Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn...
Saved in:
Published in | Catalysis science & technology Vol. 7; no. 23; pp. 5625 - 5634 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2044-4753 2044-4761 |
DOI | 10.1039/c7cy01284e |
Cover
Loading…
Abstract | Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared
via
"decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized
via
XRD, FT-IR, N
2
O titration, TEM, H
2
-TPR, XPS and AES. The size of Cu nanoparticles and Cu-ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal-support interactions (SMSI), acting as the Cu-ZnO synergy.
Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared
via
"decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. |
---|---|
AbstractList | Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The “precursor effect” was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N2O titration, TEM, H2-TPR, XPS and AES. The size of Cu nanoparticles and Cu–ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal–support interactions (SMSI), acting as the Cu–ZnO synergy. Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The "precursor effect" was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N 2 O titration, TEM, H 2 -TPR, XPS and AES. The size of Cu nanoparticles and Cu-ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal-support interactions (SMSI), acting as the Cu-ZnO synergy. Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared via "decreased pH" coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in hydrogenation of furfural to furfuryl alcohol. The “precursor effect” was clearly confirmed and the catalyst with a Cu/Zn = 0.8 provided the best conversion and TOF. Catalysts were characterized via XRD, FT-IR, N 2 O titration, TEM, H 2 -TPR, XPS and AES. The size of Cu nanoparticles and Cu–ZnO interactions were systematically investigated and were found to remarkably influence catalytic activity of the catalysts. Consequently, the best catalytic performance for the catalyst with Cu/Zn = 0.8 was due to the suitable Cu particle size (8 nm) and strong metal–support interactions (SMSI), acting as the Cu–ZnO synergy. |
Author | Meng, Qingwei Li, Yong Wang Zhu, Yulei Yang, Xiaohai Chen, Hongmei Zheng, Hongyan |
AuthorAffiliation | State Key Laboratory of Coal Conversion Chinese Academy of Sciences Synfuels China Co. Ltd Institute of Coal Chemistry University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Institute of Coal Chemistry – name: University of Chinese Academy of Sciences – name: Chinese Academy of Sciences – name: State Key Laboratory of Coal Conversion – name: Synfuels China Co. Ltd |
Author_xml | – sequence: 1 givenname: Xiaohai surname: Yang fullname: Yang, Xiaohai – sequence: 2 givenname: Hongmei surname: Chen fullname: Chen, Hongmei – sequence: 3 givenname: Qingwei surname: Meng fullname: Meng, Qingwei – sequence: 4 givenname: Hongyan surname: Zheng fullname: Zheng, Hongyan – sequence: 5 givenname: Yulei surname: Zhu fullname: Zhu, Yulei – sequence: 6 givenname: Yong Wang surname: Li fullname: Li, Yong Wang |
BookMark | eNp9kcFKAzEQhoNUsFYv3oWIN2Ftkk3T9ChL1YLgRQ96WdJs0qZskzXJCusD-NxmrSiIOITMQL5_ZvhzCAbWWQXACUaXGOWzsZzKDmHCqdoDQ4IozeiU4cF3PckPwHEIG5SCzjDiZAjeFzaY1ToGaGx06dJ1q6xU0GlohXWN8NHIWsFg3hQUtoJbFUWdhbZpnI-9Snkho3E29JqiHT_beyhFgrqQ2joL--dXEzuonYe69emIGq67yruVsqLXHoF9Leqgjr_yCDxezx-K2-zu_mZRXN1lMqc0ZtUM51hQRpeaIMIFWeacoXxJENMyxVQTWXE04ZirCVtqPFGIaskx04RJJvMRON_1bbx7aVWI5ca13qaRJUHJEUZ5GjECaEdJ70LwSpfSxM89oxemLjEqe8PLYlo8fRo-T5KLX5LGm63w3d_w2Q72QX5zP79XNpVOzOl_TP4BH72axw |
CitedBy_id | crossref_primary_10_1016_j_cej_2019_05_123 crossref_primary_10_3390_molecules27186094 crossref_primary_10_1016_j_colsurfa_2018_08_074 crossref_primary_10_1016_j_apcatb_2023_123192 crossref_primary_10_1016_j_catcom_2020_106246 crossref_primary_10_1039_D4GC00160E crossref_primary_10_1007_s10562_019_02721_x crossref_primary_10_1016_S1872_5813_24_60445_7 crossref_primary_10_1039_C8CY01849A crossref_primary_10_1016_j_fuel_2023_130432 crossref_primary_10_1016_j_jpcs_2023_111661 crossref_primary_10_1016_j_mcat_2024_114364 crossref_primary_10_1039_C9CP06093F crossref_primary_10_1016_j_fuel_2025_134553 crossref_primary_10_3390_catal9100796 crossref_primary_10_1002_slct_202402396 crossref_primary_10_1016_j_apsusc_2023_157774 crossref_primary_10_1016_j_cej_2023_147479 crossref_primary_10_1016_j_apcata_2020_117598 crossref_primary_10_1016_j_jssc_2021_122113 crossref_primary_10_3389_fchem_2022_912550 crossref_primary_10_1016_j_biortech_2024_130858 crossref_primary_10_1002_cctc_202100882 crossref_primary_10_1021_acsami_0c18600 crossref_primary_10_1016_j_apsusc_2023_159272 crossref_primary_10_1039_D0CS01601B crossref_primary_10_1002_cssc_202001467 crossref_primary_10_1016_j_apcata_2024_119696 crossref_primary_10_1016_j_ijhydene_2024_12_264 crossref_primary_10_1016_j_seppur_2024_127124 crossref_primary_10_1016_j_scitotenv_2023_166882 crossref_primary_10_19053_01217488_v11_n1_2020_10973 crossref_primary_10_1016_j_fuproc_2023_107931 crossref_primary_10_1016_j_gce_2020_11_001 crossref_primary_10_1016_j_fuel_2024_131057 crossref_primary_10_1016_j_apsusc_2022_154472 crossref_primary_10_1016_S1872_5813_23_60362_7 crossref_primary_10_1002_cctc_202101423 crossref_primary_10_1002_eom2_12259 crossref_primary_10_1021_acs_energyfuels_1c03346 crossref_primary_10_1016_j_ijhydene_2024_11_167 crossref_primary_10_1039_C8RA03719A crossref_primary_10_1016_j_colsurfa_2020_125722 crossref_primary_10_1002_cctc_201902286 crossref_primary_10_1016_j_apcata_2019_05_018 crossref_primary_10_1039_D0CY01427C crossref_primary_10_1016_j_jece_2021_105468 crossref_primary_10_1016_j_cej_2023_148195 crossref_primary_10_1016_j_apcatb_2019_03_003 crossref_primary_10_1016_j_mtchem_2025_102648 crossref_primary_10_1007_s11244_023_01816_5 crossref_primary_10_2139_ssrn_4075576 crossref_primary_10_3390_catal10050486 crossref_primary_10_1002_cssc_202400602 crossref_primary_10_3390_catal9040315 crossref_primary_10_1016_j_mcat_2021_111870 crossref_primary_10_1016_S1872_5813_23_60334_2 crossref_primary_10_2139_ssrn_4184978 crossref_primary_10_1002_app_47925 crossref_primary_10_1016_j_apcata_2018_04_005 crossref_primary_10_1016_j_renene_2022_09_101 crossref_primary_10_1016_S1872_2067_24_60022_7 crossref_primary_10_1016_j_apcatb_2022_122233 crossref_primary_10_3390_ceramics8010021 crossref_primary_10_1016_j_recm_2023_07_006 crossref_primary_10_1016_j_jpcs_2022_110883 crossref_primary_10_1016_j_mcat_2022_112391 |
Cites_doi | 10.1021/cs501155x 10.1126/science.1219831 10.1002/anie.201007108 10.1039/a703954i 10.1016/j.apcata.2015.05.031 10.1039/c0cp00729c 10.1016/j.cattod.2011.08.038 10.1016/j.apcata.2012.12.010 10.1021/j100487a011 10.1016/j.jcat.2008.07.004 10.1021/acscatal.5b01266 10.1039/C5CY01374G 10.1021/jp902688b 10.1016/j.molcata.2006.09.037 10.1007/BF00814462 10.1016/S0166-9834(00)81226-9 10.1039/C6GC03143A 10.1016/0920-5861(94)00135-O 10.1002/aic.14810 10.1023/A:1016696022840 10.1023/A:1019000927366 10.1016/S0920-5861(98)00222-3 10.1002/ejic.200801216 10.1002/anie.201204995 10.1038/nature16935 10.1039/9781847553249-00001 10.1021/acs.energyfuels.5b02826 10.1016/j.apcata.2012.07.042 10.1016/j.tca.2014.04.025 10.1016/S1386-1425(01)00677-1 10.1016/S1381-1169(98)00253-2 10.1016/j.apcatb.2015.02.039 10.1002/anie.201311073 10.1126/science.1069325 10.1016/j.jcat.2016.01.012 10.1016/j.poly.2007.03.003 10.1039/C5CY00700C 10.1002/chem.200204122 10.1016/j.jcat.2009.07.009 10.1016/j.jcat.2008.04.021 10.1016/j.jcat.2012.12.019 10.1002/cctc.201700279 10.1116/11.20111002 10.1007/s10853-015-9237-0 10.1007/BF00806979 10.1002/cssc.201500178 10.1007/s10973-007-8634-2 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2017 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2017 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/c7cy01284e |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 5634 |
ExternalDocumentID | 10_1039_C7CY01284E c7cy01284e |
GroupedDBID | -JG 0-7 705 AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I R7E R7G RCNCU RPMJG RRC RSCEA SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACAYK ACGFS ACIWK ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT BLAPV CITATION EBS ECGLT GGIMP H13 HZ~ J3G J3H O-G O9- OK1 RAOCF RNS RVUXY 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c344t-d9131a464bf2028a2b38603b206fcccc7f2cd805818e56bf15e04fc816f26c6c3 |
ISSN | 2044-4753 |
IngestDate | Mon Jun 30 02:38:38 EDT 2025 Tue Jul 01 02:31:24 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Mon Jan 28 17:15:20 EST 2019 Sat Jun 01 02:26:05 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-d9131a464bf2028a2b38603b206fcccc7f2cd805818e56bf15e04fc816f26c6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0694-3881 |
PQID | 2010864891 |
PQPubID | 2047527 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_C7CY01284E crossref_primary_10_1039_C7CY01284E rsc_primary_c7cy01284e proquest_journals_2010864891 |
ProviderPackageCode | J3I R7E ACLDK RRC R7G SKZ AEFDR SLC RCNCU SLF SLH EE0 RSCEA AFVBQ C6K H~N 0-7 RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKF SKH SMJ SKJ SKM ADSRN ABGFH SKR 705 AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liao (C7CY01284E-(cit26)/*[position()=1]) 2011; 50 Hutchings (C7CY01284E-(cit5)/*[position()=1]) 1996; 42 Kanai (C7CY01284E-(cit24)/*[position()=1]) 1994; 27 Tan (C7CY01284E-(cit19)/*[position()=1]) 2016; 6 Zhang (C7CY01284E-(cit39)/*[position()=1]) 2012; 443 Deutschmann (C7CY01284E-(cit1)/*[position()=1]) 2012; vol. 17 Kuld (C7CY01284E-(cit25)/*[position()=1]) 2014; 53 Hansen (C7CY01284E-(cit31)/*[position()=1]) 2002; 295 Fulajtárova (C7CY01284E-(cit13)/*[position()=1]) 2015; 502 Sharma (C7CY01284E-(cit14)/*[position()=1]) 2013; 454 Fujita (C7CY01284E-(cit10)/*[position()=1]) 1998; 45 Nagaraja (C7CY01284E-(cit15)/*[position()=1]) 2007; 265 Ahmed (C7CY01284E-(cit17)/*[position()=1]) 2016; 30 Günter (C7CY01284E-(cit48)/*[position()=1]) 2001; 71 Cao (C7CY01284E-(cit20)/*[position()=1]) 2010; 12 Zhu (C7CY01284E-(cit34)/*[position()=1]) 2015; 5 Hartig (C7CY01284E-(cit2)/*[position()=1]) 2015; 61 Frost (C7CY01284E-(cit38)/*[position()=1]) 2008; 94 Jiménez-Gómez (C7CY01284E-(cit12)/*[position()=1]) 2016; 336 Bems (C7CY01284E-(cit4)/*[position()=1]) 2003; 9 Olah (C7CY01284E-(cit30)/*[position()=1]) 2013; 52 Kondrat (C7CY01284E-(cit29)/*[position()=1]) 2016; 531 Fujitani (C7CY01284E-(cit3)/*[position()=1]) 1998; 56 Chinchen (C7CY01284E-(cit21)/*[position()=1]) 1986; 25 Bulko (C7CY01284E-(cit23)/*[position()=1]) 1979; 83 Behrens (C7CY01284E-(cit28)/*[position()=1]) 2012; 336 Simon (C7CY01284E-(cit40)/*[position()=1]) 2010; 17 Yin (C7CY01284E-(cit43)/*[position()=1]) 2009; 113 Matsuhisa (C7CY01284E-(cit46)/*[position()=1]) 1996; vol. 12 Dohadea (C7CY01284E-(cit16)/*[position()=1]) 2017; 19 Arena (C7CY01284E-(cit7)/*[position()=1]) 2013; 300 Behrens (C7CY01284E-(cit22)/*[position()=1]) 2009; 267 Huang (C7CY01284E-(cit42)/*[position()=1]) 2012; 183 Mateos-Pedrero (C7CY01284E-(cit9)/*[position()=1]) 2015; 174 Behrens (C7CY01284E-(cit32)/*[position()=1]) 2009; 10 Frost (C7CY01284E-(cit33)/*[position()=1]) 2007; 13 Stoilova (C7CY01284E-(cit35)/*[position()=1]) 2002; 58 Chen (C7CY01284E-(cit6)/*[position()=1]) 2008; 257 Rhodes (C7CY01284E-(cit8)/*[position()=1]) 1995; 23 Baltes (C7CY01284E-(cit11)/*[position()=1]) 2008; 258 Zheng (C7CY01284E-(cit44)/*[position()=1]) 2015; 50 Millar (C7CY01284E-(cit37)/*[position()=1]) 1998; 94 Dong (C7CY01284E-(cit41)/*[position()=1]) 2015; 8 Zhu (C7CY01284E-(cit45)/*[position()=1]) 2014; 4 Yang (C7CY01284E-(cit18)/*[position()=1]) 2017; 9 Topsøe (C7CY01284E-(cit47)/*[position()=1]) 1995; 141 Zhang (C7CY01284E-(cit27)/*[position()=1]) 2015; 5 Tarasov (C7CY01284E-(cit36)/*[position()=1]) 2014; 591 |
References_xml | – issn: 2012 issue: vol. 17 end-page: p 483-549 publication-title: Ullmann's Encyclopedia Ind Chem. doi: Deutschmann Knözinger Kochloefl Turek – issn: 1996 issue: vol. 12 end-page: 20 publication-title: Catalysis: A Specialist Periodical Report doi: Matsuhisa – volume: 4 start-page: 3675 year: 2014 ident: C7CY01284E-(cit45)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs501155x – volume: 336 start-page: 18 year: 2012 ident: C7CY01284E-(cit28)/*[position()=1] publication-title: Science doi: 10.1126/science.1219831 – volume: 50 start-page: 2162 year: 2011 ident: C7CY01284E-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007108 – volume: 94 start-page: 593 year: 1998 ident: C7CY01284E-(cit37)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/a703954i – volume: 502 start-page: 78 year: 2015 ident: C7CY01284E-(cit13)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2015.05.031 – volume: 12 start-page: 13499 year: 2010 ident: C7CY01284E-(cit20)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00729c – volume: 183 start-page: 42 year: 2012 ident: C7CY01284E-(cit42)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2011.08.038 – volume: 454 start-page: 127 year: 2013 ident: C7CY01284E-(cit14)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2012.12.010 – volume: 83 start-page: 3118 year: 1979 ident: C7CY01284E-(cit23)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100487a011 – volume: 258 start-page: 334 year: 2008 ident: C7CY01284E-(cit11)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2008.07.004 – volume: 5 start-page: 5567 year: 2015 ident: C7CY01284E-(cit27)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01266 – volume: vol. 17 volume-title: Ullmann's Encyclopedia Ind Chem. year: 2012 ident: C7CY01284E-(cit1)/*[position()=1] – volume: 6 start-page: 1469 year: 2016 ident: C7CY01284E-(cit19)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01374G – volume: 113 start-page: 11003 year: 2009 ident: C7CY01284E-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp902688b – volume: 265 start-page: 90 year: 2007 ident: C7CY01284E-(cit15)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2006.09.037 – volume: 42 start-page: 21 year: 1996 ident: C7CY01284E-(cit5)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/BF00814462 – volume: 25 start-page: 101 year: 1986 ident: C7CY01284E-(cit21)/*[position()=1] publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)81226-9 – volume: 19 start-page: 1144 year: 2017 ident: C7CY01284E-(cit16)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC03143A – volume: 23 start-page: 43 year: 1995 ident: C7CY01284E-(cit8)/*[position()=1] publication-title: Catal. Today doi: 10.1016/0920-5861(94)00135-O – volume: 61 start-page: 2104 year: 2015 ident: C7CY01284E-(cit2)/*[position()=1] publication-title: AIChE J. doi: 10.1002/aic.14810 – volume: 71 start-page: 37 year: 2001 ident: C7CY01284E-(cit48)/*[position()=1] publication-title: Catal. Lett. doi: 10.1023/A:1016696022840 – volume: 56 start-page: 119 year: 1998 ident: C7CY01284E-(cit3)/*[position()=1] publication-title: Catal. Lett. doi: 10.1023/A:1019000927366 – volume: 45 start-page: 241 year: 1998 ident: C7CY01284E-(cit10)/*[position()=1] publication-title: Catal. Today doi: 10.1016/S0920-5861(98)00222-3 – volume: 10 start-page: 1347 year: 2009 ident: C7CY01284E-(cit32)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200801216 – volume: 52 start-page: 104 year: 2013 ident: C7CY01284E-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204995 – volume: 531 start-page: 83 year: 2016 ident: C7CY01284E-(cit29)/*[position()=1] publication-title: Nature doi: 10.1038/nature16935 – volume: vol. 12 start-page: 20 volume-title: Catalysis: A Specialist Periodical Report year: 1996 ident: C7CY01284E-(cit46)/*[position()=1] doi: 10.1039/9781847553249-00001 – volume: 30 start-page: 2216 year: 2016 ident: C7CY01284E-(cit17)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b02826 – volume: 443 start-page: 191 year: 2012 ident: C7CY01284E-(cit39)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2012.07.042 – volume: 591 start-page: 1 year: 2014 ident: C7CY01284E-(cit36)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.04.025 – volume: 58 start-page: 2051 year: 2002 ident: C7CY01284E-(cit35)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(01)00677-1 – volume: 141 start-page: 95 year: 1995 ident: C7CY01284E-(cit47)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(98)00253-2 – volume: 174 start-page: 67 year: 2015 ident: C7CY01284E-(cit9)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.02.039 – volume: 53 start-page: 5941 year: 2014 ident: C7CY01284E-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311073 – volume: 295 start-page: 2053 year: 2002 ident: C7CY01284E-(cit31)/*[position()=1] publication-title: Science doi: 10.1126/science.1069325 – volume: 336 start-page: 107 year: 2016 ident: C7CY01284E-(cit12)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2016.01.012 – volume: 13 start-page: 3291 year: 2007 ident: C7CY01284E-(cit33)/*[position()=1] publication-title: Polyhedron doi: 10.1016/j.poly.2007.03.003 – volume: 5 start-page: 4208 year: 2015 ident: C7CY01284E-(cit34)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00700C – volume: 9 start-page: 2039 year: 2003 ident: C7CY01284E-(cit4)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200204122 – volume: 267 start-page: 24 year: 2009 ident: C7CY01284E-(cit22)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2009.07.009 – volume: 257 start-page: 172 year: 2008 ident: C7CY01284E-(cit6)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2008.04.021 – volume: 300 start-page: 141 year: 2013 ident: C7CY01284E-(cit7)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.019 – volume: 9 start-page: 3023 year: 2017 ident: C7CY01284E-(cit18)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201700279 – volume: 17 start-page: 93 year: 2010 ident: C7CY01284E-(cit40)/*[position()=1] publication-title: Surf. Sci. Spectra doi: 10.1116/11.20111002 – volume: 50 start-page: 6794 year: 2015 ident: C7CY01284E-(cit44)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9237-0 – volume: 27 start-page: 67 year: 1994 ident: C7CY01284E-(cit24)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/BF00806979 – volume: 8 start-page: 1534 year: 2015 ident: C7CY01284E-(cit41)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500178 – volume: 94 start-page: 203 year: 2008 ident: C7CY01284E-(cit38)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-007-8634-2 |
SSID | ssj0000491082 |
Score | 2.39224 |
Snippet | Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4-1.1 (mol/mol) were prepared
via
"decreased pH" coprecipitation method and introduced in... Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in... Cu/ZnO catalysts primarily derived from aurichalcite with Cu/Zn = 0.4–1.1 (mol/mol) were prepared via “decreased pH” coprecipitation method and introduced in... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5625 |
SubjectTerms | Catalysis Catalysts Catalytic activity Copper Furfural Furfuryl alcohol Hydrogenation Nanoparticles Nitrous oxide Titration X ray photoelectron spectroscopy Zinc oxide |
Title | Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation |
URI | https://www.proquest.com/docview/2010864891 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdr-7C9jP0rS9cNwfYyilvbkmXnsZiMdIyNQQptX4ylSEtgtYMdM9IP0M_dk2TZDstgmx-MOUtG-H463Z1Odwh9INKnAZ_HXh5L7a0CgzWJufAiGTHOBUkiG-X7lU0v6eeraLDRbk6XrPmpuNt5ruR_uAo04Ks-JfsPnO0-CgR4Bv7CHTgM97_i8UVRa9tah1SBCrl09UZMcEZegDlsu5zUyzu7S3ArQdf26maltW6TKqKyBxtMQEfawFBuim8nxqezqe1Wgm5gCkzogETVVMok6lhs5lUJA9vayL9unc9Xy7xc5Ms-dMDKtmlZ_LiVHVkH1Gryd1g9f_Xkm0VL1803LXhbv4Q9gGkFV-hT6tHYJgE-lUOaTbzuJG88AFhIBmJUW2WDJTli1uH5m7j3ic6WKmKxMeus7Be1LtSwf7mHDkKwJUB6H5xPZhdfOlccGEmBb8qKdSN3iWzJ-Kz_wLbq0tsje5UrFmOUktkz9LS1JvC55fNz9EgWL9Dj1BXxe4nuHUSwhgjuIIJLhYcQwRoiGCCCtyCChxDRfdLmDACCO4DgssAOIBgAgh1A8BZAXqHLT5NZOvXa0hueIJSuvfk4IEFOGeUqBA00DzlJmE946DMl4IpVKOaJH4G6pye1CiKY80okAVMhE0yQQ7RflIV8jTD0BisYrGwmOBVRzn3OolDGSuQygYcR-uj-aibavPS6PMrPzMRHkHGWxum14cBkhN53bVc2G8vOVseOOVk7W-tMR30kjCbjYIQOgWFd_56_I3S0-0W2mqujP_V6g55o-Fu33DHaX1eNfAuK6pq_a4H2ANo_mlQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+influence+of+nanoparticle+size+and+metal-support+interactions+of+Cu%2FZnO+catalysts+on+activity+for+furfural+hydrogenation&rft.au=Yang%2C+Xiaohai&rft.au=Chen%2C+Hongmei&rft.au=Meng%2C+Qingwei&rft.au=Zheng%2C+Hongyan&rft.date=2017&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=7&rft.issue=23&rft.spage=5625&rft.epage=5634&rft_id=info:doi/10.1039%2Fc7cy01284e&rft.externalDocID=c7cy01284e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |