Research on deep peaking cost allocation mechanism considering peaking demand subject and thermal power unit

The current peak-shaving auxiliary service cost allocation mechanism balances the revenue and expenditure of the power plant side, the peak-valley difference of the power grid is mainly caused by the peak-valley characteristics of the load and renewable energy. It is not reasonable that not reasonab...

Full description

Saved in:
Bibliographic Details
Published inEnergy reports Vol. 12; pp. 158 - 172
Main Authors Zhang, Hong, Jin, Peihua, Pang, Wei, Han, Peitong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN2352-4847
2352-4847
DOI10.1016/j.egyr.2024.06.011

Cover

Loading…
Abstract The current peak-shaving auxiliary service cost allocation mechanism balances the revenue and expenditure of the power plant side, the peak-valley difference of the power grid is mainly caused by the peak-valley characteristics of the load and renewable energy. It is not reasonable that not reasonable the peak-shaving cost allocation mechanism does not consider user allocation. Therefore, this paper establishes a peak-shaving cost allocation mechanism that considers the peak-shaving demand subject, this article incorporates renewable energy power plants and loads into the peak-shaving demand subject. Firstly, this paper constructs an alternative scenario without peak-shaving demand through the mean line of load and available energy output and establishes an optimal scheduling model with deep peak-shaving and pumped storage power stations, this article takes the difference of system peak-shaving cost between two scenarios with and without peak-shaving demand as the marginal peak-shaving cost. Then, the Shapley value method in cooperative game is used to establish the peak-shaving cost allocation mechanism considering the main body of peak-shaving demand. In addition, It is used that the equal-kWh following load method constructed the equivalent output curve of renewable energy, following load method improves the existing allocation mechanism by comprehensive similarity. Finally, this paper analyzes and compares three different peaking cost allocation mechanisms. The example analysis shows that the peaking cost allocation mechanism considering peaking demand subjects. The example can reflect the peaking cost caused by different subjects and reduce the peaking pressure of thermal power units. •Proposes a model for including peaking demand subjects in cost sharing.•Develops scenarios for calculating peaking costs via Shapley values.•Enhances fairness in cost allocation with equivalent output curves.•Analyzes the effectiveness of three peaking cost allocation methods.•Validates benefits through comparative simulations.
AbstractList The current peak-shaving auxiliary service cost allocation mechanism balances the revenue and expenditure of the power plant side, the peak-valley difference of the power grid is mainly caused by the peak-valley characteristics of the load and renewable energy. It is not reasonable that not reasonable the peak-shaving cost allocation mechanism does not consider user allocation. Therefore, this paper establishes a peak-shaving cost allocation mechanism that considers the peak-shaving demand subject, this article incorporates renewable energy power plants and loads into the peak-shaving demand subject. Firstly, this paper constructs an alternative scenario without peak-shaving demand through the mean line of load and available energy output and establishes an optimal scheduling model with deep peak-shaving and pumped storage power stations, this article takes the difference of system peak-shaving cost between two scenarios with and without peak-shaving demand as the marginal peak-shaving cost. Then, the Shapley value method in cooperative game is used to establish the peak-shaving cost allocation mechanism considering the main body of peak-shaving demand. In addition, It is used that the equal-kWh following load method constructed the equivalent output curve of renewable energy, following load method improves the existing allocation mechanism by comprehensive similarity. Finally, this paper analyzes and compares three different peaking cost allocation mechanisms. The example analysis shows that the peaking cost allocation mechanism considering peaking demand subjects. The example can reflect the peaking cost caused by different subjects and reduce the peaking pressure of thermal power units. •Proposes a model for including peaking demand subjects in cost sharing.•Develops scenarios for calculating peaking costs via Shapley values.•Enhances fairness in cost allocation with equivalent output curves.•Analyzes the effectiveness of three peaking cost allocation methods.•Validates benefits through comparative simulations.
Author Han, Peitong
Zhang, Hong
Jin, Peihua
Pang, Wei
Author_xml – sequence: 1
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  email: zhanghong@ccit.edu.cn
  organization: School of Electrical Engineering, Changchun Institute of Technology, Changchun, Jilin 130012, China
– sequence: 2
  givenname: Peihua
  surname: Jin
  fullname: Jin, Peihua
  organization: School of Electrical Engineering, Changchun Institute of Technology, Changchun, Jilin 130012, China
– sequence: 3
  givenname: Wei
  surname: Pang
  fullname: Pang, Wei
  organization: School of Electrical Engineering, Changchun Institute of Technology, Changchun, Jilin 130012, China
– sequence: 4
  givenname: Peitong
  surname: Han
  fullname: Han, Peitong
  organization: College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130012, China
BookMark eNp9kNtKAzEQhoNUsNa-gFd5gV2TbPZQ8EaKJygIotchTSZt1t3skmyVvr3ZVkG8KHORgZlvyP9doonrHCB0TUlKCS1u6hQ2e58ywnhKipRQeoamLMtZwiteTv70F2geQk0IoQtGeJFNUfMKAaRXW9w5rAF63IP8sG6DVRcGLJumU3KwcdiC2kpnQxsnLlgNftz63dbQSqdx2K1rUJGL_bAF38oG990XeLxzdrhC50Y2AeY_7wy9P9y_LZ-S1cvj8_JulaiM8yExmaRKV0TqWDljxJCSHz5tSExCFrxcGJNVa7ZWlVaqoDyXJi8pVEpnBWQzxI53le9C8GBE720r_V5QIkZlohajMjEqE6QQUVmEqn-QssMh-uClbU6jt0cUYqhPC14EZcEp0NZHG0J39hT-Da4bi8M
CitedBy_id crossref_primary_10_3390_buildings15060925
crossref_primary_10_1016_j_apenergy_2024_124575
crossref_primary_10_1016_j_energy_2025_134425
crossref_primary_10_3390_en18051234
crossref_primary_10_1109_ACCESS_2024_3519981
Cites_doi 10.3390/su142416337
10.1016/j.energy.2021.122960
10.1007/s10115-022-01776-4
10.1016/j.rser.2022.112279
10.1016/j.enconman.2022.115811
10.1109/TIE.2018.2840498
10.1109/TSTE.2021.3090463
10.1109/TSTE.2021.3105529
10.1016/j.rser.2015.10.052
10.1016/j.energy.2023.127386
10.1088/1748-9326/aca9e6
10.3390/en12173314
10.1016/j.ijhydene.2019.06.035
10.1504/IJBIC.2023.133505
10.1016/j.egyr.2021.05.042
10.1016/j.apenergy.2017.08.008
10.1016/j.apenergy.2022.120540
10.1109/ACCESS.2020.2974050
10.1007/s41066-022-00318-1
10.1016/j.jclepro.2020.122859
10.1109/TPWRS.2017.2690404
10.3390/en15134588
10.1109/ACCESS.2020.2983183
10.1007/s10586-016-0718-y
10.1016/j.eneco.2023.107011
10.1016/j.apenergy.2022.120131
10.1016/j.cnsns.2019.104867
10.1016/j.apenergy.2023.121637
10.1109/TIA.2022.3208866
10.1109/TPWRS.2017.2732921
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.egyr.2024.06.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 172
ExternalDocumentID 10_1016_j_egyr_2024_06_011
S2352484724003664
GrantInformation_xml – fundername: Department of Science and Technology of Jilin Provincial of China
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AACTN
AAYXX
CITATION
ID FETCH-LOGICAL-c344t-f3a1cd80adada5220f07400019f035209479ff38b2bc8dcc6145af571e8cd36e3
ISSN 2352-4847
IngestDate Thu Apr 24 23:01:25 EDT 2025
Thu Jul 24 02:02:56 EDT 2025
Sat Aug 23 17:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shapley allocation method
Cost allocation
Renewable energy generation
Peak-load regulation
Equal-kWh following load
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-f3a1cd80adada5220f07400019f035209479ff38b2bc8dcc6145af571e8cd36e3
OpenAccessLink http://dx.doi.org/10.1016/j.egyr.2024.06.011
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_egyr_2024_06_011
crossref_citationtrail_10_1016_j_egyr_2024_06_011
elsevier_sciencedirect_doi_10_1016_j_egyr_2024_06_011
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References U.S. Energy Information Administration, “Construction cost data for electric generators installed in 2021,” 2023. [Online]. Available: https://www.eia.gov/electricity/generatorcosts/.
Cui, Andriamahery, Ao (bib29) 2022; 14
Energy Research Institute, China’s Electrification Pathways: Findings from the China Energy Outlook 2022, Beijing, China, November, 2022. [Online]. Available:https://www.efchina.org/Attachments/Report/report-lceg-20221104/On-the-Road-to-Carbon-Neutrality-Green-Investment-Needs-in-China.pdf.
Verma, Mittal (bib34) 2023; 8
Efkarpidis, Imoscopi, Geidl (bib15) 2023; 34
Yang, Cao, Cai (bib20) 2020; 8
Rahman, Aziz, Deeba (bib2) 2021; 7
Rahman, Farrok, Haque (bib1) 2022; 161
Li, Feng, Li (bib4) 2018; 210
Chakraborty, Baeyens, Khargonekar (bib10) 2017; 33
Ye, Li, Pei (bib39) 2022; 327
Kang, Ye, Lam (bib14) 2023; 349
Yang, Wang, Gao (bib16) 2022; 15
Yang, Yibo, Chuang (bib25) 2023; 11
Li, Bu, Li (bib32) 2023; 333
Gangopadhyay, Seshadri, Toumi (bib31) 2023; 18
Li, Wang, Yang (bib5) 2022; 13
Tian, Xie, Hu (bib21) 2019; 12
Mays (bib24) 2017; 33
Li, Yang, Li (bib9) 2019; 66
Wen, Duan, Jiang (bib36) 2019; 78
Kou, Wu, Zhang, Ji, Ke, Wan, Liu, Li, Yuan (bib8) 2023; 22
National Energy Administration, “Management of Electricity Auxiliary Services”,2021-12-21, [Online]. Available: http://zfxxgk.nea.gov.cn/2021-12/21/c_1310391161.htm.
Wu, Li, Zhao (bib38) 2022; 242
Hogan (bib23) 2017; 2008
Wang, Mao (bib37) 2018; 35
Liu, Zhai, Hu (bib6) 2023; 276
Zhang, Yan, Yuan (bib18) 2020; 275
Peng, Gao, Hu (bib28) 2020; 8
Jiang, Deng, You (bib33) 2019; 44
Gu, Xu, Chen (bib17) 2016; 54
Ma, Yan, Li (bib19) 2019; 5
Wahbah, Mohandes, EL-Fouly (bib7) 2022; 266
Dong, Xue, Li (bib26) 2017; 20
Kirişci (bib35) 2023; 65
Li, Han, Yang (bib13) 2021; 12
Wu, Zhu, Chen (bib27) 2022; 59
Wang, Zhou, Qin (bib30) 2023
Newbery (bib3) 2023; 126
Mays (10.1016/j.egyr.2024.06.011_bib24) 2017; 33
10.1016/j.egyr.2024.06.011_bib22
Kirişci (10.1016/j.egyr.2024.06.011_bib35) 2023; 65
Newbery (10.1016/j.egyr.2024.06.011_bib3) 2023; 126
Peng (10.1016/j.egyr.2024.06.011_bib28) 2020; 8
Kang (10.1016/j.egyr.2024.06.011_bib14) 2023; 349
Liu (10.1016/j.egyr.2024.06.011_bib6) 2023; 276
Gu (10.1016/j.egyr.2024.06.011_bib17) 2016; 54
Tian (10.1016/j.egyr.2024.06.011_bib21) 2019; 12
Yang (10.1016/j.egyr.2024.06.011_bib25) 2023; 11
Efkarpidis (10.1016/j.egyr.2024.06.011_bib15) 2023; 34
Zhang (10.1016/j.egyr.2024.06.011_bib18) 2020; 275
Dong (10.1016/j.egyr.2024.06.011_bib26) 2017; 20
Cui (10.1016/j.egyr.2024.06.011_bib29) 2022; 14
Wang (10.1016/j.egyr.2024.06.011_bib37) 2018; 35
Ma (10.1016/j.egyr.2024.06.011_bib19) 2019; 5
Wen (10.1016/j.egyr.2024.06.011_bib36) 2019; 78
Kou (10.1016/j.egyr.2024.06.011_bib8) 2023; 22
Wang (10.1016/j.egyr.2024.06.011_bib30) 2023
10.1016/j.egyr.2024.06.011_bib12
Rahman (10.1016/j.egyr.2024.06.011_bib1) 2022; 161
Wahbah (10.1016/j.egyr.2024.06.011_bib7) 2022; 266
Yang (10.1016/j.egyr.2024.06.011_bib16) 2022; 15
Li (10.1016/j.egyr.2024.06.011_bib4) 2018; 210
Jiang (10.1016/j.egyr.2024.06.011_bib33) 2019; 44
Chakraborty (10.1016/j.egyr.2024.06.011_bib10) 2017; 33
10.1016/j.egyr.2024.06.011_bib11
Hogan (10.1016/j.egyr.2024.06.011_bib23) 2017; 2008
Rahman (10.1016/j.egyr.2024.06.011_bib2) 2021; 7
Li (10.1016/j.egyr.2024.06.011_bib9) 2019; 66
Ye (10.1016/j.egyr.2024.06.011_bib39) 2022; 327
Wu (10.1016/j.egyr.2024.06.011_bib27) 2022; 59
Wu (10.1016/j.egyr.2024.06.011_bib38) 2022; 242
Li (10.1016/j.egyr.2024.06.011_bib5) 2022; 13
Li (10.1016/j.egyr.2024.06.011_bib13) 2021; 12
Gangopadhyay (10.1016/j.egyr.2024.06.011_bib31) 2023; 18
Li (10.1016/j.egyr.2024.06.011_bib32) 2023; 333
Yang (10.1016/j.egyr.2024.06.011_bib20) 2020; 8
Verma (10.1016/j.egyr.2024.06.011_bib34) 2023; 8
References_xml – volume: 161
  year: 2022
  ident: bib1
  article-title: Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic
  publication-title: Renew. Sustain. Energy Rev.
– volume: 210
  start-page: 1073
  year: 2018
  end-page: 1081
  ident: bib4
  article-title: Optimal distributed generation planning in active distribution networks considering integration of energy storage
  publication-title: Appl. Energy
– volume: 13
  start-page: 159
  year: 2022
  end-page: 169
  ident: bib5
  article-title: Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting
  publication-title: IEEE Trans. Sustain. Energy
– reference: Energy Research Institute, China’s Electrification Pathways: Findings from the China Energy Outlook 2022, Beijing, China, November, 2022. [Online]. Available:https://www.efchina.org/Attachments/Report/report-lceg-20221104/On-the-Road-to-Carbon-Neutrality-Green-Investment-Needs-in-China.pdf.
– reference: National Energy Administration, “Management of Electricity Auxiliary Services”,2021-12-21, [Online]. Available: http://zfxxgk.nea.gov.cn/2021-12/21/c_1310391161.htm.
– volume: 242
  year: 2022
  ident: bib38
  article-title: Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting
  publication-title: Energy
– volume: 349
  year: 2023
  ident: bib14
  article-title: Sustainable electric vehicle charging coordination: balancing CO2 emission reduction and peak power demand shaving
  publication-title: Appl. Energy
– volume: 65
  start-page: 855
  year: 2023
  end-page: 868
  ident: bib35
  article-title: New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach
  publication-title: Knowl. Inf. Syst.
– volume: 15
  start-page: 4588
  year: 2022
  ident: bib16
  article-title: Peak shaving analysis of power demand response with dual uncertainty of unit and demand-side resources under carbon neutral target
  publication-title: Energies
– volume: 275
  year: 2020
  ident: bib18
  article-title: A realistic pathway for coal-fired power in China from 2020 to 2030
  publication-title: J. Clean. Prod.
– volume: 54
  start-page: 723
  year: 2016
  end-page: 731
  ident: bib17
  article-title: Overall review of peak shaving for coal-fired power units in China
  publication-title: Renew. Sustain. Energy Rev.
– volume: 327
  year: 2022
  ident: bib39
  article-title: A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching
  publication-title: Appl. Energy
– volume: 22
  start-page: 53
  year: 2023
  end-page: 64
  ident: bib8
  article-title: Image encryption for Offshore wind power based on 2D-LCLM and Zhou Yi Eight trigrams
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 18
  year: 2023
  ident: bib31
  article-title: Beneficial role of diurnal smoothing for grid integration of wind power
  publication-title: Environ. Res. Lett.
– volume: 126
  year: 2023
  ident: bib3
  article-title: High renewable electricity penetration: Marginal curtailment and market failure under “subsidy-free” entry
  publication-title: Energy Econ.
– volume: 8
  start-page: 33151
  year: 2020
  end-page: 33162
  ident: bib28
  article-title: Bilateral coordinated dispatch of multiple stakeholders in deep peak regulation
  publication-title: IEEE Access
– year: 2023
  ident: bib30
  article-title: Coordinated power smoothing control strategy of multi-wind turbines and energy storage systems in wind farm based on madrl
  publication-title: IEEE Trans. Sustain. Energy
– volume: 44
  start-page: 19658
  year: 2019
  end-page: 19666
  ident: bib33
  article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions
  publication-title: Int. J. Hydrogen Energy
– volume: 14
  start-page: 16337
  year: 2022
  ident: bib29
  article-title: Analysis of optimal operation of multi-energy alliance based on multi-scale dynamic cost equilibrium allocation
  publication-title: Sustainability
– reference: U.S. Energy Information Administration, “Construction cost data for electric generators installed in 2021,” 2023. [Online]. Available: https://www.eia.gov/electricity/generatorcosts/.
– volume: 20
  start-page: 391
  year: 2017
  end-page: 400
  ident: bib26
  article-title: Research on peak shaving costs and allocation of wind power integration using scalable computing method
  publication-title: Clust. Comput.
– volume: 333
  year: 2023
  ident: bib32
  article-title: Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach
  publication-title: Appl. Energy
– volume: 266
  year: 2022
  ident: bib7
  article-title: Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling
  publication-title: Energy Convers. Manag.
– volume: 66
  start-page: 1565
  year: 2019
  end-page: 1575
  ident: bib9
  article-title: Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties
  publication-title: IEEE Trans. Ind. Electron.
– volume: 33
  start-page: 70
  year: 2017
  end-page: 83
  ident: bib10
  article-title: Cost causation based allocations of costs for market integration of renewable energy
  publication-title: IEEE Trans. Power Syst.
– volume: 2008
  year: 2017
  ident: bib23
  article-title: Revenue sufficiency guarantees, cost causation, and cost allocation
  publication-title: Retrieved August
– volume: 12
  start-page: 3314
  year: 2019
  ident: bib21
  article-title: A deep peak regulation auxiliary service bidding strategy for CHP units based on a risk-averse model and district heating network energy storage
  publication-title: Energies
– volume: 7
  start-page: 3189
  year: 2021
  end-page: 3198
  ident: bib2
  article-title: A time of use tariff scheme for demand side management of residential energy consumers in Bangladesh
  publication-title: Energy Rep.
– volume: 5
  start-page: 533
  year: 2019
  end-page: 544
  ident: bib19
  article-title: Benefit evaluation of the deep peak-regulation market in the northeast China grid
  publication-title: CSEE J. Power Energy Syst.
– volume: 276
  year: 2023
  ident: bib6
  article-title: Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: energy, exergy, economic, and enviroeconomic
  publication-title: Energy
– volume: 34
  year: 2023
  ident: bib15
  article-title: Peak shaving in distribution networks using stationary energy storage systems: a Swiss case study
  publication-title: Sustain. Energy Grids Netw.
– volume: 59
  start-page: 276
  year: 2022
  end-page: 288
  ident: bib27
  article-title: Modified shapley value-based profit allocation method for wind power accommodation and deep peak regulation of thermal power
  publication-title: IEEE Trans. Ind. Appl.
– volume: 78
  year: 2019
  ident: bib36
  article-title: Node similarity measuring in complex networks with relative entropy
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 12
  start-page: 2321
  year: 2021
  end-page: 2331
  ident: bib13
  article-title: Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: a bi-level approach
  publication-title: IEEE Trans. Sustain. Energy
– volume: 33
  start-page: 2030
  year: 2017
  end-page: 2039
  ident: bib24
  article-title: Cost allocation and net load variability
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  year: 2023
  ident: bib25
  article-title: Research on the deep peak-shaving cost allocation mechanism considering the responsibility of the load side
  publication-title: Front. Energy Res.
– volume: 8
  start-page: 71318
  year: 2020
  end-page: 71325
  ident: bib20
  article-title: Unit commitment comprehensive optimal model considering the cost of wind power curtailment and deep peak regulation of thermal unit
  publication-title: IEEE Access
– volume: 8
  start-page: 111
  year: 2023
  end-page: 129
  ident: bib34
  article-title: Multiple attribute group decision-making based on novel probabilistic ordered weighted cosine similarity operators with Pythagorean fuzzy information
  publication-title: Granul. Comput.
– volume: 35
  start-page: 609
  year: 2018
  end-page: 625
  ident: bib37
  article-title: Aggregation similarity measure based on intuitionistic fuzzy closeness degree and its application to clustering analysis
  publication-title: J. Intell. Fuzzy Syst.
– volume: 14
  start-page: 16337
  issue: 24
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib29
  article-title: Analysis of optimal operation of multi-energy alliance based on multi-scale dynamic cost equilibrium allocation
  publication-title: Sustainability
  doi: 10.3390/su142416337
– volume: 242
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib38
  article-title: Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122960
– volume: 35
  start-page: 609
  issue: 1
  year: 2018
  ident: 10.1016/j.egyr.2024.06.011_bib37
  article-title: Aggregation similarity measure based on intuitionistic fuzzy closeness degree and its application to clustering analysis
  publication-title: J. Intell. Fuzzy Syst.
– volume: 5
  start-page: 533
  issue: 4
  year: 2019
  ident: 10.1016/j.egyr.2024.06.011_bib19
  article-title: Benefit evaluation of the deep peak-regulation market in the northeast China grid
  publication-title: CSEE J. Power Energy Syst.
– volume: 65
  start-page: 855
  issue: 2
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib35
  article-title: New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01776-4
– volume: 161
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib1
  article-title: Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112279
– volume: 266
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib7
  article-title: Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115811
– volume: 66
  start-page: 1565
  issue: 2
  year: 2019
  ident: 10.1016/j.egyr.2024.06.011_bib9
  article-title: Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2840498
– volume: 12
  start-page: 2321
  issue: 4
  year: 2021
  ident: 10.1016/j.egyr.2024.06.011_bib13
  article-title: Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: a bi-level approach
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3090463
– volume: 13
  start-page: 159
  issue: 1
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib5
  article-title: Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3105529
– volume: 2008
  issue: 25
  year: 2017
  ident: 10.1016/j.egyr.2024.06.011_bib23
  article-title: Revenue sufficiency guarantees, cost causation, and cost allocation
  publication-title: Retrieved August
– volume: 54
  start-page: 723
  year: 2016
  ident: 10.1016/j.egyr.2024.06.011_bib17
  article-title: Overall review of peak shaving for coal-fired power units in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.052
– volume: 276
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib6
  article-title: Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: energy, exergy, economic, and enviroeconomic
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127386
– year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib30
  article-title: Coordinated power smoothing control strategy of multi-wind turbines and energy storage systems in wind farm based on madrl
  publication-title: IEEE Trans. Sustain. Energy
– volume: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib31
  article-title: Beneficial role of diurnal smoothing for grid integration of wind power
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aca9e6
– volume: 12
  start-page: 3314
  issue: 17
  year: 2019
  ident: 10.1016/j.egyr.2024.06.011_bib21
  article-title: A deep peak regulation auxiliary service bidding strategy for CHP units based on a risk-averse model and district heating network energy storage
  publication-title: Energies
  doi: 10.3390/en12173314
– ident: 10.1016/j.egyr.2024.06.011_bib12
– volume: 34
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib15
  article-title: Peak shaving in distribution networks using stationary energy storage systems: a Swiss case study
  publication-title: Sustain. Energy Grids Netw.
– volume: 44
  start-page: 19658
  issue: 36
  year: 2019
  ident: 10.1016/j.egyr.2024.06.011_bib33
  article-title: Size optimization and economic analysis of a coupled wind-hydrogen system with curtailment decisions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.035
– volume: 22
  start-page: 53
  issue: 1
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib8
  article-title: Image encryption for Offshore wind power based on 2D-LCLM and Zhou Yi Eight trigrams
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2023.133505
– volume: 7
  start-page: 3189
  year: 2021
  ident: 10.1016/j.egyr.2024.06.011_bib2
  article-title: A time of use tariff scheme for demand side management of residential energy consumers in Bangladesh
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.05.042
– volume: 210
  start-page: 1073
  year: 2018
  ident: 10.1016/j.egyr.2024.06.011_bib4
  article-title: Optimal distributed generation planning in active distribution networks considering integration of energy storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.008
– volume: 333
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib32
  article-title: Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120540
– volume: 8
  start-page: 33151
  year: 2020
  ident: 10.1016/j.egyr.2024.06.011_bib28
  article-title: Bilateral coordinated dispatch of multiple stakeholders in deep peak regulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974050
– volume: 8
  start-page: 111
  issue: 1
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib34
  article-title: Multiple attribute group decision-making based on novel probabilistic ordered weighted cosine similarity operators with Pythagorean fuzzy information
  publication-title: Granul. Comput.
  doi: 10.1007/s41066-022-00318-1
– volume: 275
  year: 2020
  ident: 10.1016/j.egyr.2024.06.011_bib18
  article-title: A realistic pathway for coal-fired power in China from 2020 to 2030
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122859
– volume: 33
  start-page: 70
  issue: 1
  year: 2017
  ident: 10.1016/j.egyr.2024.06.011_bib10
  article-title: Cost causation based allocations of costs for market integration of renewable energy
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2690404
– ident: 10.1016/j.egyr.2024.06.011_bib22
– volume: 15
  start-page: 4588
  issue: 13
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib16
  article-title: Peak shaving analysis of power demand response with dual uncertainty of unit and demand-side resources under carbon neutral target
  publication-title: Energies
  doi: 10.3390/en15134588
– volume: 8
  start-page: 71318
  year: 2020
  ident: 10.1016/j.egyr.2024.06.011_bib20
  article-title: Unit commitment comprehensive optimal model considering the cost of wind power curtailment and deep peak regulation of thermal unit
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983183
– volume: 20
  start-page: 391
  year: 2017
  ident: 10.1016/j.egyr.2024.06.011_bib26
  article-title: Research on peak shaving costs and allocation of wind power integration using scalable computing method
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-016-0718-y
– volume: 126
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib3
  article-title: High renewable electricity penetration: Marginal curtailment and market failure under “subsidy-free” entry
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2023.107011
– volume: 327
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib39
  article-title: A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120131
– volume: 78
  year: 2019
  ident: 10.1016/j.egyr.2024.06.011_bib36
  article-title: Node similarity measuring in complex networks with relative entropy
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.104867
– volume: 349
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib14
  article-title: Sustainable electric vehicle charging coordination: balancing CO2 emission reduction and peak power demand shaving
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121637
– volume: 11
  year: 2023
  ident: 10.1016/j.egyr.2024.06.011_bib25
  article-title: Research on the deep peak-shaving cost allocation mechanism considering the responsibility of the load side
  publication-title: Front. Energy Res.
– ident: 10.1016/j.egyr.2024.06.011_bib11
– volume: 59
  start-page: 276
  issue: 1
  year: 2022
  ident: 10.1016/j.egyr.2024.06.011_bib27
  article-title: Modified shapley value-based profit allocation method for wind power accommodation and deep peak regulation of thermal power
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2022.3208866
– volume: 33
  start-page: 2030
  issue: 2
  year: 2017
  ident: 10.1016/j.egyr.2024.06.011_bib24
  article-title: Cost allocation and net load variability
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2732921
SSID ssj0001920463
Score 2.3625221
Snippet The current peak-shaving auxiliary service cost allocation mechanism balances the revenue and expenditure of the power plant side, the peak-valley difference...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 158
SubjectTerms Cost allocation
Equal-kWh following load
Peak-load regulation
Renewable energy generation
Shapley allocation method
Title Research on deep peaking cost allocation mechanism considering peaking demand subject and thermal power unit
URI https://dx.doi.org/10.1016/j.egyr.2024.06.011
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG50vXgRRcU3ffAWMiSdTk9yFFEGQVlwF_cW-lHRHWZnBs0c9Ndb1Y9kdndYdAmE0FSlh64v1dU19WDsbalNq7Sb50a0lJJTQ97qFnLhCulM0c-tb9_2-YtanMpPZ_XZ5FXy2SWDmdk_B_NKbiNVHEO5Upbsf0h2fCkO4DPKF-8oYbz_k4xT2Bx5_B3ANtuCby6V2c0vcuXSRuXlewGU4Ev9MGxs0OmT0CO1gwvvPt8ZcsqkmErU2KtsS03Ush1-95dc-CFhMP7fcM33vNjE7ZAic0KNgmM4_7Ebd4DjSPgNzicNmOiGxB19EUJeiesYk2SmiCTUYwJtvFw2obDmDA6MJUUs9jRpGSq6x025DP19run74HpYzuD7byruKqQvxhrV9-U62l9pTpqSomYrpeRddk_g2ULsncOXweSlKmq-KWH8kTHZKsQFXp3qsEGzZ6ScPGQP4umCvwtQecTuwPoxWyWY8M2aE0x4FDwnmPAJJnyECd-DyUgdYMIjTDg9R5hwDxNOMHnCTj9-OHm_yGOTjdxWUg55X-nSuqbQDi80xosejUq_DD2VysXT_7zt-6oxwtjGWYvmXK37el5CY12loHrKjtabNTxj3Gihaqv6QoCRSirTNq5xrTbGFFZD-ZyVaaU6GyvQUyOUVZdCDZcdrW5Hq9tRvGWJPNnIsw31V26krpMAumhBBsuwQ8DcwPfilnwv2f3pM3jFjoafO3iNRupg3nhQ_QU3EJV5
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+deep+peaking+cost+allocation+mechanism+considering+peaking+demand+subject+and+thermal+power+unit&rft.jtitle=Energy+reports&rft.au=Zhang%2C+Hong&rft.au=Jin%2C+Peihua&rft.au=Pang%2C+Wei&rft.au=Han%2C+Peitong&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=12&rft.spage=158&rft.epage=172&rft_id=info:doi/10.1016%2Fj.egyr.2024.06.011&rft.externalDocID=S2352484724003664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon