The evolution of solar wind strahl with heliospheric distance
Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move...
Saved in:
Published in | Journal of geophysical research. Space physics Vol. 122; no. 4; pp. 3858 - 3874 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move into regions of decreasing magnetic field strength and thus are subject to adiabatic focusing. However, the widths of strahl pitch angle distributions observed at 1 AU are significantly broader than expected. Previous investigations have found that the average observed strahl pitch angle width actually increases with heliocentric radial distance. This implies that strahl electrons must be subjected to some form of pitch angle scattering process or processes, details of which as of yet remain elusive. In this paper, we use Cassini electron measurements to examine strahl beams across a distance range of approximately 8 AU, from its Earth Flyby in 1999 until its insertion into orbit around Saturn in 2004. We find that, in general, there is a relatively constant rate of broadening of strahl pitch angle distributions with distance between ∼1 and 5.5 AU. Our results from beyond this distance indicate that the strahl population is likely to be completely scattered, presumably to form part of the halo. We find multiple energy dependences at different radial distances implying that there are multiple strahl scattering mechanisms in operation.
Key Points
Using Cassini we study the evolution of strahl pitch angle widths with energy across 1 to 5.5 AU
In general, strahl pitch angle widths broaden at an approximately constant rate for most energies
We conclude strahl is most likely scattered to form part of the halo at large heliospheric distances |
---|---|
AbstractList | Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move into regions of decreasing magnetic field strength and thus are subject to adiabatic focusing. However, the widths of strahl pitch angle distributions observed at 1 AU are significantly broader than expected. Previous investigations have found that the average observed strahl pitch angle width actually increases with heliocentric radial distance. This implies that strahl electrons must be subjected to some form of pitch angle scattering process or processes, details of which as of yet remain elusive. In this paper, we use Cassini electron measurements to examine strahl beams across a distance range of approximately 8 AU, from its Earth Flyby in 1999 until its insertion into orbit around Saturn in 2004. We find that, in general, there is a relatively constant rate of broadening of strahl pitch angle distributions with distance between ∼1 and 5.5 AU. Our results from beyond this distance indicate that the strahl population is likely to be completely scattered, presumably to form part of the halo. We find multiple energy dependences at different radial distances implying that there are multiple strahl scattering mechanisms in operation.
Key Points
Using Cassini we study the evolution of strahl pitch angle widths with energy across 1 to 5.5 AU
In general, strahl pitch angle widths broaden at an approximately constant rate for most energies
We conclude strahl is most likely scattered to form part of the halo at large heliospheric distances |
Author | Jones, G. H. Forsyth, C. Arridge, C. S. Gilbert, L. Lewis, G. R. Rae, I. J. Walsh, A. P. Waite, J. H. Coates, A. J. Graham, G. A. Owen, C. J. |
Author_xml | – sequence: 1 givenname: G. A. surname: Graham fullname: Graham, G. A. email: georgina.graham@ucl.ac.uk organization: University College London – sequence: 2 givenname: I. J. orcidid: 0000-0002-2637-4786 surname: Rae fullname: Rae, I. J. organization: University College London – sequence: 3 givenname: C. J. orcidid: 0000-0002-5982-4667 surname: Owen fullname: Owen, C. J. organization: University College London – sequence: 4 givenname: A. P. orcidid: 0000-0002-1682-1212 surname: Walsh fullname: Walsh, A. P. organization: European Space Astronomy Centre – sequence: 5 givenname: C. S. orcidid: 0000-0002-0431-6526 surname: Arridge fullname: Arridge, C. S. organization: Lancaster University – sequence: 6 givenname: L. orcidid: 0000-0002-4863-9589 surname: Gilbert fullname: Gilbert, L. organization: University College London – sequence: 7 givenname: G. R. surname: Lewis fullname: Lewis, G. R. organization: University College London – sequence: 8 givenname: G. H. orcidid: 0000-0002-5859-1136 surname: Jones fullname: Jones, G. H. organization: University College London – sequence: 9 givenname: C. orcidid: 0000-0002-0026-8395 surname: Forsyth fullname: Forsyth, C. organization: University College London – sequence: 10 givenname: A. J. orcidid: 0000-0002-6185-3125 surname: Coates fullname: Coates, A. J. organization: University College London – sequence: 11 givenname: J. H. orcidid: 0000-0002-1978-1025 surname: Waite fullname: Waite, J. H. organization: Southwest Research Institute |
BookMark | eNpNj1FLwzAUhYNMcM69-QPyB6o39yZp--DDGDodA0Hmc0nbhEZiM5rq2L-3ooLn5RzOw-F8l2zWx94ydi3gRgDgLYLQ2xUgaaXP2ByFLrNSAs7-MhVwwZYpvcGkYqqEmrO7fWe5_YzhY_Sx59HxFIMZ-NH3LU_jYLow5bHjnQ0-pkNnB9_w1qfR9I29YufOhGSXv75grw_3-_VjtnvePK1Xu6whqTBD1M6UGnUunNOY122TU4Gy0AimdARSyLqkWhW5stOt1rQ5CU0EYGUta1ow-tk9-mBP1WHw72Y4VQKqb_TqP3q13bysFE3g9AX8-E2y |
CitedBy_id | crossref_primary_10_1007_s11207_024_02414_8 crossref_primary_10_1063_1_5093199 crossref_primary_10_3847_2041_8213_ac08a1 crossref_primary_10_3847_1538_4365_ab22bd crossref_primary_10_3847_2041_8213_abaf56 crossref_primary_10_3847_1538_4365_ab4c3b crossref_primary_10_1016_j_jastp_2021_105814 crossref_primary_10_1051_0004_6361_202346100 crossref_primary_10_1029_2021JA030018 crossref_primary_10_1051_0004_6361_201936601 crossref_primary_10_3847_2041_8213_ac4dff crossref_primary_10_1051_0004_6361_202039550 crossref_primary_10_1093_mnras_sty2756 crossref_primary_10_3847_1538_4357_ab7b7a crossref_primary_10_3847_1538_4365_ab4cec crossref_primary_10_1029_2023JA031427 crossref_primary_10_3847_1538_4357_ac096e crossref_primary_10_3847_1538_4357_ac6605 crossref_primary_10_1007_s11214_023_00952_4 crossref_primary_10_3847_1538_4357_ab4c30 crossref_primary_10_3847_2041_8213_ad614b crossref_primary_10_3847_1538_4357_ac88c4 crossref_primary_10_3847_1538_4357_ad28c3 crossref_primary_10_3847_1538_4357_ab7a93 crossref_primary_10_3847_1538_4365_ab5445 crossref_primary_10_1051_0004_6361_201936894 crossref_primary_10_1029_2020JA028864 crossref_primary_10_3847_1538_4357_abb099 crossref_primary_10_1051_0004_6361_202347489 crossref_primary_10_3847_1538_4357_ab1f05 crossref_primary_10_3847_2041_8213_ad00ad crossref_primary_10_3847_1538_4357_aaaf1b crossref_primary_10_1051_0004_6361_202039220 crossref_primary_10_1063_5_0230372 crossref_primary_10_3847_1538_4357_ab961f crossref_primary_10_1016_j_pss_2020_104924 crossref_primary_10_3390_universe8100509 crossref_primary_10_1093_mnras_stab2228 crossref_primary_10_1007_s41116_019_0021_0 crossref_primary_10_1093_mnras_stx2555 crossref_primary_10_3847_1538_4357_ad54c4 crossref_primary_10_1051_0004_6361_202037840 crossref_primary_10_1051_0004_6361_202039808 crossref_primary_10_3847_2041_8213_ab799c crossref_primary_10_1007_s11214_021_00814_x crossref_primary_10_1051_0004_6361_202141816 crossref_primary_10_1051_0004_6361_202245140 crossref_primary_10_1093_mnras_sty1567 crossref_primary_10_1093_mnras_sty3504 crossref_primary_10_1093_mnras_stz1007 crossref_primary_10_3847_2041_8213_ac4015 crossref_primary_10_1093_mnras_sty1808 crossref_primary_10_1051_0004_6361_202039256 crossref_primary_10_1093_mnras_stz2378 crossref_primary_10_1063_5_0074474 crossref_primary_10_3847_2041_8213_abefdd crossref_primary_10_3847_2041_8213_ab01bd crossref_primary_10_3847_1538_4357_ace59e crossref_primary_10_3847_2041_8213_ab8cb8 crossref_primary_10_3847_1538_4357_ad2e92 crossref_primary_10_3847_1538_4357_ac36c9 crossref_primary_10_1007_s10686_021_09761_5 crossref_primary_10_1093_mnras_stac3178 crossref_primary_10_3389_fspas_2022_951628 crossref_primary_10_1007_s11207_019_1579_3 |
ContentType | Journal Article |
Copyright | 2017. The Authors. |
Copyright_xml | – notice: 2017. The Authors. |
DBID | 24P |
DOI | 10.1002/2016JA023656 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2169-9402 |
EndPage | 3874 |
ExternalDocumentID | JGRA53402 |
Genre | article |
GrantInformation_xml | – fundername: Natural Environment Research Council (NERC) funderid: NE/N014480/1 – fundername: RCUK | Science and Technology Facilities Council (STFC) funderid: ST/N000722/1 |
GroupedDBID | 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 52M 702 8-1 88I 8FE 8FG 8FH A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS AZFZN AZQEC AZVAB BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D0L D1K DPXWK DRFUL DRSTM DWQXO EBS EJD G-S GNUQQ GODZA HCIFZ HGLYW HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- P-X P2W P62 PCBAR PQQKQ PROAC R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA |
ID | FETCH-LOGICAL-c3452-226fa962671ff627bdc738248620a9f30414b93b5875e915dad73163300e4b4b3 |
IEDL.DBID | 24P |
ISSN | 2169-9380 |
IngestDate | Wed Jan 22 16:23:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3452-226fa962671ff627bdc738248620a9f30414b93b5875e915dad73163300e4b4b3 |
ORCID | 0000-0002-0026-8395 0000-0002-0431-6526 0000-0002-5859-1136 0000-0002-4863-9589 0000-0002-6185-3125 0000-0002-2637-4786 0000-0002-5982-4667 0000-0002-1682-1212 0000-0002-1978-1025 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JA023656 |
PageCount | 1 |
ParticipantIDs | wiley_primary_10_1002_2016JA023656_JGRA53402 |
PublicationCentury | 2000 |
PublicationDate | April 2017 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationTitle | Journal of geophysical research. Space physics |
PublicationYear | 2017 |
References | 2012; 760 2013; 769 2005; 110 2010; 105 1987; 92 2013; 40 1987b; 92 1993; 20 2015; 120 1998 2009 2008; 56 2016; 121 2004 2003 1999; 104 2007; 34 2014; 796 2009; 114 2006; 111 1987a; 92 1998; 25 2012; 30 2001; 106 2014; 795 2000; 528 2011; 269 2007; 112 2009; 57 2004; 114 2013; 10 2000 1978; 83 2002; 107 1994; 99 2005; 627 1998; 103 2008; 113 2012; 753 2012; 117 1996; 316 1975; 80 |
References_xml | – volume: 106 start-page: 29,305 issue: A12 year: 2001 end-page: 29,312 article-title: Self‐consistent model of solar wind electrons publication-title: J. Geophys. Res. – volume: 30 start-page: 163 issue: 1 year: 2012 end-page: 175 article-title: Direct observations of the formation of the solar wind halo from the strahl publication-title: Ann. Geophys. – start-page: 125 year: 2000 end-page: 157 – volume: 110 year: 2005 article-title: Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU publication-title: J. Geophys. Res. – start-page: 237 year: 1998 end-page: 242 – volume: 769 start-page: L22 issue: 2 year: 2013 article-title: Electron heat conduction in the solar wind: Transition from Spitzer‐Härm to the collisionless limit publication-title: Astrophys. J. Lett. – volume: 34 year: 2007 article-title: All whistlers are not created equally: Scattering of strahl electrons in the solar wind via particle‐in‐cell simulations publication-title: Geophys. Res. Lett. – volume: 528 start-page: 509 issue: 1 year: 2000 article-title: Generation of electron suprathermal tails in the upper solar atmosphere: Implications for coronal heating publication-title: Astrophys. J. – volume: 111 year: 2006 article-title: Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft publication-title: J. Geophys. Res. – volume: 111 year: 2006 article-title: Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure publication-title: J. Geophys. Res. – start-page: 61 year: 1998 end-page: 78, Springer, Dordrecht, Netherlands publication-title: Wind observations of suprathermal electrons in the interplanetary medium – volume: 114 year: 2009 article-title: Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses observations publication-title: J. Geophys. Res. – volume: 25 start-page: 249 year: 1998 end-page: 252 article-title: Observations of electron velocity distribution functions in the solar wind by the wind spacecraft: High angular resolution strahl measurements publication-title: Geophys. Res. Lett. – volume: 92 start-page: 8519 issue: A8 year: 1987 end-page: 8535 article-title: Bidirectional solar wind electron heat flux events publication-title: J. Geophys. Res. – volume: 105 year: 2010 article-title: Contribution of strong discontinuities to the power spectrum of the solar wind publication-title: Phys. Rev. Lett. – volume: 20 start-page: 2335 issue: 21 year: 1993 end-page: 2338 article-title: Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond 2 AU: Ulysses publication-title: Geophys. Res. Lett. – start-page: 257 year: 1998 end-page: 262 – year: 2004 – volume: 120 start-page: 8281 year: 2015 end-page: 8287 article-title: Energetic particles, tangential discontinuities, and solar flux tubes publication-title: J. Geophys. Res. Space Physics – volume: 113 year: 2008 article-title: Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? publication-title: J. Geophys. Res. – volume: 56 start-page: 901 issue: 7 year: 2008 end-page: 912 article-title: Derivation of density and temperature from the Cassini‐Huygens CAPS electron spectrometer publication-title: Planet. Space Sci. – volume: 113 year: 2008 article-title: Electron temperature anisotropy constraints in the solar wind publication-title: J. Geophys. Res. – volume: 114 start-page: 1 issue: 1–4 year: 2004 end-page: 112 article-title: Cassini plasma spectrometer investigation publication-title: Space Sci. Rev. – volume: 107 start-page: 1405 issue: A11 year: 2002 article-title: The underlying direction of the heliospheric magnetic field through the Ulysses first orbit publication-title: J. Geophys. Res. – volume: 796 start-page: 5 issue: 1 year: 2014 article-title: Whistler mode waves and the electron heat flux in the solar wind: Cluster observations publication-title: Astrophys. J. – volume: 40 start-page: 2495 year: 2013 end-page: 2499 article-title: An indication of the existence of a solar wind strahl at 10 AU publication-title: Geophys. Res. Lett. – volume: 316 start-page: 287 year: 1996 end-page: 295 article-title: The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole publication-title: Astron. Astrophys. – volume: 627 start-page: 540 issue: 1 year: 2005 article-title: Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves publication-title: Astrophys. J. – volume: 104 start-page: 24,819 issue: A11 year: 1999 end-page: 24,834 article-title: On the cascade processes of Alfvén waves in the fast solar wind publication-title: J. Geophys. Res. – volume: 57 start-page: 854 issue: 7 year: 2009 end-page: 869 article-title: The effect of spacecraft radiation sources on electron moments from the cassini CAPS electron spectrometer publication-title: Planet. Space Sci. – volume: 103 start-page: 23,727 issue: A10 year: 1998 end-page: 23,732 article-title: Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978–1996 publication-title: J. Geophys. Res. – volume: 795 start-page: L38 issue: 2 year: 2014 article-title: The origin of non‐Maxwellian solar wind electron velocity distribution function: Connection to nanoflares in the solar corona publication-title: Astrophys. J. Lett. – volume: 106 start-page: 30,177 issue: A12 year: 2001 end-page: 30,198 article-title: Cassini plasma spectrometer electron spectrometer measurements during the Earth swing‐by on August 18, 1999 publication-title: J. Geophys. Res. – volume: 80 start-page: 4181 issue: 31 year: 1975 end-page: 4196 article-title: Solar wind electrons publication-title: J. Geophys. Res. – volume: 121 start-page: 925 year: 2016 end-page: 948 article-title: Mapping magnetic field lines between the Sun and Earth publication-title: J. Geophys. Res. Space Physics – start-page: 1 year: 2003 end-page: 58 – volume: 112 year: 2007 article-title: Scattering of suprathermal electrons in the solar wind: ACE observations publication-title: J. Geophys. Res. – volume: 316 start-page: 350 year: 1996 end-page: 354 article-title: Variation of electron‐strahl width in the high‐speed solar wind: Ulysses observations publication-title: Astron. Astrophys. – volume: 111 year: 2006 article-title: Widths of suprathermal pitch angle distributions during solar electron bursts: ACE observations publication-title: J. Geophys. Res. – volume: 753 start-page: 31 issue: 1 year: 2012 article-title: Electron transport in the fast solar wind publication-title: Astrophys. J. – volume: 92 start-page: 1075 issue: A2 year: 1987b end-page: 1092 article-title: Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment publication-title: J. Geophys. Res. – start-page: 331 year: 2004 end-page: 383 – volume: 760 start-page: 143 issue: 2 year: 2012 article-title: On the competition between radial expansion and Coulomb collisions in shaping the electron velocity distribution function: Kinetic simulations publication-title: Astrophys. J. – volume: 83 start-page: 5285 issue: A11 year: 1978 end-page: 5295 article-title: Characteristic electron variations across simple high‐speed solar wind streams publication-title: J. Geophys. Res. – volume: 99 start-page: 23,401 issue: A12 year: 1994 end-page: 23,410 article-title: Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations publication-title: J. Geophys. Res. – volume: 269 start-page: 411 issue: 2 year: 2011 end-page: 420 article-title: Magnetic discontinuities in the near‐Earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure? publication-title: Sol. Phys. – volume: 117 year: 2012 article-title: Variability of the solar wind suprathermal electron strahl publication-title: J. Geophys. Res. – volume: 10 issue: 5 year: 2013 article-title: The heliospheric magnetic field publication-title: Living Rev. Sol. Phys. – start-page: 251 year: 2009 – volume: 113 year: 2008 article-title: Suprathermal electron evolution in a Parker spiral magnetic field publication-title: J. Geophys. Res. – volume: 92 start-page: 1103 issue: A2 year: 1987a end-page: 1118 article-title: Variations of electron distribution functions in the solar wind publication-title: J. Geophys. Res. |
SSID | ssj0000816915 |
Score | 2.5411007 |
Snippet | Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 3858 |
SubjectTerms | cassini electrons interplanetary solar wind suprathermal wave‐particle |
Title | The evolution of solar wind strahl with heliospheric distance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JA023656 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL17EJ_VJDuLJpdk8dpvjItZSUEQs9LYkm4QK2hW3Kv57Z7JL1aO3HEIgmUxmvo_JN4ScG2chDgQEOZYlqD8CLgWO57TKUw8XLI3F47d32XgqJzM16wg3_AvT6kOsCDf0jPheo4Mb2wx-REMhcmWTAgXQVbZONvB3LZb0cXm_4liwqYSOTQw4DBIthqyrfYclBr8X-Juaxtgy2iZbXVJIi9aKO2TNL3ZJv2iQpq5fvugFjeOWhWj2Ym946j-6W0PrQBtEqPQTADZF7mL-TJFgpXPYY92gcsBTRR2mimDjfTIdXT9ejZOuD0JSCal4AhlSMBqQR56GkPHcuioXQy4BjDCjg2AylVYLqwB7eNivMw77UQnBmJdWWnFAeot64fuEpib3Wg0dq5yU8NYZbnKleMhZcDpYdUgu4zmUr63WRdmqGvPy92GVk5uHQglAnkf_m35MNjlGxVj4ckJ6y7d3fwoxfWnPouG-AbSjlpU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLAgPlW-PSAmojr-SOoxQpRS2gqhVuoWxXWsIkGDSAHx77lzolJGNg-RpbN9vntPznuEXGbWQB1wCHIMC1B_BFIKEs9qFYc5HLDQPx4fDKPuWPYmalL7nOK_MJU-xJJww8zw9zUmOBLSrV_VUChdUS9BBXQVrZMNGfEYLQy4fFySLOgqob2LAYdBoEWb1Y_fYYrW6gR_e1NfXDo7ZLvuCmlSbeMuWcvne6SZlMhTF6_f9Ir6cUVDlPveHJ7mn_WxoYWjJUJU-gUImyJ5MXuhyLDSGQRZlCgd8DylFntF2OQDMu7cjm66QW2EEEyFVDyAFsllGqBHHDoHYRo7jUWbS0AjLNNOMBlKo4VRAD5yiNdmFg2phGAsl0YacUga82KeNwkNszjXqm3Z1EoJl13Gs1gp7mLmrHZGHZFrvw7pWyV2kVayxjxdXay0d_eUKAHQ8_h_n1-Qze5o0E_798OHE7LFsUT6VzCnpLF4_8jPoMAvzLnfxB_6mpoB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIT-o7B_Hk0mwe3ea4qLVWLUUs9LZsNhsqaLe4VfHfO5Ndaj16y2EJJJPJzPft5BtCzlNrIA44BDmGBag_Ai4Fjme1isIcDljoi8cfB-3eSPbHalwTbvgWptKHWBBu6Bn-vkYHn1nX-hUNhcjV7scogK7aq2QN__dhSReXwwXHgk0ltG9iwGEQaNFhde07TNFanuBvaupjS3eLbNZJIY0rK26TlXy6Q5pxiTR18fZNL6gfVyxEuet7w9P8sz41tHC0RIRKvwBgU-QuJq8UCVY6gTUWJSoHvGTUYqoINt4jo-7N81UvqPsgBJmQigeQIblUA_KIQufaPDI2i0SHSwAjLNVOMBlKo4VRgD1yWK9NLfajEoKxXBppxD5pTItp3iQ0TKNcq45lmZUS7rqUp5FS3EXMWe2MOiCXfh-SWaV1kVSqxjxZ3qykf_sUKwHI8_B_n5-R9eF1N3m4G9wfkQ2OAdLXwByTxvz9Iz-B8D43p96GP2T3mTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+solar+wind+strahl+with+heliospheric+distance&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Graham%2C+G.+A.&rft.au=Rae%2C+I.+J.&rft.au=Owen%2C+C.+J.&rft.au=Walsh%2C+A.+P.&rft.date=2017-04-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=122&rft.issue=4&rft.spage=3858&rft.epage=3874&rft_id=info:doi/10.1002%2F2016JA023656&rft.externalDBID=10.1002%252F2016JA023656&rft.externalDocID=JGRA53402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon |