Manipulating Stable Layered P2‐Type Cathode via a Co‐Substitution Strategy for High Performance Sodium Ion Batteries
Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process...
Saved in:
Published in | Small methods Vol. 6; no. 3; pp. e2101292 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2366-9608 2366-9608 |
DOI | 10.1002/smtd.202101292 |
Cover
Loading…
Abstract | Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g−1 at 20 mA g−1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g−1 at 500 mA g−1). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs.
The co‐substitution of Li and Zn for Ni sites in the transition metal layers contributes to lower migration energy barriers, fast Na+ diffusion and a stable structure. Therefore, the Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 (NaLiZNMO) cathode material with microsphere structure prepared via a modified solvothermal method, followed by a solid‐state reaction has eminent cycle life and superior rate performance. |
---|---|
AbstractList | Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na0.7 Li0.06 Zn0.06 Ni0.21 Mn0.67 O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g-1 at 20 mA g-1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g-1 at 500 mA g-1 ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs.Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na0.7 Li0.06 Zn0.06 Ni0.21 Mn0.67 O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g-1 at 20 mA g-1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g-1 at 500 mA g-1 ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs. Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na Li Zn Ni Mn O material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g at 20 mA g and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g at 500 mA g ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs. Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na + kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na 0.7 Li 0.06 Zn 0.06 Ni 0.21 Mn 0.67 O 2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g −1 at 20 mA g −1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g −1 at 500 mA g −1 ). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na + kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs. Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g−1 at 20 mA g−1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g−1 at 500 mA g−1). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs. The co‐substitution of Li and Zn for Ni sites in the transition metal layers contributes to lower migration energy barriers, fast Na+ diffusion and a stable structure. Therefore, the Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 (NaLiZNMO) cathode material with microsphere structure prepared via a modified solvothermal method, followed by a solid‐state reaction has eminent cycle life and superior rate performance. |
Author | Liu, Hao Gao, Hong Tang, Kaikai Xiao, Jun Chen, Jun Long, Mengqi Wang, Guoxiu |
Author_xml | – sequence: 1 givenname: Jun surname: Xiao fullname: Xiao, Jun organization: University of Technology Sydney – sequence: 2 givenname: Hong surname: Gao fullname: Gao, Hong organization: Shanghai University – sequence: 3 givenname: Kaikai surname: Tang fullname: Tang, Kaikai organization: Shanghai University – sequence: 4 givenname: Mengqi surname: Long fullname: Long, Mengqi organization: Shanghai University – sequence: 5 givenname: Jun surname: Chen fullname: Chen, Jun organization: Shanghai University – sequence: 6 givenname: Hao orcidid: 0000-0003-0266-9472 surname: Liu fullname: Liu, Hao email: hao.liu@uts.edu.au organization: University of Technology Sydney – sequence: 7 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: University of Technology Sydney |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35032158$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PGzEQhq0qCALNlWPlI5ek_tjPI6QUkIJASjhbXns2cbW7Dra3dG_9Cf2N_SV1FGgREuppRqPnGWnmPUajznaA0CklM0oI--zboGeMMEooK9kHNGY8y6ZlRorRq_4ITbz_RqJAKE8ZPURHPCWc0bQYox-3sjPbvpHBdGu8DLJqAC_kAA40vme_f_5aDVvAcxk2VgP-biSWeG7jfNlXPpjQB2O7KDoZYD3g2jp8bdYbfA8u9q3sFOCl1aZv8U0EL2QI4Az4j-iglo2HyXM9QQ9fL1fz6-ni7upmfr6YKp6kbKorpbKKgFQaUg0c8rSsGS_zvM7qjOui4FWZccp1TktIq5zzpKgSmoNWNCGcn6Cz_d6ts489-CBa4xU0jezA9l6wjBFS5GlSRvTTM9pXLWixdaaVbhAv34pAsgeUs947qIUyQe4eEM83jaBE7HIRu1zE31yiNnujvWx-Vyj3wpNpYPgPLZa3qy__3D-NEKKU |
CitedBy_id | crossref_primary_10_1007_s12274_023_5435_2 crossref_primary_10_1002_smll_202305690 crossref_primary_10_1016_j_mtsust_2022_100163 crossref_primary_10_1007_s12274_022_5221_6 crossref_primary_10_1016_j_compositesb_2022_109912 crossref_primary_10_1016_j_rser_2023_114167 crossref_primary_10_1021_acsami_2c05005 crossref_primary_10_1039_D2TA06256A crossref_primary_10_1016_j_cej_2022_139621 crossref_primary_10_1002_cnl2_7 crossref_primary_10_1016_j_est_2023_109391 crossref_primary_10_1007_s41918_024_00215_y crossref_primary_10_1039_D3EE02934D crossref_primary_10_1088_1361_6528_accfa2 crossref_primary_10_1002_chem_202402313 crossref_primary_10_1002_smtd_202201555 crossref_primary_10_1002_anie_202304628 crossref_primary_10_1016_j_jallcom_2025_179926 crossref_primary_10_1016_j_jcis_2024_06_136 crossref_primary_10_1016_j_jpowsour_2022_232334 crossref_primary_10_1016_j_ensm_2023_03_007 crossref_primary_10_1002_adfm_202406771 crossref_primary_10_1002_smm2_1211 crossref_primary_10_1021_acsaem_2c01278 crossref_primary_10_1016_j_jpowsour_2025_236570 crossref_primary_10_1016_j_cej_2025_161580 crossref_primary_10_1039_D2TA08315A crossref_primary_10_1039_D2QI01018F crossref_primary_10_1016_j_jechem_2024_06_007 crossref_primary_10_1039_D3NJ01980B crossref_primary_10_1016_j_ijhydene_2022_04_216 crossref_primary_10_1016_j_cjsc_2023_100028 crossref_primary_10_1016_j_jpowsour_2023_232686 crossref_primary_10_1016_j_scib_2023_01_010 crossref_primary_10_1021_acssuschemeng_4c04941 crossref_primary_10_1016_j_susmat_2024_e01059 crossref_primary_10_1021_acssuschemeng_3c00670 crossref_primary_10_1002_ange_202304628 crossref_primary_10_1016_j_jcis_2022_11_107 crossref_primary_10_1016_j_cej_2025_160010 crossref_primary_10_1016_j_est_2023_109933 crossref_primary_10_1016_j_mtchem_2023_101741 |
Cites_doi | 10.1002/adfm.201910327 10.1016/j.nanoen.2020.104997 10.1002/advs.202004448 10.1002/anie.201912964 10.1016/j.ensm.2019.05.009 10.1021/jacs.7b10460 10.1016/j.cej.2020.126308 10.1016/j.nanoen.2018.10.072 10.1002/aenm.202001111 10.1039/C7TA02689G 10.1002/anie.202108933 10.1039/C8TA07842D 10.1021/acs.chemmater.9b05205 10.1002/aenm.201903785 10.1016/j.cej.2019.122978 10.1002/anie.202100917 10.1002/adma.201600846 10.1039/C8TA10980J 10.1002/anie.201602202 10.1039/C8EE00309B 10.1002/aenm.202003455 10.1016/j.cej.2019.123234 10.1002/aenm.201700283 10.1021/jacs.8b08638 10.1002/smtd.201900159 10.1002/adfm.201910251 10.1002/adma.202008194 10.1016/j.ensm.2020.04.012 10.1002/adfm.201705968 10.1002/adma.201803765 10.1016/j.carbon.2019.11.011 10.1038/s41467-021-22523-3 10.1021/acsnano.8b08266 10.1021/acsami.0c11375 10.1126/science.aay9972 10.1021/acs.nanolett.8b03637 10.1021/acsami.8b10519 10.1016/j.cej.2020.126446 10.1002/adfm.201907837 10.1002/advs.202002199 10.1002/anie.201811882 10.1002/aenm.201803436 10.1002/adfm.201801898 10.1021/acscentsci.9b00982 10.1016/j.cej.2020.125725 10.1039/D1QM00179E 10.1016/j.susmat.2021.e00302 10.1002/adfm.201801917 10.1021/acsami.8b12204 10.1002/adfm.201901912 10.1016/j.cej.2020.126578 10.1038/s41467-020-14444-4 10.1039/D0SC05427E 10.1002/anie.201915650 10.1021/acsami.9b07299 10.1021/jacs.9b01855 10.1002/aenm.201702942 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/smtd.202101292 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 35032158 10_1002_smtd_202101292 SMTD202101292 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: ARC Discovery funderid: DP180102297 – fundername: Joint International Laboratory on Environmental and Energy Frontier Materials – fundername: Future Fellowship funderid: FT180100705 – fundername: Australian Research Council – fundername: Innovation Research Team of High–Level Local Universities in Shanghai – fundername: Innovation Research Team of High-Level Local Universities in Shanghai – fundername: Future Fellowship grantid: FT180100705 – fundername: ARC Discovery grantid: DP180102297 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION EJD AEUQT NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3452-dbcc6b0eacde5de3e759f23977f6f63d883b96313d719e5b73348b417edc14033 |
ISSN | 2366-9608 |
IngestDate | Fri Jul 11 02:16:46 EDT 2025 Wed Feb 19 02:26:23 EST 2025 Thu Apr 24 22:55:51 EDT 2025 Tue Jul 01 00:47:46 EDT 2025 Wed Jan 22 16:26:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | P2-type cathode materials co-substitution sodium ion batteries |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3452-dbcc6b0eacde5de3e759f23977f6f63d883b96313d719e5b73348b417edc14033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0266-9472 |
PMID | 35032158 |
PQID | 2620087549 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2620087549 pubmed_primary_35032158 crossref_citationtrail_10_1002_smtd_202101292 crossref_primary_10_1002_smtd_202101292 wiley_primary_10_1002_smtd_202101292_SMTD202101292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small methods |
PublicationTitleAlternate | Small Methods |
PublicationYear | 2022 |
References | 2017; 5 2021; 8 2019; 7 2017; 7 2018; 28 2019; 9 2021; 5 2019; 3 2019; 5 2020; 382 2019; 30 2019; 55 2019; 11 2020; 384 2021; 29 2021; 403 2021; 404 2019; 58 2020; 59 2019; 19 2020; 12 2020; 11 2020; 10 2020; 76 2020; 32 2019; 141 2017; 139 2016; 55 2020; 7 2018; 8 2021; 12 2021; 33 2021; 11 2019; 20 2020; 30 2020; 370 2019; 29 2018; 30 2020; 157 2020; 399 2018; 12 2018; 11 2021; 60 2016; 28 2018; 10 2020; 29 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 7445 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 2256 year: 2021 publication-title: Nat. Commun. – volume: 28 start-page: 7243 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 2496 year: 2018 publication-title: Energy Environ. Sci. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 141 start-page: 840 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 6680 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 657 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 29 start-page: 182 year: 2020 publication-title: Energy Storage Mater. – volume: 370 start-page: 708 year: 2020 publication-title: Science – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1937 year: 2019 publication-title: ACS Cent. Sci. – volume: 59 start-page: 9299 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 404 year: 2021 publication-title: Chem. Eng. J. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 76 year: 2020 publication-title: Nano Energy – volume: 58 start-page: 1412 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 55 start-page: 143 year: 2019 publication-title: Nano Energy – volume: 5 start-page: 3735 year: 2021 publication-title: Mater. Chem. Front. – volume: 32 start-page: 1657 year: 2020 publication-title: Chem. Mater. – volume: 20 start-page: 263 year: 2019 publication-title: Energy Storage Mater. – volume: 157 start-page: 693 year: 2020 publication-title: Carbon – volume: 403 year: 2021 publication-title: Chem. Eng. J. – volume: 12 start-page: 1062 year: 2021 publication-title: Chem. Sci. – volume: 11 start-page: 980 year: 2020 publication-title: Nat. Commun. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 29 year: 2021 publication-title: Sustainable Mater. Technol. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 59 start-page: 2449 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 182 year: 2019 publication-title: Nano Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4705 year: 2019 publication-title: J. Mater. Chem. A – ident: e_1_2_8_15_1 doi: 10.1002/adfm.201910327 – ident: e_1_2_8_44_1 doi: 10.1016/j.nanoen.2020.104997 – ident: e_1_2_8_6_1 doi: 10.1002/advs.202004448 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201912964 – ident: e_1_2_8_48_1 doi: 10.1016/j.ensm.2019.05.009 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.7b10460 – ident: e_1_2_8_8_1 doi: 10.1016/j.cej.2020.126308 – ident: e_1_2_8_45_1 doi: 10.1016/j.nanoen.2018.10.072 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.202001111 – ident: e_1_2_8_10_1 doi: 10.1039/C7TA02689G – ident: e_1_2_8_13_1 doi: 10.1002/anie.202108933 – ident: e_1_2_8_37_1 doi: 10.1039/C8TA07842D – ident: e_1_2_8_46_1 doi: 10.1021/acs.chemmater.9b05205 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.201903785 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2019.122978 – ident: e_1_2_8_39_1 doi: 10.1002/anie.202100917 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201600846 – ident: e_1_2_8_33_1 doi: 10.1039/C8TA10980J – ident: e_1_2_8_47_1 doi: 10.1002/anie.201602202 – ident: e_1_2_8_3_1 doi: 10.1039/C8EE00309B – ident: e_1_2_8_51_1 doi: 10.1002/aenm.202003455 – ident: e_1_2_8_38_1 doi: 10.1016/j.cej.2019.123234 – ident: e_1_2_8_5_1 doi: 10.1002/aenm.201700283 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.8b08638 – ident: e_1_2_8_11_1 doi: 10.1002/smtd.201900159 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201910251 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202008194 – ident: e_1_2_8_31_1 doi: 10.1016/j.ensm.2020.04.012 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.201705968 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201803765 – ident: e_1_2_8_7_1 doi: 10.1016/j.carbon.2019.11.011 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-021-22523-3 – ident: e_1_2_8_43_1 doi: 10.1021/acsnano.8b08266 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.0c11375 – ident: e_1_2_8_2_1 doi: 10.1126/science.aay9972 – ident: e_1_2_8_34_1 doi: 10.1021/acs.nanolett.8b03637 – ident: e_1_2_8_57_1 doi: 10.1021/acsami.8b10519 – ident: e_1_2_8_30_1 doi: 10.1016/j.cej.2020.126446 – ident: e_1_2_8_41_1 doi: 10.1002/adfm.201907837 – ident: e_1_2_8_49_1 doi: 10.1002/advs.202002199 – ident: e_1_2_8_54_1 doi: 10.1002/anie.201811882 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201803436 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201801898 – ident: e_1_2_8_40_1 doi: 10.1021/acscentsci.9b00982 – ident: e_1_2_8_53_1 doi: 10.1016/j.cej.2020.125725 – ident: e_1_2_8_9_1 doi: 10.1039/D1QM00179E – ident: e_1_2_8_4_1 doi: 10.1016/j.susmat.2021.e00302 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201801917 – ident: e_1_2_8_1_1 doi: 10.1021/acsami.8b12204 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201901912 – ident: e_1_2_8_52_1 doi: 10.1016/j.cej.2020.126578 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-020-14444-4 – ident: e_1_2_8_35_1 doi: 10.1039/D0SC05427E – ident: e_1_2_8_28_1 doi: 10.1002/anie.201915650 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.9b07299 – ident: e_1_2_8_27_1 doi: 10.1021/jacs.9b01855 – ident: e_1_2_8_42_1 doi: 10.1002/aenm.201702942 |
SSID | ssj0002013521 |
Score | 2.4102776 |
Snippet | Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural... Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2101292 |
SubjectTerms | cathode materials co‐substitution P2‐type sodium ion batteries |
Title | Manipulating Stable Layered P2‐Type Cathode via a Co‐Substitution Strategy for High Performance Sodium Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202101292 https://www.ncbi.nlm.nih.gov/pubmed/35032158 https://www.proquest.com/docview/2620087549 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7aBVkfxLv1RgTBh5J1Jpnr4-KqVVoR2oW-DZNMBgZsZ3Wngv56z0ky6dTdxctLL2nIQL9vTs7JnPMdQl7mGnCuopTBe8yiOFSszKRieRTntaphB5N4Djn_lExPo4-reLVLGzPVJZ08Uj8vrSv5H1RhDHDFKtl_QNYvCgPwGfCFV0AYXv8K43m5aWz_LSOrbaqgZuUPbL85-cwZxpimxK-t9OQ7Vl_B7c_QVJj8AGMqrDitzdrEnA9MifeVBIu2arbryQeYaHU4-4xD580u1vhg2zah9r75qint05yt5917OzJt3TZpTgqckcESpqYfnbkEYcy1_doMTyQgmPUpWUfaWC4ukoRBaJQNzWwyYJMYmEzNUWLMNsS7YM-tPuz5ukNR10smAh5na4OuiAMB7ku229d8tmH_03VywCGYCEbk4PhkPlv4szhwgsAPDXtNz4C_3r_iIbnRr7HvvlyISfZDHOOjLG-TWy64oMeWKXfINb25S24OJCfvkW7IGWo5Qx1nqOMMdZyhwBla0t84Q3vOUOAJRc7QAWeo5QwFzlDPmfvk9N3b5Zspc503mBJRzFkllUpkAJtypeNKC53CncsxVqiTOhFVlgkJljsUVRrmOpYp1nPLKEx1pVAAUjwgo0270Y8IRXmztBJ1HtSo9K_yVNRCBqLUeaqDlI8J6__QQjlZeuyO8qWwgtq8QCwKj8WYvPLzz6wgy5UzX_T4FGAz8UFYudHt9rzAJgzYySHKx-ShBc6v1QM9Jtwg-YeLFIv58sR_e3zlck_I4e5WeUpG3betfgbubCefOzb-AlxxnCg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+Stable+Layered+P2-Type+Cathode+via+a+Co-Substitution+Strategy+for+High+Performance+Sodium+Ion+Batteries&rft.jtitle=Small+methods&rft.au=Xiao%2C+Jun&rft.au=Gao%2C+Hong&rft.au=Tang%2C+Kaikai&rft.au=Long%2C+Mengqi&rft.date=2022-03-01&rft.eissn=2366-9608&rft.volume=6&rft.issue=3&rft.spage=e2101292&rft_id=info:doi/10.1002%2Fsmtd.202101292&rft_id=info%3Apmid%2F35032158&rft.externalDocID=35032158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |