Sympathetic Neurostress Drives Osteoblastic Exosomal MiR‐21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia

Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 6; no. 3; pp. e2100763 - n/a
Main Authors Hu, Cheng‐Hu, Sui, Bing‐Dong, Liu, Jin, Dang, Lei, Chen, Ji, Zheng, Chen‐Xi, Shi, Songtao, Zhao, Na, Dang, Min‐Yan, He, Xiao‐Ning, Zhang, Li‐Qiang, Gao, Ping‐Ping, Chen, Nan, Kuang, Hui‐Juan, Chen, Kai, Xu, Xiao‐Lin, Yu, Xiao‐Rui, Zhang, Ge, Jin, Yan
Format Journal Article
LanguageEnglish
Published Germany 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. It was discovered that sympatho‐adrenergic cues provoke transcription response of miR‐21 in osteoblasts, which is transferred via exosomes to dictate osteoclastogenesis and disrupt bone homeostasis. It is further shown that pharmacological inhibition of exosome release by clinically‐relevant drugs, dimethyl amiloride or omeprazole, and targeted delivery of antagomir‐21 to osteoblasts are effective in ameliorating osteopenias against isoproterenol and depression stresses.
AbstractList Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β 1/2 ‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. It was discovered that sympatho‐adrenergic cues provoke transcription response of miR‐21 in osteoblasts, which is transferred via exosomes to dictate osteoclastogenesis and disrupt bone homeostasis. It is further shown that pharmacological inhibition of exosome release by clinically‐relevant drugs, dimethyl amiloride or omeprazole, and targeted delivery of antagomir‐21 to osteoblasts are effective in ameliorating osteopenias against isoproterenol and depression stresses.
Author Xu, Xiao‐Lin
Yu, Xiao‐Rui
Zhang, Ge
Liu, Jin
Hu, Cheng‐Hu
Zhao, Na
Dang, Lei
Chen, Nan
Kuang, Hui‐Juan
Shi, Songtao
Chen, Ji
Gao, Ping‐Ping
Jin, Yan
Zhang, Li‐Qiang
Dang, Min‐Yan
Chen, Kai
Zheng, Chen‐Xi
Sui, Bing‐Dong
He, Xiao‐Ning
Author_xml – sequence: 1
  givenname: Cheng‐Hu
  surname: Hu
  fullname: Hu, Cheng‐Hu
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Bing‐Dong
  surname: Sui
  fullname: Sui, Bing‐Dong
  organization: The Fourth Military Medical University
– sequence: 3
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  organization: Hong Kong Baptist University
– sequence: 4
  givenname: Lei
  surname: Dang
  fullname: Dang, Lei
  organization: Hong Kong Baptist University
– sequence: 5
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: The Fourth Military Medical University
– sequence: 6
  givenname: Chen‐Xi
  surname: Zheng
  fullname: Zheng, Chen‐Xi
  organization: The Fourth Military Medical University
– sequence: 7
  givenname: Songtao
  surname: Shi
  fullname: Shi, Songtao
  organization: Sun Yat‐sen University, Guangzhou
– sequence: 8
  givenname: Na
  surname: Zhao
  fullname: Zhao, Na
  organization: The Second Affiliated Hospital of Xi'an Jiaotong University
– sequence: 9
  givenname: Min‐Yan
  surname: Dang
  fullname: Dang, Min‐Yan
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 10
  givenname: Xiao‐Ning
  surname: He
  fullname: He, Xiao‐Ning
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 11
  givenname: Li‐Qiang
  surname: Zhang
  fullname: Zhang, Li‐Qiang
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 12
  givenname: Ping‐Ping
  surname: Gao
  fullname: Gao, Ping‐Ping
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 13
  givenname: Nan
  surname: Chen
  fullname: Chen, Nan
  organization: The Fourth Military Medical University
– sequence: 14
  givenname: Hui‐Juan
  surname: Kuang
  fullname: Kuang, Hui‐Juan
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 15
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: The Fourth Military Medical University
– sequence: 16
  givenname: Xiao‐Lin
  surname: Xu
  fullname: Xu, Xiao‐Lin
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 17
  givenname: Xiao‐Rui
  surname: Yu
  fullname: Yu, Xiao‐Rui
  organization: Xi'an Jiaotong University
– sequence: 18
  givenname: Ge
  surname: Zhang
  fullname: Zhang, Ge
  email: zhangge@hkbu.edu.hk
  organization: Hong Kong Baptist University
– sequence: 19
  givenname: Yan
  orcidid: 0000-0002-2586-1152
  surname: Jin
  fullname: Jin, Yan
  email: yanjin@fmmu.edu.cn
  organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35312228$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi3Uil7otkvkJZsZfIkzzhI6pUXqBdFhbZ1JzgijJA4-DjC7PkKfsU9Sj6YtCAmxsi1_369zOWA7feiRsWMpplII9Za61EyVUPkxK_ULtq90WU6qUtidP-577Ijom8iCkNoo-ZLtaaOlUsrus_XNuhsgfcXka36FYwyUIhLxefQ_kPg1JQzLFmjzf_orUOig5Zf-8_3tnZJ8EaGnFUaeAp97iuOQ-PtcJD8PHeYoIE8c-oZ_iqELCbd5A_YeXrHdFbSER4_nIfvy4XRxcj65uD77ePLuYlLrwuiJKVRRo9RCWY3LZQ06t1pA1VTWNrmbDBkDGiVaJayZ2aYADY2qACosbKMP2Ztt7hDD9xEpuc5TjW0LPYaRnCoLaWRZmVlGXz-i47LDxg3RdxDX7mlcGSi2QJ3nRBFXrvYJkg99iuBbJ4XbLMZtFuOeF5O16V_aU_I_hWor_PQtrv9Du5vLxfy3-wBZHKI6
CitedBy_id crossref_primary_10_1016_j_yexcr_2025_114457
crossref_primary_10_1002_advs_202206155
crossref_primary_10_1111_os_70010
crossref_primary_10_2147_IJN_S413692
crossref_primary_10_1016_j_actbio_2022_10_022
crossref_primary_10_1038_s41368_022_00195_z
crossref_primary_10_1093_qjmed_hcad108
crossref_primary_10_1016_j_expneurol_2022_114295
crossref_primary_10_1016_j_trac_2022_116840
crossref_primary_10_1002_alz_13864
crossref_primary_10_1002_advs_202415344
crossref_primary_10_1016_j_bioactmat_2024_06_035
crossref_primary_10_1002_adhm_202203361
crossref_primary_10_1016_j_isci_2023_107455
crossref_primary_10_1016_j_ynstr_2023_100513
crossref_primary_10_1002_adfm_202304172
crossref_primary_10_1002_smll_202310614
crossref_primary_10_1002_med_22031
crossref_primary_10_1177_20417314241286606
crossref_primary_10_1016_j_jds_2024_04_016
crossref_primary_10_1038_s41368_022_00193_1
crossref_primary_10_1016_j_jare_2024_03_022
crossref_primary_10_1093_lifemedi_lnae009
crossref_primary_10_1002_adhm_202300019
crossref_primary_10_1089_ten_teb_2023_0267
Cites_doi 10.1038/nm.2617
10.1016/S0092-8674(00)81558-5
10.1016/j.celrep.2021.108979
10.1016/j.ymthe.2016.11.015
10.1172/JCI131554
10.1038/mt.2015.44
10.1038/s41413-020-00117-x
10.1038/nri855
10.1111/acel.12635
10.1016/j.immuni.2021.03.025
10.1038/nm.3026
10.1016/j.biomaterials.2017.10.046
10.1055/s-0030-1252020
10.1002/jbmr.1798
10.1038/s41418-020-00636-4
10.1038/s41556-018-0250-9
10.1038/s12276-018-0192-0
10.1073/pnas.1109036109
10.1038/srep30186
10.1016/j.bone.2007.01.006
10.1038/ncomms10872
10.7150/thno.18181
10.1002/jbmr.3332
10.1038/nature03398
10.1073/pnas.0604234103
10.1093/cvr/cvp232
10.1038/mt.2015.152
10.1172/JCI77716
10.1016/j.trsl.2019.07.013
10.1038/ncb1596
10.5966/sctm.2015-0347
10.1002/advs.202003390
10.1016/j.tem.2009.05.003
10.1038/s41591-018-0030-x
10.1002/cbin.10685
10.1007/s11914-013-0143-6
10.1016/j.molmed.2019.04.008
10.1084/jem.20102608
10.1074/jbc.M301642200
10.1007/s00198-018-4420-1
10.1073/pnas.1109402108
10.1038/s41413-018-0007-x
10.7150/thno.43771
10.1074/jbc.M504179200
10.1038/s41419-021-03430-3
10.1038/s41422-018-0070-2
10.1210/en.2010-0881
10.1177/0022034516657043
10.1073/pnas.1500008112
10.1038/nature07511
10.1016/j.cell.2005.06.028
10.1016/S0092-8674(02)01049-8
10.1002/jbmr.1594
10.1016/j.abb.2014.05.011
10.1016/j.tcb.2019.11.006
10.1083/jcb.201201057
10.1210/en.2008-0843
10.1038/nature13383
10.1172/JCI122151
10.1126/scitranslmed.3002191
10.1016/8756-3282(95)00281-X
10.1111/j.1365-2796.2006.01695.x
10.1038/nrendo.2011.234
10.1002/jev2.12109
10.1371/journal.pbio.1001363
10.1038/srep43191
10.1038/nm.3791
10.1002/jev2.12056
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/smtd.202100763
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 35312228
10_1002_smtd_202100763
SMTD202100763
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32000974; 81930025; 82170988; 31801156; 82100969
– fundername: General Program of China Postdoctoral Science Foundation
  funderid: 2019M663986
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0104900
– fundername: Postdoctoral Innovative Talents Support Program of China
  funderid: BX20190380
– fundername: National Natural Science Foundation of China
  grantid: 82170988
– fundername: National Natural Science Foundation of China
  grantid: 82100969
– fundername: Postdoctoral Innovative Talents Support Program of China
  grantid: BX20190380
– fundername: National Natural Science Foundation of China
  grantid: 31801156
– fundername: National Natural Science Foundation of China
  grantid: 32000974
– fundername: National Natural Science Foundation of China
  grantid: 81930025
– fundername: General Program of China Postdoctoral Science Foundation
  grantid: 2019M663986
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0104900
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
AEUQT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3453-5424ce130283ebbca37634a9d988d52134555a3e1e8208578d4a3ad29aa9e48d3
ISSN 2366-9608
IngestDate Thu Jul 10 19:03:07 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Tue Jul 01 00:47:46 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Wed Jan 22 16:26:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords microRNA
depression
exosome
bones
sympathetic nervous system
Language English
License 2021 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3453-5424ce130283ebbca37634a9d988d52134555a3e1e8208578d4a3ad29aa9e48d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2586-1152
PMID 35312228
PQID 2641516957
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2641516957
pubmed_primary_35312228
crossref_citationtrail_10_1002_smtd_202100763
crossref_primary_10_1002_smtd_202100763
wiley_primary_10_1002_smtd_202100763_SMTD202100763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small methods
PublicationTitleAlternate Small Methods
PublicationYear 2022
References 2017; 7
2017; 41
2009; 84
2013; 28
2018; 128
2021; 28
2002; 111
2009; 150
2012; 18
2020; 10
2011; 152
2003; 278
2012; 10
2013; 19
2021; 35
2018; 6
2011; 208
2013; 11
2020; 130
2019; 21
2020; 215
2007; 9
2012; 27
2014; 561
2019; 196
2018; 33
2021; 8
2018; 29
2014; 512
2018; 28
2009; 20
1995; 17
2017; 25
2015; 125
2005; 434
2002; 2
2016; 95
2010; 120
2011; 3
2012; 109
2018; 24
2016; 5
2015; 23
2016; 6
2005; 280
2010; 42
2016; 7
2012; 197
2021; 54
2021; 10
2011; 108
2021; 12
2005; 122
2020; 30
2017; 16
2015; 112
2015; 21
2020; 26
2008; 456
2000; 100
2007; 40
2006; 260
2018; 50
2016; 24
2006; 103
2012; 8
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
Chalmin F. (e_1_2_9_38_1) 2010; 120
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 10
  year: 2021
  publication-title: J. Extracell. Vesicles
– volume: 5
  start-page: 1238
  year: 2016
  publication-title: Stem Cells Transl. Med.
– volume: 10
  start-page: 4839
  year: 2020
  publication-title: Theranostics
– volume: 8
  start-page: 212
  year: 2012
  publication-title: Nat. Rev. Endocrinol.
– volume: 111
  start-page: 305
  year: 2002
  publication-title: Cell
– volume: 42
  start-page: 467
  year: 2010
  publication-title: Horm. Metab. Res.
– volume: 29
  start-page: 1303
  year: 2018
  publication-title: Osteoporosis Int.
– volume: 152
  start-page: 1412
  year: 2011
  publication-title: Endocrinology
– volume: 112
  start-page: 3770
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 512
  start-page: 78
  year: 2014
  publication-title: Nature
– volume: 50
  start-page: 1
  year: 2018
  publication-title: Exp. Mol. Med.
– volume: 125
  start-page: 1509
  year: 2015
  publication-title: J. Clin. Invest.
– volume: 27
  start-page: 1252
  year: 2012
  publication-title: J. Bone Miner. Res.
– volume: 9
  start-page: 654
  year: 2007
  publication-title: Nat. Cell Biol.
– volume: 23
  start-page: 812
  year: 2015
  publication-title: Mol. Ther.
– volume: 208
  start-page: 841
  year: 2011
  publication-title: J. Exp. Med.
– volume: 28
  start-page: 559
  year: 2013
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 307
  year: 2012
  publication-title: Nat. Med.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 109
  start-page: 7433
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 517
  year: 2018
  publication-title: J. Bone Miner. Res.
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 41
  start-page: 8
  year: 2017
  publication-title: Cell Biol. Int.
– volume: 11
  start-page: 72
  year: 2013
  publication-title: Curr. Osteoporosis Rep.
– volume: 122
  start-page: 803
  year: 2005
  publication-title: Cell
– volume: 197
  start-page: 509
  year: 2012
  publication-title: J. Cell Biol.
– volume: 10
  year: 2012
  publication-title: PLoS Biol.
– volume: 128
  start-page: 4832
  year: 2018
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 9
  year: 2019
  publication-title: Nat. Cell Biol.
– volume: 21
  start-page: 288
  year: 2015
  publication-title: Nat. Med.
– volume: 35
  year: 2021
  publication-title: Cell Rep.
– volume: 20
  start-page: 367
  year: 2009
  publication-title: Trends Endocrinol. Metab.
– volume: 280
  year: 2005
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 467
  year: 1995
  publication-title: Bone
– volume: 6
  start-page: 6
  year: 2018
  publication-title: Bone Res.
– volume: 456
  start-page: 980
  year: 2008
  publication-title: Nature
– volume: 2
  start-page: 569
  year: 2002
  publication-title: Nat. Rev. Immunol.
– volume: 30
  start-page: 97
  year: 2020
  publication-title: Trends Cell Biol.
– volume: 19
  start-page: 93
  year: 2013
  publication-title: Nat. Med.
– volume: 10
  year: 2021
  publication-title: J. Extracell. Vesicles
– volume: 16
  start-page: 1083
  year: 2017
  publication-title: Aging Cell
– volume: 561
  start-page: 38
  year: 2014
  publication-title: Arch. Biochem. Biophys.
– volume: 7
  start-page: 1225
  year: 2017
  publication-title: Theranostics
– volume: 95
  start-page: 1425
  year: 2016
  publication-title: J. Dent. Res.
– volume: 434
  start-page: 514
  year: 2005
  publication-title: Nature
– volume: 54
  start-page: 1219
  year: 2021
  publication-title: Immunity
– volume: 260
  start-page: 350
  year: 2006
  publication-title: J. Intern. Med.
– volume: 84
  start-page: 434
  year: 2009
  publication-title: Cardiovasc. Res.
– volume: 8
  start-page: 44
  year: 2021
  publication-title: Bone Res.
– volume: 103
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 480
  year: 2017
  publication-title: Mol. Ther.
– volume: 26
  start-page: 89
  year: 2020
  publication-title: Trends Mol. Med.
– volume: 215
  start-page: 1
  year: 2020
  publication-title: Transl. Res.
– volume: 120
  start-page: 457
  year: 2010
  publication-title: J. Clin. Invest.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  year: 2021
  publication-title: Adv. Sci. (Weinh)
– volume: 278
  year: 2003
  publication-title: J. Biol. Chem.
– volume: 3
  year: 2011
  publication-title: Sci. Transl. Med.
– volume: 24
  start-page: 782
  year: 2018
  publication-title: Nat. Med.
– volume: 100
  start-page: 197
  year: 2000
  publication-title: Cell
– volume: 130
  start-page: 3483
  year: 2020
  publication-title: J. Clin. Invest.
– volume: 24
  start-page: 217
  year: 2016
  publication-title: Mol. Ther.
– volume: 196
  start-page: 18
  year: 2019
  publication-title: Biomaterials
– volume: 150
  start-page: 144
  year: 2009
  publication-title: Endocrinology
– volume: 28
  start-page: 918
  year: 2018
  publication-title: Cell Res.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 40
  start-page: 1209
  year: 2007
  publication-title: Bone
– volume: 12
  start-page: 156
  year: 2021
  publication-title: Cell Death Dis.
– volume: 28
  start-page: 1041
  year: 2021
  publication-title: Cell Death Differ.
– ident: e_1_2_9_40_1
  doi: 10.1038/nm.2617
– ident: e_1_2_9_1_1
  doi: 10.1016/S0092-8674(00)81558-5
– ident: e_1_2_9_41_1
  doi: 10.1016/j.celrep.2021.108979
– ident: e_1_2_9_69_1
  doi: 10.1016/j.ymthe.2016.11.015
– ident: e_1_2_9_45_1
  doi: 10.1172/JCI131554
– ident: e_1_2_9_50_1
  doi: 10.1038/mt.2015.44
– ident: e_1_2_9_27_1
  doi: 10.1038/s41413-020-00117-x
– ident: e_1_2_9_19_1
  doi: 10.1038/nri855
– ident: e_1_2_9_67_1
  doi: 10.1111/acel.12635
– ident: e_1_2_9_9_1
  doi: 10.1016/j.immuni.2021.03.025
– ident: e_1_2_9_28_1
  doi: 10.1038/nm.3026
– ident: e_1_2_9_42_1
  doi: 10.1016/j.biomaterials.2017.10.046
– ident: e_1_2_9_5_1
  doi: 10.1055/s-0030-1252020
– ident: e_1_2_9_35_1
  doi: 10.1002/jbmr.1798
– ident: e_1_2_9_33_1
  doi: 10.1038/s41418-020-00636-4
– ident: e_1_2_9_20_1
  doi: 10.1038/s41556-018-0250-9
– ident: e_1_2_9_24_1
  doi: 10.1038/s12276-018-0192-0
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.1109036109
– ident: e_1_2_9_23_1
  doi: 10.1038/srep30186
– ident: e_1_2_9_10_1
  doi: 10.1016/j.bone.2007.01.006
– ident: e_1_2_9_22_1
  doi: 10.1038/ncomms10872
– ident: e_1_2_9_26_1
  doi: 10.7150/thno.18181
– ident: e_1_2_9_53_1
  doi: 10.1002/jbmr.3332
– ident: e_1_2_9_4_1
  doi: 10.1038/nature03398
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.0604234103
– ident: e_1_2_9_61_1
  doi: 10.1093/cvr/cvp232
– ident: e_1_2_9_68_1
  doi: 10.1038/mt.2015.152
– ident: e_1_2_9_58_1
  doi: 10.1172/JCI77716
– ident: e_1_2_9_36_1
  doi: 10.1016/j.trsl.2019.07.013
– ident: e_1_2_9_49_1
  doi: 10.1038/ncb1596
– ident: e_1_2_9_25_1
  doi: 10.5966/sctm.2015-0347
– ident: e_1_2_9_43_1
  doi: 10.1002/advs.202003390
– ident: e_1_2_9_6_1
  doi: 10.1016/j.tem.2009.05.003
– volume: 120
  start-page: 457
  year: 2010
  ident: e_1_2_9_38_1
  publication-title: J. Clin. Invest.
– ident: e_1_2_9_31_1
  doi: 10.1038/s41591-018-0030-x
– ident: e_1_2_9_37_1
  doi: 10.1002/cbin.10685
– ident: e_1_2_9_56_1
  doi: 10.1007/s11914-013-0143-6
– ident: e_1_2_9_18_1
  doi: 10.1016/j.molmed.2019.04.008
– ident: e_1_2_9_48_1
  doi: 10.1084/jem.20102608
– ident: e_1_2_9_39_1
  doi: 10.1074/jbc.M301642200
– ident: e_1_2_9_8_1
  doi: 10.1007/s00198-018-4420-1
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1109402108
– ident: e_1_2_9_54_1
  doi: 10.1038/s41413-018-0007-x
– ident: e_1_2_9_44_1
  doi: 10.7150/thno.43771
– ident: e_1_2_9_46_1
  doi: 10.1074/jbc.M504179200
– ident: e_1_2_9_55_1
  doi: 10.1038/s41419-021-03430-3
– ident: e_1_2_9_66_1
  doi: 10.1038/s41422-018-0070-2
– ident: e_1_2_9_15_1
  doi: 10.1210/en.2010-0881
– ident: e_1_2_9_32_1
  doi: 10.1177/0022034516657043
– ident: e_1_2_9_60_1
  doi: 10.1073/pnas.1500008112
– ident: e_1_2_9_62_1
  doi: 10.1038/nature07511
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cell.2005.06.028
– ident: e_1_2_9_2_1
  doi: 10.1016/S0092-8674(02)01049-8
– ident: e_1_2_9_16_1
  doi: 10.1002/jbmr.1594
– ident: e_1_2_9_52_1
  doi: 10.1016/j.abb.2014.05.011
– ident: e_1_2_9_51_1
  doi: 10.1016/j.tcb.2019.11.006
– ident: e_1_2_9_59_1
  doi: 10.1083/jcb.201201057
– ident: e_1_2_9_14_1
  doi: 10.1210/en.2008-0843
– ident: e_1_2_9_29_1
  doi: 10.1038/nature13383
– ident: e_1_2_9_12_1
  doi: 10.1172/JCI122151
– ident: e_1_2_9_30_1
  doi: 10.1126/scitranslmed.3002191
– ident: e_1_2_9_64_1
  doi: 10.1016/8756-3282(95)00281-X
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1365-2796.2006.01695.x
– ident: e_1_2_9_57_1
  doi: 10.1038/nrendo.2011.234
– ident: e_1_2_9_65_1
  doi: 10.1002/jev2.12109
– ident: e_1_2_9_47_1
  doi: 10.1371/journal.pbio.1001363
– ident: e_1_2_9_34_1
  doi: 10.1038/srep43191
– ident: e_1_2_9_63_1
  doi: 10.1038/nm.3791
– ident: e_1_2_9_21_1
  doi: 10.1002/jev2.12056
SSID ssj0002013521
Score 2.3316362
Snippet Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to...
Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100763
SubjectTerms Bone and Bones
Bone Diseases, Metabolic
bones
depression
exosome
Exosomes - genetics
Homeostasis
Humans
microRNA
MicroRNAs - genetics
sympathetic nervous system
Title Sympathetic Neurostress Drives Osteoblastic Exosomal MiR‐21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202100763
https://www.ncbi.nlm.nih.gov/pubmed/35312228
https://www.proquest.com/docview/2641516957
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiDvlJiMh8TAFiB2nyeNGhqppBYl20t4ip3GlSGtTNYnEeOIn8B_4Z_wSzokd19HGbS9RFTt22_PlXOzj7xDyKh-PwYqp2BNZLLxAyMyTAfLeyqWIVSB4luN6x_RjODkNjs_E2WDww8laaurszeLrledKriNVuAdyxVOy_yFZOyjcgM8gX7iChOH6TzKeXaywojCeQ9xvWTbMyY9k25LJfgIJlhm4x9h-9KWsyhWexC0-2wwH5mt286XaohOaFNW22dT7hyW4nlhAHQaUyFhijhSAWJUedYM5eq5jO1vhHreuR13tsKJ39BUolG7KSbPbh2ozCQ4LpzUpjSXFHKGiffy4sPhNzOL2iSrc1QoIdG26llZqjIehB1GT1rnqintGK4cO-Lhjnq3xuqT7NZdstaqRAJZh9odRnT2SbdtT_Llva-Jn03li22-QPQaxCBuSvYNkejKzS3ngQ4Eb67dlDM0v6ehB37G3_Un67s-lmKYfIrU-zvwOuW2CE3qgkXaXDNT6HrnlUFbeJxcO5qiDOaoxR13M0Q5zFDD389t35tMObbQuqUEbRbRRB20U0EYN2ugObQ_I6Yej-fuJZ8p3eAsOL7knAhYsFG6MR1xl2UKiLQtknMdRlAtkEhRCSK58FbWFYqM8kFzmLJYStESU84dkuIZv8JhQJjkEtkqKLAD_3megSKJALEW-ZNIPcz4iXvevpgvDbY8lVs5TzcrNUpRCaqUwIq9t_41mdfltz5edkFJQvLibJteqbKoUIgkfN5nFeEQeaenZsThYNlxaHRHWivMvk6Q9nD25zkNPyc3d6_aMDOtto56Du1xnLwxcfwELrbd6
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sympathetic+Neurostress+Drives+Osteoblastic+Exosomal+MiR%E2%80%9021+Transfer+to+Disrupt+Bone+Homeostasis+and+Promote+Osteopenia&rft.jtitle=Small+methods&rft.au=Hu%2C+Cheng%E2%80%90Hu&rft.au=Sui%2C+Bing%E2%80%90Dong&rft.au=Liu%2C+Jin&rft.au=Dang%2C+Lei&rft.date=2022-03-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=6&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202100763&rft.externalDBID=10.1002%252Fsmtd.202100763&rft.externalDocID=SMTD202100763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon