The evolution of solar wind strahl with heliospheric distance

Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Space physics Vol. 122; no. 4; pp. 3858 - 3874
Main Authors Graham, G. A., Rae, I. J., Owen, C. J., Walsh, A. P., Arridge, C. S., Gilbert, L., Lewis, G. R., Jones, G. H., Forsyth, C., Coates, A. J., Waite, J. H.
Format Journal Article
LanguageEnglish
Published 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move into regions of decreasing magnetic field strength and thus are subject to adiabatic focusing. However, the widths of strahl pitch angle distributions observed at 1 AU are significantly broader than expected. Previous investigations have found that the average observed strahl pitch angle width actually increases with heliocentric radial distance. This implies that strahl electrons must be subjected to some form of pitch angle scattering process or processes, details of which as of yet remain elusive. In this paper, we use Cassini electron measurements to examine strahl beams across a distance range of approximately 8 AU, from its Earth Flyby in 1999 until its insertion into orbit around Saturn in 2004. We find that, in general, there is a relatively constant rate of broadening of strahl pitch angle distributions with distance between ∼1 and 5.5 AU. Our results from beyond this distance indicate that the strahl population is likely to be completely scattered, presumably to form part of the halo. We find multiple energy dependences at different radial distances implying that there are multiple strahl scattering mechanisms in operation. Key Points Using Cassini we study the evolution of strahl pitch angle widths with energy across 1 to 5.5 AU In general, strahl pitch angle widths broaden at an approximately constant rate for most energies We conclude strahl is most likely scattered to form part of the halo at large heliospheric distances
AbstractList Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and interplanetary evolution of the strahl electron populations has yet to be fully understood. As strahl electrons travel away from the Sun, they move into regions of decreasing magnetic field strength and thus are subject to adiabatic focusing. However, the widths of strahl pitch angle distributions observed at 1 AU are significantly broader than expected. Previous investigations have found that the average observed strahl pitch angle width actually increases with heliocentric radial distance. This implies that strahl electrons must be subjected to some form of pitch angle scattering process or processes, details of which as of yet remain elusive. In this paper, we use Cassini electron measurements to examine strahl beams across a distance range of approximately 8 AU, from its Earth Flyby in 1999 until its insertion into orbit around Saturn in 2004. We find that, in general, there is a relatively constant rate of broadening of strahl pitch angle distributions with distance between ∼1 and 5.5 AU. Our results from beyond this distance indicate that the strahl population is likely to be completely scattered, presumably to form part of the halo. We find multiple energy dependences at different radial distances implying that there are multiple strahl scattering mechanisms in operation. Key Points Using Cassini we study the evolution of strahl pitch angle widths with energy across 1 to 5.5 AU In general, strahl pitch angle widths broaden at an approximately constant rate for most energies We conclude strahl is most likely scattered to form part of the halo at large heliospheric distances
Author Jones, G. H.
Forsyth, C.
Arridge, C. S.
Gilbert, L.
Lewis, G. R.
Rae, I. J.
Walsh, A. P.
Waite, J. H.
Coates, A. J.
Graham, G. A.
Owen, C. J.
Author_xml – sequence: 1
  givenname: G. A.
  surname: Graham
  fullname: Graham, G. A.
  email: georgina.graham@ucl.ac.uk
  organization: University College London
– sequence: 2
  givenname: I. J.
  orcidid: 0000-0002-2637-4786
  surname: Rae
  fullname: Rae, I. J.
  organization: University College London
– sequence: 3
  givenname: C. J.
  orcidid: 0000-0002-5982-4667
  surname: Owen
  fullname: Owen, C. J.
  organization: University College London
– sequence: 4
  givenname: A. P.
  orcidid: 0000-0002-1682-1212
  surname: Walsh
  fullname: Walsh, A. P.
  organization: European Space Astronomy Centre
– sequence: 5
  givenname: C. S.
  orcidid: 0000-0002-0431-6526
  surname: Arridge
  fullname: Arridge, C. S.
  organization: Lancaster University
– sequence: 6
  givenname: L.
  orcidid: 0000-0002-4863-9589
  surname: Gilbert
  fullname: Gilbert, L.
  organization: University College London
– sequence: 7
  givenname: G. R.
  surname: Lewis
  fullname: Lewis, G. R.
  organization: University College London
– sequence: 8
  givenname: G. H.
  orcidid: 0000-0002-5859-1136
  surname: Jones
  fullname: Jones, G. H.
  organization: University College London
– sequence: 9
  givenname: C.
  orcidid: 0000-0002-0026-8395
  surname: Forsyth
  fullname: Forsyth, C.
  organization: University College London
– sequence: 10
  givenname: A. J.
  orcidid: 0000-0002-6185-3125
  surname: Coates
  fullname: Coates, A. J.
  organization: University College London
– sequence: 11
  givenname: J. H.
  orcidid: 0000-0002-1978-1025
  surname: Waite
  fullname: Waite, J. H.
  organization: Southwest Research Institute
BookMark eNpNj1FLwzAUhYNMcM69-QPyB6o39yZp--DDGDodA0Hmc0nbhEZiM5rq2L-3ooLn5RzOw-F8l2zWx94ydi3gRgDgLYLQ2xUgaaXP2ByFLrNSAs7-MhVwwZYpvcGkYqqEmrO7fWe5_YzhY_Sx59HxFIMZ-NH3LU_jYLow5bHjnQ0-pkNnB9_w1qfR9I29YufOhGSXv75grw_3-_VjtnvePK1Xu6whqTBD1M6UGnUunNOY122TU4Gy0AimdARSyLqkWhW5stOt1rQ5CU0EYGUta1ow-tk9-mBP1WHw72Y4VQKqb_TqP3q13bysFE3g9AX8-E2y
CitedBy_id crossref_primary_10_1007_s11207_024_02414_8
crossref_primary_10_1063_1_5093199
crossref_primary_10_3847_2041_8213_ac08a1
crossref_primary_10_3847_1538_4365_ab22bd
crossref_primary_10_3847_2041_8213_abaf56
crossref_primary_10_3847_1538_4365_ab4c3b
crossref_primary_10_1016_j_jastp_2021_105814
crossref_primary_10_1051_0004_6361_202346100
crossref_primary_10_1029_2021JA030018
crossref_primary_10_1051_0004_6361_201936601
crossref_primary_10_3847_2041_8213_ac4dff
crossref_primary_10_1051_0004_6361_202039550
crossref_primary_10_1093_mnras_sty2756
crossref_primary_10_3847_1538_4357_ab7b7a
crossref_primary_10_3847_1538_4365_ab4cec
crossref_primary_10_1029_2023JA031427
crossref_primary_10_3847_1538_4357_ac096e
crossref_primary_10_3847_1538_4357_ac6605
crossref_primary_10_1007_s11214_023_00952_4
crossref_primary_10_3847_1538_4357_ab4c30
crossref_primary_10_3847_2041_8213_ad614b
crossref_primary_10_3847_1538_4357_ac88c4
crossref_primary_10_3847_1538_4357_ad28c3
crossref_primary_10_3847_1538_4357_ab7a93
crossref_primary_10_3847_1538_4365_ab5445
crossref_primary_10_1051_0004_6361_201936894
crossref_primary_10_1029_2020JA028864
crossref_primary_10_3847_1538_4357_abb099
crossref_primary_10_1051_0004_6361_202347489
crossref_primary_10_3847_1538_4357_ab1f05
crossref_primary_10_3847_2041_8213_ad00ad
crossref_primary_10_3847_1538_4357_aaaf1b
crossref_primary_10_1051_0004_6361_202039220
crossref_primary_10_1063_5_0230372
crossref_primary_10_3847_1538_4357_ab961f
crossref_primary_10_1016_j_pss_2020_104924
crossref_primary_10_3390_universe8100509
crossref_primary_10_1093_mnras_stab2228
crossref_primary_10_1007_s41116_019_0021_0
crossref_primary_10_1093_mnras_stx2555
crossref_primary_10_3847_1538_4357_ad54c4
crossref_primary_10_1051_0004_6361_202037840
crossref_primary_10_1051_0004_6361_202039808
crossref_primary_10_3847_2041_8213_ab799c
crossref_primary_10_1007_s11214_021_00814_x
crossref_primary_10_1051_0004_6361_202141816
crossref_primary_10_1051_0004_6361_202245140
crossref_primary_10_1093_mnras_sty1567
crossref_primary_10_1093_mnras_sty3504
crossref_primary_10_1093_mnras_stz1007
crossref_primary_10_3847_2041_8213_ac4015
crossref_primary_10_1093_mnras_sty1808
crossref_primary_10_1051_0004_6361_202039256
crossref_primary_10_1093_mnras_stz2378
crossref_primary_10_1063_5_0074474
crossref_primary_10_3847_2041_8213_abefdd
crossref_primary_10_3847_2041_8213_ab01bd
crossref_primary_10_3847_1538_4357_ace59e
crossref_primary_10_3847_2041_8213_ab8cb8
crossref_primary_10_3847_1538_4357_ad2e92
crossref_primary_10_3847_1538_4357_ac36c9
crossref_primary_10_1007_s10686_021_09761_5
crossref_primary_10_1093_mnras_stac3178
crossref_primary_10_3389_fspas_2022_951628
crossref_primary_10_1007_s11207_019_1579_3
ContentType Journal Article
Copyright 2017. The Authors.
Copyright_xml – notice: 2017. The Authors.
DBID 24P
DOI 10.1002/2016JA023656
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2169-9402
EndPage 3874
ExternalDocumentID JGRA53402
Genre article
GrantInformation_xml – fundername: Natural Environment Research Council (NERC)
  funderid: NE/N014480/1
– fundername: RCUK | Science and Technology Facilities Council (STFC)
  funderid: ST/N000722/1
GroupedDBID 05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
52M
702
8-1
88I
8FE
8FG
8FH
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D0L
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PCBAR
PQQKQ
PROAC
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
ID FETCH-LOGICAL-c3452-226fa962671ff627bdc738248620a9f30414b93b5875e915dad73163300e4b4b3
IEDL.DBID 24P
ISSN 2169-9380
IngestDate Wed Jan 22 16:23:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3452-226fa962671ff627bdc738248620a9f30414b93b5875e915dad73163300e4b4b3
ORCID 0000-0002-0026-8395
0000-0002-0431-6526
0000-0002-5859-1136
0000-0002-4863-9589
0000-0002-6185-3125
0000-0002-2637-4786
0000-0002-5982-4667
0000-0002-1682-1212
0000-0002-1978-1025
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JA023656
PageCount 1
ParticipantIDs wiley_primary_10_1002_2016JA023656_JGRA53402
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationTitle Journal of geophysical research. Space physics
PublicationYear 2017
References 2012; 760
2013; 769
2005; 110
2010; 105
1987; 92
2013; 40
1987b; 92
1993; 20
2015; 120
1998
2009
2008; 56
2016; 121
2004
2003
1999; 104
2007; 34
2014; 796
2009; 114
2006; 111
1987a; 92
1998; 25
2012; 30
2001; 106
2014; 795
2000; 528
2011; 269
2007; 112
2009; 57
2004; 114
2013; 10
2000
1978; 83
2002; 107
1994; 99
2005; 627
1998; 103
2008; 113
2012; 753
2012; 117
1996; 316
1975; 80
References_xml – volume: 106
  start-page: 29,305
  issue: A12
  year: 2001
  end-page: 29,312
  article-title: Self‐consistent model of solar wind electrons
  publication-title: J. Geophys. Res.
– volume: 30
  start-page: 163
  issue: 1
  year: 2012
  end-page: 175
  article-title: Direct observations of the formation of the solar wind halo from the strahl
  publication-title: Ann. Geophys.
– start-page: 125
  year: 2000
  end-page: 157
– volume: 110
  year: 2005
  article-title: Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU
  publication-title: J. Geophys. Res.
– start-page: 237
  year: 1998
  end-page: 242
– volume: 769
  start-page: L22
  issue: 2
  year: 2013
  article-title: Electron heat conduction in the solar wind: Transition from Spitzer‐Härm to the collisionless limit
  publication-title: Astrophys. J. Lett.
– volume: 34
  year: 2007
  article-title: All whistlers are not created equally: Scattering of strahl electrons in the solar wind via particle‐in‐cell simulations
  publication-title: Geophys. Res. Lett.
– volume: 528
  start-page: 509
  issue: 1
  year: 2000
  article-title: Generation of electron suprathermal tails in the upper solar atmosphere: Implications for coronal heating
  publication-title: Astrophys. J.
– volume: 111
  year: 2006
  article-title: Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure
  publication-title: J. Geophys. Res.
– start-page: 61
  year: 1998
  end-page: 78, Springer, Dordrecht, Netherlands
  publication-title: Wind observations of suprathermal electrons in the interplanetary medium
– volume: 114
  year: 2009
  article-title: Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses observations
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 249
  year: 1998
  end-page: 252
  article-title: Observations of electron velocity distribution functions in the solar wind by the wind spacecraft: High angular resolution strahl measurements
  publication-title: Geophys. Res. Lett.
– volume: 92
  start-page: 8519
  issue: A8
  year: 1987
  end-page: 8535
  article-title: Bidirectional solar wind electron heat flux events
  publication-title: J. Geophys. Res.
– volume: 105
  year: 2010
  article-title: Contribution of strong discontinuities to the power spectrum of the solar wind
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 2335
  issue: 21
  year: 1993
  end-page: 2338
  article-title: Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond 2 AU: Ulysses
  publication-title: Geophys. Res. Lett.
– start-page: 257
  year: 1998
  end-page: 262
– year: 2004
– volume: 120
  start-page: 8281
  year: 2015
  end-page: 8287
  article-title: Energetic particles, tangential discontinuities, and solar flux tubes
  publication-title: J. Geophys. Res. Space Physics
– volume: 113
  year: 2008
  article-title: Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?
  publication-title: J. Geophys. Res.
– volume: 56
  start-page: 901
  issue: 7
  year: 2008
  end-page: 912
  article-title: Derivation of density and temperature from the Cassini‐Huygens CAPS electron spectrometer
  publication-title: Planet. Space Sci.
– volume: 113
  year: 2008
  article-title: Electron temperature anisotropy constraints in the solar wind
  publication-title: J. Geophys. Res.
– volume: 114
  start-page: 1
  issue: 1–4
  year: 2004
  end-page: 112
  article-title: Cassini plasma spectrometer investigation
  publication-title: Space Sci. Rev.
– volume: 107
  start-page: 1405
  issue: A11
  year: 2002
  article-title: The underlying direction of the heliospheric magnetic field through the Ulysses first orbit
  publication-title: J. Geophys. Res.
– volume: 796
  start-page: 5
  issue: 1
  year: 2014
  article-title: Whistler mode waves and the electron heat flux in the solar wind: Cluster observations
  publication-title: Astrophys. J.
– volume: 40
  start-page: 2495
  year: 2013
  end-page: 2499
  article-title: An indication of the existence of a solar wind strahl at 10 AU
  publication-title: Geophys. Res. Lett.
– volume: 316
  start-page: 287
  year: 1996
  end-page: 295
  article-title: The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole
  publication-title: Astron. Astrophys.
– volume: 627
  start-page: 540
  issue: 1
  year: 2005
  article-title: Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves
  publication-title: Astrophys. J.
– volume: 104
  start-page: 24,819
  issue: A11
  year: 1999
  end-page: 24,834
  article-title: On the cascade processes of Alfvén waves in the fast solar wind
  publication-title: J. Geophys. Res.
– volume: 57
  start-page: 854
  issue: 7
  year: 2009
  end-page: 869
  article-title: The effect of spacecraft radiation sources on electron moments from the cassini CAPS electron spectrometer
  publication-title: Planet. Space Sci.
– volume: 103
  start-page: 23,727
  issue: A10
  year: 1998
  end-page: 23,732
  article-title: Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978–1996
  publication-title: J. Geophys. Res.
– volume: 795
  start-page: L38
  issue: 2
  year: 2014
  article-title: The origin of non‐Maxwellian solar wind electron velocity distribution function: Connection to nanoflares in the solar corona
  publication-title: Astrophys. J. Lett.
– volume: 106
  start-page: 30,177
  issue: A12
  year: 2001
  end-page: 30,198
  article-title: Cassini plasma spectrometer electron spectrometer measurements during the Earth swing‐by on August 18, 1999
  publication-title: J. Geophys. Res.
– volume: 80
  start-page: 4181
  issue: 31
  year: 1975
  end-page: 4196
  article-title: Solar wind electrons
  publication-title: J. Geophys. Res.
– volume: 121
  start-page: 925
  year: 2016
  end-page: 948
  article-title: Mapping magnetic field lines between the Sun and Earth
  publication-title: J. Geophys. Res. Space Physics
– start-page: 1
  year: 2003
  end-page: 58
– volume: 112
  year: 2007
  article-title: Scattering of suprathermal electrons in the solar wind: ACE observations
  publication-title: J. Geophys. Res.
– volume: 316
  start-page: 350
  year: 1996
  end-page: 354
  article-title: Variation of electron‐strahl width in the high‐speed solar wind: Ulysses observations
  publication-title: Astron. Astrophys.
– volume: 111
  year: 2006
  article-title: Widths of suprathermal pitch angle distributions during solar electron bursts: ACE observations
  publication-title: J. Geophys. Res.
– volume: 753
  start-page: 31
  issue: 1
  year: 2012
  article-title: Electron transport in the fast solar wind
  publication-title: Astrophys. J.
– volume: 92
  start-page: 1075
  issue: A2
  year: 1987b
  end-page: 1092
  article-title: Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment
  publication-title: J. Geophys. Res.
– start-page: 331
  year: 2004
  end-page: 383
– volume: 760
  start-page: 143
  issue: 2
  year: 2012
  article-title: On the competition between radial expansion and Coulomb collisions in shaping the electron velocity distribution function: Kinetic simulations
  publication-title: Astrophys. J.
– volume: 83
  start-page: 5285
  issue: A11
  year: 1978
  end-page: 5295
  article-title: Characteristic electron variations across simple high‐speed solar wind streams
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 23,401
  issue: A12
  year: 1994
  end-page: 23,410
  article-title: Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations
  publication-title: J. Geophys. Res.
– volume: 269
  start-page: 411
  issue: 2
  year: 2011
  end-page: 420
  article-title: Magnetic discontinuities in the near‐Earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?
  publication-title: Sol. Phys.
– volume: 117
  year: 2012
  article-title: Variability of the solar wind suprathermal electron strahl
  publication-title: J. Geophys. Res.
– volume: 10
  issue: 5
  year: 2013
  article-title: The heliospheric magnetic field
  publication-title: Living Rev. Sol. Phys.
– start-page: 251
  year: 2009
– volume: 113
  year: 2008
  article-title: Suprathermal electron evolution in a Parker spiral magnetic field
  publication-title: J. Geophys. Res.
– volume: 92
  start-page: 1103
  issue: A2
  year: 1987a
  end-page: 1118
  article-title: Variations of electron distribution functions in the solar wind
  publication-title: J. Geophys. Res.
SSID ssj0000816915
Score 2.5411007
Snippet Field‐aligned beams of suprathermal electrons, known as “strahl,” are a frequently observed constituent of solar wind plasma. However, the formation and...
SourceID wiley
SourceType Publisher
StartPage 3858
SubjectTerms cassini
electrons
interplanetary
solar wind
suprathermal
wave‐particle
Title The evolution of solar wind strahl with heliospheric distance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JA023656
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL17EJ_VJDuLJpdk8dpvjItZSUEQs9LYkm4QK2hW3Kv57Z7JL1aO3HEIgmUxmvo_JN4ScG2chDgQEOZYlqD8CLgWO57TKUw8XLI3F47d32XgqJzM16wg3_AvT6kOsCDf0jPheo4Mb2wx-REMhcmWTAgXQVbZONvB3LZb0cXm_4liwqYSOTQw4DBIthqyrfYclBr8X-Juaxtgy2iZbXVJIi9aKO2TNL3ZJv2iQpq5fvugFjeOWhWj2Ym946j-6W0PrQBtEqPQTADZF7mL-TJFgpXPYY92gcsBTRR2mimDjfTIdXT9ejZOuD0JSCal4AhlSMBqQR56GkPHcuioXQy4BjDCjg2AylVYLqwB7eNivMw77UQnBmJdWWnFAeot64fuEpib3Wg0dq5yU8NYZbnKleMhZcDpYdUgu4zmUr63WRdmqGvPy92GVk5uHQglAnkf_m35MNjlGxVj4ckJ6y7d3fwoxfWnPouG-AbSjlpU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLAgPlW-PSAmojr-SOoxQpRS2gqhVuoWxXWsIkGDSAHx77lzolJGNg-RpbN9vntPznuEXGbWQB1wCHIMC1B_BFIKEs9qFYc5HLDQPx4fDKPuWPYmalL7nOK_MJU-xJJww8zw9zUmOBLSrV_VUChdUS9BBXQVrZMNGfEYLQy4fFySLOgqob2LAYdBoEWb1Y_fYYrW6gR_e1NfXDo7ZLvuCmlSbeMuWcvne6SZlMhTF6_f9Ir6cUVDlPveHJ7mn_WxoYWjJUJU-gUImyJ5MXuhyLDSGQRZlCgd8DylFntF2OQDMu7cjm66QW2EEEyFVDyAFsllGqBHHDoHYRo7jUWbS0AjLNNOMBlKo4VRAD5yiNdmFg2phGAsl0YacUga82KeNwkNszjXqm3Z1EoJl13Gs1gp7mLmrHZGHZFrvw7pWyV2kVayxjxdXay0d_eUKAHQ8_h_n1-Qze5o0E_798OHE7LFsUT6VzCnpLF4_8jPoMAvzLnfxB_6mpoB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIT-o7B_Hk0mwe3ea4qLVWLUUs9LZsNhsqaLe4VfHfO5Ndaj16y2EJJJPJzPft5BtCzlNrIA44BDmGBag_Ai4Fjme1isIcDljoi8cfB-3eSPbHalwTbvgWptKHWBBu6Bn-vkYHn1nX-hUNhcjV7scogK7aq2QN__dhSReXwwXHgk0ltG9iwGEQaNFhde07TNFanuBvaupjS3eLbNZJIY0rK26TlXy6Q5pxiTR18fZNL6gfVyxEuet7w9P8sz41tHC0RIRKvwBgU-QuJq8UCVY6gTUWJSoHvGTUYqoINt4jo-7N81UvqPsgBJmQigeQIblUA_KIQufaPDI2i0SHSwAjLNVOMBlKo4VRgD1yWK9NLfajEoKxXBppxD5pTItp3iQ0TKNcq45lmZUS7rqUp5FS3EXMWe2MOiCXfh-SWaV1kVSqxjxZ3qykf_sUKwHI8_B_n5-R9eF1N3m4G9wfkQ2OAdLXwByTxvz9Iz-B8D43p96GP2T3mTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+solar+wind+strahl+with+heliospheric+distance&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Graham%2C+G.+A.&rft.au=Rae%2C+I.+J.&rft.au=Owen%2C+C.+J.&rft.au=Walsh%2C+A.+P.&rft.date=2017-04-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=122&rft.issue=4&rft.spage=3858&rft.epage=3874&rft_id=info:doi/10.1002%2F2016JA023656&rft.externalDBID=10.1002%252F2016JA023656&rft.externalDocID=JGRA53402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon