Simplifying approach to node classification in Graph Neural Networks
Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there have been tremendous improvements in architecture design, resulting in better performance on various predi...
Saved in:
Published in | Journal of computational science Vol. 62; p. 101695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there have been tremendous improvements in architecture design, resulting in better performance on various prediction tasks. In general, these neural architectures combine node feature aggregation and feature transformation using learnable weight matrix in the same layer. This makes it challenging to analyze the importance of node features aggregated from various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance. We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model. Through our experiments, we show that learning certain subsets of these features can lead to better performance on wide variety of datasets. Based on our observations, we introduce several key design strategies for graph neural networks. More specifically, we propose to use softmax as a regularizer and ”soft-selector” of features aggregated from neighbors at different hop distances; and L2-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models in nine benchmark datasets for the node classification task, with remarkable improvements up to 51.1%. Source code available at https://github.com/sunilkmaurya/FSGNN/.
•Current Graph Neural Networks (GNNs) have inconsistent performance in homophily and heterophily graphs.•We analyze importance of feature selection over hops with extensive experiments.•With good feature selection strategy, simple NN model is sufficient for high accuracy.•We propose a model FSGNN for node classification task.•FSGNN outperforms SOTA on heterophily datasets and at par on homophily datasets. |
---|---|
AbstractList | Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there have been tremendous improvements in architecture design, resulting in better performance on various prediction tasks. In general, these neural architectures combine node feature aggregation and feature transformation using learnable weight matrix in the same layer. This makes it challenging to analyze the importance of node features aggregated from various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance. We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model. Through our experiments, we show that learning certain subsets of these features can lead to better performance on wide variety of datasets. Based on our observations, we introduce several key design strategies for graph neural networks. More specifically, we propose to use softmax as a regularizer and ”soft-selector” of features aggregated from neighbors at different hop distances; and L2-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models in nine benchmark datasets for the node classification task, with remarkable improvements up to 51.1%. Source code available at https://github.com/sunilkmaurya/FSGNN/.
•Current Graph Neural Networks (GNNs) have inconsistent performance in homophily and heterophily graphs.•We analyze importance of feature selection over hops with extensive experiments.•With good feature selection strategy, simple NN model is sufficient for high accuracy.•We propose a model FSGNN for node classification task.•FSGNN outperforms SOTA on heterophily datasets and at par on homophily datasets. |
ArticleNumber | 101695 |
Author | Murata, Tsuyoshi Maurya, Sunil Kumar Liu, Xin |
Author_xml | – sequence: 1 givenname: Sunil Kumar surname: Maurya fullname: Maurya, Sunil Kumar email: skmaurya@net.c.titech.ac.jp organization: Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin email: xin.liu@aist.go.jp organization: Artificial Intelligence Research Center, AIST, Tokyo, Japan – sequence: 3 givenname: Tsuyoshi surname: Murata fullname: Murata, Tsuyoshi email: murata@c.titech.ac.jp organization: Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan |
BookMark | eNp9kM1OwzAQhC1UJErpC3DKC6T4J86PxAUVKEgVHICz5dhr6pDGkW1AfXuSFnHg0L3MaqVvNTPnaNK5DhC6JHhBMMmvmkXjVFhQTOn-UPETNCVlUaQFJ2Tyt2N2huYhNHgYVpYVYVN0-2K3fWvNznbviex776TaJNElndOQqFaGYI1VMlrXJbZLVl72m-QJPr1sB4nfzn-EC3RqZBtg_qsz9HZ_97p8SNfPq8flzTpVLMtiCgXPtcoppxrKnGlaMMqN1DWngxdcSF3K0lQ8lyBpBlmtakorzLA2kHOo2QyVh7_KuxA8GKFs3FuLXtpWECzG_KIRYyFiLEQcChlQ-g_tvd1KvzsOXR8gGEJ9WfAiKAudAm09qCi0s8fwH91WfHg |
CitedBy_id | crossref_primary_10_1016_j_knosys_2024_112813 crossref_primary_10_48084_etasr_6844 crossref_primary_10_1109_ACCESS_2024_3424474 crossref_primary_10_1109_ACCESS_2024_3483839 crossref_primary_10_1016_j_physa_2024_130131 crossref_primary_10_48084_etasr_9443 crossref_primary_10_3389_fpsyg_2023_1032291 crossref_primary_10_1016_j_jocs_2023_102178 crossref_primary_10_1016_j_neucom_2024_128629 crossref_primary_10_1007_s10618_024_01038_7 crossref_primary_10_1109_TETCI_2024_3380481 crossref_primary_10_1109_TNNLS_2024_3370918 crossref_primary_10_1007_s10489_022_04222_8 crossref_primary_10_1109_ACCESS_2024_3505603 crossref_primary_10_3390_app13127150 crossref_primary_10_3390_electronics14051047 crossref_primary_10_1016_j_jocs_2024_102518 crossref_primary_10_3390_math11173680 crossref_primary_10_1007_s11042_024_19525_w crossref_primary_10_1016_j_asoc_2025_112739 crossref_primary_10_3390_s24051580 crossref_primary_10_1109_JBHI_2023_3327755 crossref_primary_10_1016_j_softx_2023_101466 crossref_primary_10_1049_cit2_12166 |
Cites_doi | 10.1016/j.compeleceng.2013.11.024 10.1109/TSP.2018.2889984 10.1162/qss_a_00021 10.1145/3446217 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2022.101695 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2022_101695 S1877750322000990 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-e756dc6252de863d27325fadb5291307ad8a8f956aea24e4bcb229030dfe65eb3 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Tue Jul 01 03:46:11 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Fri Feb 23 02:40:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Node classification Feature selection Graph Neural Networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-e756dc6252de863d27325fadb5291307ad8a8f956aea24e4bcb229030dfe65eb3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2022_101695 crossref_primary_10_1016_j_jocs_2022_101695 elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sun, Gu, Hu (b48) 2021 Chien, Peng, Li, Milenkovic (b33) 2021 Defferrard, Bresson, Vandergheynst (b38) 2016 Ying, You, Morris, Ren, Hamilton, Leskovec (b9) 2018 Bo, Wang, Shi, Shen (b25) 2021 Chandrashekar, Sahin (b32) 2014; 40 Rozemberczki, Allen, Sarkar (b44) 2020 Xu, Li, Tian, Sonobe, Kawarabayashi, Jegelka (b39) 2018 Godwin, Schaarschmidt, Gaunt, Sanchez-Gonzalez, Rubanova, Veliković, Kirkpatrick, Battaglia (b41) 2021 Chami, Ying, Ré, Leskovec (b8) 2019 Ying, He, Chen, Eksombatchai, Hamilton, Leskovec (b6) 2018 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b11) 2017 Velickovic, Cucurull, Casanova, Romero, Liò, Bengio (b2) 2018 Zhu, Rossi, Rao, Mai, Lipka, Ahmed, Koutra (b24) 2021 Berberidis, Nikolakopoulos, Giannakis (b37) 2019; 67 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b31) 2017; 50 McPherson, Smith-Lovin, Cook (b27) 2001 Ma, Liu, Shah, Tang (b42) 2021 van den Berg, Kipf, Welling (b7) 2017 Abu-El-Haija, Perozzi, Kapoor, Harutyunyan, Alipourfard, Lerman, Steeg, Galstyan (b3) 2019 Klicpera, Bojchevski, Günnemann (b19) 2018 Sun, Lin, Zhu (b51) 2020 Hamilton, Ying, Leskovec (b17) 2017 Frasca, Rossi, Eynard, Chamberlain, Bronstein, Monti (b29) 2020 Fan, Zeng, Ding, Chen, Sun, Liu (b14) 2019 Sen, Namata, Bilgic, Getoor, Gallagher, Eliassi-Rad (b28) 2008 Wu, Pan, Chen, Long, Zhang, Yu (b16) 2019 Maurya, Liu, Murata (b13) 2021; 15 Li, Müller, Ghanem, Koltun (b40) 2021 Madhawa, Ishiguro, Nakago, Abe (b12) 2019 Wang, Shen, Huang, Wu, Dong, Kanakia (b45) 2020; 1 Huang, He, Singh, Lim, Benson (b52) 2020 Tang, Sun, Wang, Yang (b43) 2009 Wang, Derr (b5) 2021 Pei, Wei, Chang, Lei, Yang (b34) 2020 Wu, Souza, Zhang, Fifty, Yu, Weinberger (b21) 2019 NT, Maehara, Murata (b36) 2020 Li, Han, Wu (b50) 2018 Zhang, Yin, Sheng, Ouyang, Li, Tao, Yang, Cui (b49) 2021 Kipf, Welling (b1) 2017 Bhagat, Cormode, Muthukrishnan (b26) 2011 Marcheggiani, Titov (b15) 2017 Zhang, Cui, Neumann, Chen (b10) 2018 Hu, Fey, Zitnik, Dong, Ren, Liu, Catasta, Leskovec (b46) 2021 Grover, Leskovec (b47) 2016 Zhu, Yan, Zhao, Heimann, Akoglu, Koutra (b23) 2020; 33 Rong, Huang, Xu, Huang (b22) 2020 Chen, Ma, Xiao (b18) 2018 Chen, Wei, Huang, Ding, Li (b4) 2020 Jin, Derr, Wang, Ma, Liu, Tang (b20) 2021 Suresh, Budde, Neville, Li, Ma (b35) 2021 Tang, Alelyani, Liu (b30) 2014 McPherson (10.1016/j.jocs.2022.101695_b27) 2001 Xu (10.1016/j.jocs.2022.101695_b39) 2018 Marcheggiani (10.1016/j.jocs.2022.101695_b15) 2017 Sen (10.1016/j.jocs.2022.101695_b28) 2008 Godwin (10.1016/j.jocs.2022.101695_b41) 2021 Jin (10.1016/j.jocs.2022.101695_b20) 2021 Tang (10.1016/j.jocs.2022.101695_b30) 2014 Wang (10.1016/j.jocs.2022.101695_b45) 2020; 1 Tang (10.1016/j.jocs.2022.101695_b43) 2009 Gilmer (10.1016/j.jocs.2022.101695_b11) 2017 Zhang (10.1016/j.jocs.2022.101695_b10) 2018 Hu (10.1016/j.jocs.2022.101695_b46) 2021 Chami (10.1016/j.jocs.2022.101695_b8) 2019 Grover (10.1016/j.jocs.2022.101695_b47) 2016 Pei (10.1016/j.jocs.2022.101695_b34) 2020 Bo (10.1016/j.jocs.2022.101695_b25) 2021 Wu (10.1016/j.jocs.2022.101695_b21) 2019 Kipf (10.1016/j.jocs.2022.101695_b1) 2017 Zhu (10.1016/j.jocs.2022.101695_b24) 2021 van den Berg (10.1016/j.jocs.2022.101695_b7) 2017 Maurya (10.1016/j.jocs.2022.101695_b13) 2021; 15 Ying (10.1016/j.jocs.2022.101695_b9) 2018 Chen (10.1016/j.jocs.2022.101695_b18) 2018 Li (10.1016/j.jocs.2022.101695_b40) 2021 Sun (10.1016/j.jocs.2022.101695_b51) 2020 Sun (10.1016/j.jocs.2022.101695_b48) 2021 Zhu (10.1016/j.jocs.2022.101695_b23) 2020; 33 Fan (10.1016/j.jocs.2022.101695_b14) 2019 Ying (10.1016/j.jocs.2022.101695_b6) 2018 Wu (10.1016/j.jocs.2022.101695_b16) 2019 Li (10.1016/j.jocs.2022.101695_b50) 2018 Wang (10.1016/j.jocs.2022.101695_b5) 2021 Li (10.1016/j.jocs.2022.101695_b31) 2017; 50 Zhang (10.1016/j.jocs.2022.101695_b49) 2021 Rozemberczki (10.1016/j.jocs.2022.101695_b44) 2020 Hamilton (10.1016/j.jocs.2022.101695_b17) 2017 Suresh (10.1016/j.jocs.2022.101695_b35) 2021 Madhawa (10.1016/j.jocs.2022.101695_b12) 2019 Berberidis (10.1016/j.jocs.2022.101695_b37) 2019; 67 Abu-El-Haija (10.1016/j.jocs.2022.101695_b3) 2019 Rong (10.1016/j.jocs.2022.101695_b22) 2020 Chen (10.1016/j.jocs.2022.101695_b4) 2020 Defferrard (10.1016/j.jocs.2022.101695_b38) 2016 Klicpera (10.1016/j.jocs.2022.101695_b19) 2018 Huang (10.1016/j.jocs.2022.101695_b52) 2020 Chien (10.1016/j.jocs.2022.101695_b33) 2021 Chandrashekar (10.1016/j.jocs.2022.101695_b32) 2014; 40 Frasca (10.1016/j.jocs.2022.101695_b29) 2020 Ma (10.1016/j.jocs.2022.101695_b42) 2021 Velickovic (10.1016/j.jocs.2022.101695_b2) 2018 Bhagat (10.1016/j.jocs.2022.101695_b26) 2011 NT (10.1016/j.jocs.2022.101695_b36) 2020 |
References_xml | – year: 2021 ident: b49 article-title: Graph attention multi-layer perceptron – year: 2021 ident: b41 article-title: Very deep graph neural networks via noise regularisation – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b32 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – year: 2021 ident: b42 article-title: Is homophily a necessity for graph neural networks? – start-page: 37 year: 2014 end-page: 64 ident: b30 article-title: Feature selection for classification: A review publication-title: Data Classif.: Algorithms Appl. – year: 2019 ident: b12 article-title: GraphNVP: AN invertible flow model for generating molecular graphs – year: 2018 ident: b10 article-title: An end-to-end deep learning architecture for graph classification publication-title: AAAI – year: 2021 ident: b33 article-title: Adaptive universal generalized PageRank graph neural network publication-title: ICLR – year: 2018 ident: b2 article-title: Graph attention networks publication-title: ICLR – year: 2019 ident: b3 article-title: MixHop: Higher-order graph convolutional architectures via sparsified neighborhood mixing publication-title: ICML – year: 2017 ident: b1 article-title: Semi-supervised classification with graph convolutional networks publication-title: ICLR – year: 2017 ident: b7 article-title: Graph convolutional matrix completion – year: 2021 ident: b24 article-title: Graph neural networks with heterophily publication-title: AAAI – volume: 33 year: 2020 ident: b23 article-title: Beyond homophily in graph neural networks: Current limitations and effective designs publication-title: NeurIPS – year: 2021 ident: b40 article-title: Training graph neural networks with 1000 layers publication-title: ICML – year: 2020 ident: b36 article-title: Stacked graph filter – year: 2020 ident: b4 article-title: Simple and deep graph convolutional networks publication-title: ICML – year: 2017 ident: b11 article-title: Neural message passing for quantum chemistry publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70 – year: 2016 ident: b47 article-title: Node2vec: Scalable feature learning for networks publication-title: KDD – year: 2019 ident: b8 article-title: Hyperbolic graph convolutional neural networks publication-title: NeurIPS – year: 2018 ident: b39 article-title: Representation Learning on Graphs with Jumping Knowledge Networks – start-page: 1024 year: 2017 end-page: 1034 ident: b17 article-title: Inductive representation learning on large graphs publication-title: NIPS – volume: 67 start-page: 1307 year: 2019 end-page: 1321 ident: b37 article-title: Adaptive diffusions for scalable learning over graphs publication-title: IEEE Trans. Signal Process. – start-page: 4805 year: 2018 end-page: 4815 ident: b9 article-title: Hierarchical graph representation learning with differentiable pooling publication-title: NIPS’18 – year: 2018 ident: b18 article-title: FastGCN: FAst learning with graph convolutional networks via importance sampling publication-title: ICLR – year: 2020 ident: b29 article-title: SIGN: Scalable inception graph neural networks – year: 2020 ident: b44 article-title: Multi-scale attributed node embedding – year: 2020 ident: b52 article-title: Combining label propagation and simple models out-performs graph neural networks – start-page: 148 year: 2021 end-page: 156 ident: b20 article-title: Node similarity preserving graph convolutional networks publication-title: WSDM ’21 – year: 2018 ident: b50 article-title: Deeper insights into graph convolutional networks for semi-supervised learning – year: 2020 ident: b51 article-title: Multi-stage self-supervised learning for graph convolutional networks on graphs with few labels – year: 2021 ident: b35 article-title: Breaking the limit of graph neural networks by improving the assortativity of graphs with local mixing patterns – year: 2016 ident: b38 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2021 ident: b25 article-title: Beyond low-frequency information in graph convolutional networks publication-title: AAAI – start-page: 807 year: 2009 end-page: 816 ident: b43 article-title: Social influence analysis in large-scale networks publication-title: KDD ’09 – year: 2018 ident: b6 article-title: Graph convolutional neural networks for web-scale recommender systems publication-title: KDD ’18 – start-page: 559 year: 2019 end-page: 568 ident: b14 article-title: Learning to identify high betweenness centrality nodes from scratch: A novel graph neural network approach publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management – year: 2019 ident: b21 article-title: Simplifying graph convolutional networks publication-title: ICML – year: 2008 ident: b28 article-title: Collective classification in network data publication-title: AI Mag. – year: 2020 ident: b34 article-title: Geom-GCN: Geometric graph convolutional networks publication-title: ICLR – start-page: 1506 year: 2017 end-page: 1515 ident: b15 article-title: Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling – volume: 50 start-page: 94:1 year: 2017 end-page: 94:45 ident: b31 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – year: 2021 ident: b46 article-title: Open graph benchmark: Datasets for machine learning on graphs – volume: 15 start-page: 78:1 year: 2021 end-page: 78:32 ident: b13 article-title: Graph neural networks for fast node ranking approximation publication-title: ACM Trans. Knowl. Discov. Data – year: 2020 ident: b22 article-title: DropEdge: Towards deep graph convolutional networks on node classification publication-title: ICLR – year: 2019 ident: b16 article-title: A comprehensive survey on graph neural networks – year: 2021 ident: b48 article-title: Scalable and adaptive graph neural networks with self-label-enhanced training – start-page: 115 year: 2011 end-page: 148 ident: b26 article-title: Node classification in social networks publication-title: Social Network Data Analytics – year: 2001 ident: b27 article-title: Birds of a feather: Homophily in social networks – year: 2018 ident: b19 article-title: Predict then Propagate: Combining neural networks with personalized pagerank for classification on graphs – year: 2021 ident: b5 article-title: Tree decomposed graph neural network publication-title: CIKM – volume: 1 start-page: 396 year: 2020 end-page: 413 ident: b45 article-title: Microsoft academic graph: When experts are not enough publication-title: Quant. Sci. Stud. – year: 2021 ident: 10.1016/j.jocs.2022.101695_b33 article-title: Adaptive universal generalized PageRank graph neural network publication-title: ICLR – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.jocs.2022.101695_b32 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – year: 2021 ident: 10.1016/j.jocs.2022.101695_b24 article-title: Graph neural networks with heterophily – year: 2019 ident: 10.1016/j.jocs.2022.101695_b12 – volume: 67 start-page: 1307 issue: 5 year: 2019 ident: 10.1016/j.jocs.2022.101695_b37 article-title: Adaptive diffusions for scalable learning over graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2889984 – volume: 1 start-page: 396 issue: 1 year: 2020 ident: 10.1016/j.jocs.2022.101695_b45 article-title: Microsoft academic graph: When experts are not enough publication-title: Quant. Sci. Stud. doi: 10.1162/qss_a_00021 – year: 2021 ident: 10.1016/j.jocs.2022.101695_b25 article-title: Beyond low-frequency information in graph convolutional networks – year: 2020 ident: 10.1016/j.jocs.2022.101695_b52 – year: 2019 ident: 10.1016/j.jocs.2022.101695_b16 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b18 article-title: FastGCN: FAst learning with graph convolutional networks via importance sampling – volume: 50 start-page: 94:1 issue: 6 year: 2017 ident: 10.1016/j.jocs.2022.101695_b31 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – year: 2020 ident: 10.1016/j.jocs.2022.101695_b36 – year: 2021 ident: 10.1016/j.jocs.2022.101695_b46 – year: 2020 ident: 10.1016/j.jocs.2022.101695_b4 article-title: Simple and deep graph convolutional networks publication-title: ICML – year: 2017 ident: 10.1016/j.jocs.2022.101695_b1 article-title: Semi-supervised classification with graph convolutional networks publication-title: ICLR – year: 2016 ident: 10.1016/j.jocs.2022.101695_b38 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b19 – start-page: 1506 year: 2017 ident: 10.1016/j.jocs.2022.101695_b15 – year: 2001 ident: 10.1016/j.jocs.2022.101695_b27 – start-page: 115 year: 2011 ident: 10.1016/j.jocs.2022.101695_b26 article-title: Node classification in social networks – volume: 15 start-page: 78:1 issue: 5 year: 2021 ident: 10.1016/j.jocs.2022.101695_b13 article-title: Graph neural networks for fast node ranking approximation publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3446217 – volume: 33 year: 2020 ident: 10.1016/j.jocs.2022.101695_b23 article-title: Beyond homophily in graph neural networks: Current limitations and effective designs publication-title: NeurIPS – year: 2017 ident: 10.1016/j.jocs.2022.101695_b11 article-title: Neural message passing for quantum chemistry – year: 2018 ident: 10.1016/j.jocs.2022.101695_b39 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b10 article-title: An end-to-end deep learning architecture for graph classification – year: 2020 ident: 10.1016/j.jocs.2022.101695_b51 – year: 2020 ident: 10.1016/j.jocs.2022.101695_b44 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b6 article-title: Graph convolutional neural networks for web-scale recommender systems – start-page: 1024 year: 2017 ident: 10.1016/j.jocs.2022.101695_b17 article-title: Inductive representation learning on large graphs – start-page: 148 year: 2021 ident: 10.1016/j.jocs.2022.101695_b20 article-title: Node similarity preserving graph convolutional networks – year: 2021 ident: 10.1016/j.jocs.2022.101695_b48 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b2 article-title: Graph attention networks publication-title: ICLR – year: 2020 ident: 10.1016/j.jocs.2022.101695_b22 article-title: DropEdge: Towards deep graph convolutional networks on node classification – year: 2021 ident: 10.1016/j.jocs.2022.101695_b49 – year: 2018 ident: 10.1016/j.jocs.2022.101695_b50 – start-page: 559 year: 2019 ident: 10.1016/j.jocs.2022.101695_b14 article-title: Learning to identify high betweenness centrality nodes from scratch: A novel graph neural network approach – year: 2020 ident: 10.1016/j.jocs.2022.101695_b34 article-title: Geom-GCN: Geometric graph convolutional networks publication-title: ICLR – year: 2021 ident: 10.1016/j.jocs.2022.101695_b42 – start-page: 37 year: 2014 ident: 10.1016/j.jocs.2022.101695_b30 article-title: Feature selection for classification: A review publication-title: Data Classif.: Algorithms Appl. – year: 2008 ident: 10.1016/j.jocs.2022.101695_b28 article-title: Collective classification in network data publication-title: AI Mag. – year: 2021 ident: 10.1016/j.jocs.2022.101695_b35 – year: 2021 ident: 10.1016/j.jocs.2022.101695_b41 – year: 2016 ident: 10.1016/j.jocs.2022.101695_b47 article-title: Node2vec: Scalable feature learning for networks publication-title: KDD – year: 2019 ident: 10.1016/j.jocs.2022.101695_b3 article-title: MixHop: Higher-order graph convolutional architectures via sparsified neighborhood mixing – year: 2020 ident: 10.1016/j.jocs.2022.101695_b29 – start-page: 4805 year: 2018 ident: 10.1016/j.jocs.2022.101695_b9 article-title: Hierarchical graph representation learning with differentiable pooling – year: 2017 ident: 10.1016/j.jocs.2022.101695_b7 – year: 2019 ident: 10.1016/j.jocs.2022.101695_b21 article-title: Simplifying graph convolutional networks – year: 2019 ident: 10.1016/j.jocs.2022.101695_b8 article-title: Hyperbolic graph convolutional neural networks publication-title: NeurIPS – year: 2021 ident: 10.1016/j.jocs.2022.101695_b40 article-title: Training graph neural networks with 1000 layers – year: 2021 ident: 10.1016/j.jocs.2022.101695_b5 article-title: Tree decomposed graph neural network publication-title: CIKM – start-page: 807 year: 2009 ident: 10.1016/j.jocs.2022.101695_b43 article-title: Social influence analysis in large-scale networks |
SSID | ssj0000388913 |
Score | 2.5082195 |
Snippet | Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101695 |
SubjectTerms | Feature selection Graph Neural Networks Node classification |
Title | Simplifying approach to node classification in Graph Neural Networks |
URI | https://dx.doi.org/10.1016/j.jocs.2022.101695 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfEitirWR9mDB0Vik30k6bFUa1XspRZ6C_sKpEhSbLz6291JNqIgPXjMskOS2cnst-GbbxC6lFD2a2GCR2lEPYv_uc2DTHhUSaksYE9jAdXIL7NwumBPS75soXFTCwO0Spf765xeZWs3MnDeHKyzbDAPQMqO-zYiK5wD53bGIojy28_g-z8LqJ0Mqy7JMN8DA1c7U9O8VoUC1W5CqgFoM_HX_vRjz5kcoH0HFvGofp4Oapm8i3YbrnoXddyXucFXTj76-hDdzTNgiVf1S7iRDMdlgfNCG6wALQM9qFoRnOX4ASSrMYh02FvNalb45ggtJvev46nneiV4ijJWeibioVb2MEO0iUOqLSohPBVacmLf3o-EjkWc2sOQMIIww6SSoPROfZ2akNsT9TFq50VuThA2LDAqkLBkkhHfSDaUVAcisoYiNKSHgsZDiXJC4tDP4i1pGGOrBLyagFeT2qs9dPNts65lNLbO5o3jk1_BkNg8v8Xu9J92Z2gPrmoW7jlql-8f5sJijVL2q2Dqo53R4_N09gUUgtGj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8NAEB1qBfUi1g_8dg8KisQ2m03aHjyItbba9lKF3uLuZgsVSYutiBf_lH_QmWRTFKQHoddNJlkmw8zb8OYNwLGitl-ECY7nlT0H8b-PeVBIx9NKaQTs_YqkbuR2J2g8irue38vBV9YLQ7RKm_vTnJ5ka7tStN4sjgaDYtclKTu_hBGZ4JySZVbem493PLeNL5s1_MgnnNdvHq4bjh0t4GhPiIljyn4QacT-PDKVwIuwiHO_LyPl8ypm9bKMKrLSx7ODNJILI5RWJIzulaK-CXw8gOJzF2BRYLqgsQkXn-70xw7Jq1STscy0QYd2aJt1Ul7Z81CTTDjnyQLNtfirIP4ocvU1WLXolF2lDihAzsTrsJSR49ehYFPBmJ1aveqzDah1B0RLTxqmWKZRziZDFg8jwzTBc-IjJSHABjG7JY1sRqog-KpOSkMfb8LjXDy4Bfl4GJttYEa4RruKYkQJXjJKVJUXubKMhjIwfAfczEOhtsrlNEDjJcwoas8heTUkr4apV3fgfGozSnU7Zt7tZ44Pf0VfiIVlht3uP-2OYLnx0G6FrWbnfg9W6EpKAd6H_OT1zRwg0JmowySwGDzNO5K_AeJLDdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplifying+approach+to+node+classification+in+Graph+Neural+Networks&rft.jtitle=Journal+of+computational+science&rft.au=Maurya%2C+Sunil+Kumar&rft.au=Liu%2C+Xin&rft.au=Murata%2C+Tsuyoshi&rft.date=2022-07-01&rft.issn=1877-7503&rft.volume=62&rft.spage=101695&rft_id=info:doi/10.1016%2Fj.jocs.2022.101695&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2022_101695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |