Manipulating Stable Layered P2‐Type Cathode via a Co‐Substitution Strategy for High Performance Sodium Ion Batteries

Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 6; no. 3; pp. e2101292 - n/a
Main Authors Xiao, Jun, Gao, Hong, Tang, Kaikai, Long, Mengqi, Chen, Jun, Liu, Hao, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Germany 01.03.2022
Subjects
Online AccessGet full text
ISSN2366-9608
2366-9608
DOI10.1002/smtd.202101292

Cover

Loading…
Abstract Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g−1 at 20 mA g−1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g−1 at 500 mA g−1). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs. The co‐substitution of Li and Zn for Ni sites in the transition metal layers contributes to lower migration energy barriers, fast Na+ diffusion and a stable structure. Therefore, the Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 (NaLiZNMO) cathode material with microsphere structure prepared via a modified solvothermal method, followed by a solid‐state reaction has eminent cycle life and superior rate performance.
AbstractList Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na0.7 Li0.06 Zn0.06 Ni0.21 Mn0.67 O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g-1 at 20 mA g-1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g-1 at 500 mA g-1 ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs.Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na0.7 Li0.06 Zn0.06 Ni0.21 Mn0.67 O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g-1 at 20 mA g-1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g-1 at 500 mA g-1 ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs.
Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na Li Zn Ni Mn O material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g at 20 mA g and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g at 500 mA g ). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs.
Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na + kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na 0.7 Li 0.06 Zn 0.06 Ni 0.21 Mn 0.67 O 2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g −1 at 20 mA g −1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g −1 at 500 mA g −1 ). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na + kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs.
Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn‐based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2‐type Mn‐based Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as‐prepared electrode presents an initial discharge capacity of 131.8 mA h g−1 at 20 mA g−1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g−1 at 500 mA g−1). Furthermore, the single‐phase reaction mechanism during the sodiation/desodiation process is verified by in situ X‐ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual‐doping strategy inspires an effective way to produce high performance cathode materials for SIBs. The co‐substitution of Li and Zn for Ni sites in the transition metal layers contributes to lower migration energy barriers, fast Na+ diffusion and a stable structure. Therefore, the Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 (NaLiZNMO) cathode material with microsphere structure prepared via a modified solvothermal method, followed by a solid‐state reaction has eminent cycle life and superior rate performance.
Author Liu, Hao
Gao, Hong
Tang, Kaikai
Xiao, Jun
Chen, Jun
Long, Mengqi
Wang, Guoxiu
Author_xml – sequence: 1
  givenname: Jun
  surname: Xiao
  fullname: Xiao, Jun
  organization: University of Technology Sydney
– sequence: 2
  givenname: Hong
  surname: Gao
  fullname: Gao, Hong
  organization: Shanghai University
– sequence: 3
  givenname: Kaikai
  surname: Tang
  fullname: Tang, Kaikai
  organization: Shanghai University
– sequence: 4
  givenname: Mengqi
  surname: Long
  fullname: Long, Mengqi
  organization: Shanghai University
– sequence: 5
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Shanghai University
– sequence: 6
  givenname: Hao
  orcidid: 0000-0003-0266-9472
  surname: Liu
  fullname: Liu, Hao
  email: hao.liu@uts.edu.au
  organization: University of Technology Sydney
– sequence: 7
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: University of Technology Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35032158$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhq0qCALNlWPlI5ek_tjPI6QUkIJASjhbXns2cbW7Dra3dG_9Cf2N_SV1FGgREuppRqPnGWnmPUajznaA0CklM0oI--zboGeMMEooK9kHNGY8y6ZlRorRq_4ITbz_RqJAKE8ZPURHPCWc0bQYox-3sjPbvpHBdGu8DLJqAC_kAA40vme_f_5aDVvAcxk2VgP-biSWeG7jfNlXPpjQB2O7KDoZYD3g2jp8bdYbfA8u9q3sFOCl1aZv8U0EL2QI4Az4j-iglo2HyXM9QQ9fL1fz6-ni7upmfr6YKp6kbKorpbKKgFQaUg0c8rSsGS_zvM7qjOui4FWZccp1TktIq5zzpKgSmoNWNCGcn6Cz_d6ts489-CBa4xU0jezA9l6wjBFS5GlSRvTTM9pXLWixdaaVbhAv34pAsgeUs947qIUyQe4eEM83jaBE7HIRu1zE31yiNnujvWx-Vyj3wpNpYPgPLZa3qy__3D-NEKKU
CitedBy_id crossref_primary_10_1007_s12274_023_5435_2
crossref_primary_10_1002_smll_202305690
crossref_primary_10_1016_j_mtsust_2022_100163
crossref_primary_10_1007_s12274_022_5221_6
crossref_primary_10_1016_j_compositesb_2022_109912
crossref_primary_10_1016_j_rser_2023_114167
crossref_primary_10_1021_acsami_2c05005
crossref_primary_10_1039_D2TA06256A
crossref_primary_10_1016_j_cej_2022_139621
crossref_primary_10_1002_cnl2_7
crossref_primary_10_1016_j_est_2023_109391
crossref_primary_10_1007_s41918_024_00215_y
crossref_primary_10_1039_D3EE02934D
crossref_primary_10_1088_1361_6528_accfa2
crossref_primary_10_1002_chem_202402313
crossref_primary_10_1002_smtd_202201555
crossref_primary_10_1002_anie_202304628
crossref_primary_10_1016_j_jallcom_2025_179926
crossref_primary_10_1016_j_jcis_2024_06_136
crossref_primary_10_1016_j_jpowsour_2022_232334
crossref_primary_10_1016_j_ensm_2023_03_007
crossref_primary_10_1002_adfm_202406771
crossref_primary_10_1002_smm2_1211
crossref_primary_10_1021_acsaem_2c01278
crossref_primary_10_1016_j_jpowsour_2025_236570
crossref_primary_10_1016_j_cej_2025_161580
crossref_primary_10_1039_D2TA08315A
crossref_primary_10_1039_D2QI01018F
crossref_primary_10_1016_j_jechem_2024_06_007
crossref_primary_10_1039_D3NJ01980B
crossref_primary_10_1016_j_ijhydene_2022_04_216
crossref_primary_10_1016_j_cjsc_2023_100028
crossref_primary_10_1016_j_jpowsour_2023_232686
crossref_primary_10_1016_j_scib_2023_01_010
crossref_primary_10_1021_acssuschemeng_4c04941
crossref_primary_10_1016_j_susmat_2024_e01059
crossref_primary_10_1021_acssuschemeng_3c00670
crossref_primary_10_1002_ange_202304628
crossref_primary_10_1016_j_jcis_2022_11_107
crossref_primary_10_1016_j_cej_2025_160010
crossref_primary_10_1016_j_est_2023_109933
crossref_primary_10_1016_j_mtchem_2023_101741
Cites_doi 10.1002/adfm.201910327
10.1016/j.nanoen.2020.104997
10.1002/advs.202004448
10.1002/anie.201912964
10.1016/j.ensm.2019.05.009
10.1021/jacs.7b10460
10.1016/j.cej.2020.126308
10.1016/j.nanoen.2018.10.072
10.1002/aenm.202001111
10.1039/C7TA02689G
10.1002/anie.202108933
10.1039/C8TA07842D
10.1021/acs.chemmater.9b05205
10.1002/aenm.201903785
10.1016/j.cej.2019.122978
10.1002/anie.202100917
10.1002/adma.201600846
10.1039/C8TA10980J
10.1002/anie.201602202
10.1039/C8EE00309B
10.1002/aenm.202003455
10.1016/j.cej.2019.123234
10.1002/aenm.201700283
10.1021/jacs.8b08638
10.1002/smtd.201900159
10.1002/adfm.201910251
10.1002/adma.202008194
10.1016/j.ensm.2020.04.012
10.1002/adfm.201705968
10.1002/adma.201803765
10.1016/j.carbon.2019.11.011
10.1038/s41467-021-22523-3
10.1021/acsnano.8b08266
10.1021/acsami.0c11375
10.1126/science.aay9972
10.1021/acs.nanolett.8b03637
10.1021/acsami.8b10519
10.1016/j.cej.2020.126446
10.1002/adfm.201907837
10.1002/advs.202002199
10.1002/anie.201811882
10.1002/aenm.201803436
10.1002/adfm.201801898
10.1021/acscentsci.9b00982
10.1016/j.cej.2020.125725
10.1039/D1QM00179E
10.1016/j.susmat.2021.e00302
10.1002/adfm.201801917
10.1021/acsami.8b12204
10.1002/adfm.201901912
10.1016/j.cej.2020.126578
10.1038/s41467-020-14444-4
10.1039/D0SC05427E
10.1002/anie.201915650
10.1021/acsami.9b07299
10.1021/jacs.9b01855
10.1002/aenm.201702942
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/smtd.202101292
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 35032158
10_1002_smtd_202101292
SMTD202101292
Genre article
Journal Article
GrantInformation_xml – fundername: ARC Discovery
  funderid: DP180102297
– fundername: Joint International Laboratory on Environmental and Energy Frontier Materials
– fundername: Future Fellowship
  funderid: FT180100705
– fundername: Australian Research Council
– fundername: Innovation Research Team of High–Level Local Universities in Shanghai
– fundername: Innovation Research Team of High-Level Local Universities in Shanghai
– fundername: Future Fellowship
  grantid: FT180100705
– fundername: ARC Discovery
  grantid: DP180102297
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
AEUQT
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3452-dbcc6b0eacde5de3e759f23977f6f63d883b96313d719e5b73348b417edc14033
ISSN 2366-9608
IngestDate Fri Jul 11 02:16:46 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Thu Apr 24 22:55:51 EDT 2025
Tue Jul 01 00:47:46 EDT 2025
Wed Jan 22 16:26:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords P2-type
cathode materials
co-substitution
sodium ion batteries
Language English
License 2022 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3452-dbcc6b0eacde5de3e759f23977f6f63d883b96313d719e5b73348b417edc14033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0266-9472
PMID 35032158
PQID 2620087549
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2620087549
pubmed_primary_35032158
crossref_citationtrail_10_1002_smtd_202101292
crossref_primary_10_1002_smtd_202101292
wiley_primary_10_1002_smtd_202101292_SMTD202101292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small methods
PublicationTitleAlternate Small Methods
PublicationYear 2022
References 2017; 5
2021; 8
2019; 7
2017; 7
2018; 28
2019; 9
2021; 5
2019; 3
2019; 5
2020; 382
2019; 30
2019; 55
2019; 11
2020; 384
2021; 29
2021; 403
2021; 404
2019; 58
2020; 59
2019; 19
2020; 12
2020; 11
2020; 10
2020; 76
2020; 32
2019; 141
2017; 139
2016; 55
2020; 7
2018; 8
2021; 12
2021; 33
2021; 11
2019; 20
2020; 30
2020; 370
2019; 29
2018; 30
2020; 157
2020; 399
2018; 12
2018; 11
2021; 60
2016; 28
2018; 10
2020; 29
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 7445
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 2256
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  start-page: 7243
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2496
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 840
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 6680
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 657
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 182
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 370
  start-page: 708
  year: 2020
  publication-title: Science
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1937
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 59
  start-page: 9299
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 58
  start-page: 1412
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 143
  year: 2019
  publication-title: Nano Energy
– volume: 5
  start-page: 3735
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 32
  start-page: 1657
  year: 2020
  publication-title: Chem. Mater.
– volume: 20
  start-page: 263
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 157
  start-page: 693
  year: 2020
  publication-title: Carbon
– volume: 403
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1062
  year: 2021
  publication-title: Chem. Sci.
– volume: 11
  start-page: 980
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 29
  year: 2021
  publication-title: Sustainable Mater. Technol.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 2449
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 182
  year: 2019
  publication-title: Nano Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4705
  year: 2019
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201910327
– ident: e_1_2_8_44_1
  doi: 10.1016/j.nanoen.2020.104997
– ident: e_1_2_8_6_1
  doi: 10.1002/advs.202004448
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201912964
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ensm.2019.05.009
– ident: e_1_2_8_19_1
  doi: 10.1021/jacs.7b10460
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cej.2020.126308
– ident: e_1_2_8_45_1
  doi: 10.1016/j.nanoen.2018.10.072
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.202001111
– ident: e_1_2_8_10_1
  doi: 10.1039/C7TA02689G
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.202108933
– ident: e_1_2_8_37_1
  doi: 10.1039/C8TA07842D
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.chemmater.9b05205
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.201903785
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2019.122978
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.202100917
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201600846
– ident: e_1_2_8_33_1
  doi: 10.1039/C8TA10980J
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201602202
– ident: e_1_2_8_3_1
  doi: 10.1039/C8EE00309B
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.202003455
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cej.2019.123234
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.201700283
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.8b08638
– ident: e_1_2_8_11_1
  doi: 10.1002/smtd.201900159
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201910251
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202008194
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ensm.2020.04.012
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201705968
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201803765
– ident: e_1_2_8_7_1
  doi: 10.1016/j.carbon.2019.11.011
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-021-22523-3
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.8b08266
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.0c11375
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aay9972
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.nanolett.8b03637
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.8b10519
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cej.2020.126446
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.201907837
– ident: e_1_2_8_49_1
  doi: 10.1002/advs.202002199
– ident: e_1_2_8_54_1
  doi: 10.1002/anie.201811882
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201803436
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201801898
– ident: e_1_2_8_40_1
  doi: 10.1021/acscentsci.9b00982
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cej.2020.125725
– ident: e_1_2_8_9_1
  doi: 10.1039/D1QM00179E
– ident: e_1_2_8_4_1
  doi: 10.1016/j.susmat.2021.e00302
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201801917
– ident: e_1_2_8_1_1
  doi: 10.1021/acsami.8b12204
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201901912
– ident: e_1_2_8_52_1
  doi: 10.1016/j.cej.2020.126578
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-020-14444-4
– ident: e_1_2_8_35_1
  doi: 10.1039/D0SC05427E
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.201915650
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.9b07299
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.9b01855
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.201702942
SSID ssj0002013521
Score 2.4102776
Snippet Mn‐based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco‐friendly character and abundant natural...
Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2101292
SubjectTerms cathode materials
co‐substitution
P2‐type
sodium ion batteries
Title Manipulating Stable Layered P2‐Type Cathode via a Co‐Substitution Strategy for High Performance Sodium Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202101292
https://www.ncbi.nlm.nih.gov/pubmed/35032158
https://www.proquest.com/docview/2620087549
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7aBVkfxLv1RgTBh5J1Jpnr4-KqVVoR2oW-DZNMBgZsZ3Wngv56z0ky6dTdxctLL2nIQL9vTs7JnPMdQl7mGnCuopTBe8yiOFSszKRieRTntaphB5N4Djn_lExPo4-reLVLGzPVJZ08Uj8vrSv5H1RhDHDFKtl_QNYvCgPwGfCFV0AYXv8K43m5aWz_LSOrbaqgZuUPbL85-cwZxpimxK-t9OQ7Vl_B7c_QVJj8AGMqrDitzdrEnA9MifeVBIu2arbryQeYaHU4-4xD580u1vhg2zah9r75qint05yt5917OzJt3TZpTgqckcESpqYfnbkEYcy1_doMTyQgmPUpWUfaWC4ukoRBaJQNzWwyYJMYmEzNUWLMNsS7YM-tPuz5ukNR10smAh5na4OuiAMB7ku229d8tmH_03VywCGYCEbk4PhkPlv4szhwgsAPDXtNz4C_3r_iIbnRr7HvvlyISfZDHOOjLG-TWy64oMeWKXfINb25S24OJCfvkW7IGWo5Qx1nqOMMdZyhwBla0t84Q3vOUOAJRc7QAWeo5QwFzlDPmfvk9N3b5Zspc503mBJRzFkllUpkAJtypeNKC53CncsxVqiTOhFVlgkJljsUVRrmOpYp1nPLKEx1pVAAUjwgo0270Y8IRXmztBJ1HtSo9K_yVNRCBqLUeaqDlI8J6__QQjlZeuyO8qWwgtq8QCwKj8WYvPLzz6wgy5UzX_T4FGAz8UFYudHt9rzAJgzYySHKx-ShBc6v1QM9Jtwg-YeLFIv58sR_e3zlck_I4e5WeUpG3betfgbubCefOzb-AlxxnCg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+Stable+Layered+P2-Type+Cathode+via+a+Co-Substitution+Strategy+for+High+Performance+Sodium+Ion+Batteries&rft.jtitle=Small+methods&rft.au=Xiao%2C+Jun&rft.au=Gao%2C+Hong&rft.au=Tang%2C+Kaikai&rft.au=Long%2C+Mengqi&rft.date=2022-03-01&rft.eissn=2366-9608&rft.volume=6&rft.issue=3&rft.spage=e2101292&rft_id=info:doi/10.1002%2Fsmtd.202101292&rft_id=info%3Apmid%2F35032158&rft.externalDocID=35032158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon