Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults
Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk...
Saved in:
Published in | Current medical science Vol. 39; no. 4; pp. 582 - 588 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wuhan
Huazhong University of Science and Technology
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction. |
---|---|
AbstractList | Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction. Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction. |
Author | Zhu, Da-long Xiong, Xiao-lu Zhou, Wei-hong Zhang, Rong-xin Bi, Yan Yu, Yun |
Author_xml | – sequence: 1 givenname: Xiao-lu surname: Xiong fullname: Xiong, Xiao-lu organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University – sequence: 2 givenname: Rong-xin surname: Zhang fullname: Zhang, Rong-xin organization: School of Biomedical Engineering and Informatics, Nanjing Medical University – sequence: 3 givenname: Yan surname: Bi fullname: Bi, Yan organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University – sequence: 4 givenname: Wei-hong surname: Zhou fullname: Zhou, Wei-hong email: njzhouweihong@126.com organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University – sequence: 5 givenname: Yun surname: Yu fullname: Yu, Yun email: yuyun@njmu.edu.cn organization: School of Biomedical Engineering and Informatics, Nanjing Medical University – sequence: 6 givenname: Da-long surname: Zhu fullname: Zhu, Da-long email: zhudalong@nju.edu.cn organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31346994$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtO3DAUhi0EAkp5gG4qL7tJ62sSd4emV2kQCKjEzvLYJ9Rtxhl8kkqz49FxGGDZlX38X478vSH7aUhAyDvOPnLGmk_IuTZ1xbipBGuaSu2RY6GFrFpjbvfLnRW1zOyInCLGFZNc1JK34pAcSS5VbYw6Jg_nzv-OCegSXE4x3dHzIUCPNCZ6s90AFfRLdCsYAelVxL_0MkOIfoxD-kyvAKd-RNrlYU0dXeQBsUJ4Ul1f5LG8bOb5H9DrcQrbuXYx70OgZ2EOvyUHnesRTp_PE_Lr29ebxY9qefH95-JsWXmp1FiFlreyM4wJo6UMTjbSGzCaB80UV8IprlvlG29q3QWQIDrPhXCuk3zV6E6ekA-73k0e7ifA0a4jeuh7l2CY0ApR66bWjLNi5Turnz-UobObHNcuby1ndmZvd-xtYW9n9laVzPvn-mm1hvCaeCFdDGJnwCKlO8j2zzDlggn_0_oIskiQ9Q |
CitedBy_id | crossref_primary_10_1007_s00521_024_09915_4 crossref_primary_10_1007_s11517_021_02333_x crossref_primary_10_1109_ACCESS_2020_3035026 crossref_primary_10_47164_ijngc_v13i5_968 crossref_primary_10_1016_j_dsx_2020_03_004 crossref_primary_10_1038_s41598_022_08757_1 crossref_primary_10_1111_jdi_13937 crossref_primary_10_1186_s13098_023_01112_y crossref_primary_10_1186_s12902_021_00878_4 crossref_primary_10_1016_j_chest_2020_12_051 crossref_primary_10_3390_diagnostics11091714 crossref_primary_10_1097_CM9_0000000000000694 crossref_primary_10_1016_j_puhe_2022_01_007 crossref_primary_10_3389_fpubh_2021_626331 crossref_primary_10_1016_j_mlwa_2020_100011 crossref_primary_10_3390_healthcare8030247 crossref_primary_10_1016_j_pmedr_2023_102358 crossref_primary_10_3390_diagnostics13162654 crossref_primary_10_3390_jpm12071055 crossref_primary_10_2196_16922 crossref_primary_10_1080_20476965_2022_2141141 crossref_primary_10_1016_j_compbiomed_2022_105757 crossref_primary_10_1016_j_imu_2023_101427 crossref_primary_10_4018_IJDSST_303943 crossref_primary_10_1186_s13098_021_00767_9 crossref_primary_10_1111_os_13469 crossref_primary_10_14341_DM12665 crossref_primary_10_3389_fgene_2021_619857 crossref_primary_10_1016_j_neulet_2022_136908 |
Cites_doi | 10.7326/0003-4819-148-11-200806030-00008 10.1016/S0140-6736(08)60766-7 10.2337/diacare.26.3.725 10.1016/S0140-6736(09)61457-4 10.1016/j.diabres.2013.01.023 10.1001/jama.2017.7596 10.2337/diacare.29.02.06.dc05-0945 10.1056/NEJMoa0908292 10.1001/jama.2013.168118 10.14569/IJARAI.2015.040411 10.1136/bmj.d7163 10.1016/j.diabres.2014.03.007 10.1136/bmj.e5900 10.2337/diacare.27.3.727 10.2337/dc05-2141 10.7326/0003-4819-150-11-200906020-00002 10.1002/dmrr.2296 10.2337/dc18-S002 10.1186/1741-7015-9-103 10.1093/epirev/mxq019 10.1016/S1352-2310(97)00447-0 10.1111/j.1464-5491.2010.02943.x 10.7326/0003-4819-151-11-200912010-00005 10.1016/j.kjms.2012.08.016 10.1007/s10916-011-9710-5 10.1056/NEJMoa012512 10.1900/RDS.2010.7.252 10.5539/gjhs.v7n5p304 10.2337/diacare.20.11.1664 10.1023/A:1010933404324 10.1016/j.neuropharm.2011.11.018 10.1016/S0140-6736(06)69420-8 10.1007/978-1-4419-9326-7_2 10.1016/j.diabres.2005.02.016 10.1109/CCCA.2011.6031433 10.1155/2014/618976 10.1007/978-3-031-01899-2 |
ContentType | Journal Article |
Copyright | Huazhong University of Science and Technology 2019 |
Copyright_xml | – notice: Huazhong University of Science and Technology 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s11596-019-2077-4 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2523-899X |
EndPage | 588 |
ExternalDocumentID | 10_1007_s11596_019_2077_4 31346994 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -05 -0E -EM -SE -S~ .VR 2J2 2JN 2JY 2KG 2LR 30V 406 408 5VR 92M 95- 96X 9D9 9DE AAAVM AABYN AAFGU AAHNG AAIAL AAKSU AANZL AATNV AAUYE AAYFA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABKAS ABKCH ABKZE ABMQK ABNWP ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBYP ACHSB ACIGE ACIPQ ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ADKNI ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF AEEQQ AEFTE AEJRE AESKC AESTI AEVLU AEVTX AEXYK AFAFS AFLOW AFNRJ AFQWF AFUIB AGDGC AGGBP AGJBK AGKHE AGMZJ AHSBF AIAKS AILAN AIMYW AITGF AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AOCGG AXYYD B-. BA0 BDATZ BGNMA CAJEE CAJUS CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FFXSO FIGPU FINBP FNLPD FSGXE G-Y G-Z GGCAI GNWQR GQ7 GRRUI HG6 IKXTQ IWAJR IXD I~Z J-C JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J PF0 PT4 Q-- QOR QOS RHV ROL RSV RT5 S16 S37 S3B SAP SCLPG SDE SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW STPWE SZN T8U TCJ TGQ TSG TUC U1F U1G U2A U5E U5O UNUBA UOJIU UTJUX UZXMN VC2 VFIZW YLTOR Z7U Z87 ZMTXR ~A9 0R~ AACDK AAEOY AAJBT AASML AAXDM AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU AJOOF CGR CUY CVF ECM EIF NPM SJYHP AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c344t-d8183f90029533da373c9e951d504142a41584c7c965fde3e2fc122aaf31b75f3 |
IEDL.DBID | U2A |
ISSN | 2096-5230 |
IngestDate | Fri Oct 25 23:30:24 EDT 2024 Thu Sep 12 18:45:48 EDT 2024 Wed Oct 16 00:44:31 EDT 2024 Sat Dec 16 12:07:24 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | machine learning risk prediction type 2 diabetes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-d8183f90029533da373c9e951d504142a41584c7c965fde3e2fc122aaf31b75f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31346994 |
PQID | 2265765010 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2265765010 crossref_primary_10_1007_s11596_019_2077_4 pubmed_primary_31346994 springer_journals_10_1007_s11596_019_2077_4 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan – name: China |
PublicationTitle | Current medical science |
PublicationTitleAbbrev | CURR MED SCI |
PublicationTitleAlternate | Curr Med Sci |
PublicationYear | 2019 |
Publisher | Huazhong University of Science and Technology |
Publisher_xml | – name: Huazhong University of Science and Technology |
References | Collins, Mallett, Omar (CR12) 2011; 9 Nazari, Kang (CR28) 2015; 4 CR17 Knowler, Fowler, Hamman (CR8) 2009; 374 Li, Zhang, Wang (CR5) 2008; 371 CR33 Montazeri, Nezamabadi-pour, Montazeri (CR32) 2012 Habibi, Ahmadi, Alizadeh (CR44) 2015; 7 CR31 Abbasi, Peelen, Corpeleijn (CR11) 2012; 345 Patel, Macerollo (CR23) 2010; 81 Wang, Gao, Zhang (CR1) 2017; 317 Knowler, Barrett-Connor, Fowler (CR7) 2002; 346 Hashemian, Beiranvand, Rezaei (CR34) 2012; 62 Thoopputra, Newby, Schneider (CR10) 2012; 28 Kahn, Cheng, Thompson (CR39) 2009; 150 Shankaracharya, Odedra, Samanta (CR16) 2010; 7 Yoo, Alafaireet, Marinov (CR14) 2012; 36 Norris, Kansagara, Bougatsos (CR30) 2008; 148 Glümer, Carstensen, Sandbæk (CR38) 2004; 27 (CR24) 2018; 1 Gerstein, Yusuf, Bosch (CR29) 2006; 368 Lindstrom, Ilanne-Parikka, Peltonen (CR6) 2006 Gao, Dong, Pang (CR42) 2010; 27 Noble, Mathur, Dent (CR13) 2011; 343 Aekplakorn, Bunnag, Woodward (CR41) 2006; 29 Seni, Elder (CR22) 2010 Mansour, Eghbal, Amirhossein (CR19) 2013; 23 Glümer, Vistisen, Borchjohnsen (CR43) 2006; 29 Quinlan (CR21) 1986; 1 (CR37) 2007; 30 Yang, Lu, Weng (CR2) 2010; 362 Barber, Davies, Khunti (CR15) 2014; 105 Wang, Li, Wang (CR18) 2013; 00 Meng, Huang, Rao (CR20) 2013; 29 Breiman (CR27) 2001; 45 Lindström, Tuomilehto (CR36) 2003; 26 Ramachandran, Snehalatha, Vijay (CR40) 2005; 70 Gardner, Dorling (CR25) 1998; 32 Pan, Yang, Li (CR4) 1997; 20 Ferreira, Figueiredo (CR26) 2012 Xu, Wang, He (CR3) 2013; 310 Buijsse, Simmons, Griffin (CR9) 2011; 33 Bang, Edwards, Bomback (CR35) 2009; 151 P Patel (2077_CR23) 2010; 81 Y Xu (2077_CR3) 2013; 310 Shankaracharya (2077_CR16) 2010; 7 G Li (2077_CR5) 2008; 371 C Glümer (2077_CR38) 2004; 27 WC Knowler (2077_CR7) 2002; 346 JR Quinlan (2077_CR21) 1986; 1 2077_CR31 J Lindstrom (2077_CR6) 2006 AJ Ferreira (2077_CR26) 2012 L Breiman (2077_CR27) 2001; 45 M Montazeri (2077_CR32) 2012 2077_CR33 (2077_CR37) 2007; 30 L Wang (2077_CR1) 2017; 317 SL Norris (2077_CR30) 2008; 148 2077_CR17 D Noble (2077_CR13) 2011; 343 A Ramachandran (2077_CR40) 2005; 70 Z Nazari (2077_CR28) 2015; 4 HS Kahn (2077_CR39) 2009; 150 R Mansour (2077_CR19) 2013; 23 XH Meng (2077_CR20) 2013; 29 C Glümer (2077_CR43) 2006; 29 MW Gardner (2077_CR25) 1998; 32 S Habibi (2077_CR44) 2015; 7 WC Knowler (2077_CR8) 2009; 374 W Yang (2077_CR2) 2010; 362 American Diabetes Association. (2077_CR24) 2018; 1 SR Barber (2077_CR15) 2014; 105 A Abbasi (2077_CR11) 2012; 345 WG Gao (2077_CR42) 2010; 27 B Buijsse (2077_CR9) 2011; 33 T Thoopputra (2077_CR10) 2012; 28 HC Gerstein (2077_CR29) 2006; 368 H Bang (2077_CR35) 2009; 151 G Seni (2077_CR22) 2010 I Yoo (2077_CR14) 2012; 36 J Lindström (2077_CR36) 2003; 26 W Aekplakorn (2077_CR41) 2006; 29 XR Pan (2077_CR4) 1997; 20 C Wang (2077_CR18) 2013; 00 GS Collins (2077_CR12) 2011; 9 AH Hashemian (2077_CR34) 2012; 62 |
References_xml | – volume: 148 start-page: 855 issue: 11 year: 2008 end-page: 868 ident: CR30 article-title: Screening adults for type 2 diabetes: a review of the evidence for the U.S. Preventive Services Task Force publication-title: Ann Intern Med doi: 10.7326/0003-4819-148-11-200806030-00008 contributor: fullname: Bougatsos – volume: 371 start-page: 1783 issue: 9626 year: 2008 end-page: 1789 ident: CR5 article-title: The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study publication-title: Lancet doi: 10.1016/S0140-6736(08)60766-7 contributor: fullname: Wang – volume: 26 start-page: 725 issue: 3 year: 2003 end-page: 731 ident: CR36 article-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk publication-title: Diabetes Care doi: 10.2337/diacare.26.3.725 contributor: fullname: Tuomilehto – volume: 374 start-page: 1677 issue: 9702 year: 2009 end-page: 1686 ident: CR8 article-title: 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study publication-title: Lancet doi: 10.1016/S0140-6736(09)61457-4 contributor: fullname: Hamman – volume: 00 start-page: 111 issue: 1 year: 2013 end-page: 118 ident: CR18 article-title: Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2013.01.023 contributor: fullname: Wang – volume: 317 start-page: 2515 issue: 24 year: 2017 end-page: 2523 ident: CR1 article-title: Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013 publication-title: JAMA doi: 10.1001/jama.2017.7596 contributor: fullname: Zhang – year: 2010 ident: CR22 publication-title: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions contributor: fullname: Elder – volume: 29 start-page: 410 issue: 2 year: 2006 end-page: 414 ident: CR43 article-title: Risk Scores for Type 2 Diabetes Can Be Applied in Some Populations but Not All publication-title: Diabetes Care doi: 10.2337/diacare.29.02.06.dc05-0945 contributor: fullname: Borchjohnsen – volume: 362 start-page: 1090 issue: 12 year: 2010 end-page: 1101 ident: CR2 article-title: Prevalence of diabetes among men and women in China publication-title: N Engl J Med doi: 10.1056/NEJMoa0908292 contributor: fullname: Weng – volume: 310 start-page: 948 issue: 9 year: 2013 end-page: 959 ident: CR3 article-title: Prevalence and control of diabetes in Chinese adults publication-title: JAMA doi: 10.1001/jama.2013.168118 contributor: fullname: He – volume: 4 start-page: 64 issue: 4 year: 2015 end-page: 76 ident: CR28 article-title: Density Based Support Vector Machines for Classification publication-title: IJARAI doi: 10.14569/IJARAI.2015.040411 contributor: fullname: Kang – start-page: 525 year: 2012 end-page: 532 ident: CR32 article-title: Automatically Eye Detection with Different Gray Intensity Image Conditions publication-title: Computer Technol Appl contributor: fullname: Montazeri – volume: 343 start-page: d7163 year: 2011 ident: CR13 article-title: Risk models and scores for type 2 diabetes: systematic review publication-title: BMJ doi: 10.1136/bmj.d7163 contributor: fullname: Dent – ident: CR33 – volume: 105 start-page: 1 issue: 1 year: 2014 end-page: 13 ident: CR15 article-title: Risk assessment tools for detecting those with pre-diabetes: a systematic review publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2014.03.007 contributor: fullname: Khunti – volume: 345 start-page: e5900 year: 2012 ident: CR11 article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study publication-title: BMJ doi: 10.1136/bmj.e5900 contributor: fullname: Corpeleijn – volume: 23 start-page: 1522 issue: 11 year: 2013 end-page: 1529 ident: CR19 article-title: Comparison of Artificial Neural Network, Logistic Regression and Discriminant Analysis Efficiency in Determining Risk Factors of Type 2 Diabetes publication-title: World Appl Sci J contributor: fullname: Amirhossein – volume: 27 start-page: 727 issue: 3 year: 2004 end-page: 733 ident: CR38 article-title: A Danish diabetes risk score for targeted screening: the Inter99 study publication-title: Diabetes Care doi: 10.2337/diacare.27.3.727 contributor: fullname: Sandbæk – volume: 29 start-page: 1872 issue: 29 year: 2006 end-page: 1877 ident: CR41 article-title: A Risk Score for Predicting Incident Diabetes in the Thai Population publication-title: Diabetes Care doi: 10.2337/dc05-2141 contributor: fullname: Woodward – volume: 150 start-page: 741 issue: 11 year: 2009 end-page: 751 ident: CR39 article-title: Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years publication-title: Ann Intern Med doi: 10.7326/0003-4819-150-11-200906020-00002 contributor: fullname: Thompson – volume: 28 start-page: 485 issue: 6 year: 2012 end-page: 498 ident: CR10 article-title: Survey of diabetes risk assessment tools: concepts, structure and performance publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2296 contributor: fullname: Schneider – volume: 1 start-page: S13 issue: Suppl1 year: 2018 end-page: S27 ident: CR24 article-title: 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018 publication-title: Diabetes Care doi: 10.2337/dc18-S002 – volume: 9 start-page: 103 year: 2011 ident: CR12 article-title: Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting publication-title: BMC Med doi: 10.1186/1741-7015-9-103 contributor: fullname: Omar – volume: 1 start-page: 81 issue: 1 year: 1986 end-page: 106 ident: CR21 article-title: Induction of decision trees publication-title: Machine Learning contributor: fullname: Quinlan – volume: 81 start-page: 863 issue: 7 year: 2010 end-page: 870 ident: CR23 article-title: Diabetes mellitus: diagnosis and screening. publication-title: Am Fam Physician. contributor: fullname: Macerollo – volume: 30 issue: 8 year: 2007 ident: CR37 publication-title: Diabetes Care – start-page: 1673 year: 2006 end-page: 1679 ident: CR6 article-title: Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study publication-title: Lancet contributor: fullname: Peltonen – volume: 33 start-page: 46 year: 2011 end-page: 62 ident: CR9 article-title: Risk assessment tools for identifying individuals at risk of developing type 2 diabetes publication-title: Epidemiol Rev doi: 10.1093/epirev/mxq019 contributor: fullname: Griffin – volume: 32 start-page: 2627 issue: 14–15 year: 1998 end-page: 2636 ident: CR25 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmos Environ doi: 10.1016/S1352-2310(97)00447-0 contributor: fullname: Dorling – volume: 27 start-page: 274 issue: 3 year: 2010 end-page: 281 ident: CR42 article-title: A simple Chinese risk score for undiagnosed diabetes publication-title: Diabetic Med doi: 10.1111/j.1464-5491.2010.02943.x contributor: fullname: Pang – volume: 151 start-page: 775 issue: 11 year: 2009 end-page: 783 ident: CR35 article-title: Development and Validation of a Patient Self-assessment Score for Diabetes Risk publication-title: Ann Intern Med doi: 10.7326/0003-4819-151-11-200912010-00005 contributor: fullname: Bomback – volume: 29 start-page: 93 issue: 2 year: 2013 end-page: 99 ident: CR20 article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors publication-title: Kaohsiung J Med Sci doi: 10.1016/j.kjms.2012.08.016 contributor: fullname: Rao – volume: 36 start-page: 2431 issue: 4 year: 2012 end-page: 2448 ident: CR14 article-title: Data mining in healthcare and biomedicine: a survey of the literature publication-title: J Med Syst doi: 10.1007/s10916-011-9710-5 contributor: fullname: Marinov – ident: CR17 – ident: CR31 – volume: 346 start-page: 393 issue: 6 year: 2002 end-page: 403 ident: CR7 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: N Engl J Med doi: 10.1056/NEJMoa012512 contributor: fullname: Fowler – volume: 7 start-page: 252 issue: 4 year: 2010 end-page: 262 ident: CR16 article-title: Computational intelligence in early diabetes diagnosis: a review publication-title: Rev Diabet Stud doi: 10.1900/RDS.2010.7.252 contributor: fullname: Samanta – volume: 7 start-page: 304 issue: 5 year: 2015 end-page: 310 ident: CR44 article-title: Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining publication-title: Glob J Health Sci doi: 10.5539/gjhs.v7n5p304 contributor: fullname: Alizadeh – volume: 20 start-page: 1664 issue: 11 year: 1997 end-page: 1669 ident: CR4 article-title: Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group publication-title: Diabetes Care doi: 10.2337/diacare.20.11.1664 contributor: fullname: Li – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR27 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 62 start-page: 1717 issue: 4 year: 2012 end-page: 1729 ident: CR34 article-title: Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.11.018 contributor: fullname: Rezaei – volume: 368 start-page: 1096 issue: 9541 year: 2006 end-page: 1105 ident: CR29 article-title: Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(06)69420-8 contributor: fullname: Bosch – start-page: 35 year: 2012 end-page: 85 ident: CR26 article-title: Boosting Algorithms: A Review of Methods, Theory, and Applications publication-title: Ensemble Machine Learning doi: 10.1007/978-1-4419-9326-7_2 contributor: fullname: Figueiredo – volume: 70 start-page: 63 issue: 1 year: 2005 end-page: 70 ident: CR40 article-title: Derivation and validation of diabetes risk score for urban Asian Indians publication-title: Diabetes Res Clin Pr doi: 10.1016/j.diabres.2005.02.016 contributor: fullname: Vijay – volume: 28 start-page: 485 issue: 6 year: 2012 ident: 2077_CR10 publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2296 contributor: fullname: T Thoopputra – volume: 1 start-page: S13 issue: Suppl1 year: 2018 ident: 2077_CR24 publication-title: Diabetes Care doi: 10.2337/dc18-S002 contributor: fullname: American Diabetes Association. – volume: 7 start-page: 252 issue: 4 year: 2010 ident: 2077_CR16 publication-title: Rev Diabet Stud doi: 10.1900/RDS.2010.7.252 contributor: fullname: Shankaracharya – volume: 368 start-page: 1096 issue: 9541 year: 2006 ident: 2077_CR29 publication-title: Lancet doi: 10.1016/S0140-6736(06)69420-8 contributor: fullname: HC Gerstein – ident: 2077_CR31 doi: 10.1109/CCCA.2011.6031433 – volume: 105 start-page: 1 issue: 1 year: 2014 ident: 2077_CR15 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2014.03.007 contributor: fullname: SR Barber – volume: 151 start-page: 775 issue: 11 year: 2009 ident: 2077_CR35 publication-title: Ann Intern Med doi: 10.7326/0003-4819-151-11-200912010-00005 contributor: fullname: H Bang – volume: 29 start-page: 1872 issue: 29 year: 2006 ident: 2077_CR41 publication-title: Diabetes Care doi: 10.2337/dc05-2141 contributor: fullname: W Aekplakorn – volume: 310 start-page: 948 issue: 9 year: 2013 ident: 2077_CR3 publication-title: JAMA doi: 10.1001/jama.2013.168118 contributor: fullname: Y Xu – volume: 343 start-page: d7163 year: 2011 ident: 2077_CR13 publication-title: BMJ doi: 10.1136/bmj.d7163 contributor: fullname: D Noble – volume: 371 start-page: 1783 issue: 9626 year: 2008 ident: 2077_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(08)60766-7 contributor: fullname: G Li – start-page: 525 volume-title: Computer Technol Appl year: 2012 ident: 2077_CR32 contributor: fullname: M Montazeri – volume: 29 start-page: 410 issue: 2 year: 2006 ident: 2077_CR43 publication-title: Diabetes Care doi: 10.2337/diacare.29.02.06.dc05-0945 contributor: fullname: C Glümer – volume: 20 start-page: 1664 issue: 11 year: 1997 ident: 2077_CR4 publication-title: Diabetes Care doi: 10.2337/diacare.20.11.1664 contributor: fullname: XR Pan – ident: 2077_CR17 doi: 10.1155/2014/618976 – volume: 27 start-page: 727 issue: 3 year: 2004 ident: 2077_CR38 publication-title: Diabetes Care doi: 10.2337/diacare.27.3.727 contributor: fullname: C Glümer – start-page: 35 volume-title: Ensemble Machine Learning year: 2012 ident: 2077_CR26 doi: 10.1007/978-1-4419-9326-7_2 contributor: fullname: AJ Ferreira – volume: 32 start-page: 2627 issue: 14–15 year: 1998 ident: 2077_CR25 publication-title: Atmos Environ doi: 10.1016/S1352-2310(97)00447-0 contributor: fullname: MW Gardner – volume: 81 start-page: 863 issue: 7 year: 2010 ident: 2077_CR23 publication-title: Am Fam Physician. contributor: fullname: P Patel – volume: 26 start-page: 725 issue: 3 year: 2003 ident: 2077_CR36 publication-title: Diabetes Care doi: 10.2337/diacare.26.3.725 contributor: fullname: J Lindström – volume: 150 start-page: 741 issue: 11 year: 2009 ident: 2077_CR39 publication-title: Ann Intern Med doi: 10.7326/0003-4819-150-11-200906020-00002 contributor: fullname: HS Kahn – volume: 148 start-page: 855 issue: 11 year: 2008 ident: 2077_CR30 publication-title: Ann Intern Med doi: 10.7326/0003-4819-148-11-200806030-00008 contributor: fullname: SL Norris – ident: 2077_CR33 – volume: 374 start-page: 1677 issue: 9702 year: 2009 ident: 2077_CR8 publication-title: Lancet doi: 10.1016/S0140-6736(09)61457-4 contributor: fullname: WC Knowler – volume: 62 start-page: 1717 issue: 4 year: 2012 ident: 2077_CR34 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.11.018 contributor: fullname: AH Hashemian – volume: 9 start-page: 103 year: 2011 ident: 2077_CR12 publication-title: BMC Med doi: 10.1186/1741-7015-9-103 contributor: fullname: GS Collins – volume: 362 start-page: 1090 issue: 12 year: 2010 ident: 2077_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMoa0908292 contributor: fullname: W Yang – volume: 317 start-page: 2515 issue: 24 year: 2017 ident: 2077_CR1 publication-title: JAMA doi: 10.1001/jama.2017.7596 contributor: fullname: L Wang – volume: 4 start-page: 64 issue: 4 year: 2015 ident: 2077_CR28 publication-title: IJARAI doi: 10.14569/IJARAI.2015.040411 contributor: fullname: Z Nazari – volume: 33 start-page: 46 year: 2011 ident: 2077_CR9 publication-title: Epidemiol Rev doi: 10.1093/epirev/mxq019 contributor: fullname: B Buijsse – volume: 00 start-page: 111 issue: 1 year: 2013 ident: 2077_CR18 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2013.01.023 contributor: fullname: C Wang – volume: 29 start-page: 93 issue: 2 year: 2013 ident: 2077_CR20 publication-title: Kaohsiung J Med Sci doi: 10.1016/j.kjms.2012.08.016 contributor: fullname: XH Meng – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2077_CR27 publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 7 start-page: 304 issue: 5 year: 2015 ident: 2077_CR44 publication-title: Glob J Health Sci doi: 10.5539/gjhs.v7n5p304 contributor: fullname: S Habibi – start-page: 1673 volume-title: Lancet year: 2006 ident: 2077_CR6 contributor: fullname: J Lindstrom – volume: 346 start-page: 393 issue: 6 year: 2002 ident: 2077_CR7 publication-title: N Engl J Med doi: 10.1056/NEJMoa012512 contributor: fullname: WC Knowler – volume-title: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions year: 2010 ident: 2077_CR22 doi: 10.1007/978-3-031-01899-2 contributor: fullname: G Seni – volume: 70 start-page: 63 issue: 1 year: 2005 ident: 2077_CR40 publication-title: Diabetes Res Clin Pr doi: 10.1016/j.diabres.2005.02.016 contributor: fullname: A Ramachandran – volume: 345 start-page: e5900 year: 2012 ident: 2077_CR11 publication-title: BMJ doi: 10.1136/bmj.e5900 contributor: fullname: A Abbasi – volume: 30 issue: 8 year: 2007 ident: 2077_CR37 publication-title: Diabetes Care – volume: 27 start-page: 274 issue: 3 year: 2010 ident: 2077_CR42 publication-title: Diabetic Med doi: 10.1111/j.1464-5491.2010.02943.x contributor: fullname: WG Gao – volume: 36 start-page: 2431 issue: 4 year: 2012 ident: 2077_CR14 publication-title: J Med Syst doi: 10.1007/s10916-011-9710-5 contributor: fullname: I Yoo – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 2077_CR21 publication-title: Machine Learning contributor: fullname: JR Quinlan – volume: 23 start-page: 1522 issue: 11 year: 2013 ident: 2077_CR19 publication-title: World Appl Sci J contributor: fullname: R Mansour |
SSID | ssib031263182 ssj0002039635 ssib051367596 ssib034325102 |
Score | 2.3439405 |
Snippet | Summary
Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to... Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 582 |
SubjectTerms | Adult China - epidemiology Cross-Sectional Studies Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - epidemiology Diabetes Mellitus, Type 2 - pathology Female Humans Machine Learning Male Medicine Medicine & Public Health Retrospective Studies Risk Assessment |
Title | Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults |
URI | https://link.springer.com/article/10.1007/s11596-019-2077-4 https://www.ncbi.nlm.nih.gov/pubmed/31346994 https://search.proquest.com/docview/2265765010 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcKkxAvE9v4KLDJSHvaFNT4KzVvFVpVTeo0VVTiLbJjG0GrFNXpw97407lLkwICHvYe-yLfOfe73N3vCPkeCp9p7Uwig2WJsCHDMS8-KZS1mtueVTW7_viPGk3F72t53SFs8-uinJ23Gcn6Q_3U6waOF4NfDYrNskRskQ8S2dDAhqds0NoQT5kCM924bOyblM8osiRSlMmGYu5unYgDG8RKRwZoHuOyTfLzLakv3dcrTPoqn1q7qeEe-djgSzpYG8Qn0vHlZ7IzbjLoX8jDuK6e9LQhVr2hOA1tHultSTEmpYw2RTKRTm7jjP5d4lpU3wWd-LiaV5FiTwo19BJfMYl1MRcKnfhquWhbNylWKP7DbXFEt4-eDpDqI-6T6fDX1eUoaaYwJAUXokocuHQeNKbvABo6wzNeaA_AzMmeSAUzAAH6osgKrWRwnnsWipQxYwJPbSYDPyDb5aL0R4Q6zZRnfWUsLITw1QTX9yYUTDlnXd91yY_2cPP7NdlG_kSrjJrIQRM5aiIXXXLWHn8OVwLzHKb0i1XMAVFCFCUh0uySw7VeNtvxlAulNaz-2Soqb25tfF_W8X89fUJ2GVpMXSZ4Srar5cp_BehS2W-1rT4C4a_gOQ |
link.rule.ids | 315,783,787,27936,27937,41535,42604,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVaKlEuqKWULv3ASJxAkYi_sua2QkXblkVoxUrcLDu2ERRl0Tp74MZPZyabLFS0h97jOPKMM280b94QshfLUGjtbSajY5lwscAxLyErlXOau0OnGnX90ZkaTsTPS3nZ9nGnju3elSSbP_VTsxtEXsx-NVi2KDLxmrxBeXUUzJ-wQedEPGcK_HQZs7FxUj7TyJKoUSZbjbmbRSUOnBCpjgzgPCZmy-rn33b9M369AKUvCqpNnDp5R9ZbgEkHC494T16FaoOsjtoS-gfyMGrok4G2yqpXFMeh3SZ6XVFMSimjLUsm0fF1-k3PZ7gW7XdExyHNb-tEsSmFWnqMn5ilhs2Fm45DPZt2vZsUKYr3-Fqc0R1SoAPU-kibZHLy_eJ4mLVjGLKSC1FnHmI6jxrrd4ANveUFL3UAZOblocgFs4AB-qIsSq1k9IEHFsucMWsjz10hI_9IVqppFT4R6jVTgfWVdbAQ8lcbfT_YWDLlvfN93yP73eGau4XahnnSVUZLGLCEQUsY0SO73fEbuBNY6LBVmM6TAUgJaZSEVLNHthZ2Wb6O51worWH1QWco017b9O-9tv_r6R3ydngxOjWnP85-fSZrDL2n4Qx-ISv1bB6-Ao6p3bfGbx8B5JDjlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZaKqFeEIU-wqMYqadWK1i_NuYW0Ub0EYSiRuJm2Wu7okUbFG8OvfWnM7OP0Ipy4L62V_7GmhnNN98Q8i6WodDa20xGxzLhYoFjXkJWKuc0d8dONer6k3N1NhNfLuVlN-c09Wz3viTZ9jSgSlNVH934eHTX-AZeGDNhDSgXRSaekmfgiThy-mZs1BsUz5kCm135b2yilH_pZUnUK5Od3tzPtioHBom0RwahPSZpq0ro_07915fdC1DvFVcbnzXeJBtdsElHrXW8IE9CtUXWJ105fZv8mTRUykA7ldUfFEejXSd6VVFMUCmjHWMm0elV-kUvFrgWsTyh05CW13Wi2KBCLT3FX8xSw-zCQ6ehXsz7Pk6KdMXfuC3O6w4p0BHqfqSXZDb-9P30LOtGMmQlF6LOPPh3HjXW8iBO9JYXvNQBojQvj0UumAUUhqIsSq1k9IEHFsucMWsjz10hI39F1qp5Fd4Q6jVTgQ2VdbAQclkb_TDYWDLlvfNDPyDv-8s1N63yhrnTWEYkDCBhEAkjBuSwv34D7wOLHrYK82UyEF5CSiUh7RyQ1y0uq-14zoXSGlZ_6IEy3RNOD5-186ivD8j6xcex-fb5_Osuec7QeBr64B5ZqxfLsA8hTe3eNmZ7C3hN59k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Models+in+Type+2+Diabetes+Risk+Prediction%3A+Results+from+a+Cross-sectional+Retrospective+Study+in+Chinese+Adults&rft.jtitle=Current+medical+science&rft.au=Xiong%2C+Xiao-Lu&rft.au=Zhang%2C+Rong-Xin&rft.au=Bi%2C+Yan&rft.au=Zhou%2C+Wei-Hong&rft.date=2019-08-01&rft.eissn=2523-899X&rft.volume=39&rft.issue=4&rft.spage=582&rft_id=info:doi/10.1007%2Fs11596-019-2077-4&rft_id=info%3Apmid%2F31346994&rft.externalDocID=31346994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-5230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-5230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-5230&client=summon |