Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks
Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires...
Saved in:
Published in | Catalysis science & technology Vol. 1; no. 18; pp. 698 - 611 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2044-4753 2044-4761 |
DOI | 10.1039/d0cy01227k |
Cover
Loading…
Abstract | Efficient dinitrogen (N
2
) utilization using nitrogen-containing compounds such as ammonia (NH
3
) and nitrates, which are essential materials for modern fertilizers, medicines,
etc.
, is important to the development of human society. However, the industrial synthesis of NH
3
and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N
2
fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N
2
fixation mechanisms, including N
2
photoreduction to NH
3
and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering (
e.g.
, surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N
2
fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N
2
fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N
2
fixation into diverse value-added chemical feedstocks.
Surface-defect-engineered photocatalyst for nitrogen fixation. |
---|---|
AbstractList | Efficient dinitrogen (N
2
) utilization using nitrogen-containing compounds such as ammonia (NH
3
) and nitrates, which are essential materials for modern fertilizers, medicines,
etc.
, is important to the development of human society. However, the industrial synthesis of NH
3
and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N
2
fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N
2
fixation mechanisms, including N
2
photoreduction to NH
3
and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering (
e.g.
, surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N
2
fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N
2
fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N
2
fixation into diverse value-added chemical feedstocks. Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N 2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N 2 fixation mechanisms, including N 2 photoreduction to NH 3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering ( e.g. , surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N 2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N 2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N 2 fixation into diverse value-added chemical feedstocks. Surface-defect-engineered photocatalyst for nitrogen fixation. Efficient dinitrogen (N2) utilization using nitrogen-containing compounds such as ammonia (NH3) and nitrates, which are essential materials for modern fertilizers, medicines, etc., is important to the development of human society. However, the industrial synthesis of NH3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N2 fixation mechanisms, including N2 photoreduction to NH3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering (e.g., surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N2 fixation into diverse value-added chemical feedstocks. |
Author | Xu, Yi-Jun Li, Jing-Yu Tang, Zi-Rong Chen, Xue |
AuthorAffiliation | Fuzhou University College of Chemistry New Campus, Fuzhou University State Key Laboratory of Photocatalysis on Energy and Environment |
AuthorAffiliation_xml | – name: New Campus, Fuzhou University – name: State Key Laboratory of Photocatalysis on Energy and Environment – name: College of Chemistry – name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Xue surname: Chen fullname: Chen, Xue – sequence: 2 givenname: Jing-Yu surname: Li fullname: Li, Jing-Yu – sequence: 3 givenname: Zi-Rong surname: Tang fullname: Tang, Zi-Rong – sequence: 4 givenname: Yi-Jun surname: Xu fullname: Xu, Yi-Jun |
BookMark | eNp9UUtLAzEQDqJgrb14F1a8Cat57WZ7lPrEggf14GlJk0mbdpvUJBX7711bqSDiXGaY7zHMzAHadd4BQkcEnxPM-hcaqxUmlIrZDupQzHnORUl2t3XB9lEvxilug_cJrmgHjZ6WwUgFuQYDKuXgxtYBBNDZYuKTVzLJZhVTZnzInE3Bj8Flxn7IZL3LrEs-e5fNEnKpdStSE5hbJZvMAOjY6mfxEO0Z2UTofecuerm5fh7c5cPH2_vB5TBXjPOUa1YRA8JQ4LIYcRCEQFEyNaIlxrptllUfMyErURgtSlpxVUjeLyjWBeESWBedbnwXwb8tIaZ66pfBtSNryjlnosSCt6yzDUsFH2MAUy-Cncuwqgmuv85YX-HB6_qMDy0Z_yIrm9abpyBt87fkeCMJUW2tfz7T4if_4fVCG_YJXyeM0g |
CitedBy_id | crossref_primary_10_1039_D2TA09780J crossref_primary_10_3390_nano11102762 crossref_primary_10_1016_j_jtice_2021_07_034 crossref_primary_10_1016_j_mssp_2024_109249 crossref_primary_10_1039_D4CC00249K crossref_primary_10_1016_j_mtsust_2023_100527 crossref_primary_10_1021_acsanm_3c00422 crossref_primary_10_1021_acsmaterialslett_4c00041 crossref_primary_10_1039_D3MA00915G crossref_primary_10_1007_s40843_023_2587_7 crossref_primary_10_1002_pssa_202200293 crossref_primary_10_1021_acsami_3c17649 crossref_primary_10_3390_catal13030544 crossref_primary_10_1007_s11237_021_09693_3 crossref_primary_10_1002_adfm_202009807 crossref_primary_10_1002_smll_202306820 crossref_primary_10_1016_j_rsurfi_2024_100321 crossref_primary_10_1016_j_mcat_2024_114165 crossref_primary_10_1016_j_mcat_2025_115033 crossref_primary_10_1021_acs_langmuir_2c00336 crossref_primary_10_1016_j_apcatb_2022_122148 crossref_primary_10_1016_j_jallcom_2021_159298 crossref_primary_10_1016_j_jece_2020_104997 crossref_primary_10_1021_acscatal_4c03431 crossref_primary_10_1039_D1TA06739G crossref_primary_10_1007_s11237_021_09678_2 crossref_primary_10_1016_j_jallcom_2021_160374 crossref_primary_10_1002_adma_202304532 crossref_primary_10_1016_S1872_2067_21_63837_8 crossref_primary_10_1016_j_mcat_2023_113611 crossref_primary_10_1002_ejic_202400686 crossref_primary_10_1016_j_solidstatesciences_2022_106985 crossref_primary_10_1016_j_jcis_2021_06_055 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1007_s10562_021_03855_7 crossref_primary_10_1021_acssuschemeng_1c05107 crossref_primary_10_1016_j_jallcom_2024_173898 crossref_primary_10_1016_j_jcis_2023_06_191 crossref_primary_10_1039_D4QI01449A crossref_primary_10_1039_D4NJ04804K crossref_primary_10_1016_j_jcat_2024_115489 crossref_primary_10_1016_j_jece_2022_108224 crossref_primary_10_1039_D3TA04428A crossref_primary_10_1016_j_cattod_2022_04_007 crossref_primary_10_1016_j_jpcs_2022_111057 crossref_primary_10_1016_j_mcat_2021_112091 crossref_primary_10_1007_s11164_022_04916_1 crossref_primary_10_1016_j_colsurfa_2022_129430 |
Cites_doi | 10.1021/ja3012676 10.1021/acsami.8b05925 10.1039/C8CC09742A 10.1002/anie.201909477 10.1039/C9NR09157B 10.1039/c1jm11840d 10.1126/science.aaf2091 10.1021/jacs.8b07472 10.1039/C6CY00622A 10.1039/C8EE03781G 10.1021/jacs.8b08464 10.1002/chem.200390059 10.1039/C9TA06435D 10.1039/c1sc00249j 10.1002/adma.201807576 10.1021/acscatal.5b00444 10.1002/adma.201803498 10.1021/acs.accounts.6b00033 10.1039/C9CP04647J 10.1039/c3ta10951h 10.1039/C7MH00557A 10.1039/C5DT04901F 10.1021/cr00036a008 10.1021/acs.inorgchem.7b02493 10.1002/adma.201804672 10.1021/ja00464a015 10.1021/acscatal.7b00439 10.1016/j.chempr.2018.10.010 10.1007/s12274-018-2268-5 10.1039/C4NR04810E 10.1002/adfm.201906579 10.1021/ja100040p 10.1021/acs.accounts.6b00523 10.1016/j.catcom.2018.07.018 10.1002/anie.202002923 10.1016/j.apcatb.2016.08.002 10.1021/acscatal.5b01563 10.1016/j.ccr.2016.06.015 10.1021/acscatal.7b02165 10.1039/C7TA09762J 10.1002/aenm.201902319 10.1016/j.nanoen.2018.08.022 10.1039/C9RA03507A 10.1016/j.nanoen.2017.09.008 10.1002/adma.201604799 10.1021/jacs.9b03811 10.1038/nmat2317 10.1039/C8NR04277B 10.1021/jacs.8b02076 10.1126/science.aaa3145 10.1002/anie.201705628 10.1021/cr020610c 10.1039/C4NR02553A 10.1002/chem.201604510 10.1002/smll.201602947 10.1016/j.joule.2018.04.017 10.1021/acscatal.9b00994 10.1002/chem.201701113 10.1021/jacs.9b07963 10.1039/C5TA06540B 10.1021/nn1024219 10.1016/j.apcatb.2018.05.050 10.1021/jacs.5b03105 10.1021/cr400641x 10.1039/B909930A 10.1021/acssuschemeng.9b07679 10.1002/adma.201806482 10.1002/admi.201900091 10.1021/jacs.9b02501 10.1021/jacs.7b06634 10.1126/science.aaq1684 10.1021/ar900254x 10.1016/S1872-2067(17)62999-1 10.1021/acscatal.9b04925 10.1002/anie.201404748 10.1016/j.apcatb.2018.08.012 10.1023/B:RUCB.0000019873.81002.60 10.1002/adfm.201808375 10.1021/ja402956f 10.1021/ct300154b 10.1002/anie.202003518 10.1021/nn901850u 10.1021/acssuschemeng.8b02236 10.1002/adma.201701774 10.1007/s00775-014-1230-6 10.1021/jp908683x 10.1021/acssuschemeng.7b02908 10.1007/978-3-662-48719-8 10.1002/anie.201808177 10.1002/anie.201303000 10.1002/adma.201907112 10.1016/j.cattod.2016.08.014 10.1002/anie.201914335 10.1039/C5NR07380D 10.1093/nsr/nwz019 10.1039/C9TA09201C 10.1021/acscatal.9b03246 10.1039/C8CC03627F 10.1021/jacs.9b10588 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d0cy01227k |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 611 |
ExternalDocumentID | 10_1039_D0CY01227K d0cy01227k |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX ECGLT EE0 EF- HZ H~N J3I JG O-G O9- OK1 R7E R7G RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACAYK AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION EBS GGIMP H13 HZ~ RAOCF RVUXY 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c344t-d381fe7f2e4a5b4e711e563cb2600de4a689037a875fd76284c5a49520d514ae3 |
ISSN | 2044-4753 |
IngestDate | Sun Jun 29 15:56:43 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 02:28:34 EDT 2025 Sat Jan 08 03:51:39 EST 2022 Wed Nov 11 00:25:28 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-d381fe7f2e4a5b4e711e563cb2600de4a689037a875fd76284c5a49520d514ae3 |
Notes | fixation over semiconductor-based catalysts. Zi-Rong Tang is a Full Professor working at the College of Chemistry, Fuzhou University, P. R. China. Her current research interests primarily focus on the design and fabrication of nanostructured composite materials and their applications in the field of heterogeneous photocatalysis and heterogeneous thermocatalysis. 2 Yi-Jun Xu is a Full Professor working at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. He is a Fellow of the Royal Society of Chemistry (FRSC) and his current research interests primarily focus on the assembly and applications of composite materials in the field of heterogeneous photocatalysis. Xue Chen is pursuing her master's degree under the supervision of Prof. Yi-Jun Xu at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. Her current research interests focus on photocatalytic N Jing-Yu Li is pursuing her master's degree under the supervision of Prof. Yi-Jun Xu at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. Her current research interests focus on the synthesis and application of composite materials in heterogeneous photocatalysis. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2195-1695 0000-0002-6564-3539 |
PQID | 2444376074 |
PQPubID | 2047527 |
PageCount | 13 |
ParticipantIDs | rsc_primary_d0cy01227k crossref_primary_10_1039_D0CY01227K proquest_journals_2444376074 crossref_citationtrail_10_1039_D0CY01227K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-21 |
PublicationDateYYYYMMDD | 2020-09-21 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D0CY01227K-(cit47)/*[position()=1]) 2020; 12 Fang (D0CY01227K-(cit54)/*[position()=1]) 2019; 29 Ghana (D0CY01227K-(cit5)/*[position()=1]) 2019; 55 Hirakawa (D0CY01227K-(cit63)/*[position()=1]) 2017; 139 Li (D0CY01227K-(cit55)/*[position()=1]) 2018; 57 Zheng (D0CY01227K-(cit29)/*[position()=1]) 2019; 58 Naldoni (D0CY01227K-(cit61)/*[position()=1]) 2012; 134 Comer (D0CY01227K-(cit95)/*[position()=1]) 2018; 140 Zhang (D0CY01227K-(cit76)/*[position()=1]) 2016; 45 Légaré (D0CY01227K-(cit85)/*[position()=1]) 2018; 359 Medford (D0CY01227K-(cit1)/*[position()=1]) 2017; 7 Shi (D0CY01227K-(cit56)/*[position()=1]) 2019; 9 Liu (D0CY01227K-(cit80)/*[position()=1]) 2010; 20 Geng (D0CY01227K-(cit64)/*[position()=1]) 2018; 30 Schrauzer (D0CY01227K-(cit83)/*[position()=1]) 1977; 99 Zhang (D0CY01227K-(cit12)/*[position()=1]) 2020; 59 Wang (D0CY01227K-(cit53)/*[position()=1]) 2018; 53 Brown (D0CY01227K-(cit8)/*[position()=1]) 2016; 352 Chen (D0CY01227K-(cit39)/*[position()=1]) 2018; 5 Di (D0CY01227K-(cit65)/*[position()=1]) 2017; 41 Rusina (D0CY01227K-(cit21)/*[position()=1]) 2003; 9 Hou (D0CY01227K-(cit27)/*[position()=1]) 2019; 9 Hu (D0CY01227K-(cit81)/*[position()=1]) 2017; 201 Hu (D0CY01227K-(cit75)/*[position()=1]) 2016; 6 Spatzal (D0CY01227K-(cit99)/*[position()=1]) 2013; 52 Li (D0CY01227K-(cit35)/*[position()=1]) 2018; 10 Azofra (D0CY01227K-(cit90)/*[position()=1]) 2017; 23 Jiang (D0CY01227K-(cit18)/*[position()=1]) 2018; 236 Li (D0CY01227K-(cit38)/*[position()=1]) 2017; 50 Siegbahn (D0CY01227K-(cit3)/*[position()=1]) 2018; 57 Guan (D0CY01227K-(cit52)/*[position()=1]) 2013; 135 Zhang (D0CY01227K-(cit45)/*[position()=1]) 2019; 30 Park (D0CY01227K-(cit2)/*[position()=1]) 2012; 8 Hidai (D0CY01227K-(cit84)/*[position()=1]) 1995; 95 Dong (D0CY01227K-(cit72)/*[position()=1]) 2011; 21 Liu (D0CY01227K-(cit98)/*[position()=1]) 2015 Zhang (D0CY01227K-(cit94)/*[position()=1]) 2018; 6 Hu (D0CY01227K-(cit6)/*[position()=1]) 2010; 43 Qu (D0CY01227K-(cit97)/*[position()=1]) 2010; 4 Ling (D0CY01227K-(cit92)/*[position()=1]) 2018; 140 Wang (D0CY01227K-(cit96)/*[position()=1]) 2009; 8 Cheng (D0CY01227K-(cit42)/*[position()=1]) 2019; 7 Hoffman (D0CY01227K-(cit4)/*[position()=1]) 2014; 114 Dai (D0CY01227K-(cit13)/*[position()=1]) 2020; 59 Rong (D0CY01227K-(cit17)/*[position()=1]) 2018; 116 Li (D0CY01227K-(cit19)/*[position()=1]) 2018; 6 Zhang (D0CY01227K-(cit32)/*[position()=1]) 2018; 140 Liu (D0CY01227K-(cit10)/*[position()=1]) 2018; 8 Di (D0CY01227K-(cit28)/*[position()=1]) 2019; 31 Vu (D0CY01227K-(cit37)/*[position()=1]) 2019; 6 Zhou (D0CY01227K-(cit60)/*[position()=1]) 2011; 2 Xiao (D0CY01227K-(cit20)/*[position()=1]) 2018; 239 Shilov (D0CY01227K-(cit26)/*[position()=1]) 2003; 52 Tanaka (D0CY01227K-(cit87)/*[position()=1]) 2016; 49 Zhou (D0CY01227K-(cit82)/*[position()=1]) 2020; 142 Connor (D0CY01227K-(cit89)/*[position()=1]) 2017; 286 He (D0CY01227K-(cit77)/*[position()=1]) 2019; 9 Jeong (D0CY01227K-(cit11)/*[position()=1]) 2017; 5 Martín (D0CY01227K-(cit14)/*[position()=1]) 2019; 5 Xue (D0CY01227K-(cit15)/*[position()=1]) 2019; 141 Janet (D0CY01227K-(cit22)/*[position()=1]) 2010; 114 Wang (D0CY01227K-(cit50)/*[position()=1]) 2020; 32 Xu (D0CY01227K-(cit74)/*[position()=1]) 2018; 10 Liu (D0CY01227K-(cit91)/*[position()=1]) 2019; 141 Liu (D0CY01227K-(cit40)/*[position()=1]) 2019; 58 Xu (D0CY01227K-(cit51)/*[position()=1]) 2020; 59 Colmenares (D0CY01227K-(cit59)/*[position()=1]) 2016 Han (D0CY01227K-(cit48)/*[position()=1]) 2017; 13 Li (D0CY01227K-(cit66)/*[position()=1]) 2014; 6 Li (D0CY01227K-(cit69)/*[position()=1]) 2016; 8 Huang (D0CY01227K-(cit73)/*[position()=1]) 2015; 5 Li (D0CY01227K-(cit30)/*[position()=1]) 2020; 10 Bjornsson (D0CY01227K-(cit7)/*[position()=1]) 2015; 20 Wang (D0CY01227K-(cit9)/*[position()=1]) 2018; 2 Qi (D0CY01227K-(cit62)/*[position()=1]) 2018; 39 Dong (D0CY01227K-(cit24)/*[position()=1]) 2015; 3 Li (D0CY01227K-(cit67)/*[position()=1]) 2015; 137 Zhang (D0CY01227K-(cit78)/*[position()=1]) 2015; 5 Hu (D0CY01227K-(cit79)/*[position()=1]) 2019; 31 Hao (D0CY01227K-(cit93)/*[position()=1]) 2016; 22 Xue (D0CY01227K-(cit41)/*[position()=1]) 2019; 12 Peng (D0CY01227K-(cit71)/*[position()=1]) 2013; 1 Chen (D0CY01227K-(cit58)/*[position()=1]) 2010; 132 Wang (D0CY01227K-(cit49)/*[position()=1]) 2019; 12 Zhang (D0CY01227K-(cit57)/*[position()=1]) 2010; 4 Bao (D0CY01227K-(cit25)/*[position()=1]) 2017; 29 Huimin (D0CY01227K-(cit36)/*[position()=1]) 2019; 9 Li (D0CY01227K-(cit68)/*[position()=1]) 2014; 6 Zhao (D0CY01227K-(cit33)/*[position()=1]) 2019; 31 Liu (D0CY01227K-(cit44)/*[position()=1]) 2020; 8 Ren (D0CY01227K-(cit16)/*[position()=1]) 2018; 54 Cheng (D0CY01227K-(cit34)/*[position()=1]) 2019; 21 Oshikiri (D0CY01227K-(cit23)/*[position()=1]) 2014; 53 Wang (D0CY01227K-(cit43)/*[position()=1]) 2019; 6 Burford (D0CY01227K-(cit86)/*[position()=1]) 2017; 334 Yao (D0CY01227K-(cit46)/*[position()=1]) 2019; 7 Wang (D0CY01227K-(cit70)/*[position()=1]) 2017; 29 MacKay (D0CY01227K-(cit88)/*[position()=1]) 2004; 104 Zhang (D0CY01227K-(cit31)/*[position()=1]) 2019; 141 |
References_xml | – issn: 2016 publication-title: Heterogeneous Photocatalysis doi: Colmenares Xu – volume: 134 start-page: 7600 year: 2012 ident: D0CY01227K-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3012676 – volume: 10 start-page: 25321 year: 2018 ident: D0CY01227K-(cit74)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05925 – volume: 55 start-page: 3231 year: 2019 ident: D0CY01227K-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC09742A – volume: 58 start-page: 18604 year: 2019 ident: D0CY01227K-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909477 – volume: 12 start-page: 538 year: 2020 ident: D0CY01227K-(cit47)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR09157B – volume: 21 start-page: 12428 year: 2011 ident: D0CY01227K-(cit72)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm11840d – volume: 352 start-page: 448 year: 2016 ident: D0CY01227K-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf2091 – volume: 140 start-page: 14161 year: 2018 ident: D0CY01227K-(cit92)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07472 – volume: 6 start-page: 5884 year: 2016 ident: D0CY01227K-(cit75)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00622A – volume: 12 start-page: 1730 year: 2019 ident: D0CY01227K-(cit49)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03781G – volume: 140 start-page: 15157 year: 2018 ident: D0CY01227K-(cit95)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08464 – volume: 9 start-page: 561 year: 2003 ident: D0CY01227K-(cit21)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200390059 – volume: 7 start-page: 19616 year: 2019 ident: D0CY01227K-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06435D – volume: 2 start-page: 1980 year: 2011 ident: D0CY01227K-(cit60)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c1sc00249j – volume: 31 start-page: 1807576 year: 2019 ident: D0CY01227K-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807576 – volume: 5 start-page: 4094 year: 2015 ident: D0CY01227K-(cit73)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00444 – volume: 30 start-page: 1803498 year: 2018 ident: D0CY01227K-(cit64)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 49 start-page: 987 year: 2016 ident: D0CY01227K-(cit87)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00033 – volume: 21 start-page: 24449 year: 2019 ident: D0CY01227K-(cit34)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP04647J – volume: 1 start-page: 7630 year: 2013 ident: D0CY01227K-(cit71)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10951h – volume: 5 start-page: 9 year: 2018 ident: D0CY01227K-(cit39)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C7MH00557A – volume: 45 start-page: 3497 year: 2016 ident: D0CY01227K-(cit76)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT04901F – volume: 95 start-page: 1115 year: 1995 ident: D0CY01227K-(cit84)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00036a008 – volume: 57 start-page: 1090 year: 2018 ident: D0CY01227K-(cit3)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b02493 – volume: 31 start-page: e1804672 year: 2019 ident: D0CY01227K-(cit79)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804672 – volume: 99 start-page: 7189 year: 1977 ident: D0CY01227K-(cit83)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 7 start-page: 2624 year: 2017 ident: D0CY01227K-(cit1)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00439 – volume: 5 start-page: 263 year: 2019 ident: D0CY01227K-(cit14)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.10.010 – volume: 12 start-page: 1229 year: 2019 ident: D0CY01227K-(cit41)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-018-2268-5 – volume: 6 start-page: 14168 year: 2014 ident: D0CY01227K-(cit68)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04810E – volume: 30 start-page: 1906579 year: 2019 ident: D0CY01227K-(cit45)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906579 – volume: 132 start-page: 4438 year: 2010 ident: D0CY01227K-(cit58)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100040p – volume: 50 start-page: 112 year: 2017 ident: D0CY01227K-(cit38)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00523 – volume: 116 start-page: 16 year: 2018 ident: D0CY01227K-(cit17)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.07.018 – volume: 59 start-page: 9418 year: 2020 ident: D0CY01227K-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002923 – volume: 201 start-page: 58 year: 2017 ident: D0CY01227K-(cit81)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.08.002 – volume: 5 start-page: 7244 year: 2015 ident: D0CY01227K-(cit78)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01563 – volume: 334 start-page: 84 year: 2017 ident: D0CY01227K-(cit86)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.06.015 – volume: 8 start-page: 1186 year: 2018 ident: D0CY01227K-(cit10)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02165 – volume: 6 start-page: 3005 year: 2018 ident: D0CY01227K-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09762J – volume: 9 start-page: 1902319 year: 2019 ident: D0CY01227K-(cit27)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902319 – volume: 53 start-page: 144 year: 2018 ident: D0CY01227K-(cit53)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.022 – volume: 9 start-page: 21646 year: 2019 ident: D0CY01227K-(cit77)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA03507A – volume: 41 start-page: 172 year: 2017 ident: D0CY01227K-(cit65)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.008 – volume: 29 start-page: 1604799 year: 2017 ident: D0CY01227K-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 141 start-page: 9664 year: 2019 ident: D0CY01227K-(cit91)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 8 start-page: 76 year: 2009 ident: D0CY01227K-(cit96)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 10 start-page: 15429 year: 2018 ident: D0CY01227K-(cit35)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR04277B – volume: 140 start-page: 9434 year: 2018 ident: D0CY01227K-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – start-page: 970 year: 2015 ident: D0CY01227K-(cit98)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa3145 – volume: 57 start-page: 122 year: 2018 ident: D0CY01227K-(cit55)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705628 – volume: 104 start-page: 385 year: 2004 ident: D0CY01227K-(cit88)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020610c – volume: 6 start-page: 8473 year: 2014 ident: D0CY01227K-(cit66)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR02553A – volume: 22 start-page: 18722 year: 2016 ident: D0CY01227K-(cit93)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201604510 – volume: 13 start-page: 1602947 year: 2017 ident: D0CY01227K-(cit48)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602947 – volume: 2 start-page: 1055 year: 2018 ident: D0CY01227K-(cit9)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.04.017 – volume: 9 start-page: 5245 year: 2019 ident: D0CY01227K-(cit36)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00994 – volume: 23 start-page: 8275 year: 2017 ident: D0CY01227K-(cit90)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201701113 – volume: 141 start-page: 14976 year: 2019 ident: D0CY01227K-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07963 – volume: 3 start-page: 23435 year: 2015 ident: D0CY01227K-(cit24)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 4 start-page: 7303 year: 2010 ident: D0CY01227K-(cit57)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1024219 – volume: 236 start-page: 428 year: 2018 ident: D0CY01227K-(cit18)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.050 – volume: 137 start-page: 6393 year: 2015 ident: D0CY01227K-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 114 start-page: 4041 year: 2014 ident: D0CY01227K-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400641x – volume: 20 start-page: 831 year: 2010 ident: D0CY01227K-(cit80)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B909930A – volume: 8 start-page: 2320 year: 2020 ident: D0CY01227K-(cit44)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b07679 – volume: 31 start-page: e1806482 year: 2019 ident: D0CY01227K-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 6 start-page: 1900091 year: 2019 ident: D0CY01227K-(cit37)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900091 – volume: 141 start-page: 19269 year: 2019 ident: D0CY01227K-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02501 – volume: 139 start-page: 10929 year: 2017 ident: D0CY01227K-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06634 – volume: 359 start-page: 896 year: 2018 ident: D0CY01227K-(cit85)/*[position()=1] publication-title: Science doi: 10.1126/science.aaq1684 – volume: 43 start-page: 475 year: 2010 ident: D0CY01227K-(cit6)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900254x – volume: 39 start-page: 867 year: 2018 ident: D0CY01227K-(cit62)/*[position()=1] publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62999-1 – volume: 10 start-page: 2431 year: 2020 ident: D0CY01227K-(cit30)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b04925 – volume: 53 start-page: 9802 year: 2014 ident: D0CY01227K-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404748 – volume: 239 start-page: 260 year: 2018 ident: D0CY01227K-(cit20)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.08.012 – volume: 52 start-page: 2555 year: 2003 ident: D0CY01227K-(cit26)/*[position()=1] publication-title: Russ. Chem. Bull. doi: 10.1023/B:RUCB.0000019873.81002.60 – volume: 29 start-page: 1808375 year: 2019 ident: D0CY01227K-(cit54)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808375 – volume: 135 start-page: 10411 year: 2013 ident: D0CY01227K-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 8 start-page: 1983 year: 2012 ident: D0CY01227K-(cit2)/*[position()=1] publication-title: Theory Comput. doi: 10.1021/ct300154b – volume: 59 start-page: 10888 year: 2020 ident: D0CY01227K-(cit12)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003518 – volume: 4 start-page: 1321 year: 2010 ident: D0CY01227K-(cit97)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 6 start-page: 11190 year: 2018 ident: D0CY01227K-(cit94)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02236 – volume: 29 start-page: 1701774 year: 2017 ident: D0CY01227K-(cit70)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701774 – volume: 20 start-page: 447 year: 2015 ident: D0CY01227K-(cit7)/*[position()=1] publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-014-1230-6 – volume: 114 start-page: 2622 year: 2010 ident: D0CY01227K-(cit22)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp908683x – volume: 5 start-page: 9662 year: 2017 ident: D0CY01227K-(cit11)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02908 – volume-title: Heterogeneous Photocatalysis year: 2016 ident: D0CY01227K-(cit59)/*[position()=1] doi: 10.1007/978-3-662-48719-8 – volume: 58 start-page: 731 year: 2019 ident: D0CY01227K-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808177 – volume: 52 start-page: 10116 year: 2013 ident: D0CY01227K-(cit99)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303000 – volume: 32 start-page: e1907112 year: 2020 ident: D0CY01227K-(cit50)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201907112 – volume: 286 start-page: 21 year: 2017 ident: D0CY01227K-(cit89)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2016.08.014 – volume: 59 start-page: 3511 year: 2020 ident: D0CY01227K-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914335 – volume: 8 start-page: 1986 year: 2016 ident: D0CY01227K-(cit69)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR07380D – volume: 6 start-page: 730 year: 2019 ident: D0CY01227K-(cit43)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz019 – volume: 7 start-page: 27547 year: 2019 ident: D0CY01227K-(cit46)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09201C – volume: 9 start-page: 9739 year: 2019 ident: D0CY01227K-(cit56)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 54 start-page: 8474 year: 2018 ident: D0CY01227K-(cit16)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC03627F – volume: 142 start-page: 308 year: 2020 ident: D0CY01227K-(cit82)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10588 |
SSID | ssj0000491082 |
Score | 2.4795122 |
SecondaryResourceType | review_article |
Snippet | Efficient dinitrogen (N
2
) utilization using nitrogen-containing compounds such as ammonia (NH
3
) and nitrates, which are essential materials for modern... Efficient dinitrogen (N2) utilization using nitrogen-containing compounds such as ammonia (NH3) and nitrates, which are essential materials for modern... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 698 |
SubjectTerms | Ammonia Defects Energy consumption Fertilizers Nitrates Nitrogen Nitrogenation Photocatalysis Photocatalysts Photooxidation Raw materials Surface defects Synthesis |
Title | Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks |
URI | https://www.proquest.com/docview/2444376074 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEF8THQNZghdUeTiJEyePU-k0ShkSpFLHS5TYjlYNNVWbSIw_gb-ac2InmVYQ8BJFrnOqfD_fl893CL1OI8lTGlASyjACB8UJSOb7goiUC8l5lHmOvo388SI4n7Ppwl8MBj97WUtVmZ2IHzvvlfwPV2EM-Kpvyf4DZ1uiMADvwF94Aofh-Vc8_lJt8lQoIpVOyiDK1BYEG3J9VZRFHZq52ZZ1KiFs3U0BlEb58ntqMhzB7tTFvhXR4keOhC0ekINKA6NQXG_7tuu4IbfcjuxdIA2b8k5sfmwufCyqFjRTUJDksmqCAF2woJEzX5fkc2EUqJY_SzKtDIF-TAIcUH1M08UkmsiHTTut00pM87pOurmUMcJ4Uyn4RPXHmursrXimfRiGPWEb0KaBtVHcgdNMvaMUqKdrqkoqbvQ5Ir_uVJ897r_4lJzNZ7MkniziPXTggssBQv7gdBK_n7URO_ClHFp3H2v_u61360VvO_K3LZzObdnb2J4yte0SP0QPjNOBTxsEPUIDtXqM7rXL9QRlv0USvoUkDEjCFknYIglrJOEekrBFEu6Q9BTNzybx-JyY7htEeIyVRIItlyueu4qlfsYUdxzlB57IdEsDCYNBGFGPp-Dw5hJUasiEn4K77VIJRniqvEO0vypW6hnC1AeBwJQL3rPH_EiC3MiizA89xXQ-gTtEb-yKJcKUptcdUr4ldYqEFyXv6PiyXt0PQ_SqnbtuCrLsnHVsFz4xG3abgCXLdA4YZ0N0CMxov-94N0RHu39I1jI_-jPR5-h-txeO0X65qdQLsFjL7KWB0i-Kh5n2 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-defect-engineered+photocatalyst+for+nitrogen+fixation+into+value-added+chemical+feedstocks&rft.jtitle=Catalysis+science+%26+technology&rft.au=Chen%2C+Xue&rft.au=Jing-Yu%2C+Li&rft.au=Tang%2C+Zi-Rong&rft.au=Yi-Jun%2C+Xu&rft.date=2020-09-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=10&rft.issue=18&rft.spage=6098&rft.epage=6110&rft_id=info:doi/10.1039%2Fd0cy01227k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |