Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation

Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 7; no. 23; pp. 5625 - 5634
Main Authors Yang, Xiaohai, Chen, Hongmei, Meng, Qingwei, Zheng, Hongyan, Zhu, Yulei, Li, Yong Wang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2017
Subjects
Online AccessGet full text
ISSN2044-4753
2044-4761
DOI10.1039/c7cy01284e

Cover

Loading…
Abstract Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N 2 O titration, TEM, H 2 -TPR, XPS and AES. The size of Cu nanoparticles and Cu-ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal-support interactions (SMSI), acting as the Cu-ZnO synergy. Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol.
AbstractList Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The “precursor effect” was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N2O titration, TEM, H2-TPR, XPS and AES. The size of Cu nanoparticles and Cu–ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal–support interactions (SMSI), acting as the Cu–ZnO synergy.
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N 2 O titration, TEM, H 2 -TPR, XPS and AES. The size of Cu nanoparticles and Cu-ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal-support interactions (SMSI), acting as the Cu-ZnO synergy. Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol.
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The “precursor effect” was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N 2 O titration, TEM, H 2 -TPR, XPS and AES. The size of Cu nanoparticles and Cu–ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal–support interactions (SMSI), acting as the Cu–ZnO synergy.
Author Meng, Qingwei
Li, Yong Wang
Zhu, Yulei
Yang, Xiaohai
Chen, Hongmei
Zheng, Hongyan
AuthorAffiliation State Key Laboratory of Coal Conversion
Chinese Academy of Sciences
Synfuels China Co. Ltd
Institute of Coal Chemistry
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Institute of Coal Chemistry
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: State Key Laboratory of Coal Conversion
– name: Synfuels China Co. Ltd
Author_xml – sequence: 1
  givenname: Xiaohai
  surname: Yang
  fullname: Yang, Xiaohai
– sequence: 2
  givenname: Hongmei
  surname: Chen
  fullname: Chen, Hongmei
– sequence: 3
  givenname: Qingwei
  surname: Meng
  fullname: Meng, Qingwei
– sequence: 4
  givenname: Hongyan
  surname: Zheng
  fullname: Zheng, Hongyan
– sequence: 5
  givenname: Yulei
  surname: Zhu
  fullname: Zhu, Yulei
– sequence: 6
  givenname: Yong Wang
  surname: Li
  fullname: Li, Yong Wang
BookMark eNp9kcFKAzEQhoNUsFYv3oWIN2Ftkk3T9ChL1YLgRQ96WdJs0qZskzXJCusD-NxmrSiIOITMQL5_ZvhzCAbWWQXACUaXGOWzsZzKDmHCqdoDQ4IozeiU4cF3PckPwHEIG5SCzjDiZAjeFzaY1ToGaGx06dJ1q6xU0GlohXWN8NHIWsFg3hQUtoJbFUWdhbZpnI-9Snkho3E29JqiHT_beyhFgrqQ2joL--dXEzuonYe69emIGq67yruVsqLXHoF9Leqgjr_yCDxezx-K2-zu_mZRXN1lMqc0ZtUM51hQRpeaIMIFWeacoXxJENMyxVQTWXE04ZirCVtqPFGIaskx04RJJvMRON_1bbx7aVWI5ca13qaRJUHJEUZ5GjECaEdJ70LwSpfSxM89oxemLjEqe8PLYlo8fRo-T5KLX5LGm63w3d_w2Q72QX5zP79XNpVOzOl_TP4BH72axw
CitedBy_id crossref_primary_10_1016_j_cej_2019_05_123
crossref_primary_10_3390_molecules27186094
crossref_primary_10_1016_j_colsurfa_2018_08_074
crossref_primary_10_1016_j_apcatb_2023_123192
crossref_primary_10_1016_j_catcom_2020_106246
crossref_primary_10_1039_D4GC00160E
crossref_primary_10_1007_s10562_019_02721_x
crossref_primary_10_1016_S1872_5813_24_60445_7
crossref_primary_10_1039_C8CY01849A
crossref_primary_10_1016_j_fuel_2023_130432
crossref_primary_10_1016_j_jpcs_2023_111661
crossref_primary_10_1016_j_mcat_2024_114364
crossref_primary_10_1039_C9CP06093F
crossref_primary_10_1016_j_fuel_2025_134553
crossref_primary_10_3390_catal9100796
crossref_primary_10_1002_slct_202402396
crossref_primary_10_1016_j_apsusc_2023_157774
crossref_primary_10_1016_j_cej_2023_147479
crossref_primary_10_1016_j_apcata_2020_117598
crossref_primary_10_1016_j_jssc_2021_122113
crossref_primary_10_3389_fchem_2022_912550
crossref_primary_10_1016_j_biortech_2024_130858
crossref_primary_10_1002_cctc_202100882
crossref_primary_10_1021_acsami_0c18600
crossref_primary_10_1016_j_apsusc_2023_159272
crossref_primary_10_1039_D0CS01601B
crossref_primary_10_1002_cssc_202001467
crossref_primary_10_1016_j_apcata_2024_119696
crossref_primary_10_1016_j_ijhydene_2024_12_264
crossref_primary_10_1016_j_seppur_2024_127124
crossref_primary_10_1016_j_scitotenv_2023_166882
crossref_primary_10_19053_01217488_v11_n1_2020_10973
crossref_primary_10_1016_j_fuproc_2023_107931
crossref_primary_10_1016_j_gce_2020_11_001
crossref_primary_10_1016_j_fuel_2024_131057
crossref_primary_10_1016_j_apsusc_2022_154472
crossref_primary_10_1016_S1872_5813_23_60362_7
crossref_primary_10_1002_cctc_202101423
crossref_primary_10_1002_eom2_12259
crossref_primary_10_1021_acs_energyfuels_1c03346
crossref_primary_10_1016_j_ijhydene_2024_11_167
crossref_primary_10_1039_C8RA03719A
crossref_primary_10_1016_j_colsurfa_2020_125722
crossref_primary_10_1002_cctc_201902286
crossref_primary_10_1016_j_apcata_2019_05_018
crossref_primary_10_1039_D0CY01427C
crossref_primary_10_1016_j_jece_2021_105468
crossref_primary_10_1016_j_cej_2023_148195
crossref_primary_10_1016_j_apcatb_2019_03_003
crossref_primary_10_1016_j_mtchem_2025_102648
crossref_primary_10_1007_s11244_023_01816_5
crossref_primary_10_2139_ssrn_4075576
crossref_primary_10_3390_catal10050486
crossref_primary_10_1002_cssc_202400602
crossref_primary_10_3390_catal9040315
crossref_primary_10_1016_j_mcat_2021_111870
crossref_primary_10_1016_S1872_5813_23_60334_2
crossref_primary_10_2139_ssrn_4184978
crossref_primary_10_1002_app_47925
crossref_primary_10_1016_j_apcata_2018_04_005
crossref_primary_10_1016_j_renene_2022_09_101
crossref_primary_10_1016_S1872_2067_24_60022_7
crossref_primary_10_1016_j_apcatb_2022_122233
crossref_primary_10_3390_ceramics8010021
crossref_primary_10_1016_j_recm_2023_07_006
crossref_primary_10_1016_j_jpcs_2022_110883
crossref_primary_10_1016_j_mcat_2022_112391
Cites_doi 10.1021/cs501155x
10.1126/science.1219831
10.1002/anie.201007108
10.1039/a703954i
10.1016/j.apcata.2015.05.031
10.1039/c0cp00729c
10.1016/j.cattod.2011.08.038
10.1016/j.apcata.2012.12.010
10.1021/j100487a011
10.1016/j.jcat.2008.07.004
10.1021/acscatal.5b01266
10.1039/C5CY01374G
10.1021/jp902688b
10.1016/j.molcata.2006.09.037
10.1007/BF00814462
10.1016/S0166-9834(00)81226-9
10.1039/C6GC03143A
10.1016/0920-5861(94)00135-O
10.1002/aic.14810
10.1023/A:1016696022840
10.1023/A:1019000927366
10.1016/S0920-5861(98)00222-3
10.1002/ejic.200801216
10.1002/anie.201204995
10.1038/nature16935
10.1039/9781847553249-00001
10.1021/acs.energyfuels.5b02826
10.1016/j.apcata.2012.07.042
10.1016/j.tca.2014.04.025
10.1016/S1386-1425(01)00677-1
10.1016/S1381-1169(98)00253-2
10.1016/j.apcatb.2015.02.039
10.1002/anie.201311073
10.1126/science.1069325
10.1016/j.jcat.2016.01.012
10.1016/j.poly.2007.03.003
10.1039/C5CY00700C
10.1002/chem.200204122
10.1016/j.jcat.2009.07.009
10.1016/j.jcat.2008.04.021
10.1016/j.jcat.2012.12.019
10.1002/cctc.201700279
10.1116/11.20111002
10.1007/s10853-015-9237-0
10.1007/BF00806979
10.1002/cssc.201500178
10.1007/s10973-007-8634-2
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/c7cy01284e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 5634
ExternalDocumentID 10_1039_C7CY01284E
c7cy01284e
GroupedDBID -JG
0-7
705
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACAYK
ACGFS
ACIWK
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
BLAPV
CITATION
EBS
ECGLT
GGIMP
H13
HZ~
J3G
J3H
O-G
O9-
OK1
RAOCF
RNS
RVUXY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c344t-d9131a464bf2028a2b38603b206fcccc7f2cd805818e56bf15e04fc816f26c6c3
ISSN 2044-4753
IngestDate Mon Jun 30 02:38:38 EDT 2025
Tue Jul 01 02:31:24 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Mon Jan 28 17:15:20 EST 2019
Sat Jun 01 02:26:05 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-d9131a464bf2028a2b38603b206fcccc7f2cd805818e56bf15e04fc816f26c6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0694-3881
PQID 2010864891
PQPubID 2047527
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_C7CY01284E
crossref_primary_10_1039_C7CY01284E
rsc_primary_c7cy01284e
proquest_journals_2010864891
ProviderPackageCode J3I
R7E
ACLDK
RRC
R7G
SKZ
AEFDR
SLC
RCNCU
SLF
SLH
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
SKH
SMJ
SKJ
SKM
ADSRN
ABGFH
SKR
705
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liao (C7CY01284E-(cit26)/*[position()=1]) 2011; 50
Hutchings (C7CY01284E-(cit5)/*[position()=1]) 1996; 42
Kanai (C7CY01284E-(cit24)/*[position()=1]) 1994; 27
Tan (C7CY01284E-(cit19)/*[position()=1]) 2016; 6
Zhang (C7CY01284E-(cit39)/*[position()=1]) 2012; 443
Deutschmann (C7CY01284E-(cit1)/*[position()=1]) 2012; vol. 17
Kuld (C7CY01284E-(cit25)/*[position()=1]) 2014; 53
Hansen (C7CY01284E-(cit31)/*[position()=1]) 2002; 295
Fulajtárova (C7CY01284E-(cit13)/*[position()=1]) 2015; 502
Sharma (C7CY01284E-(cit14)/*[position()=1]) 2013; 454
Fujita (C7CY01284E-(cit10)/*[position()=1]) 1998; 45
Nagaraja (C7CY01284E-(cit15)/*[position()=1]) 2007; 265
Ahmed (C7CY01284E-(cit17)/*[position()=1]) 2016; 30
Günter (C7CY01284E-(cit48)/*[position()=1]) 2001; 71
Cao (C7CY01284E-(cit20)/*[position()=1]) 2010; 12
Zhu (C7CY01284E-(cit34)/*[position()=1]) 2015; 5
Hartig (C7CY01284E-(cit2)/*[position()=1]) 2015; 61
Frost (C7CY01284E-(cit38)/*[position()=1]) 2008; 94
Jiménez-Gómez (C7CY01284E-(cit12)/*[position()=1]) 2016; 336
Bems (C7CY01284E-(cit4)/*[position()=1]) 2003; 9
Olah (C7CY01284E-(cit30)/*[position()=1]) 2013; 52
Kondrat (C7CY01284E-(cit29)/*[position()=1]) 2016; 531
Fujitani (C7CY01284E-(cit3)/*[position()=1]) 1998; 56
Chinchen (C7CY01284E-(cit21)/*[position()=1]) 1986; 25
Bulko (C7CY01284E-(cit23)/*[position()=1]) 1979; 83
Behrens (C7CY01284E-(cit28)/*[position()=1]) 2012; 336
Simon (C7CY01284E-(cit40)/*[position()=1]) 2010; 17
Yin (C7CY01284E-(cit43)/*[position()=1]) 2009; 113
Matsuhisa (C7CY01284E-(cit46)/*[position()=1]) 1996; vol. 12
Dohadea (C7CY01284E-(cit16)/*[position()=1]) 2017; 19
Arena (C7CY01284E-(cit7)/*[position()=1]) 2013; 300
Behrens (C7CY01284E-(cit22)/*[position()=1]) 2009; 267
Huang (C7CY01284E-(cit42)/*[position()=1]) 2012; 183
Mateos-Pedrero (C7CY01284E-(cit9)/*[position()=1]) 2015; 174
Behrens (C7CY01284E-(cit32)/*[position()=1]) 2009; 10
Frost (C7CY01284E-(cit33)/*[position()=1]) 2007; 13
Stoilova (C7CY01284E-(cit35)/*[position()=1]) 2002; 58
Chen (C7CY01284E-(cit6)/*[position()=1]) 2008; 257
Rhodes (C7CY01284E-(cit8)/*[position()=1]) 1995; 23
Baltes (C7CY01284E-(cit11)/*[position()=1]) 2008; 258
Zheng (C7CY01284E-(cit44)/*[position()=1]) 2015; 50
Millar (C7CY01284E-(cit37)/*[position()=1]) 1998; 94
Dong (C7CY01284E-(cit41)/*[position()=1]) 2015; 8
Zhu (C7CY01284E-(cit45)/*[position()=1]) 2014; 4
Yang (C7CY01284E-(cit18)/*[position()=1]) 2017; 9
Topsøe (C7CY01284E-(cit47)/*[position()=1]) 1995; 141
Zhang (C7CY01284E-(cit27)/*[position()=1]) 2015; 5
Tarasov (C7CY01284E-(cit36)/*[position()=1]) 2014; 591
References_xml – issn: 2012
  issue: vol. 17
  end-page: p 483-549
  publication-title: Ullmann's Encyclopedia Ind Chem.
  doi: Deutschmann Knözinger Kochloefl Turek
– issn: 1996
  issue: vol. 12
  end-page: 20
  publication-title: Catalysis: A Specialist Periodical Report
  doi: Matsuhisa
– volume: 4
  start-page: 3675
  year: 2014
  ident: C7CY01284E-(cit45)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs501155x
– volume: 336
  start-page: 18
  year: 2012
  ident: C7CY01284E-(cit28)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 50
  start-page: 2162
  year: 2011
  ident: C7CY01284E-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201007108
– volume: 94
  start-page: 593
  year: 1998
  ident: C7CY01284E-(cit37)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a703954i
– volume: 502
  start-page: 78
  year: 2015
  ident: C7CY01284E-(cit13)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2015.05.031
– volume: 12
  start-page: 13499
  year: 2010
  ident: C7CY01284E-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00729c
– volume: 183
  start-page: 42
  year: 2012
  ident: C7CY01284E-(cit42)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.08.038
– volume: 454
  start-page: 127
  year: 2013
  ident: C7CY01284E-(cit14)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2012.12.010
– volume: 83
  start-page: 3118
  year: 1979
  ident: C7CY01284E-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100487a011
– volume: 258
  start-page: 334
  year: 2008
  ident: C7CY01284E-(cit11)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.07.004
– volume: 5
  start-page: 5567
  year: 2015
  ident: C7CY01284E-(cit27)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01266
– volume: vol. 17
  volume-title: Ullmann's Encyclopedia Ind Chem.
  year: 2012
  ident: C7CY01284E-(cit1)/*[position()=1]
– volume: 6
  start-page: 1469
  year: 2016
  ident: C7CY01284E-(cit19)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01374G
– volume: 113
  start-page: 11003
  year: 2009
  ident: C7CY01284E-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp902688b
– volume: 265
  start-page: 90
  year: 2007
  ident: C7CY01284E-(cit15)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2006.09.037
– volume: 42
  start-page: 21
  year: 1996
  ident: C7CY01284E-(cit5)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/BF00814462
– volume: 25
  start-page: 101
  year: 1986
  ident: C7CY01284E-(cit21)/*[position()=1]
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)81226-9
– volume: 19
  start-page: 1144
  year: 2017
  ident: C7CY01284E-(cit16)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC03143A
– volume: 23
  start-page: 43
  year: 1995
  ident: C7CY01284E-(cit8)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(94)00135-O
– volume: 61
  start-page: 2104
  year: 2015
  ident: C7CY01284E-(cit2)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.14810
– volume: 71
  start-page: 37
  year: 2001
  ident: C7CY01284E-(cit48)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1023/A:1016696022840
– volume: 56
  start-page: 119
  year: 1998
  ident: C7CY01284E-(cit3)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1023/A:1019000927366
– volume: 45
  start-page: 241
  year: 1998
  ident: C7CY01284E-(cit10)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(98)00222-3
– volume: 10
  start-page: 1347
  year: 2009
  ident: C7CY01284E-(cit32)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200801216
– volume: 52
  start-page: 104
  year: 2013
  ident: C7CY01284E-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204995
– volume: 531
  start-page: 83
  year: 2016
  ident: C7CY01284E-(cit29)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature16935
– volume: vol. 12
  start-page: 20
  volume-title: Catalysis: A Specialist Periodical Report
  year: 1996
  ident: C7CY01284E-(cit46)/*[position()=1]
  doi: 10.1039/9781847553249-00001
– volume: 30
  start-page: 2216
  year: 2016
  ident: C7CY01284E-(cit17)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b02826
– volume: 443
  start-page: 191
  year: 2012
  ident: C7CY01284E-(cit39)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2012.07.042
– volume: 591
  start-page: 1
  year: 2014
  ident: C7CY01284E-(cit36)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2014.04.025
– volume: 58
  start-page: 2051
  year: 2002
  ident: C7CY01284E-(cit35)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(01)00677-1
– volume: 141
  start-page: 95
  year: 1995
  ident: C7CY01284E-(cit47)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(98)00253-2
– volume: 174
  start-page: 67
  year: 2015
  ident: C7CY01284E-(cit9)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.02.039
– volume: 53
  start-page: 5941
  year: 2014
  ident: C7CY01284E-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311073
– volume: 295
  start-page: 2053
  year: 2002
  ident: C7CY01284E-(cit31)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1069325
– volume: 336
  start-page: 107
  year: 2016
  ident: C7CY01284E-(cit12)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.01.012
– volume: 13
  start-page: 3291
  year: 2007
  ident: C7CY01284E-(cit33)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2007.03.003
– volume: 5
  start-page: 4208
  year: 2015
  ident: C7CY01284E-(cit34)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00700C
– volume: 9
  start-page: 2039
  year: 2003
  ident: C7CY01284E-(cit4)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200204122
– volume: 267
  start-page: 24
  year: 2009
  ident: C7CY01284E-(cit22)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.07.009
– volume: 257
  start-page: 172
  year: 2008
  ident: C7CY01284E-(cit6)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.04.021
– volume: 300
  start-page: 141
  year: 2013
  ident: C7CY01284E-(cit7)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.019
– volume: 9
  start-page: 3023
  year: 2017
  ident: C7CY01284E-(cit18)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700279
– volume: 17
  start-page: 93
  year: 2010
  ident: C7CY01284E-(cit40)/*[position()=1]
  publication-title: Surf. Sci. Spectra
  doi: 10.1116/11.20111002
– volume: 50
  start-page: 6794
  year: 2015
  ident: C7CY01284E-(cit44)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9237-0
– volume: 27
  start-page: 67
  year: 1994
  ident: C7CY01284E-(cit24)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/BF00806979
– volume: 8
  start-page: 1534
  year: 2015
  ident: C7CY01284E-(cit41)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500178
– volume: 94
  start-page: 203
  year: 2008
  ident: C7CY01284E-(cit38)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-007-8634-2
SSID ssj0000491082
Score 2.39224
Snippet Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in...
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in...
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5625
SubjectTerms Catalysis
Catalysts
Catalytic activity
Copper
Furfural
Furfuryl alcohol
Hydrogenation
Nanoparticles
Nitrous oxide
Titration
X ray photoelectron spectroscopy
Zinc oxide
Title Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation
URI https://www.proquest.com/docview/2010864891
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdr-7C9jP0rS9cNwfYyilvbkmXnsZiMdIyNQQptX4ylSEtgtYMdM9IP0M_dk2TZDstgmx-MOUtG-H463Z1Odwh9INKnAZ_HXh5L7a0CgzWJufAiGTHOBUkiG-X7lU0v6eeraLDRbk6XrPmpuNt5ruR_uAo04Ks-JfsPnO0-CgR4Bv7CHTgM97_i8UVRa9tah1SBCrl09UZMcEZegDlsu5zUyzu7S3ArQdf26maltW6TKqKyBxtMQEfawFBuim8nxqezqe1Wgm5gCkzogETVVMok6lhs5lUJA9vayL9unc9Xy7xc5Ms-dMDKtmlZ_LiVHVkH1Gryd1g9f_Xkm0VL1803LXhbv4Q9gGkFV-hT6tHYJgE-lUOaTbzuJG88AFhIBmJUW2WDJTli1uH5m7j3ic6WKmKxMeus7Be1LtSwf7mHDkKwJUB6H5xPZhdfOlccGEmBb8qKdSN3iWzJ-Kz_wLbq0tsje5UrFmOUktkz9LS1JvC55fNz9EgWL9Dj1BXxe4nuHUSwhgjuIIJLhYcQwRoiGCCCtyCChxDRfdLmDACCO4DgssAOIBgAgh1A8BZAXqHLT5NZOvXa0hueIJSuvfk4IEFOGeUqBA00DzlJmE946DMl4IpVKOaJH4G6pye1CiKY80okAVMhE0yQQ7RflIV8jTD0BisYrGwmOBVRzn3OolDGSuQygYcR-uj-aibavPS6PMrPzMRHkHGWxum14cBkhN53bVc2G8vOVseOOVk7W-tMR30kjCbjYIQOgWFd_56_I3S0-0W2mqujP_V6g55o-Fu33DHaX1eNfAuK6pq_a4H2ANo_mlQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+influence+of+nanoparticle+size+and+metal-support+interactions+of+Cu%2FZnO+catalysts+on+activity+for+furfural+hydrogenation&rft.au=Yang%2C+Xiaohai&rft.au=Chen%2C+Hongmei&rft.au=Meng%2C+Qingwei&rft.au=Zheng%2C+Hongyan&rft.date=2017&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=7&rft.issue=23&rft.spage=5625&rft.epage=5634&rft_id=info:doi/10.1039%2Fc7cy01284e&rft.externalDocID=c7cy01284e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon