Measuring small longitudinal phase shifts via weak measurement amplification
Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small...
Saved in:
Published in | Chinese physics B Vol. 33; no. 3; pp. 30602 - 120 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad1c5a |
Cover
Abstract | Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement. Here, we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation, which is suitable for polarization interferometry. We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference. Besides, we analyze the effect of magnification error which is never considered in the previous works, and find the constraint on the magnification. Our results may find important applications in high-precision measurements, e.g., gravitational wave detection. |
---|---|
AbstractList | Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection. |
Author | Hu, Xiao-Min Wang, Ning-Ning Xu, Kai Zhang, Chao Huang, Yun-Feng Guo, Guang-Can Hu, Meng-Jun Liu, Bi-Heng Li, Chuan-Feng Zhang, Yong-Sheng |
Author_xml | – sequence: 1 givenname: Kai surname: Xu fullname: Xu, Kai organization: CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China , China – sequence: 2 givenname: Xiao-Min surname: Hu fullname: Hu, Xiao-Min organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 3 givenname: Meng-Jun surname: Hu fullname: Hu, Meng-Jun organization: Beijing Academy of Quantum Information Sciences , China – sequence: 4 givenname: Ning-Ning surname: Wang fullname: Wang, Ning-Ning organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 5 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 6 givenname: Yun-Feng surname: Huang fullname: Huang, Yun-Feng organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 7 givenname: Bi-Heng surname: Liu fullname: Liu, Bi-Heng organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 8 givenname: Chuan-Feng surname: Li fullname: Li, Chuan-Feng organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 9 givenname: Guang-Can surname: Guo fullname: Guo, Guang-Can organization: Hefei National Laboratory, University of Science and Technology of China , China – sequence: 10 givenname: Yong-Sheng surname: Zhang fullname: Zhang, Yong-Sheng organization: Hefei National Laboratory, University of Science and Technology of China , China |
BookMark | eNp9kDtPwzAURi1UJNrCzpitC6H3xnl1RBUvqYgFZuvGsVOXxInilAp-PWmDQEKokwefc3X0TdjI1lYxdolwjZCmc4yT0EeI4jnlKCM6YeMAotTnKQ9HbPzzfcYmzm0AYoSAj9nqSZHbtsYWnquoLL2ytoXptrmxVHrNmpzy3NroznnvhrydojevOiiqUrbzqGpKo42kztT2nJ1qKp26-H6n7PXu9mX54K-e7x-XNytf8jDsfK1kFix0hhkhSsAgROwrOSIkMloEyDHWaRonyaLHCLOMtAqTPA-zFBZ99pTNhrs7sppsITb1tu17nfgsdqVQAQQhcEDoyXggZVs71yotpOkOrV1LphQIYr-e2M8j9vOIYb1ehD9i05qK2o9jytWgmLr5LTqCz_7BZZMJzgUXfX8MgWhyzb8AbHiP4w |
CitedBy_id | crossref_primary_10_1016_j_optlaseng_2024_108696 |
Cites_doi | 10.1038/s41467-023-36661-3 10.1007/s10701-017-0085-4 10.1016/j.physrep.2012.07.001 10.1103/PhysRevLett.105.230401 10.1073/pnas.1005774108 10.1038/s41467-017-02511-2 10.1103/PhysRevLett.112.200401 10.1103/PhysRevLett.121.060506 10.48550/arXiv.1402.2954 10.1103/PhysRevX.4.011031 10.1103/PhysRevA.97.033851 10.1364/OE.444216 10.1103/PhysRevLett.60.1351 10.1103/PhysRevA.76.044103 10.1103/PhysRevA.85.012113 10.1103/PhysRevA.84.052111 10.1103/PhysRevLett.115.120401 10.1364/OE.420432 10.1103/RevModPhys.86.307 10.1038/s41467-017-02487-z 10.1364/OE.386017 10.1103/PhysRevLett.62.2325 10.3390/e23030354 10.1038/s41467-020-17559-w 10.1103/PhysRevLett.62.2327 10.1103/PhysRevLett.127.180401 10.1103/PhysRevLett.114.118901 10.1103/PhysRevLett.114.170801 10.1103/PhysRevLett.128.040503 10.1103/PhysRevLett.107.133603 10.1103/PhysRevLett.126.100403 10.1103/PhysRevLett.126.220801 10.1364/OL.450039 10.48550/arXiv.1402.1352 10.1103/PhysRevLett.113.120404 10.1103/PhysRevLett.117.230801 10.1103/PhysRevA.94.053843 10.1103/PhysRevA.88.042116 10.1103/PhysRevA.83.052106 10.1103/PhysRevLett.125.080501 10.48550/arXiv.1709.01218 10.1364/OE.403711 10.1063/5.0132992 10.1103/PhysRevA.105.013718 10.1364/OL.42.002479 10.1103/PhysRevA.89.052117 10.1103/PhysRevA.100.012109 10.1103/PhysRevLett.102.173601 10.1103/PhysRevA.88.023821 10.1103/PhysRevLett.116.100803 10.1038/nature10120 10.1103/PhysRevLett.113.200401 10.1103/PhysRevA.102.063717 10.1103/PhysRevLett.94.220405 10.48550/arXiv.1402.0199 10.1103/PhysRevLett.111.033604 10.1103/PhysRevA.92.012120 10.1103/PhysRevLett.112.040406 10.1016/S0375-9601(02)00986-6 10.1103/PhysRevLett.113.030401 10.1088/1367-2630/11/3/033011 10.1103/PhysRevA.100.012125 10.1103/PhysRevLett.118.070802 10.1103/PhysRevA.82.063822 10.1103/PhysRevLett.123.150402 10.1103/PhysRevX.4.011032 10.48550/arXiv.1707.00886 10.1103/PhysRevLett.125.240506 10.1103/PhysRevA.41.11 10.1103/PhysRevLett.105.010405 10.1103/PhysRevLett.114.210801 10.1126/science.1202218 10.1126/science.1152697 10.1103/PhysRevA.102.032206 10.1103/PhysRevA.106.012608 10.1038/nphys4040 10.1007%2Fs10701-017-0107-2 10.1103/PhysRevA.99.032123 10.1103/PhysRevA.96.052128 10.1103/PhysRevLett.66.1107 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad1c5a |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 120 |
ExternalDocumentID | zgwl_e202403010 10_1088_1674_1056_ad1c5a cpb_33_3_030602 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c344t-fecb29fb1ba11c01241183431107c5921316f88677929fa1bbafe47dd4b809023 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:13 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Sun Aug 18 16:00:26 EDT 2024 Tue Aug 20 22:17:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | phase estimation weak measurement quantum optics |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-fecb29fb1ba11c01241183431107c5921316f88677929fa1bbafe47dd4b809023 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zgwl_e202403010 crossref_citationtrail_10_1088_1674_1056_ad1c5a iop_journals_10_1088_1674_1056_ad1c5a crossref_primary_10_1088_1674_1056_ad1c5a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Brodutch (cpb_33_3_030602bib11) 2015; 114 Stárek (cpb_33_3_030602bib78) 2020; 28 Kocsis (cpb_33_3_030602bib27) 2011; 332 Wu (cpb_33_3_030602bib32) 2011; 83 Chen (cpb_33_3_030602bib45) 2018; 9 Wang (cpb_33_3_030602bib71) 2016; 117 Aharonov (cpb_33_3_030602bib14) 2009; 301 Zhang (cpb_33_3_030602bib79) 2016; 94 Liu (cpb_33_3_030602bib30) 2019; 100 Zhu (cpb_33_3_030602bib33) 2011; 84 Aharonov (cpb_33_3_030602bib9) 1989; 62 Kofman (cpb_33_3_030602bib35) 2012; 520 Wu (cpb_33_3_030602bib42) 2022; 47 Pan (cpb_33_3_030602bib16) 2020; 102 Xu (cpb_33_3_030602bib20) 2021; 127 Magaña Loaiza (cpb_33_3_030602bib38) 2014; 112 Zhou (cpb_33_3_030602bib39) 2020; 102 Kim (cpb_33_3_030602bib73) 2022; 128 Knee (cpb_33_3_030602bib54) 2014; 4 Starling (cpb_33_3_030602bib47) 2010; 82 Vaidman (cpb_33_3_030602bib51) 2014 Hu (cpb_33_3_030602bib84) 2017 Aharonov (cpb_33_3_030602bib36) 1990; 41 Pryde (cpb_33_3_030602bib5) 2005; 94 Goggin (cpb_33_3_030602bib26) 2011; 108 Monroe (cpb_33_3_030602bib31) 2021; 126 Combes (cpb_33_3_030602bib56) 2014; 89 Li (cpb_33_3_030602bib29) 2022; 106 Li (cpb_33_3_030602bib24) 2021; 29 Xu (cpb_33_3_030602bib81) 2013; 111 Ferrie (cpb_33_3_030602bib50) 2014; 112 Aharonov (cpb_33_3_030602bib1) 1988; 60 Pan (cpb_33_3_030602bib19) 2019; 123 Ferrie (cpb_33_3_030602bib53) 2014 Kedem (cpb_33_3_030602bib6) 2010; 105 Luo (cpb_33_3_030602bib41) 2020; 28 Sinclair (cpb_33_3_030602bib60) 2017; 96 Huang (cpb_33_3_030602bib77) 2019; 100 Martínez-Rincón (cpb_33_3_030602bib74) 2016; 116 Chen (cpb_33_3_030602bib46) 2018; 121 Pang (cpb_33_3_030602bib68) 2015; 92 Leggett (cpb_33_3_030602bib8) 1989; 62 Li (cpb_33_3_030602bib82) 2018; 97 Steinmetz (cpb_33_3_030602bib48) 2022; 30 Hallaji (cpb_33_3_030602bib44) 2017; 13 Huang (cpb_33_3_030602bib25) 2022; 105 Feizpour (cpb_33_3_030602bib43) 2011; 107 Ritchie (cpb_33_3_030602bib4) 1991; 66 Tanaka (cpb_33_3_030602bib57) 2013; 88 Jozsa (cpb_33_3_030602bib3) 2007; 76 Lundeen (cpb_33_3_030602bib17) 2011; 474 Hu (cpb_33_3_030602bib83) 2017 Xia (cpb_33_3_030602bib61) 2023; 14 Harris (cpb_33_3_030602bib63) 2017; 118 Xu (cpb_33_3_030602bib64) 2020; 125 Pang (cpb_33_3_030602bib67) 2014; 113 Feizpour (cpb_33_3_030602bib59) 2011; 107 Cohen (cpb_33_3_030602bib12) 2017; 47 Kastner (cpb_33_3_030602bib13) 2017; 47 Kedem (cpb_33_3_030602bib52) 2014 Tang (cpb_33_3_030602bib23) 2019; 27 Brunner (cpb_33_3_030602bib80) 2010; 105 Dressel (cpb_33_3_030602bib69) 2013; 88 Ferrie (cpb_33_3_030602bib10) 2014; 113 Martínez-Rincón (cpb_33_3_030602bib75) 2017; 42 Pang (cpb_33_3_030602bib55) 2015; 115 Krafczyk (cpb_33_3_030602bib72) 2021; 126 Zhang (cpb_33_3_030602bib58) 2015; 114 Lyons (cpb_33_3_030602bib70) 2015; 114 Aharonov (cpb_33_3_030602bib15) 2009; 11 Dressel (cpb_33_3_030602bib2) 2014; 86 Zhang (cpb_33_3_030602bib76) 2023; 122 Bai (cpb_33_3_030602bib40) 2020; 28 Chen (cpb_33_3_030602bib66) 2021; 23 Nakamura (cpb_33_3_030602bib34) 2012; 85 Kim (cpb_33_3_030602bib18) 2018; 9 Arvidsson-Shukur (cpb_33_3_030602bib65) 2020; 11 Hosten (cpb_33_3_030602bib21) 2008; 319 Yu (cpb_33_3_030602bib28) 2020; 125 Pusey (cpb_33_3_030602bib7) 2014; 113 Pal (cpb_33_3_030602bib37) 2019; 99 Combes (cpb_33_3_030602bib49) 2014; 89 Dixon (cpb_33_3_030602bib22) 2009; 102 Jordan (cpb_33_3_030602bib62) 2014; 4 |
References_xml | – volume: 14 start-page: 1021 year: 2023 ident: cpb_33_3_030602bib61 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36661-3 – volume: 47 start-page: 697 year: 2017 ident: cpb_33_3_030602bib13 publication-title: Found. Phys. doi: 10.1007/s10701-017-0085-4 – volume: 520 start-page: 43 year: 2012 ident: cpb_33_3_030602bib35 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2012.07.001 – volume: 105 year: 2010 ident: cpb_33_3_030602bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.230401 – volume: 108 start-page: 1256 year: 2011 ident: cpb_33_3_030602bib26 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005774108 – volume: 9 start-page: 192 year: 2018 ident: cpb_33_3_030602bib18 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02511-2 – volume: 112 year: 2014 ident: cpb_33_3_030602bib38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.200401 – volume: 121 year: 2018 ident: cpb_33_3_030602bib46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.060506 – year: 2014 ident: cpb_33_3_030602bib53 doi: 10.48550/arXiv.1402.2954 – volume: 4 year: 2014 ident: cpb_33_3_030602bib62 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.011031 – volume: 97 year: 2018 ident: cpb_33_3_030602bib82 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.033851 – volume: 30 start-page: 3700 year: 2022 ident: cpb_33_3_030602bib48 publication-title: Opt. Express doi: 10.1364/OE.444216 – volume: 60 start-page: 1351 year: 1988 ident: cpb_33_3_030602bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.1351 – volume: 76 year: 2007 ident: cpb_33_3_030602bib3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.044103 – volume: 85 year: 2012 ident: cpb_33_3_030602bib34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.012113 – volume: 84 year: 2011 ident: cpb_33_3_030602bib33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.052111 – volume: 115 year: 2015 ident: cpb_33_3_030602bib55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.120401 – volume: 29 start-page: 8777 year: 2021 ident: cpb_33_3_030602bib24 publication-title: Opt. Express doi: 10.1364/OE.420432 – volume: 86 start-page: 307 year: 2014 ident: cpb_33_3_030602bib2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.307 – volume: 9 start-page: 93 year: 2018 ident: cpb_33_3_030602bib45 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02487-z – volume: 28 start-page: 6408 year: 2020 ident: cpb_33_3_030602bib41 publication-title: Opt. Express doi: 10.1364/OE.386017 – volume: 62 start-page: 2325 year: 1989 ident: cpb_33_3_030602bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.2325 – volume: 23 start-page: 354 year: 2021 ident: cpb_33_3_030602bib66 publication-title: Entropy doi: 10.3390/e23030354 – volume: 11 start-page: 3775 year: 2020 ident: cpb_33_3_030602bib65 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17559-w – volume: 62 start-page: 2327 year: 1989 ident: cpb_33_3_030602bib9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.2327 – volume: 127 year: 2021 ident: cpb_33_3_030602bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.180401 – volume: 28 year: 2020 ident: cpb_33_3_030602bib40 publication-title: Opt. Express – volume: 114 year: 2015 ident: cpb_33_3_030602bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.118901 – volume: 114 year: 2015 ident: cpb_33_3_030602bib70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.170801 – volume: 128 year: 2022 ident: cpb_33_3_030602bib73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.040503 – volume: 107 year: 2011 ident: cpb_33_3_030602bib43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.133603 – volume: 126 year: 2021 ident: cpb_33_3_030602bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.100403 – volume: 126 year: 2021 ident: cpb_33_3_030602bib72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.220801 – volume: 47 start-page: 846 year: 2022 ident: cpb_33_3_030602bib42 publication-title: Opt. Lett. doi: 10.1364/OL.450039 – year: 2014 ident: cpb_33_3_030602bib52 doi: 10.48550/arXiv.1402.1352 – volume: 113 year: 2014 ident: cpb_33_3_030602bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.120404 – volume: 117 year: 2016 ident: cpb_33_3_030602bib71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.230801 – volume: 94 year: 2016 ident: cpb_33_3_030602bib79 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.053843 – volume: 88 year: 2013 ident: cpb_33_3_030602bib57 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.042116 – volume: 83 year: 2011 ident: cpb_33_3_030602bib32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.052106 – volume: 125 year: 2020 ident: cpb_33_3_030602bib64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.080501 – year: 2017 ident: cpb_33_3_030602bib84 doi: 10.48550/arXiv.1709.01218 – volume: 28 year: 2020 ident: cpb_33_3_030602bib78 publication-title: Opt. Express doi: 10.1364/OE.403711 – volume: 122 year: 2023 ident: cpb_33_3_030602bib76 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0132992 – volume: 105 year: 2022 ident: cpb_33_3_030602bib25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.013718 – volume: 42 start-page: 903 year: 2017 ident: cpb_33_3_030602bib75 publication-title: Opt. Lett. doi: 10.1364/OL.42.002479 – volume: 89 year: 2014 ident: cpb_33_3_030602bib49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.052117 – volume: 100 year: 2019 ident: cpb_33_3_030602bib77 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.012109 – volume: 102 year: 2009 ident: cpb_33_3_030602bib22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.173601 – volume: 88 year: 2013 ident: cpb_33_3_030602bib69 publication-title: Phys.Rev. A doi: 10.1103/PhysRevA.88.023821 – volume: 116 year: 2016 ident: cpb_33_3_030602bib74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.100803 – volume: 27 year: 2019 ident: cpb_33_3_030602bib23 publication-title: Opt. Express – volume: 474 start-page: 188 year: 2011 ident: cpb_33_3_030602bib17 publication-title: Nature doi: 10.1038/nature10120 – volume: 113 year: 2014 ident: cpb_33_3_030602bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.200401 – volume: 102 year: 2020 ident: cpb_33_3_030602bib39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.063717 – volume: 94 year: 2005 ident: cpb_33_3_030602bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.220405 – year: 2014 ident: cpb_33_3_030602bib51 doi: 10.48550/arXiv.1402.0199 – volume: 111 year: 2013 ident: cpb_33_3_030602bib81 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.033604 – volume: 89 year: 2014 ident: cpb_33_3_030602bib56 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.052117 – volume: 92 year: 2015 ident: cpb_33_3_030602bib68 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.012120 – volume: 112 year: 2014 ident: cpb_33_3_030602bib50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.040406 – volume: 301 start-page: 130 year: 2009 ident: cpb_33_3_030602bib14 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00986-6 – volume: 113 year: 2014 ident: cpb_33_3_030602bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.030401 – volume: 11 year: 2009 ident: cpb_33_3_030602bib15 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/3/033011 – volume: 100 year: 2019 ident: cpb_33_3_030602bib30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.012125 – volume: 118 year: 2017 ident: cpb_33_3_030602bib63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.070802 – volume: 82 year: 2010 ident: cpb_33_3_030602bib47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.063822 – volume: 123 year: 2019 ident: cpb_33_3_030602bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.150402 – volume: 4 year: 2014 ident: cpb_33_3_030602bib54 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.011032 – year: 2017 ident: cpb_33_3_030602bib83 doi: 10.48550/arXiv.1707.00886 – volume: 107 year: 2011 ident: cpb_33_3_030602bib59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.133603 – volume: 125 year: 2020 ident: cpb_33_3_030602bib28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.240506 – volume: 41 start-page: 11 year: 1990 ident: cpb_33_3_030602bib36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.41.11 – volume: 105 year: 2010 ident: cpb_33_3_030602bib80 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.010405 – volume: 114 year: 2015 ident: cpb_33_3_030602bib58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.210801 – volume: 332 start-page: 1170 year: 2011 ident: cpb_33_3_030602bib27 publication-title: Science doi: 10.1126/science.1202218 – volume: 319 start-page: 787 year: 2008 ident: cpb_33_3_030602bib21 publication-title: Science doi: 10.1126/science.1152697 – volume: 102 year: 2020 ident: cpb_33_3_030602bib16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.032206 – volume: 106 year: 2022 ident: cpb_33_3_030602bib29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.012608 – volume: 13 start-page: 540 year: 2017 ident: cpb_33_3_030602bib44 publication-title: Nat. Phys. doi: 10.1038/nphys4040 – volume: 47 start-page: 1261 year: 2017 ident: cpb_33_3_030602bib12 publication-title: Found. Phys. doi: 10.1007%2Fs10701-017-0107-2 – volume: 99 year: 2019 ident: cpb_33_3_030602bib37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.032123 – volume: 96 year: 2017 ident: cpb_33_3_030602bib60 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.052128 – volume: 66 start-page: 1107 year: 1991 ident: cpb_33_3_030602bib4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1107 |
SSID | ssj0061023 |
Score | 2.335668 |
Snippet | Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities... Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30602 |
SubjectTerms | phase estimation quantum optics weak measurement |
Title | Measuring small longitudinal phase shifts via weak measurement amplification |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad1c5a https://d.wanfangdata.com.cn/periodical/zgwl-e202403010 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcP3d206W6LJxFFxdfBhT0IIUkTFWu32K6Cv96ZNuuqyCLeevjatJM0M5N8-YaQ3ViGmDWEntWx9LiGvpAqCr2gHcWqxRVu3SDb4qp92uXnvbA3QQ4-z8L0czf1N-CyFgquTegIcVETefMeFoxvyoTpEIKjaSxcicP77PpmOA23UZMAs60h2u1R_vaEbz5pEtqtTvBkVmb3X5zNyTy5G75mzTF5agxK1dDvPxQc__kdC2TOBaH0sIYukgmTLZGZigyqi2VycVktHIJTo8WzTFOa9rGq0SDBClo0fwDHR4uHR1sW9PVR0jcjn-jzaK2RSmSpW7cYuEK6J8e3R6eeq7rg6YDz0rNGKz-2iinJmAb_xSEHCSDOgERRh7HPAta2EcrgQWRlJVNKWsM7SQIdiyTPYJVMZf3MrBHawcMnmunItDQPO75KIByAfAtiEBP5jK-T5tDuQjtJcqyMkYpqazyKBNpIoI1EbaN1sv95R17LcYzB7oHphfsnizE4-g2ncyWCQAQC06mWL_LEAsSNhxHs_f4tFcZHjTiYJFsbf2xtk8ziPTXxe4tMlS8Dsw1xTal2qvH7AcIU7ec |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8QgFCYu0XhxN-5y0IOHzgwtnWmPRp2460ETbwgU1Fg7je1o4q_3vZZxizEm3np4QPugb4GP7xGyGcsQs4bQszqWHtcwF1JFoRe0o1i1uMKjG0RbnLUPrvjRdXjt6pxWd2F6uTP9DXisiYJrFTpAXNRE3LyHBeObMmE6lM08scNkNARTjJiuw_OLgSluIy8BZlyDFu6c8qdevvilYRi7usWTWZndfnI43SlyM3jVGmfy0OiXqqFfv7E4_uNbpsmkC0bpTi0-Q4ZMNkvGKlCoLubIyWm1gQjOjRaPMk1p2sPqRv0EK2nR_A4cIC3u7m1Z0Od7SV-MfKCPH3uOVCJa3bpNwXly1d2_3D3wXPUFTwecl541WvmxVUxJxjT4MQ65SADxBiSMOox9FrC2jZAODyIsK5lS0hreSRKYYAR7BgtkJOtlZpHQDl5C0UxHpqV52PFVAmEB5F0Qi5jIZ3yJNAe6F9pRk2OFjFRUR-RRJFBPAvUkaj0tke33FnlNy_GL7BaoX7h_s_hFjn6R07kSQSACgWlVyxcwNSDi1sSH2OvtSyqMj1xxYCxby38cbYOMX-x1xcnh2fEKmcDmNRZ8lYyUT32zBqFOqdar5fwG367zSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+small+longitudinal+phase+shifts+via+weak+measurement+amplification&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Kai+Xu&rft.au=Xiao-Min+Hu&rft.au=Meng-Jun+Hu&rft.au=Ning-Ning+Wang&rft.date=2024-02-01&rft.issn=1674-1056&rft.volume=33&rft.issue=3&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1088%2F1674-1056%2Fad1c5a&rft.externalDocID=zgwl_e202403010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |