials for constructing therapeutical nanoparticles in photothermal therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpol.20230641 https://www.proquest.com/docview/2914935593 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QEuiKcoLcgHOJWUzeTp46qAqmoLFbRoxSWyHVuN1GYr2Bza38CPZhI_1ksLKlyiyHbiXX8Te8b-ZoaQV3mmClBQRCpWWZQyqSPOeRrFAopc4xpXD-5jhx_z_ZP0YJ7NR6OfAWupW4pdeXWjX8n_oIpliGvvJfsPyPqXYgHeI754RYTxeiuMjxZnl-fq-w5qnaa7gTQoFy4qrPGEcv5VCEbLWzSSLRduIJCfLpaDD9Z5TzoPIgxc11cvbGfOEQhVU0AtMNhKmA3MgM9d4xkUs2bF-Gk6c7zf8dbXH3S-3u9cz5ugwbdTZZdWuzMBPZslMr6ZZgJDXQsiVBDMuYsKy0x6FjcD5xBIGgTTaWL8q-3KnJjwMNcmfRNEFkdhF4xFFa8WN3eg_9ua55mIJmozVPh05Z6-QzYAjQ4Yk43pu8PZF79nB0mWp0O6Vv_XrC8F1r0Nf8C6lrMyXUIDaNBgjh-Q-xZKOjXwPyQj1T4id_dcxr_H5KuVJ-rliaI80VCe6Jo80TV5ok1LQ3mybS-fkJMP74_39iObdyOSSZqVkao5gzgVgota1lLnUtU6Lmoe16Dxvp5oJrgEnRU9GwAtbq1BSrQ1hBZJoZKnZNwuWvWM0DgrtJokvEwZmqIqY6pWUpS8UCWbMJ5skh03TpW0Qen73Chn1U3AbJLXvvWFCcbyh3bbbsgr-7n-qIDFaZ9MgGGnbwYY_vqO6ujTbJpMWFo-v2WvW-Te6ivYJmNERr1AjXUpXlpB-gVlHpUF |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer+materials+for+constructing+therapeutical+nanoparticles+in+photothermal+therapy&rft.jtitle=Journal+of+polymer+science+%282020%29&rft.au=Li%2C+Rui%E2%80%90Lin&rft.au=Liu%2C+Chuan%E2%80%90Jun&rft.au=Zhang%2C+Xian%E2%80%90Zheng&rft.date=2024-01-15&rft.issn=2642-4150&rft.eissn=2642-4169&rft.volume=62&rft.issue=2&rft.spage=324&rft.epage=337&rft_id=info:doi/10.1002%2Fpol.20230641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pol_20230641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2642-4150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2642-4150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2642-4150&client=summon |