Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults

Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk...

Full description

Saved in:
Bibliographic Details
Published inCurrent medical science Vol. 39; no. 4; pp. 582 - 588
Main Authors Xiong, Xiao-lu, Zhang, Rong-xin, Bi, Yan, Zhou, Wei-hong, Yu, Yun, Zhu, Da-long
Format Journal Article
LanguageEnglish
Published Wuhan Huazhong University of Science and Technology 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction.
AbstractList Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction.
Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction.
Author Zhu, Da-long
Xiong, Xiao-lu
Zhou, Wei-hong
Zhang, Rong-xin
Bi, Yan
Yu, Yun
Author_xml – sequence: 1
  givenname: Xiao-lu
  surname: Xiong
  fullname: Xiong, Xiao-lu
  organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
– sequence: 2
  givenname: Rong-xin
  surname: Zhang
  fullname: Zhang, Rong-xin
  organization: School of Biomedical Engineering and Informatics, Nanjing Medical University
– sequence: 3
  givenname: Yan
  surname: Bi
  fullname: Bi, Yan
  organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
– sequence: 4
  givenname: Wei-hong
  surname: Zhou
  fullname: Zhou, Wei-hong
  email: njzhouweihong@126.com
  organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
– sequence: 5
  givenname: Yun
  surname: Yu
  fullname: Yu, Yun
  email: yuyun@njmu.edu.cn
  organization: School of Biomedical Engineering and Informatics, Nanjing Medical University
– sequence: 6
  givenname: Da-long
  surname: Zhu
  fullname: Zhu, Da-long
  email: zhudalong@nju.edu.cn
  organization: Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31346994$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtO3DAUhi0EAkp5gG4qL7tJ62sSd4emV2kQCKjEzvLYJ9Rtxhl8kkqz49FxGGDZlX38X478vSH7aUhAyDvOPnLGmk_IuTZ1xbipBGuaSu2RY6GFrFpjbvfLnRW1zOyInCLGFZNc1JK34pAcSS5VbYw6Jg_nzv-OCegSXE4x3dHzIUCPNCZ6s90AFfRLdCsYAelVxL_0MkOIfoxD-kyvAKd-RNrlYU0dXeQBsUJ4Ul1f5LG8bOb5H9DrcQrbuXYx70OgZ2EOvyUHnesRTp_PE_Lr29ebxY9qefH95-JsWXmp1FiFlreyM4wJo6UMTjbSGzCaB80UV8IprlvlG29q3QWQIDrPhXCuk3zV6E6ekA-73k0e7ifA0a4jeuh7l2CY0ApR66bWjLNi5Turnz-UobObHNcuby1ndmZvd-xtYW9n9laVzPvn-mm1hvCaeCFdDGJnwCKlO8j2zzDlggn_0_oIskiQ9Q
CitedBy_id crossref_primary_10_1007_s00521_024_09915_4
crossref_primary_10_1007_s11517_021_02333_x
crossref_primary_10_1109_ACCESS_2020_3035026
crossref_primary_10_47164_ijngc_v13i5_968
crossref_primary_10_1016_j_dsx_2020_03_004
crossref_primary_10_1038_s41598_022_08757_1
crossref_primary_10_1111_jdi_13937
crossref_primary_10_1186_s13098_023_01112_y
crossref_primary_10_1186_s12902_021_00878_4
crossref_primary_10_1016_j_chest_2020_12_051
crossref_primary_10_3390_diagnostics11091714
crossref_primary_10_1097_CM9_0000000000000694
crossref_primary_10_1016_j_puhe_2022_01_007
crossref_primary_10_3389_fpubh_2021_626331
crossref_primary_10_1016_j_mlwa_2020_100011
crossref_primary_10_3390_healthcare8030247
crossref_primary_10_1016_j_pmedr_2023_102358
crossref_primary_10_3390_diagnostics13162654
crossref_primary_10_3390_jpm12071055
crossref_primary_10_2196_16922
crossref_primary_10_1080_20476965_2022_2141141
crossref_primary_10_1016_j_compbiomed_2022_105757
crossref_primary_10_1016_j_imu_2023_101427
crossref_primary_10_4018_IJDSST_303943
crossref_primary_10_1186_s13098_021_00767_9
crossref_primary_10_1111_os_13469
crossref_primary_10_14341_DM12665
crossref_primary_10_3389_fgene_2021_619857
crossref_primary_10_1016_j_neulet_2022_136908
Cites_doi 10.7326/0003-4819-148-11-200806030-00008
10.1016/S0140-6736(08)60766-7
10.2337/diacare.26.3.725
10.1016/S0140-6736(09)61457-4
10.1016/j.diabres.2013.01.023
10.1001/jama.2017.7596
10.2337/diacare.29.02.06.dc05-0945
10.1056/NEJMoa0908292
10.1001/jama.2013.168118
10.14569/IJARAI.2015.040411
10.1136/bmj.d7163
10.1016/j.diabres.2014.03.007
10.1136/bmj.e5900
10.2337/diacare.27.3.727
10.2337/dc05-2141
10.7326/0003-4819-150-11-200906020-00002
10.1002/dmrr.2296
10.2337/dc18-S002
10.1186/1741-7015-9-103
10.1093/epirev/mxq019
10.1016/S1352-2310(97)00447-0
10.1111/j.1464-5491.2010.02943.x
10.7326/0003-4819-151-11-200912010-00005
10.1016/j.kjms.2012.08.016
10.1007/s10916-011-9710-5
10.1056/NEJMoa012512
10.1900/RDS.2010.7.252
10.5539/gjhs.v7n5p304
10.2337/diacare.20.11.1664
10.1023/A:1010933404324
10.1016/j.neuropharm.2011.11.018
10.1016/S0140-6736(06)69420-8
10.1007/978-1-4419-9326-7_2
10.1016/j.diabres.2005.02.016
10.1109/CCCA.2011.6031433
10.1155/2014/618976
10.1007/978-3-031-01899-2
ContentType Journal Article
Copyright Huazhong University of Science and Technology 2019
Copyright_xml – notice: Huazhong University of Science and Technology 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1007/s11596-019-2077-4
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2523-899X
EndPage 588
ExternalDocumentID 10_1007_s11596_019_2077_4
31346994
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -05
-0E
-EM
-SE
-S~
.VR
2J2
2JN
2JY
2KG
2LR
30V
406
408
5VR
92M
95-
96X
9D9
9DE
AAAVM
AABYN
AAFGU
AAHNG
AAIAL
AAKSU
AANZL
AATNV
AAUYE
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABKAS
ABKCH
ABKZE
ABMQK
ABNWP
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACHSB
ACIGE
ACIPQ
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADKNI
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
AEEQQ
AEFTE
AEJRE
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFAFS
AFLOW
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGJBK
AGKHE
AGMZJ
AHSBF
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AXYYD
B-.
BA0
BDATZ
BGNMA
CAJEE
CAJUS
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FSGXE
G-Y
G-Z
GGCAI
GNWQR
GQ7
GRRUI
HG6
IKXTQ
IWAJR
IXD
I~Z
J-C
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
PF0
PT4
Q--
QOR
QOS
RHV
ROL
RSV
RT5
S16
S37
S3B
SAP
SCLPG
SDE
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
STPWE
SZN
T8U
TCJ
TGQ
TSG
TUC
U1F
U1G
U2A
U5E
U5O
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
YLTOR
Z7U
Z87
ZMTXR
~A9
0R~
AACDK
AAEOY
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
AJOOF
CGR
CUY
CVF
ECM
EIF
NPM
SJYHP
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c344t-d8183f90029533da373c9e951d504142a41584c7c965fde3e2fc122aaf31b75f3
IEDL.DBID U2A
ISSN 2096-5230
IngestDate Fri Oct 25 23:30:24 EDT 2024
Thu Sep 12 18:45:48 EDT 2024
Wed Oct 16 00:44:31 EDT 2024
Sat Dec 16 12:07:24 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords machine learning
risk prediction
type 2 diabetes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-d8183f90029533da373c9e951d504142a41584c7c965fde3e2fc122aaf31b75f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31346994
PQID 2265765010
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2265765010
crossref_primary_10_1007_s11596_019_2077_4
pubmed_primary_31346994
springer_journals_10_1007_s11596_019_2077_4
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
– name: China
PublicationTitle Current medical science
PublicationTitleAbbrev CURR MED SCI
PublicationTitleAlternate Curr Med Sci
PublicationYear 2019
Publisher Huazhong University of Science and Technology
Publisher_xml – name: Huazhong University of Science and Technology
References Collins, Mallett, Omar (CR12) 2011; 9
Nazari, Kang (CR28) 2015; 4
CR17
Knowler, Fowler, Hamman (CR8) 2009; 374
Li, Zhang, Wang (CR5) 2008; 371
CR33
Montazeri, Nezamabadi-pour, Montazeri (CR32) 2012
Habibi, Ahmadi, Alizadeh (CR44) 2015; 7
CR31
Abbasi, Peelen, Corpeleijn (CR11) 2012; 345
Patel, Macerollo (CR23) 2010; 81
Wang, Gao, Zhang (CR1) 2017; 317
Knowler, Barrett-Connor, Fowler (CR7) 2002; 346
Hashemian, Beiranvand, Rezaei (CR34) 2012; 62
Thoopputra, Newby, Schneider (CR10) 2012; 28
Kahn, Cheng, Thompson (CR39) 2009; 150
Shankaracharya, Odedra, Samanta (CR16) 2010; 7
Yoo, Alafaireet, Marinov (CR14) 2012; 36
Norris, Kansagara, Bougatsos (CR30) 2008; 148
Glümer, Carstensen, Sandbæk (CR38) 2004; 27
(CR24) 2018; 1
Gerstein, Yusuf, Bosch (CR29) 2006; 368
Lindstrom, Ilanne-Parikka, Peltonen (CR6) 2006
Gao, Dong, Pang (CR42) 2010; 27
Noble, Mathur, Dent (CR13) 2011; 343
Aekplakorn, Bunnag, Woodward (CR41) 2006; 29
Seni, Elder (CR22) 2010
Mansour, Eghbal, Amirhossein (CR19) 2013; 23
Glümer, Vistisen, Borchjohnsen (CR43) 2006; 29
Quinlan (CR21) 1986; 1
(CR37) 2007; 30
Yang, Lu, Weng (CR2) 2010; 362
Barber, Davies, Khunti (CR15) 2014; 105
Wang, Li, Wang (CR18) 2013; 00
Meng, Huang, Rao (CR20) 2013; 29
Breiman (CR27) 2001; 45
Lindström, Tuomilehto (CR36) 2003; 26
Ramachandran, Snehalatha, Vijay (CR40) 2005; 70
Gardner, Dorling (CR25) 1998; 32
Pan, Yang, Li (CR4) 1997; 20
Ferreira, Figueiredo (CR26) 2012
Xu, Wang, He (CR3) 2013; 310
Buijsse, Simmons, Griffin (CR9) 2011; 33
Bang, Edwards, Bomback (CR35) 2009; 151
P Patel (2077_CR23) 2010; 81
Y Xu (2077_CR3) 2013; 310
Shankaracharya (2077_CR16) 2010; 7
G Li (2077_CR5) 2008; 371
C Glümer (2077_CR38) 2004; 27
WC Knowler (2077_CR7) 2002; 346
JR Quinlan (2077_CR21) 1986; 1
2077_CR31
J Lindstrom (2077_CR6) 2006
AJ Ferreira (2077_CR26) 2012
L Breiman (2077_CR27) 2001; 45
M Montazeri (2077_CR32) 2012
2077_CR33
(2077_CR37) 2007; 30
L Wang (2077_CR1) 2017; 317
SL Norris (2077_CR30) 2008; 148
2077_CR17
D Noble (2077_CR13) 2011; 343
A Ramachandran (2077_CR40) 2005; 70
Z Nazari (2077_CR28) 2015; 4
HS Kahn (2077_CR39) 2009; 150
R Mansour (2077_CR19) 2013; 23
XH Meng (2077_CR20) 2013; 29
C Glümer (2077_CR43) 2006; 29
MW Gardner (2077_CR25) 1998; 32
S Habibi (2077_CR44) 2015; 7
WC Knowler (2077_CR8) 2009; 374
W Yang (2077_CR2) 2010; 362
American Diabetes Association. (2077_CR24) 2018; 1
SR Barber (2077_CR15) 2014; 105
A Abbasi (2077_CR11) 2012; 345
WG Gao (2077_CR42) 2010; 27
B Buijsse (2077_CR9) 2011; 33
T Thoopputra (2077_CR10) 2012; 28
HC Gerstein (2077_CR29) 2006; 368
H Bang (2077_CR35) 2009; 151
G Seni (2077_CR22) 2010
I Yoo (2077_CR14) 2012; 36
J Lindström (2077_CR36) 2003; 26
W Aekplakorn (2077_CR41) 2006; 29
XR Pan (2077_CR4) 1997; 20
C Wang (2077_CR18) 2013; 00
GS Collins (2077_CR12) 2011; 9
AH Hashemian (2077_CR34) 2012; 62
References_xml – volume: 148
  start-page: 855
  issue: 11
  year: 2008
  end-page: 868
  ident: CR30
  article-title: Screening adults for type 2 diabetes: a review of the evidence for the U.S. Preventive Services Task Force
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-148-11-200806030-00008
  contributor:
    fullname: Bougatsos
– volume: 371
  start-page: 1783
  issue: 9626
  year: 2008
  end-page: 1789
  ident: CR5
  article-title: The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60766-7
  contributor:
    fullname: Wang
– volume: 26
  start-page: 725
  issue: 3
  year: 2003
  end-page: 731
  ident: CR36
  article-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.3.725
  contributor:
    fullname: Tuomilehto
– volume: 374
  start-page: 1677
  issue: 9702
  year: 2009
  end-page: 1686
  ident: CR8
  article-title: 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61457-4
  contributor:
    fullname: Hamman
– volume: 00
  start-page: 111
  issue: 1
  year: 2013
  end-page: 118
  ident: CR18
  article-title: Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2013.01.023
  contributor:
    fullname: Wang
– volume: 317
  start-page: 2515
  issue: 24
  year: 2017
  end-page: 2523
  ident: CR1
  article-title: Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013
  publication-title: JAMA
  doi: 10.1001/jama.2017.7596
  contributor:
    fullname: Zhang
– year: 2010
  ident: CR22
  publication-title: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions
  contributor:
    fullname: Elder
– volume: 29
  start-page: 410
  issue: 2
  year: 2006
  end-page: 414
  ident: CR43
  article-title: Risk Scores for Type 2 Diabetes Can Be Applied in Some Populations but Not All
  publication-title: Diabetes Care
  doi: 10.2337/diacare.29.02.06.dc05-0945
  contributor:
    fullname: Borchjohnsen
– volume: 362
  start-page: 1090
  issue: 12
  year: 2010
  end-page: 1101
  ident: CR2
  article-title: Prevalence of diabetes among men and women in China
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0908292
  contributor:
    fullname: Weng
– volume: 310
  start-page: 948
  issue: 9
  year: 2013
  end-page: 959
  ident: CR3
  article-title: Prevalence and control of diabetes in Chinese adults
  publication-title: JAMA
  doi: 10.1001/jama.2013.168118
  contributor:
    fullname: He
– volume: 4
  start-page: 64
  issue: 4
  year: 2015
  end-page: 76
  ident: CR28
  article-title: Density Based Support Vector Machines for Classification
  publication-title: IJARAI
  doi: 10.14569/IJARAI.2015.040411
  contributor:
    fullname: Kang
– start-page: 525
  year: 2012
  end-page: 532
  ident: CR32
  article-title: Automatically Eye Detection with Different Gray Intensity Image Conditions
  publication-title: Computer Technol Appl
  contributor:
    fullname: Montazeri
– volume: 343
  start-page: d7163
  year: 2011
  ident: CR13
  article-title: Risk models and scores for type 2 diabetes: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.d7163
  contributor:
    fullname: Dent
– ident: CR33
– volume: 105
  start-page: 1
  issue: 1
  year: 2014
  end-page: 13
  ident: CR15
  article-title: Risk assessment tools for detecting those with pre-diabetes: a systematic review
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2014.03.007
  contributor:
    fullname: Khunti
– volume: 345
  start-page: e5900
  year: 2012
  ident: CR11
  article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study
  publication-title: BMJ
  doi: 10.1136/bmj.e5900
  contributor:
    fullname: Corpeleijn
– volume: 23
  start-page: 1522
  issue: 11
  year: 2013
  end-page: 1529
  ident: CR19
  article-title: Comparison of Artificial Neural Network, Logistic Regression and Discriminant Analysis Efficiency in Determining Risk Factors of Type 2 Diabetes
  publication-title: World Appl Sci J
  contributor:
    fullname: Amirhossein
– volume: 27
  start-page: 727
  issue: 3
  year: 2004
  end-page: 733
  ident: CR38
  article-title: A Danish diabetes risk score for targeted screening: the Inter99 study
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.3.727
  contributor:
    fullname: Sandbæk
– volume: 29
  start-page: 1872
  issue: 29
  year: 2006
  end-page: 1877
  ident: CR41
  article-title: A Risk Score for Predicting Incident Diabetes in the Thai Population
  publication-title: Diabetes Care
  doi: 10.2337/dc05-2141
  contributor:
    fullname: Woodward
– volume: 150
  start-page: 741
  issue: 11
  year: 2009
  end-page: 751
  ident: CR39
  article-title: Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-150-11-200906020-00002
  contributor:
    fullname: Thompson
– volume: 28
  start-page: 485
  issue: 6
  year: 2012
  end-page: 498
  ident: CR10
  article-title: Survey of diabetes risk assessment tools: concepts, structure and performance
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.2296
  contributor:
    fullname: Schneider
– volume: 1
  start-page: S13
  issue: Suppl1
  year: 2018
  end-page: S27
  ident: CR24
  article-title: 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018
  publication-title: Diabetes Care
  doi: 10.2337/dc18-S002
– volume: 9
  start-page: 103
  year: 2011
  ident: CR12
  article-title: Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting
  publication-title: BMC Med
  doi: 10.1186/1741-7015-9-103
  contributor:
    fullname: Omar
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  end-page: 106
  ident: CR21
  article-title: Induction of decision trees
  publication-title: Machine Learning
  contributor:
    fullname: Quinlan
– volume: 81
  start-page: 863
  issue: 7
  year: 2010
  end-page: 870
  ident: CR23
  article-title: Diabetes mellitus: diagnosis and screening.
  publication-title: Am Fam Physician.
  contributor:
    fullname: Macerollo
– volume: 30
  issue: 8
  year: 2007
  ident: CR37
  publication-title: Diabetes Care
– start-page: 1673
  year: 2006
  end-page: 1679
  ident: CR6
  article-title: Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study
  publication-title: Lancet
  contributor:
    fullname: Peltonen
– volume: 33
  start-page: 46
  year: 2011
  end-page: 62
  ident: CR9
  article-title: Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
  publication-title: Epidemiol Rev
  doi: 10.1093/epirev/mxq019
  contributor:
    fullname: Griffin
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  end-page: 2636
  ident: CR25
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(97)00447-0
  contributor:
    fullname: Dorling
– volume: 27
  start-page: 274
  issue: 3
  year: 2010
  end-page: 281
  ident: CR42
  article-title: A simple Chinese risk score for undiagnosed diabetes
  publication-title: Diabetic Med
  doi: 10.1111/j.1464-5491.2010.02943.x
  contributor:
    fullname: Pang
– volume: 151
  start-page: 775
  issue: 11
  year: 2009
  end-page: 783
  ident: CR35
  article-title: Development and Validation of a Patient Self-assessment Score for Diabetes Risk
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-11-200912010-00005
  contributor:
    fullname: Bomback
– volume: 29
  start-page: 93
  issue: 2
  year: 2013
  end-page: 99
  ident: CR20
  article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.08.016
  contributor:
    fullname: Rao
– volume: 36
  start-page: 2431
  issue: 4
  year: 2012
  end-page: 2448
  ident: CR14
  article-title: Data mining in healthcare and biomedicine: a survey of the literature
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9710-5
  contributor:
    fullname: Marinov
– ident: CR17
– ident: CR31
– volume: 346
  start-page: 393
  issue: 6
  year: 2002
  end-page: 403
  ident: CR7
  article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa012512
  contributor:
    fullname: Fowler
– volume: 7
  start-page: 252
  issue: 4
  year: 2010
  end-page: 262
  ident: CR16
  article-title: Computational intelligence in early diabetes diagnosis: a review
  publication-title: Rev Diabet Stud
  doi: 10.1900/RDS.2010.7.252
  contributor:
    fullname: Samanta
– volume: 7
  start-page: 304
  issue: 5
  year: 2015
  end-page: 310
  ident: CR44
  article-title: Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining
  publication-title: Glob J Health Sci
  doi: 10.5539/gjhs.v7n5p304
  contributor:
    fullname: Alizadeh
– volume: 20
  start-page: 1664
  issue: 11
  year: 1997
  end-page: 1669
  ident: CR4
  article-title: Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group
  publication-title: Diabetes Care
  doi: 10.2337/diacare.20.11.1664
  contributor:
    fullname: Li
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR27
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 62
  start-page: 1717
  issue: 4
  year: 2012
  end-page: 1729
  ident: CR34
  article-title: Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.11.018
  contributor:
    fullname: Rezaei
– volume: 368
  start-page: 1096
  issue: 9541
  year: 2006
  end-page: 1105
  ident: CR29
  article-title: Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69420-8
  contributor:
    fullname: Bosch
– start-page: 35
  year: 2012
  end-page: 85
  ident: CR26
  article-title: Boosting Algorithms: A Review of Methods, Theory, and Applications
  publication-title: Ensemble Machine Learning
  doi: 10.1007/978-1-4419-9326-7_2
  contributor:
    fullname: Figueiredo
– volume: 70
  start-page: 63
  issue: 1
  year: 2005
  end-page: 70
  ident: CR40
  article-title: Derivation and validation of diabetes risk score for urban Asian Indians
  publication-title: Diabetes Res Clin Pr
  doi: 10.1016/j.diabres.2005.02.016
  contributor:
    fullname: Vijay
– volume: 28
  start-page: 485
  issue: 6
  year: 2012
  ident: 2077_CR10
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.2296
  contributor:
    fullname: T Thoopputra
– volume: 1
  start-page: S13
  issue: Suppl1
  year: 2018
  ident: 2077_CR24
  publication-title: Diabetes Care
  doi: 10.2337/dc18-S002
  contributor:
    fullname: American Diabetes Association.
– volume: 7
  start-page: 252
  issue: 4
  year: 2010
  ident: 2077_CR16
  publication-title: Rev Diabet Stud
  doi: 10.1900/RDS.2010.7.252
  contributor:
    fullname: Shankaracharya
– volume: 368
  start-page: 1096
  issue: 9541
  year: 2006
  ident: 2077_CR29
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69420-8
  contributor:
    fullname: HC Gerstein
– ident: 2077_CR31
  doi: 10.1109/CCCA.2011.6031433
– volume: 105
  start-page: 1
  issue: 1
  year: 2014
  ident: 2077_CR15
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2014.03.007
  contributor:
    fullname: SR Barber
– volume: 151
  start-page: 775
  issue: 11
  year: 2009
  ident: 2077_CR35
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-11-200912010-00005
  contributor:
    fullname: H Bang
– volume: 29
  start-page: 1872
  issue: 29
  year: 2006
  ident: 2077_CR41
  publication-title: Diabetes Care
  doi: 10.2337/dc05-2141
  contributor:
    fullname: W Aekplakorn
– volume: 310
  start-page: 948
  issue: 9
  year: 2013
  ident: 2077_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2013.168118
  contributor:
    fullname: Y Xu
– volume: 343
  start-page: d7163
  year: 2011
  ident: 2077_CR13
  publication-title: BMJ
  doi: 10.1136/bmj.d7163
  contributor:
    fullname: D Noble
– volume: 371
  start-page: 1783
  issue: 9626
  year: 2008
  ident: 2077_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60766-7
  contributor:
    fullname: G Li
– start-page: 525
  volume-title: Computer Technol Appl
  year: 2012
  ident: 2077_CR32
  contributor:
    fullname: M Montazeri
– volume: 29
  start-page: 410
  issue: 2
  year: 2006
  ident: 2077_CR43
  publication-title: Diabetes Care
  doi: 10.2337/diacare.29.02.06.dc05-0945
  contributor:
    fullname: C Glümer
– volume: 20
  start-page: 1664
  issue: 11
  year: 1997
  ident: 2077_CR4
  publication-title: Diabetes Care
  doi: 10.2337/diacare.20.11.1664
  contributor:
    fullname: XR Pan
– ident: 2077_CR17
  doi: 10.1155/2014/618976
– volume: 27
  start-page: 727
  issue: 3
  year: 2004
  ident: 2077_CR38
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.3.727
  contributor:
    fullname: C Glümer
– start-page: 35
  volume-title: Ensemble Machine Learning
  year: 2012
  ident: 2077_CR26
  doi: 10.1007/978-1-4419-9326-7_2
  contributor:
    fullname: AJ Ferreira
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 2077_CR25
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(97)00447-0
  contributor:
    fullname: MW Gardner
– volume: 81
  start-page: 863
  issue: 7
  year: 2010
  ident: 2077_CR23
  publication-title: Am Fam Physician.
  contributor:
    fullname: P Patel
– volume: 26
  start-page: 725
  issue: 3
  year: 2003
  ident: 2077_CR36
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.3.725
  contributor:
    fullname: J Lindström
– volume: 150
  start-page: 741
  issue: 11
  year: 2009
  ident: 2077_CR39
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-150-11-200906020-00002
  contributor:
    fullname: HS Kahn
– volume: 148
  start-page: 855
  issue: 11
  year: 2008
  ident: 2077_CR30
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-148-11-200806030-00008
  contributor:
    fullname: SL Norris
– ident: 2077_CR33
– volume: 374
  start-page: 1677
  issue: 9702
  year: 2009
  ident: 2077_CR8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61457-4
  contributor:
    fullname: WC Knowler
– volume: 62
  start-page: 1717
  issue: 4
  year: 2012
  ident: 2077_CR34
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.11.018
  contributor:
    fullname: AH Hashemian
– volume: 9
  start-page: 103
  year: 2011
  ident: 2077_CR12
  publication-title: BMC Med
  doi: 10.1186/1741-7015-9-103
  contributor:
    fullname: GS Collins
– volume: 362
  start-page: 1090
  issue: 12
  year: 2010
  ident: 2077_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0908292
  contributor:
    fullname: W Yang
– volume: 317
  start-page: 2515
  issue: 24
  year: 2017
  ident: 2077_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2017.7596
  contributor:
    fullname: L Wang
– volume: 4
  start-page: 64
  issue: 4
  year: 2015
  ident: 2077_CR28
  publication-title: IJARAI
  doi: 10.14569/IJARAI.2015.040411
  contributor:
    fullname: Z Nazari
– volume: 33
  start-page: 46
  year: 2011
  ident: 2077_CR9
  publication-title: Epidemiol Rev
  doi: 10.1093/epirev/mxq019
  contributor:
    fullname: B Buijsse
– volume: 00
  start-page: 111
  issue: 1
  year: 2013
  ident: 2077_CR18
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2013.01.023
  contributor:
    fullname: C Wang
– volume: 29
  start-page: 93
  issue: 2
  year: 2013
  ident: 2077_CR20
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.08.016
  contributor:
    fullname: XH Meng
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2077_CR27
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 7
  start-page: 304
  issue: 5
  year: 2015
  ident: 2077_CR44
  publication-title: Glob J Health Sci
  doi: 10.5539/gjhs.v7n5p304
  contributor:
    fullname: S Habibi
– start-page: 1673
  volume-title: Lancet
  year: 2006
  ident: 2077_CR6
  contributor:
    fullname: J Lindstrom
– volume: 346
  start-page: 393
  issue: 6
  year: 2002
  ident: 2077_CR7
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa012512
  contributor:
    fullname: WC Knowler
– volume-title: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions
  year: 2010
  ident: 2077_CR22
  doi: 10.1007/978-3-031-01899-2
  contributor:
    fullname: G Seni
– volume: 70
  start-page: 63
  issue: 1
  year: 2005
  ident: 2077_CR40
  publication-title: Diabetes Res Clin Pr
  doi: 10.1016/j.diabres.2005.02.016
  contributor:
    fullname: A Ramachandran
– volume: 345
  start-page: e5900
  year: 2012
  ident: 2077_CR11
  publication-title: BMJ
  doi: 10.1136/bmj.e5900
  contributor:
    fullname: A Abbasi
– volume: 30
  issue: 8
  year: 2007
  ident: 2077_CR37
  publication-title: Diabetes Care
– volume: 27
  start-page: 274
  issue: 3
  year: 2010
  ident: 2077_CR42
  publication-title: Diabetic Med
  doi: 10.1111/j.1464-5491.2010.02943.x
  contributor:
    fullname: WG Gao
– volume: 36
  start-page: 2431
  issue: 4
  year: 2012
  ident: 2077_CR14
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9710-5
  contributor:
    fullname: I Yoo
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 2077_CR21
  publication-title: Machine Learning
  contributor:
    fullname: JR Quinlan
– volume: 23
  start-page: 1522
  issue: 11
  year: 2013
  ident: 2077_CR19
  publication-title: World Appl Sci J
  contributor:
    fullname: R Mansour
SSID ssib031263182
ssj0002039635
ssib051367596
ssib034325102
Score 2.3439405
Snippet Summary Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to...
Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 582
SubjectTerms Adult
China - epidemiology
Cross-Sectional Studies
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - pathology
Female
Humans
Machine Learning
Male
Medicine
Medicine & Public Health
Retrospective Studies
Risk Assessment
Title Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults
URI https://link.springer.com/article/10.1007/s11596-019-2077-4
https://www.ncbi.nlm.nih.gov/pubmed/31346994
https://search.proquest.com/docview/2265765010
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcKkxAvE9v4KLDJSHvaFNT4KzVvFVpVTeo0VVTiLbJjG0GrFNXpw97407lLkwICHvYe-yLfOfe73N3vCPkeCp9p7Uwig2WJsCHDMS8-KZS1mtueVTW7_viPGk3F72t53SFs8-uinJ23Gcn6Q_3U6waOF4NfDYrNskRskQ8S2dDAhqds0NoQT5kCM924bOyblM8osiRSlMmGYu5unYgDG8RKRwZoHuOyTfLzLakv3dcrTPoqn1q7qeEe-djgSzpYG8Qn0vHlZ7IzbjLoX8jDuK6e9LQhVr2hOA1tHultSTEmpYw2RTKRTm7jjP5d4lpU3wWd-LiaV5FiTwo19BJfMYl1MRcKnfhquWhbNylWKP7DbXFEt4-eDpDqI-6T6fDX1eUoaaYwJAUXokocuHQeNKbvABo6wzNeaA_AzMmeSAUzAAH6osgKrWRwnnsWipQxYwJPbSYDPyDb5aL0R4Q6zZRnfWUsLITw1QTX9yYUTDlnXd91yY_2cPP7NdlG_kSrjJrIQRM5aiIXXXLWHn8OVwLzHKb0i1XMAVFCFCUh0uySw7VeNtvxlAulNaz-2Soqb25tfF_W8X89fUJ2GVpMXSZ4Srar5cp_BehS2W-1rT4C4a_gOQ
link.rule.ids 315,783,787,27936,27937,41535,42604,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVaKlEuqKWULv3ASJxAkYi_sua2QkXblkVoxUrcLDu2ERRl0Tp74MZPZyabLFS0h97jOPKMM280b94QshfLUGjtbSajY5lwscAxLyErlXOau0OnGnX90ZkaTsTPS3nZ9nGnju3elSSbP_VTsxtEXsx-NVi2KDLxmrxBeXUUzJ-wQedEPGcK_HQZs7FxUj7TyJKoUSZbjbmbRSUOnBCpjgzgPCZmy-rn33b9M369AKUvCqpNnDp5R9ZbgEkHC494T16FaoOsjtoS-gfyMGrok4G2yqpXFMeh3SZ6XVFMSimjLUsm0fF1-k3PZ7gW7XdExyHNb-tEsSmFWnqMn5ilhs2Fm45DPZt2vZsUKYr3-Fqc0R1SoAPU-kibZHLy_eJ4mLVjGLKSC1FnHmI6jxrrd4ANveUFL3UAZOblocgFs4AB-qIsSq1k9IEHFsucMWsjz10hI_9IVqppFT4R6jVTgfWVdbAQ8lcbfT_YWDLlvfN93yP73eGau4XahnnSVUZLGLCEQUsY0SO73fEbuBNY6LBVmM6TAUgJaZSEVLNHthZ2Wb6O51worWH1QWco017b9O-9tv_r6R3ydngxOjWnP85-fSZrDL2n4Qx-ISv1bB6-Ao6p3bfGbx8B5JDjlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZaKqFeEIU-wqMYqadWK1i_NuYW0Ub0EYSiRuJm2Wu7okUbFG8OvfWnM7OP0Ipy4L62V_7GmhnNN98Q8i6WodDa20xGxzLhYoFjXkJWKuc0d8dONer6k3N1NhNfLuVlN-c09Wz3viTZ9jSgSlNVH934eHTX-AZeGDNhDSgXRSaekmfgiThy-mZs1BsUz5kCm135b2yilH_pZUnUK5Od3tzPtioHBom0RwahPSZpq0ro_07915fdC1DvFVcbnzXeJBtdsElHrXW8IE9CtUXWJ105fZv8mTRUykA7ldUfFEejXSd6VVFMUCmjHWMm0elV-kUvFrgWsTyh05CW13Wi2KBCLT3FX8xSw-zCQ6ehXsz7Pk6KdMXfuC3O6w4p0BHqfqSXZDb-9P30LOtGMmQlF6LOPPh3HjXW8iBO9JYXvNQBojQvj0UumAUUhqIsSq1k9IEHFsucMWsjz10hI39F1qp5Fd4Q6jVTgQ2VdbAQclkb_TDYWDLlvfNDPyDv-8s1N63yhrnTWEYkDCBhEAkjBuSwv34D7wOLHrYK82UyEF5CSiUh7RyQ1y0uq-14zoXSGlZ_6IEy3RNOD5-186ivD8j6xcex-fb5_Osuec7QeBr64B5ZqxfLsA8hTe3eNmZ7C3hN59k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Models+in+Type+2+Diabetes+Risk+Prediction%3A+Results+from+a+Cross-sectional+Retrospective+Study+in+Chinese+Adults&rft.jtitle=Current+medical+science&rft.au=Xiong%2C+Xiao-Lu&rft.au=Zhang%2C+Rong-Xin&rft.au=Bi%2C+Yan&rft.au=Zhou%2C+Wei-Hong&rft.date=2019-08-01&rft.eissn=2523-899X&rft.volume=39&rft.issue=4&rft.spage=582&rft_id=info:doi/10.1007%2Fs11596-019-2077-4&rft_id=info%3Apmid%2F31346994&rft.externalDocID=31346994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-5230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-5230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-5230&client=summon