Measuring small longitudinal phase shifts via weak measurement amplification

Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 3; pp. 30602 - 120
Main Authors Xu, Kai, Hu, Xiao-Min, Hu, Meng-Jun, Wang, Ning-Ning, Zhang, Chao, Huang, Yun-Feng, Liu, Bi-Heng, Li, Chuan-Feng, Guo, Guang-Can, Zhang, Yong-Sheng
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad1c5a

Cover

Abstract Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement. Here, we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation, which is suitable for polarization interferometry. We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference. Besides, we analyze the effect of magnification error which is never considered in the previous works, and find the constraint on the magnification. Our results may find important applications in high-precision measurements, e.g., gravitational wave detection.
AbstractList Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
Author Hu, Xiao-Min
Wang, Ning-Ning
Xu, Kai
Zhang, Chao
Huang, Yun-Feng
Guo, Guang-Can
Hu, Meng-Jun
Liu, Bi-Heng
Li, Chuan-Feng
Zhang, Yong-Sheng
Author_xml – sequence: 1
  givenname: Kai
  surname: Xu
  fullname: Xu, Kai
  organization: CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China , China
– sequence: 2
  givenname: Xiao-Min
  surname: Hu
  fullname: Hu, Xiao-Min
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 3
  givenname: Meng-Jun
  surname: Hu
  fullname: Hu, Meng-Jun
  organization: Beijing Academy of Quantum Information Sciences , China
– sequence: 4
  givenname: Ning-Ning
  surname: Wang
  fullname: Wang, Ning-Ning
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 5
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 6
  givenname: Yun-Feng
  surname: Huang
  fullname: Huang, Yun-Feng
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 7
  givenname: Bi-Heng
  surname: Liu
  fullname: Liu, Bi-Heng
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 8
  givenname: Chuan-Feng
  surname: Li
  fullname: Li, Chuan-Feng
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 9
  givenname: Guang-Can
  surname: Guo
  fullname: Guo, Guang-Can
  organization: Hefei National Laboratory, University of Science and Technology of China , China
– sequence: 10
  givenname: Yong-Sheng
  surname: Zhang
  fullname: Zhang, Yong-Sheng
  organization: Hefei National Laboratory, University of Science and Technology of China , China
BookMark eNp9kDtPwzAURi1UJNrCzpitC6H3xnl1RBUvqYgFZuvGsVOXxInilAp-PWmDQEKokwefc3X0TdjI1lYxdolwjZCmc4yT0EeI4jnlKCM6YeMAotTnKQ9HbPzzfcYmzm0AYoSAj9nqSZHbtsYWnquoLL2ytoXptrmxVHrNmpzy3NroznnvhrydojevOiiqUrbzqGpKo42kztT2nJ1qKp26-H6n7PXu9mX54K-e7x-XNytf8jDsfK1kFix0hhkhSsAgROwrOSIkMloEyDHWaRonyaLHCLOMtAqTPA-zFBZ99pTNhrs7sppsITb1tu17nfgsdqVQAQQhcEDoyXggZVs71yotpOkOrV1LphQIYr-e2M8j9vOIYb1ehD9i05qK2o9jytWgmLr5LTqCz_7BZZMJzgUXfX8MgWhyzb8AbHiP4w
CitedBy_id crossref_primary_10_1016_j_optlaseng_2024_108696
Cites_doi 10.1038/s41467-023-36661-3
10.1007/s10701-017-0085-4
10.1016/j.physrep.2012.07.001
10.1103/PhysRevLett.105.230401
10.1073/pnas.1005774108
10.1038/s41467-017-02511-2
10.1103/PhysRevLett.112.200401
10.1103/PhysRevLett.121.060506
10.48550/arXiv.1402.2954
10.1103/PhysRevX.4.011031
10.1103/PhysRevA.97.033851
10.1364/OE.444216
10.1103/PhysRevLett.60.1351
10.1103/PhysRevA.76.044103
10.1103/PhysRevA.85.012113
10.1103/PhysRevA.84.052111
10.1103/PhysRevLett.115.120401
10.1364/OE.420432
10.1103/RevModPhys.86.307
10.1038/s41467-017-02487-z
10.1364/OE.386017
10.1103/PhysRevLett.62.2325
10.3390/e23030354
10.1038/s41467-020-17559-w
10.1103/PhysRevLett.62.2327
10.1103/PhysRevLett.127.180401
10.1103/PhysRevLett.114.118901
10.1103/PhysRevLett.114.170801
10.1103/PhysRevLett.128.040503
10.1103/PhysRevLett.107.133603
10.1103/PhysRevLett.126.100403
10.1103/PhysRevLett.126.220801
10.1364/OL.450039
10.48550/arXiv.1402.1352
10.1103/PhysRevLett.113.120404
10.1103/PhysRevLett.117.230801
10.1103/PhysRevA.94.053843
10.1103/PhysRevA.88.042116
10.1103/PhysRevA.83.052106
10.1103/PhysRevLett.125.080501
10.48550/arXiv.1709.01218
10.1364/OE.403711
10.1063/5.0132992
10.1103/PhysRevA.105.013718
10.1364/OL.42.002479
10.1103/PhysRevA.89.052117
10.1103/PhysRevA.100.012109
10.1103/PhysRevLett.102.173601
10.1103/PhysRevA.88.023821
10.1103/PhysRevLett.116.100803
10.1038/nature10120
10.1103/PhysRevLett.113.200401
10.1103/PhysRevA.102.063717
10.1103/PhysRevLett.94.220405
10.48550/arXiv.1402.0199
10.1103/PhysRevLett.111.033604
10.1103/PhysRevA.92.012120
10.1103/PhysRevLett.112.040406
10.1016/S0375-9601(02)00986-6
10.1103/PhysRevLett.113.030401
10.1088/1367-2630/11/3/033011
10.1103/PhysRevA.100.012125
10.1103/PhysRevLett.118.070802
10.1103/PhysRevA.82.063822
10.1103/PhysRevLett.123.150402
10.1103/PhysRevX.4.011032
10.48550/arXiv.1707.00886
10.1103/PhysRevLett.125.240506
10.1103/PhysRevA.41.11
10.1103/PhysRevLett.105.010405
10.1103/PhysRevLett.114.210801
10.1126/science.1202218
10.1126/science.1152697
10.1103/PhysRevA.102.032206
10.1103/PhysRevA.106.012608
10.1038/nphys4040
10.1007%2Fs10701-017-0107-2
10.1103/PhysRevA.99.032123
10.1103/PhysRevA.96.052128
10.1103/PhysRevLett.66.1107
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad1c5a
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 120
ExternalDocumentID zgwl_e202403010
10_1088_1674_1056_ad1c5a
cpb_33_3_030602
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c344t-fecb29fb1ba11c01241183431107c5921316f88677929fa1bbafe47dd4b809023
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:13 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Sun Aug 18 16:00:26 EDT 2024
Tue Aug 20 22:17:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phase estimation
weak measurement
quantum optics
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-fecb29fb1ba11c01241183431107c5921316f88677929fa1bbafe47dd4b809023
PageCount 7
ParticipantIDs wanfang_journals_zgwl_e202403010
crossref_citationtrail_10_1088_1674_1056_ad1c5a
iop_journals_10_1088_1674_1056_ad1c5a
crossref_primary_10_1088_1674_1056_ad1c5a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Brodutch (cpb_33_3_030602bib11) 2015; 114
Stárek (cpb_33_3_030602bib78) 2020; 28
Kocsis (cpb_33_3_030602bib27) 2011; 332
Wu (cpb_33_3_030602bib32) 2011; 83
Chen (cpb_33_3_030602bib45) 2018; 9
Wang (cpb_33_3_030602bib71) 2016; 117
Aharonov (cpb_33_3_030602bib14) 2009; 301
Zhang (cpb_33_3_030602bib79) 2016; 94
Liu (cpb_33_3_030602bib30) 2019; 100
Zhu (cpb_33_3_030602bib33) 2011; 84
Aharonov (cpb_33_3_030602bib9) 1989; 62
Kofman (cpb_33_3_030602bib35) 2012; 520
Wu (cpb_33_3_030602bib42) 2022; 47
Pan (cpb_33_3_030602bib16) 2020; 102
Xu (cpb_33_3_030602bib20) 2021; 127
Magaña Loaiza (cpb_33_3_030602bib38) 2014; 112
Zhou (cpb_33_3_030602bib39) 2020; 102
Kim (cpb_33_3_030602bib73) 2022; 128
Knee (cpb_33_3_030602bib54) 2014; 4
Starling (cpb_33_3_030602bib47) 2010; 82
Vaidman (cpb_33_3_030602bib51) 2014
Hu (cpb_33_3_030602bib84) 2017
Aharonov (cpb_33_3_030602bib36) 1990; 41
Pryde (cpb_33_3_030602bib5) 2005; 94
Goggin (cpb_33_3_030602bib26) 2011; 108
Monroe (cpb_33_3_030602bib31) 2021; 126
Combes (cpb_33_3_030602bib56) 2014; 89
Li (cpb_33_3_030602bib29) 2022; 106
Li (cpb_33_3_030602bib24) 2021; 29
Xu (cpb_33_3_030602bib81) 2013; 111
Ferrie (cpb_33_3_030602bib50) 2014; 112
Aharonov (cpb_33_3_030602bib1) 1988; 60
Pan (cpb_33_3_030602bib19) 2019; 123
Ferrie (cpb_33_3_030602bib53) 2014
Kedem (cpb_33_3_030602bib6) 2010; 105
Luo (cpb_33_3_030602bib41) 2020; 28
Sinclair (cpb_33_3_030602bib60) 2017; 96
Huang (cpb_33_3_030602bib77) 2019; 100
Martínez-Rincón (cpb_33_3_030602bib74) 2016; 116
Chen (cpb_33_3_030602bib46) 2018; 121
Pang (cpb_33_3_030602bib68) 2015; 92
Leggett (cpb_33_3_030602bib8) 1989; 62
Li (cpb_33_3_030602bib82) 2018; 97
Steinmetz (cpb_33_3_030602bib48) 2022; 30
Hallaji (cpb_33_3_030602bib44) 2017; 13
Huang (cpb_33_3_030602bib25) 2022; 105
Feizpour (cpb_33_3_030602bib43) 2011; 107
Ritchie (cpb_33_3_030602bib4) 1991; 66
Tanaka (cpb_33_3_030602bib57) 2013; 88
Jozsa (cpb_33_3_030602bib3) 2007; 76
Lundeen (cpb_33_3_030602bib17) 2011; 474
Hu (cpb_33_3_030602bib83) 2017
Xia (cpb_33_3_030602bib61) 2023; 14
Harris (cpb_33_3_030602bib63) 2017; 118
Xu (cpb_33_3_030602bib64) 2020; 125
Pang (cpb_33_3_030602bib67) 2014; 113
Feizpour (cpb_33_3_030602bib59) 2011; 107
Cohen (cpb_33_3_030602bib12) 2017; 47
Kastner (cpb_33_3_030602bib13) 2017; 47
Kedem (cpb_33_3_030602bib52) 2014
Tang (cpb_33_3_030602bib23) 2019; 27
Brunner (cpb_33_3_030602bib80) 2010; 105
Dressel (cpb_33_3_030602bib69) 2013; 88
Ferrie (cpb_33_3_030602bib10) 2014; 113
Martínez-Rincón (cpb_33_3_030602bib75) 2017; 42
Pang (cpb_33_3_030602bib55) 2015; 115
Krafczyk (cpb_33_3_030602bib72) 2021; 126
Zhang (cpb_33_3_030602bib58) 2015; 114
Lyons (cpb_33_3_030602bib70) 2015; 114
Aharonov (cpb_33_3_030602bib15) 2009; 11
Dressel (cpb_33_3_030602bib2) 2014; 86
Zhang (cpb_33_3_030602bib76) 2023; 122
Bai (cpb_33_3_030602bib40) 2020; 28
Chen (cpb_33_3_030602bib66) 2021; 23
Nakamura (cpb_33_3_030602bib34) 2012; 85
Kim (cpb_33_3_030602bib18) 2018; 9
Arvidsson-Shukur (cpb_33_3_030602bib65) 2020; 11
Hosten (cpb_33_3_030602bib21) 2008; 319
Yu (cpb_33_3_030602bib28) 2020; 125
Pusey (cpb_33_3_030602bib7) 2014; 113
Pal (cpb_33_3_030602bib37) 2019; 99
Combes (cpb_33_3_030602bib49) 2014; 89
Dixon (cpb_33_3_030602bib22) 2009; 102
Jordan (cpb_33_3_030602bib62) 2014; 4
References_xml – volume: 14
  start-page: 1021
  year: 2023
  ident: cpb_33_3_030602bib61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36661-3
– volume: 47
  start-page: 697
  year: 2017
  ident: cpb_33_3_030602bib13
  publication-title: Found. Phys.
  doi: 10.1007/s10701-017-0085-4
– volume: 520
  start-page: 43
  year: 2012
  ident: cpb_33_3_030602bib35
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2012.07.001
– volume: 105
  year: 2010
  ident: cpb_33_3_030602bib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.230401
– volume: 108
  start-page: 1256
  year: 2011
  ident: cpb_33_3_030602bib26
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005774108
– volume: 9
  start-page: 192
  year: 2018
  ident: cpb_33_3_030602bib18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02511-2
– volume: 112
  year: 2014
  ident: cpb_33_3_030602bib38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.200401
– volume: 121
  year: 2018
  ident: cpb_33_3_030602bib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.060506
– year: 2014
  ident: cpb_33_3_030602bib53
  doi: 10.48550/arXiv.1402.2954
– volume: 4
  year: 2014
  ident: cpb_33_3_030602bib62
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.011031
– volume: 97
  year: 2018
  ident: cpb_33_3_030602bib82
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.033851
– volume: 30
  start-page: 3700
  year: 2022
  ident: cpb_33_3_030602bib48
  publication-title: Opt. Express
  doi: 10.1364/OE.444216
– volume: 60
  start-page: 1351
  year: 1988
  ident: cpb_33_3_030602bib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.1351
– volume: 76
  year: 2007
  ident: cpb_33_3_030602bib3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.044103
– volume: 85
  year: 2012
  ident: cpb_33_3_030602bib34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.012113
– volume: 84
  year: 2011
  ident: cpb_33_3_030602bib33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.052111
– volume: 115
  year: 2015
  ident: cpb_33_3_030602bib55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.120401
– volume: 29
  start-page: 8777
  year: 2021
  ident: cpb_33_3_030602bib24
  publication-title: Opt. Express
  doi: 10.1364/OE.420432
– volume: 86
  start-page: 307
  year: 2014
  ident: cpb_33_3_030602bib2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.307
– volume: 9
  start-page: 93
  year: 2018
  ident: cpb_33_3_030602bib45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02487-z
– volume: 28
  start-page: 6408
  year: 2020
  ident: cpb_33_3_030602bib41
  publication-title: Opt. Express
  doi: 10.1364/OE.386017
– volume: 62
  start-page: 2325
  year: 1989
  ident: cpb_33_3_030602bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2325
– volume: 23
  start-page: 354
  year: 2021
  ident: cpb_33_3_030602bib66
  publication-title: Entropy
  doi: 10.3390/e23030354
– volume: 11
  start-page: 3775
  year: 2020
  ident: cpb_33_3_030602bib65
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17559-w
– volume: 62
  start-page: 2327
  year: 1989
  ident: cpb_33_3_030602bib9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2327
– volume: 127
  year: 2021
  ident: cpb_33_3_030602bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.180401
– volume: 28
  year: 2020
  ident: cpb_33_3_030602bib40
  publication-title: Opt. Express
– volume: 114
  year: 2015
  ident: cpb_33_3_030602bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.118901
– volume: 114
  year: 2015
  ident: cpb_33_3_030602bib70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.170801
– volume: 128
  year: 2022
  ident: cpb_33_3_030602bib73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.040503
– volume: 107
  year: 2011
  ident: cpb_33_3_030602bib43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.133603
– volume: 126
  year: 2021
  ident: cpb_33_3_030602bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.100403
– volume: 126
  year: 2021
  ident: cpb_33_3_030602bib72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.220801
– volume: 47
  start-page: 846
  year: 2022
  ident: cpb_33_3_030602bib42
  publication-title: Opt. Lett.
  doi: 10.1364/OL.450039
– year: 2014
  ident: cpb_33_3_030602bib52
  doi: 10.48550/arXiv.1402.1352
– volume: 113
  year: 2014
  ident: cpb_33_3_030602bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.120404
– volume: 117
  year: 2016
  ident: cpb_33_3_030602bib71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.230801
– volume: 94
  year: 2016
  ident: cpb_33_3_030602bib79
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.053843
– volume: 88
  year: 2013
  ident: cpb_33_3_030602bib57
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.042116
– volume: 83
  year: 2011
  ident: cpb_33_3_030602bib32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.052106
– volume: 125
  year: 2020
  ident: cpb_33_3_030602bib64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.080501
– year: 2017
  ident: cpb_33_3_030602bib84
  doi: 10.48550/arXiv.1709.01218
– volume: 28
  year: 2020
  ident: cpb_33_3_030602bib78
  publication-title: Opt. Express
  doi: 10.1364/OE.403711
– volume: 122
  year: 2023
  ident: cpb_33_3_030602bib76
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0132992
– volume: 105
  year: 2022
  ident: cpb_33_3_030602bib25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.013718
– volume: 42
  start-page: 903
  year: 2017
  ident: cpb_33_3_030602bib75
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002479
– volume: 89
  year: 2014
  ident: cpb_33_3_030602bib49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.052117
– volume: 100
  year: 2019
  ident: cpb_33_3_030602bib77
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.012109
– volume: 102
  year: 2009
  ident: cpb_33_3_030602bib22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.173601
– volume: 88
  year: 2013
  ident: cpb_33_3_030602bib69
  publication-title: Phys.Rev. A
  doi: 10.1103/PhysRevA.88.023821
– volume: 116
  year: 2016
  ident: cpb_33_3_030602bib74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.100803
– volume: 27
  year: 2019
  ident: cpb_33_3_030602bib23
  publication-title: Opt. Express
– volume: 474
  start-page: 188
  year: 2011
  ident: cpb_33_3_030602bib17
  publication-title: Nature
  doi: 10.1038/nature10120
– volume: 113
  year: 2014
  ident: cpb_33_3_030602bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.200401
– volume: 102
  year: 2020
  ident: cpb_33_3_030602bib39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.063717
– volume: 94
  year: 2005
  ident: cpb_33_3_030602bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.220405
– year: 2014
  ident: cpb_33_3_030602bib51
  doi: 10.48550/arXiv.1402.0199
– volume: 111
  year: 2013
  ident: cpb_33_3_030602bib81
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.033604
– volume: 89
  year: 2014
  ident: cpb_33_3_030602bib56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.052117
– volume: 92
  year: 2015
  ident: cpb_33_3_030602bib68
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.012120
– volume: 112
  year: 2014
  ident: cpb_33_3_030602bib50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.040406
– volume: 301
  start-page: 130
  year: 2009
  ident: cpb_33_3_030602bib14
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00986-6
– volume: 113
  year: 2014
  ident: cpb_33_3_030602bib67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.030401
– volume: 11
  year: 2009
  ident: cpb_33_3_030602bib15
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/3/033011
– volume: 100
  year: 2019
  ident: cpb_33_3_030602bib30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.012125
– volume: 118
  year: 2017
  ident: cpb_33_3_030602bib63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.070802
– volume: 82
  year: 2010
  ident: cpb_33_3_030602bib47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.063822
– volume: 123
  year: 2019
  ident: cpb_33_3_030602bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.150402
– volume: 4
  year: 2014
  ident: cpb_33_3_030602bib54
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.011032
– year: 2017
  ident: cpb_33_3_030602bib83
  doi: 10.48550/arXiv.1707.00886
– volume: 107
  year: 2011
  ident: cpb_33_3_030602bib59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.133603
– volume: 125
  year: 2020
  ident: cpb_33_3_030602bib28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.240506
– volume: 41
  start-page: 11
  year: 1990
  ident: cpb_33_3_030602bib36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.41.11
– volume: 105
  year: 2010
  ident: cpb_33_3_030602bib80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.010405
– volume: 114
  year: 2015
  ident: cpb_33_3_030602bib58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.210801
– volume: 332
  start-page: 1170
  year: 2011
  ident: cpb_33_3_030602bib27
  publication-title: Science
  doi: 10.1126/science.1202218
– volume: 319
  start-page: 787
  year: 2008
  ident: cpb_33_3_030602bib21
  publication-title: Science
  doi: 10.1126/science.1152697
– volume: 102
  year: 2020
  ident: cpb_33_3_030602bib16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.032206
– volume: 106
  year: 2022
  ident: cpb_33_3_030602bib29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.012608
– volume: 13
  start-page: 540
  year: 2017
  ident: cpb_33_3_030602bib44
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4040
– volume: 47
  start-page: 1261
  year: 2017
  ident: cpb_33_3_030602bib12
  publication-title: Found. Phys.
  doi: 10.1007%2Fs10701-017-0107-2
– volume: 99
  year: 2019
  ident: cpb_33_3_030602bib37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032123
– volume: 96
  year: 2017
  ident: cpb_33_3_030602bib60
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.052128
– volume: 66
  start-page: 1107
  year: 1991
  ident: cpb_33_3_030602bib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.1107
SSID ssj0061023
Score 2.335668
Snippet Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities...
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30602
SubjectTerms phase estimation
quantum optics
weak measurement
Title Measuring small longitudinal phase shifts via weak measurement amplification
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad1c5a
https://d.wanfangdata.com.cn/periodical/zgwl-e202403010
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELz4Ft_koAcP3d206W6LJxFFxdfBhT0IIUkTFWu32K6Cv96ZNuuqyCLeevjatJM0M5N8-YaQ3ViGmDWEntWx9LiGvpAqCr2gHcWqxRVu3SDb4qp92uXnvbA3QQ4-z8L0czf1N-CyFgquTegIcVETefMeFoxvyoTpEIKjaSxcicP77PpmOA23UZMAs60h2u1R_vaEbz5pEtqtTvBkVmb3X5zNyTy5G75mzTF5agxK1dDvPxQc__kdC2TOBaH0sIYukgmTLZGZigyqi2VycVktHIJTo8WzTFOa9rGq0SDBClo0fwDHR4uHR1sW9PVR0jcjn-jzaK2RSmSpW7cYuEK6J8e3R6eeq7rg6YDz0rNGKz-2iinJmAb_xSEHCSDOgERRh7HPAta2EcrgQWRlJVNKWsM7SQIdiyTPYJVMZf3MrBHawcMnmunItDQPO75KIByAfAtiEBP5jK-T5tDuQjtJcqyMkYpqazyKBNpIoI1EbaN1sv95R17LcYzB7oHphfsnizE4-g2ncyWCQAQC06mWL_LEAsSNhxHs_f4tFcZHjTiYJFsbf2xtk8ziPTXxe4tMlS8Dsw1xTal2qvH7AcIU7ec
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8QgFCYu0XhxN-5y0IOHzgwtnWmPRp2460ETbwgU1Fg7je1o4q_3vZZxizEm3np4QPugb4GP7xGyGcsQs4bQszqWHtcwF1JFoRe0o1i1uMKjG0RbnLUPrvjRdXjt6pxWd2F6uTP9DXisiYJrFTpAXNRE3LyHBeObMmE6lM08scNkNARTjJiuw_OLgSluIy8BZlyDFu6c8qdevvilYRi7usWTWZndfnI43SlyM3jVGmfy0OiXqqFfv7E4_uNbpsmkC0bpTi0-Q4ZMNkvGKlCoLubIyWm1gQjOjRaPMk1p2sPqRv0EK2nR_A4cIC3u7m1Z0Od7SV-MfKCPH3uOVCJa3bpNwXly1d2_3D3wXPUFTwecl541WvmxVUxJxjT4MQ65SADxBiSMOox9FrC2jZAODyIsK5lS0hreSRKYYAR7BgtkJOtlZpHQDl5C0UxHpqV52PFVAmEB5F0Qi5jIZ3yJNAe6F9pRk2OFjFRUR-RRJFBPAvUkaj0tke33FnlNy_GL7BaoX7h_s_hFjn6R07kSQSACgWlVyxcwNSDi1sSH2OvtSyqMj1xxYCxby38cbYOMX-x1xcnh2fEKmcDmNRZ8lYyUT32zBqFOqdar5fwG367zSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+small+longitudinal+phase+shifts+via+weak+measurement+amplification&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Kai+Xu&rft.au=Xiao-Min+Hu&rft.au=Meng-Jun+Hu&rft.au=Ning-Ning+Wang&rft.date=2024-02-01&rft.issn=1674-1056&rft.volume=33&rft.issue=3&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1088%2F1674-1056%2Fad1c5a&rft.externalDocID=zgwl_e202403010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg