Sympathetic Neurostress Drives Osteoblastic Exosomal MiR‐21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia
Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but...
Saved in:
Published in | Small methods Vol. 6; no. 3; pp. e2100763 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
It was discovered that sympatho‐adrenergic cues provoke transcription response of miR‐21 in osteoblasts, which is transferred via exosomes to dictate osteoclastogenesis and disrupt bone homeostasis. It is further shown that pharmacological inhibition of exosome release by clinically‐relevant drugs, dimethyl amiloride or omeprazole, and targeted delivery of antagomir‐21 to osteoblasts are effective in ameliorating osteopenias against isoproterenol and depression stresses. |
---|---|
AbstractList | Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β
-adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β 1/2 ‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho‐adrenergic activation is implicated in stress‐induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2‐adrenergic receptor (β1/2‐AR) signaling triggers the transcription response of a microRNA, miR‐21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR‐21 deficiency retards the β1/2‐AR agonist isoproterenol (ISO)‐induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically‐relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR‐21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)‐induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR‐21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO‐ and CVS‐induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses. It was discovered that sympatho‐adrenergic cues provoke transcription response of miR‐21 in osteoblasts, which is transferred via exosomes to dictate osteoclastogenesis and disrupt bone homeostasis. It is further shown that pharmacological inhibition of exosome release by clinically‐relevant drugs, dimethyl amiloride or omeprazole, and targeted delivery of antagomir‐21 to osteoblasts are effective in ameliorating osteopenias against isoproterenol and depression stresses. |
Author | Xu, Xiao‐Lin Yu, Xiao‐Rui Zhang, Ge Liu, Jin Hu, Cheng‐Hu Zhao, Na Dang, Lei Chen, Nan Kuang, Hui‐Juan Shi, Songtao Chen, Ji Gao, Ping‐Ping Jin, Yan Zhang, Li‐Qiang Dang, Min‐Yan Chen, Kai Zheng, Chen‐Xi Sui, Bing‐Dong He, Xiao‐Ning |
Author_xml | – sequence: 1 givenname: Cheng‐Hu surname: Hu fullname: Hu, Cheng‐Hu organization: Xi'an Jiaotong University – sequence: 2 givenname: Bing‐Dong surname: Sui fullname: Sui, Bing‐Dong organization: The Fourth Military Medical University – sequence: 3 givenname: Jin surname: Liu fullname: Liu, Jin organization: Hong Kong Baptist University – sequence: 4 givenname: Lei surname: Dang fullname: Dang, Lei organization: Hong Kong Baptist University – sequence: 5 givenname: Ji surname: Chen fullname: Chen, Ji organization: The Fourth Military Medical University – sequence: 6 givenname: Chen‐Xi surname: Zheng fullname: Zheng, Chen‐Xi organization: The Fourth Military Medical University – sequence: 7 givenname: Songtao surname: Shi fullname: Shi, Songtao organization: Sun Yat‐sen University, Guangzhou – sequence: 8 givenname: Na surname: Zhao fullname: Zhao, Na organization: The Second Affiliated Hospital of Xi'an Jiaotong University – sequence: 9 givenname: Min‐Yan surname: Dang fullname: Dang, Min‐Yan organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 10 givenname: Xiao‐Ning surname: He fullname: He, Xiao‐Ning organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 11 givenname: Li‐Qiang surname: Zhang fullname: Zhang, Li‐Qiang organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 12 givenname: Ping‐Ping surname: Gao fullname: Gao, Ping‐Ping organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 13 givenname: Nan surname: Chen fullname: Chen, Nan organization: The Fourth Military Medical University – sequence: 14 givenname: Hui‐Juan surname: Kuang fullname: Kuang, Hui‐Juan organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 15 givenname: Kai surname: Chen fullname: Chen, Kai organization: The Fourth Military Medical University – sequence: 16 givenname: Xiao‐Lin surname: Xu fullname: Xu, Xiao‐Lin organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine – sequence: 17 givenname: Xiao‐Rui surname: Yu fullname: Yu, Xiao‐Rui organization: Xi'an Jiaotong University – sequence: 18 givenname: Ge surname: Zhang fullname: Zhang, Ge email: zhangge@hkbu.edu.hk organization: Hong Kong Baptist University – sequence: 19 givenname: Yan orcidid: 0000-0002-2586-1152 surname: Jin fullname: Jin, Yan email: yanjin@fmmu.edu.cn organization: Xi'an Institute of Tissue Engineering and Regenerative Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35312228$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi3Uil7otkvkJZsZfIkzzhI6pUXqBdFhbZ1JzgijJA4-DjC7PkKfsU9Sj6YtCAmxsi1_369zOWA7feiRsWMpplII9Za61EyVUPkxK_ULtq90WU6qUtidP-577Ijom8iCkNoo-ZLtaaOlUsrus_XNuhsgfcXka36FYwyUIhLxefQ_kPg1JQzLFmjzf_orUOig5Zf-8_3tnZJ8EaGnFUaeAp97iuOQ-PtcJD8PHeYoIE8c-oZ_iqELCbd5A_YeXrHdFbSER4_nIfvy4XRxcj65uD77ePLuYlLrwuiJKVRRo9RCWY3LZQ06t1pA1VTWNrmbDBkDGiVaJayZ2aYADY2qACosbKMP2Ztt7hDD9xEpuc5TjW0LPYaRnCoLaWRZmVlGXz-i47LDxg3RdxDX7mlcGSi2QJ3nRBFXrvYJkg99iuBbJ4XbLMZtFuOeF5O16V_aU_I_hWor_PQtrv9Du5vLxfy3-wBZHKI6 |
CitedBy_id | crossref_primary_10_1016_j_yexcr_2025_114457 crossref_primary_10_1002_advs_202206155 crossref_primary_10_1111_os_70010 crossref_primary_10_2147_IJN_S413692 crossref_primary_10_1016_j_actbio_2022_10_022 crossref_primary_10_1038_s41368_022_00195_z crossref_primary_10_1093_qjmed_hcad108 crossref_primary_10_1016_j_expneurol_2022_114295 crossref_primary_10_1016_j_trac_2022_116840 crossref_primary_10_1002_alz_13864 crossref_primary_10_1002_advs_202415344 crossref_primary_10_1016_j_bioactmat_2024_06_035 crossref_primary_10_1002_adhm_202203361 crossref_primary_10_1016_j_isci_2023_107455 crossref_primary_10_1016_j_ynstr_2023_100513 crossref_primary_10_1002_adfm_202304172 crossref_primary_10_1002_smll_202310614 crossref_primary_10_1002_med_22031 crossref_primary_10_1177_20417314241286606 crossref_primary_10_1016_j_jds_2024_04_016 crossref_primary_10_1038_s41368_022_00193_1 crossref_primary_10_1016_j_jare_2024_03_022 crossref_primary_10_1093_lifemedi_lnae009 crossref_primary_10_1002_adhm_202300019 crossref_primary_10_1089_ten_teb_2023_0267 |
Cites_doi | 10.1038/nm.2617 10.1016/S0092-8674(00)81558-5 10.1016/j.celrep.2021.108979 10.1016/j.ymthe.2016.11.015 10.1172/JCI131554 10.1038/mt.2015.44 10.1038/s41413-020-00117-x 10.1038/nri855 10.1111/acel.12635 10.1016/j.immuni.2021.03.025 10.1038/nm.3026 10.1016/j.biomaterials.2017.10.046 10.1055/s-0030-1252020 10.1002/jbmr.1798 10.1038/s41418-020-00636-4 10.1038/s41556-018-0250-9 10.1038/s12276-018-0192-0 10.1073/pnas.1109036109 10.1038/srep30186 10.1016/j.bone.2007.01.006 10.1038/ncomms10872 10.7150/thno.18181 10.1002/jbmr.3332 10.1038/nature03398 10.1073/pnas.0604234103 10.1093/cvr/cvp232 10.1038/mt.2015.152 10.1172/JCI77716 10.1016/j.trsl.2019.07.013 10.1038/ncb1596 10.5966/sctm.2015-0347 10.1002/advs.202003390 10.1016/j.tem.2009.05.003 10.1038/s41591-018-0030-x 10.1002/cbin.10685 10.1007/s11914-013-0143-6 10.1016/j.molmed.2019.04.008 10.1084/jem.20102608 10.1074/jbc.M301642200 10.1007/s00198-018-4420-1 10.1073/pnas.1109402108 10.1038/s41413-018-0007-x 10.7150/thno.43771 10.1074/jbc.M504179200 10.1038/s41419-021-03430-3 10.1038/s41422-018-0070-2 10.1210/en.2010-0881 10.1177/0022034516657043 10.1073/pnas.1500008112 10.1038/nature07511 10.1016/j.cell.2005.06.028 10.1016/S0092-8674(02)01049-8 10.1002/jbmr.1594 10.1016/j.abb.2014.05.011 10.1016/j.tcb.2019.11.006 10.1083/jcb.201201057 10.1210/en.2008-0843 10.1038/nature13383 10.1172/JCI122151 10.1126/scitranslmed.3002191 10.1016/8756-3282(95)00281-X 10.1111/j.1365-2796.2006.01695.x 10.1038/nrendo.2011.234 10.1002/jev2.12109 10.1371/journal.pbio.1001363 10.1038/srep43191 10.1038/nm.3791 10.1002/jev2.12056 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/smtd.202100763 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 35312228 10_1002_smtd_202100763 SMTD202100763 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32000974; 81930025; 82170988; 31801156; 82100969 – fundername: General Program of China Postdoctoral Science Foundation funderid: 2019M663986 – fundername: National Key Research and Development Program of China funderid: 2017YFA0104900 – fundername: Postdoctoral Innovative Talents Support Program of China funderid: BX20190380 – fundername: National Natural Science Foundation of China grantid: 82170988 – fundername: National Natural Science Foundation of China grantid: 82100969 – fundername: Postdoctoral Innovative Talents Support Program of China grantid: BX20190380 – fundername: National Natural Science Foundation of China grantid: 31801156 – fundername: National Natural Science Foundation of China grantid: 32000974 – fundername: National Natural Science Foundation of China grantid: 81930025 – fundername: General Program of China Postdoctoral Science Foundation grantid: 2019M663986 – fundername: National Key Research and Development Program of China grantid: 2017YFA0104900 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION EJD AEUQT CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3453-5424ce130283ebbca37634a9d988d52134555a3e1e8208578d4a3ad29aa9e48d3 |
ISSN | 2366-9608 |
IngestDate | Thu Jul 10 19:03:07 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Tue Jul 01 00:47:46 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Wed Jan 22 16:26:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microRNA depression exosome bones sympathetic nervous system |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3453-5424ce130283ebbca37634a9d988d52134555a3e1e8208578d4a3ad29aa9e48d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2586-1152 |
PMID | 35312228 |
PQID | 2641516957 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2641516957 pubmed_primary_35312228 crossref_citationtrail_10_1002_smtd_202100763 crossref_primary_10_1002_smtd_202100763 wiley_primary_10_1002_smtd_202100763_SMTD202100763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small methods |
PublicationTitleAlternate | Small Methods |
PublicationYear | 2022 |
References | 2017; 7 2017; 41 2009; 84 2013; 28 2018; 128 2021; 28 2002; 111 2009; 150 2012; 18 2020; 10 2011; 152 2003; 278 2012; 10 2013; 19 2021; 35 2018; 6 2011; 208 2013; 11 2020; 130 2019; 21 2020; 215 2007; 9 2012; 27 2014; 561 2019; 196 2018; 33 2021; 8 2018; 29 2014; 512 2018; 28 2009; 20 1995; 17 2017; 25 2015; 125 2005; 434 2002; 2 2016; 95 2010; 120 2011; 3 2012; 109 2018; 24 2016; 5 2015; 23 2016; 6 2005; 280 2010; 42 2016; 7 2012; 197 2021; 54 2021; 10 2011; 108 2021; 12 2005; 122 2020; 30 2017; 16 2015; 112 2015; 21 2020; 26 2008; 456 2000; 100 2007; 40 2006; 260 2018; 50 2016; 24 2006; 103 2012; 8 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 Chalmin F. (e_1_2_9_38_1) 2010; 120 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 10 year: 2021 publication-title: J. Extracell. Vesicles – volume: 5 start-page: 1238 year: 2016 publication-title: Stem Cells Transl. Med. – volume: 10 start-page: 4839 year: 2020 publication-title: Theranostics – volume: 8 start-page: 212 year: 2012 publication-title: Nat. Rev. Endocrinol. – volume: 111 start-page: 305 year: 2002 publication-title: Cell – volume: 42 start-page: 467 year: 2010 publication-title: Horm. Metab. Res. – volume: 29 start-page: 1303 year: 2018 publication-title: Osteoporosis Int. – volume: 152 start-page: 1412 year: 2011 publication-title: Endocrinology – volume: 112 start-page: 3770 year: 2015 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 512 start-page: 78 year: 2014 publication-title: Nature – volume: 50 start-page: 1 year: 2018 publication-title: Exp. Mol. Med. – volume: 125 start-page: 1509 year: 2015 publication-title: J. Clin. Invest. – volume: 27 start-page: 1252 year: 2012 publication-title: J. Bone Miner. Res. – volume: 9 start-page: 654 year: 2007 publication-title: Nat. Cell Biol. – volume: 23 start-page: 812 year: 2015 publication-title: Mol. Ther. – volume: 208 start-page: 841 year: 2011 publication-title: J. Exp. Med. – volume: 28 start-page: 559 year: 2013 publication-title: J. Bone Miner. Res. – volume: 18 start-page: 307 year: 2012 publication-title: Nat. Med. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 109 start-page: 7433 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 33 start-page: 517 year: 2018 publication-title: J. Bone Miner. Res. – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 41 start-page: 8 year: 2017 publication-title: Cell Biol. Int. – volume: 11 start-page: 72 year: 2013 publication-title: Curr. Osteoporosis Rep. – volume: 122 start-page: 803 year: 2005 publication-title: Cell – volume: 197 start-page: 509 year: 2012 publication-title: J. Cell Biol. – volume: 10 year: 2012 publication-title: PLoS Biol. – volume: 128 start-page: 4832 year: 2018 publication-title: J. Clin. Invest. – volume: 21 start-page: 9 year: 2019 publication-title: Nat. Cell Biol. – volume: 21 start-page: 288 year: 2015 publication-title: Nat. Med. – volume: 35 year: 2021 publication-title: Cell Rep. – volume: 20 start-page: 367 year: 2009 publication-title: Trends Endocrinol. Metab. – volume: 280 year: 2005 publication-title: J. Biol. Chem. – volume: 17 start-page: 467 year: 1995 publication-title: Bone – volume: 6 start-page: 6 year: 2018 publication-title: Bone Res. – volume: 456 start-page: 980 year: 2008 publication-title: Nature – volume: 2 start-page: 569 year: 2002 publication-title: Nat. Rev. Immunol. – volume: 30 start-page: 97 year: 2020 publication-title: Trends Cell Biol. – volume: 19 start-page: 93 year: 2013 publication-title: Nat. Med. – volume: 10 year: 2021 publication-title: J. Extracell. Vesicles – volume: 16 start-page: 1083 year: 2017 publication-title: Aging Cell – volume: 561 start-page: 38 year: 2014 publication-title: Arch. Biochem. Biophys. – volume: 7 start-page: 1225 year: 2017 publication-title: Theranostics – volume: 95 start-page: 1425 year: 2016 publication-title: J. Dent. Res. – volume: 434 start-page: 514 year: 2005 publication-title: Nature – volume: 54 start-page: 1219 year: 2021 publication-title: Immunity – volume: 260 start-page: 350 year: 2006 publication-title: J. Intern. Med. – volume: 84 start-page: 434 year: 2009 publication-title: Cardiovasc. Res. – volume: 8 start-page: 44 year: 2021 publication-title: Bone Res. – volume: 103 year: 2006 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 480 year: 2017 publication-title: Mol. Ther. – volume: 26 start-page: 89 year: 2020 publication-title: Trends Mol. Med. – volume: 215 start-page: 1 year: 2020 publication-title: Transl. Res. – volume: 120 start-page: 457 year: 2010 publication-title: J. Clin. Invest. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 year: 2021 publication-title: Adv. Sci. (Weinh) – volume: 278 year: 2003 publication-title: J. Biol. Chem. – volume: 3 year: 2011 publication-title: Sci. Transl. Med. – volume: 24 start-page: 782 year: 2018 publication-title: Nat. Med. – volume: 100 start-page: 197 year: 2000 publication-title: Cell – volume: 130 start-page: 3483 year: 2020 publication-title: J. Clin. Invest. – volume: 24 start-page: 217 year: 2016 publication-title: Mol. Ther. – volume: 196 start-page: 18 year: 2019 publication-title: Biomaterials – volume: 150 start-page: 144 year: 2009 publication-title: Endocrinology – volume: 28 start-page: 918 year: 2018 publication-title: Cell Res. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 40 start-page: 1209 year: 2007 publication-title: Bone – volume: 12 start-page: 156 year: 2021 publication-title: Cell Death Dis. – volume: 28 start-page: 1041 year: 2021 publication-title: Cell Death Differ. – ident: e_1_2_9_40_1 doi: 10.1038/nm.2617 – ident: e_1_2_9_1_1 doi: 10.1016/S0092-8674(00)81558-5 – ident: e_1_2_9_41_1 doi: 10.1016/j.celrep.2021.108979 – ident: e_1_2_9_69_1 doi: 10.1016/j.ymthe.2016.11.015 – ident: e_1_2_9_45_1 doi: 10.1172/JCI131554 – ident: e_1_2_9_50_1 doi: 10.1038/mt.2015.44 – ident: e_1_2_9_27_1 doi: 10.1038/s41413-020-00117-x – ident: e_1_2_9_19_1 doi: 10.1038/nri855 – ident: e_1_2_9_67_1 doi: 10.1111/acel.12635 – ident: e_1_2_9_9_1 doi: 10.1016/j.immuni.2021.03.025 – ident: e_1_2_9_28_1 doi: 10.1038/nm.3026 – ident: e_1_2_9_42_1 doi: 10.1016/j.biomaterials.2017.10.046 – ident: e_1_2_9_5_1 doi: 10.1055/s-0030-1252020 – ident: e_1_2_9_35_1 doi: 10.1002/jbmr.1798 – ident: e_1_2_9_33_1 doi: 10.1038/s41418-020-00636-4 – ident: e_1_2_9_20_1 doi: 10.1038/s41556-018-0250-9 – ident: e_1_2_9_24_1 doi: 10.1038/s12276-018-0192-0 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.1109036109 – ident: e_1_2_9_23_1 doi: 10.1038/srep30186 – ident: e_1_2_9_10_1 doi: 10.1016/j.bone.2007.01.006 – ident: e_1_2_9_22_1 doi: 10.1038/ncomms10872 – ident: e_1_2_9_26_1 doi: 10.7150/thno.18181 – ident: e_1_2_9_53_1 doi: 10.1002/jbmr.3332 – ident: e_1_2_9_4_1 doi: 10.1038/nature03398 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.0604234103 – ident: e_1_2_9_61_1 doi: 10.1093/cvr/cvp232 – ident: e_1_2_9_68_1 doi: 10.1038/mt.2015.152 – ident: e_1_2_9_58_1 doi: 10.1172/JCI77716 – ident: e_1_2_9_36_1 doi: 10.1016/j.trsl.2019.07.013 – ident: e_1_2_9_49_1 doi: 10.1038/ncb1596 – ident: e_1_2_9_25_1 doi: 10.5966/sctm.2015-0347 – ident: e_1_2_9_43_1 doi: 10.1002/advs.202003390 – ident: e_1_2_9_6_1 doi: 10.1016/j.tem.2009.05.003 – volume: 120 start-page: 457 year: 2010 ident: e_1_2_9_38_1 publication-title: J. Clin. Invest. – ident: e_1_2_9_31_1 doi: 10.1038/s41591-018-0030-x – ident: e_1_2_9_37_1 doi: 10.1002/cbin.10685 – ident: e_1_2_9_56_1 doi: 10.1007/s11914-013-0143-6 – ident: e_1_2_9_18_1 doi: 10.1016/j.molmed.2019.04.008 – ident: e_1_2_9_48_1 doi: 10.1084/jem.20102608 – ident: e_1_2_9_39_1 doi: 10.1074/jbc.M301642200 – ident: e_1_2_9_8_1 doi: 10.1007/s00198-018-4420-1 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1109402108 – ident: e_1_2_9_54_1 doi: 10.1038/s41413-018-0007-x – ident: e_1_2_9_44_1 doi: 10.7150/thno.43771 – ident: e_1_2_9_46_1 doi: 10.1074/jbc.M504179200 – ident: e_1_2_9_55_1 doi: 10.1038/s41419-021-03430-3 – ident: e_1_2_9_66_1 doi: 10.1038/s41422-018-0070-2 – ident: e_1_2_9_15_1 doi: 10.1210/en.2010-0881 – ident: e_1_2_9_32_1 doi: 10.1177/0022034516657043 – ident: e_1_2_9_60_1 doi: 10.1073/pnas.1500008112 – ident: e_1_2_9_62_1 doi: 10.1038/nature07511 – ident: e_1_2_9_3_1 doi: 10.1016/j.cell.2005.06.028 – ident: e_1_2_9_2_1 doi: 10.1016/S0092-8674(02)01049-8 – ident: e_1_2_9_16_1 doi: 10.1002/jbmr.1594 – ident: e_1_2_9_52_1 doi: 10.1016/j.abb.2014.05.011 – ident: e_1_2_9_51_1 doi: 10.1016/j.tcb.2019.11.006 – ident: e_1_2_9_59_1 doi: 10.1083/jcb.201201057 – ident: e_1_2_9_14_1 doi: 10.1210/en.2008-0843 – ident: e_1_2_9_29_1 doi: 10.1038/nature13383 – ident: e_1_2_9_12_1 doi: 10.1172/JCI122151 – ident: e_1_2_9_30_1 doi: 10.1126/scitranslmed.3002191 – ident: e_1_2_9_64_1 doi: 10.1016/8756-3282(95)00281-X – ident: e_1_2_9_11_1 doi: 10.1111/j.1365-2796.2006.01695.x – ident: e_1_2_9_57_1 doi: 10.1038/nrendo.2011.234 – ident: e_1_2_9_65_1 doi: 10.1002/jev2.12109 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pbio.1001363 – ident: e_1_2_9_34_1 doi: 10.1038/srep43191 – ident: e_1_2_9_63_1 doi: 10.1038/nm.3791 – ident: e_1_2_9_21_1 doi: 10.1002/jev2.12056 |
SSID | ssj0002013521 |
Score | 2.3316362 |
Snippet | Innervation and extracellular vesicle secretion co‐exist in the local tissue microenvironment for message transfer, but whether they are interconnected to... Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100763 |
SubjectTerms | Bone and Bones Bone Diseases, Metabolic bones depression exosome Exosomes - genetics Homeostasis Humans microRNA MicroRNAs - genetics sympathetic nervous system |
Title | Sympathetic Neurostress Drives Osteoblastic Exosomal MiR‐21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202100763 https://www.ncbi.nlm.nih.gov/pubmed/35312228 https://www.proquest.com/docview/2641516957 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiDvlJiMh8TAFiB2nyeNGhqppBYl20t4ip3GlSGtTNYnEeOIn8B_4Z_wSzokd19HGbS9RFTt22_PlXOzj7xDyKh-PwYqp2BNZLLxAyMyTAfLeyqWIVSB4luN6x_RjODkNjs_E2WDww8laaurszeLrledKriNVuAdyxVOy_yFZOyjcgM8gX7iChOH6TzKeXaywojCeQ9xvWTbMyY9k25LJfgIJlhm4x9h-9KWsyhWexC0-2wwH5mt286XaohOaFNW22dT7hyW4nlhAHQaUyFhijhSAWJUedYM5eq5jO1vhHreuR13tsKJ39BUolG7KSbPbh2ozCQ4LpzUpjSXFHKGiffy4sPhNzOL2iSrc1QoIdG26llZqjIehB1GT1rnqintGK4cO-Lhjnq3xuqT7NZdstaqRAJZh9odRnT2SbdtT_Llva-Jn03li22-QPQaxCBuSvYNkejKzS3ngQ4Eb67dlDM0v6ehB37G3_Un67s-lmKYfIrU-zvwOuW2CE3qgkXaXDNT6HrnlUFbeJxcO5qiDOaoxR13M0Q5zFDD389t35tMObbQuqUEbRbRRB20U0EYN2ugObQ_I6Yej-fuJZ8p3eAsOL7knAhYsFG6MR1xl2UKiLQtknMdRlAtkEhRCSK58FbWFYqM8kFzmLJYStESU84dkuIZv8JhQJjkEtkqKLAD_3megSKJALEW-ZNIPcz4iXvevpgvDbY8lVs5TzcrNUpRCaqUwIq9t_41mdfltz5edkFJQvLibJteqbKoUIgkfN5nFeEQeaenZsThYNlxaHRHWivMvk6Q9nD25zkNPyc3d6_aMDOtto56Du1xnLwxcfwELrbd6 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sympathetic+Neurostress+Drives+Osteoblastic+Exosomal+MiR%E2%80%9021+Transfer+to+Disrupt+Bone+Homeostasis+and+Promote+Osteopenia&rft.jtitle=Small+methods&rft.au=Hu%2C+Cheng%E2%80%90Hu&rft.au=Sui%2C+Bing%E2%80%90Dong&rft.au=Liu%2C+Jin&rft.au=Dang%2C+Lei&rft.date=2022-03-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=6&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202100763&rft.externalDBID=10.1002%252Fsmtd.202100763&rft.externalDocID=SMTD202100763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |