Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks

Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 1; no. 18; pp. 698 - 611
Main Authors Chen, Xue, Li, Jing-Yu, Tang, Zi-Rong, Xu, Yi-Jun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.09.2020
Subjects
Online AccessGet full text
ISSN2044-4753
2044-4761
DOI10.1039/d0cy01227k

Cover

Loading…
Abstract Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N 2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N 2 fixation mechanisms, including N 2 photoreduction to NH 3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering ( e.g. , surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N 2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N 2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N 2 fixation into diverse value-added chemical feedstocks. Surface-defect-engineered photocatalyst for nitrogen fixation.
AbstractList Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N 2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N 2 fixation mechanisms, including N 2 photoreduction to NH 3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering ( e.g. , surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N 2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N 2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N 2 fixation into diverse value-added chemical feedstocks.
Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern fertilizers, medicines, etc. , is important to the development of human society. However, the industrial synthesis of NH 3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N 2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N 2 fixation mechanisms, including N 2 photoreduction to NH 3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering ( e.g. , surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N 2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N 2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N 2 fixation into diverse value-added chemical feedstocks. Surface-defect-engineered photocatalyst for nitrogen fixation.
Efficient dinitrogen (N2) utilization using nitrogen-containing compounds such as ammonia (NH3) and nitrates, which are essential materials for modern fertilizers, medicines, etc., is important to the development of human society. However, the industrial synthesis of NH3 and nitrates requires high temperatures and pressures along with massive energy consumption. In this context, photocatalytic N2 fixation is regarded as an alternative promising strategy for the synthesis of nitrogen-containing compounds under ambient conditions. In this minireview, fundamental photocatalytic N2 fixation mechanisms, including N2 photoreduction to NH3 and photooxidation to nitrates, are initially elaborated. Then, we focus on the effects of surface defect engineering (e.g., surface vacancies and heteroatom dopants) over semiconductor-based photocatalysts for efficient N2 fixation. Finally, we cast a personal perspective on the possible future challenges faced by defect-containing photocatalysts for N2 fixation. We hope that this minireview can shed light on the further development of rational designs of defect-containing photocatalysts toward efficient N2 fixation into diverse value-added chemical feedstocks.
Author Xu, Yi-Jun
Li, Jing-Yu
Tang, Zi-Rong
Chen, Xue
AuthorAffiliation Fuzhou University
College of Chemistry
New Campus, Fuzhou University
State Key Laboratory of Photocatalysis on Energy and Environment
AuthorAffiliation_xml – name: New Campus, Fuzhou University
– name: State Key Laboratory of Photocatalysis on Energy and Environment
– name: College of Chemistry
– name: Fuzhou University
Author_xml – sequence: 1
  givenname: Xue
  surname: Chen
  fullname: Chen, Xue
– sequence: 2
  givenname: Jing-Yu
  surname: Li
  fullname: Li, Jing-Yu
– sequence: 3
  givenname: Zi-Rong
  surname: Tang
  fullname: Tang, Zi-Rong
– sequence: 4
  givenname: Yi-Jun
  surname: Xu
  fullname: Xu, Yi-Jun
BookMark eNp9UUtLAzEQDqJgrb14F1a8Cat57WZ7lPrEggf14GlJk0mbdpvUJBX7711bqSDiXGaY7zHMzAHadd4BQkcEnxPM-hcaqxUmlIrZDupQzHnORUl2t3XB9lEvxilug_cJrmgHjZ6WwUgFuQYDKuXgxtYBBNDZYuKTVzLJZhVTZnzInE3Bj8Flxn7IZL3LrEs-e5fNEnKpdStSE5hbJZvMAOjY6mfxEO0Z2UTofecuerm5fh7c5cPH2_vB5TBXjPOUa1YRA8JQ4LIYcRCEQFEyNaIlxrptllUfMyErURgtSlpxVUjeLyjWBeESWBedbnwXwb8tIaZ66pfBtSNryjlnosSCt6yzDUsFH2MAUy-Cncuwqgmuv85YX-HB6_qMDy0Z_yIrm9abpyBt87fkeCMJUW2tfz7T4if_4fVCG_YJXyeM0g
CitedBy_id crossref_primary_10_1039_D2TA09780J
crossref_primary_10_3390_nano11102762
crossref_primary_10_1016_j_jtice_2021_07_034
crossref_primary_10_1016_j_mssp_2024_109249
crossref_primary_10_1039_D4CC00249K
crossref_primary_10_1016_j_mtsust_2023_100527
crossref_primary_10_1021_acsanm_3c00422
crossref_primary_10_1021_acsmaterialslett_4c00041
crossref_primary_10_1039_D3MA00915G
crossref_primary_10_1007_s40843_023_2587_7
crossref_primary_10_1002_pssa_202200293
crossref_primary_10_1021_acsami_3c17649
crossref_primary_10_3390_catal13030544
crossref_primary_10_1007_s11237_021_09693_3
crossref_primary_10_1002_adfm_202009807
crossref_primary_10_1002_smll_202306820
crossref_primary_10_1016_j_rsurfi_2024_100321
crossref_primary_10_1016_j_mcat_2024_114165
crossref_primary_10_1016_j_mcat_2025_115033
crossref_primary_10_1021_acs_langmuir_2c00336
crossref_primary_10_1016_j_apcatb_2022_122148
crossref_primary_10_1016_j_jallcom_2021_159298
crossref_primary_10_1016_j_jece_2020_104997
crossref_primary_10_1021_acscatal_4c03431
crossref_primary_10_1039_D1TA06739G
crossref_primary_10_1007_s11237_021_09678_2
crossref_primary_10_1016_j_jallcom_2021_160374
crossref_primary_10_1002_adma_202304532
crossref_primary_10_1016_S1872_2067_21_63837_8
crossref_primary_10_1016_j_mcat_2023_113611
crossref_primary_10_1002_ejic_202400686
crossref_primary_10_1016_j_solidstatesciences_2022_106985
crossref_primary_10_1016_j_jcis_2021_06_055
crossref_primary_10_1007_s12274_021_3725_0
crossref_primary_10_1007_s10562_021_03855_7
crossref_primary_10_1021_acssuschemeng_1c05107
crossref_primary_10_1016_j_jallcom_2024_173898
crossref_primary_10_1016_j_jcis_2023_06_191
crossref_primary_10_1039_D4QI01449A
crossref_primary_10_1039_D4NJ04804K
crossref_primary_10_1016_j_jcat_2024_115489
crossref_primary_10_1016_j_jece_2022_108224
crossref_primary_10_1039_D3TA04428A
crossref_primary_10_1016_j_cattod_2022_04_007
crossref_primary_10_1016_j_jpcs_2022_111057
crossref_primary_10_1016_j_mcat_2021_112091
crossref_primary_10_1007_s11164_022_04916_1
crossref_primary_10_1016_j_colsurfa_2022_129430
Cites_doi 10.1021/ja3012676
10.1021/acsami.8b05925
10.1039/C8CC09742A
10.1002/anie.201909477
10.1039/C9NR09157B
10.1039/c1jm11840d
10.1126/science.aaf2091
10.1021/jacs.8b07472
10.1039/C6CY00622A
10.1039/C8EE03781G
10.1021/jacs.8b08464
10.1002/chem.200390059
10.1039/C9TA06435D
10.1039/c1sc00249j
10.1002/adma.201807576
10.1021/acscatal.5b00444
10.1002/adma.201803498
10.1021/acs.accounts.6b00033
10.1039/C9CP04647J
10.1039/c3ta10951h
10.1039/C7MH00557A
10.1039/C5DT04901F
10.1021/cr00036a008
10.1021/acs.inorgchem.7b02493
10.1002/adma.201804672
10.1021/ja00464a015
10.1021/acscatal.7b00439
10.1016/j.chempr.2018.10.010
10.1007/s12274-018-2268-5
10.1039/C4NR04810E
10.1002/adfm.201906579
10.1021/ja100040p
10.1021/acs.accounts.6b00523
10.1016/j.catcom.2018.07.018
10.1002/anie.202002923
10.1016/j.apcatb.2016.08.002
10.1021/acscatal.5b01563
10.1016/j.ccr.2016.06.015
10.1021/acscatal.7b02165
10.1039/C7TA09762J
10.1002/aenm.201902319
10.1016/j.nanoen.2018.08.022
10.1039/C9RA03507A
10.1016/j.nanoen.2017.09.008
10.1002/adma.201604799
10.1021/jacs.9b03811
10.1038/nmat2317
10.1039/C8NR04277B
10.1021/jacs.8b02076
10.1126/science.aaa3145
10.1002/anie.201705628
10.1021/cr020610c
10.1039/C4NR02553A
10.1002/chem.201604510
10.1002/smll.201602947
10.1016/j.joule.2018.04.017
10.1021/acscatal.9b00994
10.1002/chem.201701113
10.1021/jacs.9b07963
10.1039/C5TA06540B
10.1021/nn1024219
10.1016/j.apcatb.2018.05.050
10.1021/jacs.5b03105
10.1021/cr400641x
10.1039/B909930A
10.1021/acssuschemeng.9b07679
10.1002/adma.201806482
10.1002/admi.201900091
10.1021/jacs.9b02501
10.1021/jacs.7b06634
10.1126/science.aaq1684
10.1021/ar900254x
10.1016/S1872-2067(17)62999-1
10.1021/acscatal.9b04925
10.1002/anie.201404748
10.1016/j.apcatb.2018.08.012
10.1023/B:RUCB.0000019873.81002.60
10.1002/adfm.201808375
10.1021/ja402956f
10.1021/ct300154b
10.1002/anie.202003518
10.1021/nn901850u
10.1021/acssuschemeng.8b02236
10.1002/adma.201701774
10.1007/s00775-014-1230-6
10.1021/jp908683x
10.1021/acssuschemeng.7b02908
10.1007/978-3-662-48719-8
10.1002/anie.201808177
10.1002/anie.201303000
10.1002/adma.201907112
10.1016/j.cattod.2016.08.014
10.1002/anie.201914335
10.1039/C5NR07380D
10.1093/nsr/nwz019
10.1039/C9TA09201C
10.1021/acscatal.9b03246
10.1039/C8CC03627F
10.1021/jacs.9b10588
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d0cy01227k
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 611
ExternalDocumentID 10_1039_D0CY01227K
d0cy01227k
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
OK1
R7E
R7G
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACAYK
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
EBS
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c344t-d381fe7f2e4a5b4e711e563cb2600de4a689037a875fd76284c5a49520d514ae3
ISSN 2044-4753
IngestDate Sun Jun 29 15:56:43 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 02:28:34 EDT 2025
Sat Jan 08 03:51:39 EST 2022
Wed Nov 11 00:25:28 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-d381fe7f2e4a5b4e711e563cb2600de4a689037a875fd76284c5a49520d514ae3
Notes fixation over semiconductor-based catalysts.
Zi-Rong Tang is a Full Professor working at the College of Chemistry, Fuzhou University, P. R. China. Her current research interests primarily focus on the design and fabrication of nanostructured composite materials and their applications in the field of heterogeneous photocatalysis and heterogeneous thermocatalysis.
2
Yi-Jun Xu is a Full Professor working at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. He is a Fellow of the Royal Society of Chemistry (FRSC) and his current research interests primarily focus on the assembly and applications of composite materials in the field of heterogeneous photocatalysis.
Xue Chen is pursuing her master's degree under the supervision of Prof. Yi-Jun Xu at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. Her current research interests focus on photocatalytic N
Jing-Yu Li is pursuing her master's degree under the supervision of Prof. Yi-Jun Xu at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. Her current research interests focus on the synthesis and application of composite materials in heterogeneous photocatalysis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2195-1695
0000-0002-6564-3539
PQID 2444376074
PQPubID 2047527
PageCount 13
ParticipantIDs rsc_primary_d0cy01227k
crossref_primary_10_1039_D0CY01227K
proquest_journals_2444376074
crossref_citationtrail_10_1039_D0CY01227K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-21
PublicationDateYYYYMMDD 2020-09-21
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D0CY01227K-(cit47)/*[position()=1]) 2020; 12
Fang (D0CY01227K-(cit54)/*[position()=1]) 2019; 29
Ghana (D0CY01227K-(cit5)/*[position()=1]) 2019; 55
Hirakawa (D0CY01227K-(cit63)/*[position()=1]) 2017; 139
Li (D0CY01227K-(cit55)/*[position()=1]) 2018; 57
Zheng (D0CY01227K-(cit29)/*[position()=1]) 2019; 58
Naldoni (D0CY01227K-(cit61)/*[position()=1]) 2012; 134
Comer (D0CY01227K-(cit95)/*[position()=1]) 2018; 140
Zhang (D0CY01227K-(cit76)/*[position()=1]) 2016; 45
Légaré (D0CY01227K-(cit85)/*[position()=1]) 2018; 359
Medford (D0CY01227K-(cit1)/*[position()=1]) 2017; 7
Shi (D0CY01227K-(cit56)/*[position()=1]) 2019; 9
Liu (D0CY01227K-(cit80)/*[position()=1]) 2010; 20
Geng (D0CY01227K-(cit64)/*[position()=1]) 2018; 30
Schrauzer (D0CY01227K-(cit83)/*[position()=1]) 1977; 99
Zhang (D0CY01227K-(cit12)/*[position()=1]) 2020; 59
Wang (D0CY01227K-(cit53)/*[position()=1]) 2018; 53
Brown (D0CY01227K-(cit8)/*[position()=1]) 2016; 352
Chen (D0CY01227K-(cit39)/*[position()=1]) 2018; 5
Di (D0CY01227K-(cit65)/*[position()=1]) 2017; 41
Rusina (D0CY01227K-(cit21)/*[position()=1]) 2003; 9
Hou (D0CY01227K-(cit27)/*[position()=1]) 2019; 9
Hu (D0CY01227K-(cit81)/*[position()=1]) 2017; 201
Hu (D0CY01227K-(cit75)/*[position()=1]) 2016; 6
Spatzal (D0CY01227K-(cit99)/*[position()=1]) 2013; 52
Li (D0CY01227K-(cit35)/*[position()=1]) 2018; 10
Azofra (D0CY01227K-(cit90)/*[position()=1]) 2017; 23
Jiang (D0CY01227K-(cit18)/*[position()=1]) 2018; 236
Li (D0CY01227K-(cit38)/*[position()=1]) 2017; 50
Siegbahn (D0CY01227K-(cit3)/*[position()=1]) 2018; 57
Guan (D0CY01227K-(cit52)/*[position()=1]) 2013; 135
Zhang (D0CY01227K-(cit45)/*[position()=1]) 2019; 30
Park (D0CY01227K-(cit2)/*[position()=1]) 2012; 8
Hidai (D0CY01227K-(cit84)/*[position()=1]) 1995; 95
Dong (D0CY01227K-(cit72)/*[position()=1]) 2011; 21
Liu (D0CY01227K-(cit98)/*[position()=1]) 2015
Zhang (D0CY01227K-(cit94)/*[position()=1]) 2018; 6
Hu (D0CY01227K-(cit6)/*[position()=1]) 2010; 43
Qu (D0CY01227K-(cit97)/*[position()=1]) 2010; 4
Ling (D0CY01227K-(cit92)/*[position()=1]) 2018; 140
Wang (D0CY01227K-(cit96)/*[position()=1]) 2009; 8
Cheng (D0CY01227K-(cit42)/*[position()=1]) 2019; 7
Hoffman (D0CY01227K-(cit4)/*[position()=1]) 2014; 114
Dai (D0CY01227K-(cit13)/*[position()=1]) 2020; 59
Rong (D0CY01227K-(cit17)/*[position()=1]) 2018; 116
Li (D0CY01227K-(cit19)/*[position()=1]) 2018; 6
Zhang (D0CY01227K-(cit32)/*[position()=1]) 2018; 140
Liu (D0CY01227K-(cit10)/*[position()=1]) 2018; 8
Di (D0CY01227K-(cit28)/*[position()=1]) 2019; 31
Vu (D0CY01227K-(cit37)/*[position()=1]) 2019; 6
Zhou (D0CY01227K-(cit60)/*[position()=1]) 2011; 2
Xiao (D0CY01227K-(cit20)/*[position()=1]) 2018; 239
Shilov (D0CY01227K-(cit26)/*[position()=1]) 2003; 52
Tanaka (D0CY01227K-(cit87)/*[position()=1]) 2016; 49
Zhou (D0CY01227K-(cit82)/*[position()=1]) 2020; 142
Connor (D0CY01227K-(cit89)/*[position()=1]) 2017; 286
He (D0CY01227K-(cit77)/*[position()=1]) 2019; 9
Jeong (D0CY01227K-(cit11)/*[position()=1]) 2017; 5
Martín (D0CY01227K-(cit14)/*[position()=1]) 2019; 5
Xue (D0CY01227K-(cit15)/*[position()=1]) 2019; 141
Janet (D0CY01227K-(cit22)/*[position()=1]) 2010; 114
Wang (D0CY01227K-(cit50)/*[position()=1]) 2020; 32
Xu (D0CY01227K-(cit74)/*[position()=1]) 2018; 10
Liu (D0CY01227K-(cit91)/*[position()=1]) 2019; 141
Liu (D0CY01227K-(cit40)/*[position()=1]) 2019; 58
Xu (D0CY01227K-(cit51)/*[position()=1]) 2020; 59
Colmenares (D0CY01227K-(cit59)/*[position()=1]) 2016
Han (D0CY01227K-(cit48)/*[position()=1]) 2017; 13
Li (D0CY01227K-(cit66)/*[position()=1]) 2014; 6
Li (D0CY01227K-(cit69)/*[position()=1]) 2016; 8
Huang (D0CY01227K-(cit73)/*[position()=1]) 2015; 5
Li (D0CY01227K-(cit30)/*[position()=1]) 2020; 10
Bjornsson (D0CY01227K-(cit7)/*[position()=1]) 2015; 20
Wang (D0CY01227K-(cit9)/*[position()=1]) 2018; 2
Qi (D0CY01227K-(cit62)/*[position()=1]) 2018; 39
Dong (D0CY01227K-(cit24)/*[position()=1]) 2015; 3
Li (D0CY01227K-(cit67)/*[position()=1]) 2015; 137
Zhang (D0CY01227K-(cit78)/*[position()=1]) 2015; 5
Hu (D0CY01227K-(cit79)/*[position()=1]) 2019; 31
Hao (D0CY01227K-(cit93)/*[position()=1]) 2016; 22
Xue (D0CY01227K-(cit41)/*[position()=1]) 2019; 12
Peng (D0CY01227K-(cit71)/*[position()=1]) 2013; 1
Chen (D0CY01227K-(cit58)/*[position()=1]) 2010; 132
Wang (D0CY01227K-(cit49)/*[position()=1]) 2019; 12
Zhang (D0CY01227K-(cit57)/*[position()=1]) 2010; 4
Bao (D0CY01227K-(cit25)/*[position()=1]) 2017; 29
Huimin (D0CY01227K-(cit36)/*[position()=1]) 2019; 9
Li (D0CY01227K-(cit68)/*[position()=1]) 2014; 6
Zhao (D0CY01227K-(cit33)/*[position()=1]) 2019; 31
Liu (D0CY01227K-(cit44)/*[position()=1]) 2020; 8
Ren (D0CY01227K-(cit16)/*[position()=1]) 2018; 54
Cheng (D0CY01227K-(cit34)/*[position()=1]) 2019; 21
Oshikiri (D0CY01227K-(cit23)/*[position()=1]) 2014; 53
Wang (D0CY01227K-(cit43)/*[position()=1]) 2019; 6
Burford (D0CY01227K-(cit86)/*[position()=1]) 2017; 334
Yao (D0CY01227K-(cit46)/*[position()=1]) 2019; 7
Wang (D0CY01227K-(cit70)/*[position()=1]) 2017; 29
MacKay (D0CY01227K-(cit88)/*[position()=1]) 2004; 104
Zhang (D0CY01227K-(cit31)/*[position()=1]) 2019; 141
References_xml – issn: 2016
  publication-title: Heterogeneous Photocatalysis
  doi: Colmenares Xu
– volume: 134
  start-page: 7600
  year: 2012
  ident: D0CY01227K-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3012676
– volume: 10
  start-page: 25321
  year: 2018
  ident: D0CY01227K-(cit74)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05925
– volume: 55
  start-page: 3231
  year: 2019
  ident: D0CY01227K-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09742A
– volume: 58
  start-page: 18604
  year: 2019
  ident: D0CY01227K-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909477
– volume: 12
  start-page: 538
  year: 2020
  ident: D0CY01227K-(cit47)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR09157B
– volume: 21
  start-page: 12428
  year: 2011
  ident: D0CY01227K-(cit72)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11840d
– volume: 352
  start-page: 448
  year: 2016
  ident: D0CY01227K-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf2091
– volume: 140
  start-page: 14161
  year: 2018
  ident: D0CY01227K-(cit92)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07472
– volume: 6
  start-page: 5884
  year: 2016
  ident: D0CY01227K-(cit75)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00622A
– volume: 12
  start-page: 1730
  year: 2019
  ident: D0CY01227K-(cit49)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03781G
– volume: 140
  start-page: 15157
  year: 2018
  ident: D0CY01227K-(cit95)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08464
– volume: 9
  start-page: 561
  year: 2003
  ident: D0CY01227K-(cit21)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200390059
– volume: 7
  start-page: 19616
  year: 2019
  ident: D0CY01227K-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06435D
– volume: 2
  start-page: 1980
  year: 2011
  ident: D0CY01227K-(cit60)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00249j
– volume: 31
  start-page: 1807576
  year: 2019
  ident: D0CY01227K-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807576
– volume: 5
  start-page: 4094
  year: 2015
  ident: D0CY01227K-(cit73)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00444
– volume: 30
  start-page: 1803498
  year: 2018
  ident: D0CY01227K-(cit64)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 49
  start-page: 987
  year: 2016
  ident: D0CY01227K-(cit87)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00033
– volume: 21
  start-page: 24449
  year: 2019
  ident: D0CY01227K-(cit34)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP04647J
– volume: 1
  start-page: 7630
  year: 2013
  ident: D0CY01227K-(cit71)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10951h
– volume: 5
  start-page: 9
  year: 2018
  ident: D0CY01227K-(cit39)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00557A
– volume: 45
  start-page: 3497
  year: 2016
  ident: D0CY01227K-(cit76)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04901F
– volume: 95
  start-page: 1115
  year: 1995
  ident: D0CY01227K-(cit84)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00036a008
– volume: 57
  start-page: 1090
  year: 2018
  ident: D0CY01227K-(cit3)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b02493
– volume: 31
  start-page: e1804672
  year: 2019
  ident: D0CY01227K-(cit79)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804672
– volume: 99
  start-page: 7189
  year: 1977
  ident: D0CY01227K-(cit83)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 7
  start-page: 2624
  year: 2017
  ident: D0CY01227K-(cit1)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00439
– volume: 5
  start-page: 263
  year: 2019
  ident: D0CY01227K-(cit14)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.010
– volume: 12
  start-page: 1229
  year: 2019
  ident: D0CY01227K-(cit41)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2268-5
– volume: 6
  start-page: 14168
  year: 2014
  ident: D0CY01227K-(cit68)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04810E
– volume: 30
  start-page: 1906579
  year: 2019
  ident: D0CY01227K-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906579
– volume: 132
  start-page: 4438
  year: 2010
  ident: D0CY01227K-(cit58)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100040p
– volume: 50
  start-page: 112
  year: 2017
  ident: D0CY01227K-(cit38)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00523
– volume: 116
  start-page: 16
  year: 2018
  ident: D0CY01227K-(cit17)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2018.07.018
– volume: 59
  start-page: 9418
  year: 2020
  ident: D0CY01227K-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002923
– volume: 201
  start-page: 58
  year: 2017
  ident: D0CY01227K-(cit81)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.08.002
– volume: 5
  start-page: 7244
  year: 2015
  ident: D0CY01227K-(cit78)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01563
– volume: 334
  start-page: 84
  year: 2017
  ident: D0CY01227K-(cit86)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.06.015
– volume: 8
  start-page: 1186
  year: 2018
  ident: D0CY01227K-(cit10)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02165
– volume: 6
  start-page: 3005
  year: 2018
  ident: D0CY01227K-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09762J
– volume: 9
  start-page: 1902319
  year: 2019
  ident: D0CY01227K-(cit27)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902319
– volume: 53
  start-page: 144
  year: 2018
  ident: D0CY01227K-(cit53)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.022
– volume: 9
  start-page: 21646
  year: 2019
  ident: D0CY01227K-(cit77)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03507A
– volume: 41
  start-page: 172
  year: 2017
  ident: D0CY01227K-(cit65)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.008
– volume: 29
  start-page: 1604799
  year: 2017
  ident: D0CY01227K-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 141
  start-page: 9664
  year: 2019
  ident: D0CY01227K-(cit91)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 8
  start-page: 76
  year: 2009
  ident: D0CY01227K-(cit96)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 10
  start-page: 15429
  year: 2018
  ident: D0CY01227K-(cit35)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR04277B
– volume: 140
  start-page: 9434
  year: 2018
  ident: D0CY01227K-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– start-page: 970
  year: 2015
  ident: D0CY01227K-(cit98)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 57
  start-page: 122
  year: 2018
  ident: D0CY01227K-(cit55)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705628
– volume: 104
  start-page: 385
  year: 2004
  ident: D0CY01227K-(cit88)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020610c
– volume: 6
  start-page: 8473
  year: 2014
  ident: D0CY01227K-(cit66)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR02553A
– volume: 22
  start-page: 18722
  year: 2016
  ident: D0CY01227K-(cit93)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201604510
– volume: 13
  start-page: 1602947
  year: 2017
  ident: D0CY01227K-(cit48)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602947
– volume: 2
  start-page: 1055
  year: 2018
  ident: D0CY01227K-(cit9)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
– volume: 9
  start-page: 5245
  year: 2019
  ident: D0CY01227K-(cit36)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00994
– volume: 23
  start-page: 8275
  year: 2017
  ident: D0CY01227K-(cit90)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201701113
– volume: 141
  start-page: 14976
  year: 2019
  ident: D0CY01227K-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07963
– volume: 3
  start-page: 23435
  year: 2015
  ident: D0CY01227K-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06540B
– volume: 4
  start-page: 7303
  year: 2010
  ident: D0CY01227K-(cit57)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1024219
– volume: 236
  start-page: 428
  year: 2018
  ident: D0CY01227K-(cit18)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.050
– volume: 137
  start-page: 6393
  year: 2015
  ident: D0CY01227K-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 114
  start-page: 4041
  year: 2014
  ident: D0CY01227K-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400641x
– volume: 20
  start-page: 831
  year: 2010
  ident: D0CY01227K-(cit80)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B909930A
– volume: 8
  start-page: 2320
  year: 2020
  ident: D0CY01227K-(cit44)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07679
– volume: 31
  start-page: e1806482
  year: 2019
  ident: D0CY01227K-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 6
  start-page: 1900091
  year: 2019
  ident: D0CY01227K-(cit37)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900091
– volume: 141
  start-page: 19269
  year: 2019
  ident: D0CY01227K-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02501
– volume: 139
  start-page: 10929
  year: 2017
  ident: D0CY01227K-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06634
– volume: 359
  start-page: 896
  year: 2018
  ident: D0CY01227K-(cit85)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaq1684
– volume: 43
  start-page: 475
  year: 2010
  ident: D0CY01227K-(cit6)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900254x
– volume: 39
  start-page: 867
  year: 2018
  ident: D0CY01227K-(cit62)/*[position()=1]
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62999-1
– volume: 10
  start-page: 2431
  year: 2020
  ident: D0CY01227K-(cit30)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04925
– volume: 53
  start-page: 9802
  year: 2014
  ident: D0CY01227K-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404748
– volume: 239
  start-page: 260
  year: 2018
  ident: D0CY01227K-(cit20)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.08.012
– volume: 52
  start-page: 2555
  year: 2003
  ident: D0CY01227K-(cit26)/*[position()=1]
  publication-title: Russ. Chem. Bull.
  doi: 10.1023/B:RUCB.0000019873.81002.60
– volume: 29
  start-page: 1808375
  year: 2019
  ident: D0CY01227K-(cit54)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808375
– volume: 135
  start-page: 10411
  year: 2013
  ident: D0CY01227K-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 8
  start-page: 1983
  year: 2012
  ident: D0CY01227K-(cit2)/*[position()=1]
  publication-title: Theory Comput.
  doi: 10.1021/ct300154b
– volume: 59
  start-page: 10888
  year: 2020
  ident: D0CY01227K-(cit12)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003518
– volume: 4
  start-page: 1321
  year: 2010
  ident: D0CY01227K-(cit97)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn901850u
– volume: 6
  start-page: 11190
  year: 2018
  ident: D0CY01227K-(cit94)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02236
– volume: 29
  start-page: 1701774
  year: 2017
  ident: D0CY01227K-(cit70)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701774
– volume: 20
  start-page: 447
  year: 2015
  ident: D0CY01227K-(cit7)/*[position()=1]
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-014-1230-6
– volume: 114
  start-page: 2622
  year: 2010
  ident: D0CY01227K-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908683x
– volume: 5
  start-page: 9662
  year: 2017
  ident: D0CY01227K-(cit11)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02908
– volume-title: Heterogeneous Photocatalysis
  year: 2016
  ident: D0CY01227K-(cit59)/*[position()=1]
  doi: 10.1007/978-3-662-48719-8
– volume: 58
  start-page: 731
  year: 2019
  ident: D0CY01227K-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808177
– volume: 52
  start-page: 10116
  year: 2013
  ident: D0CY01227K-(cit99)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303000
– volume: 32
  start-page: e1907112
  year: 2020
  ident: D0CY01227K-(cit50)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907112
– volume: 286
  start-page: 21
  year: 2017
  ident: D0CY01227K-(cit89)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.08.014
– volume: 59
  start-page: 3511
  year: 2020
  ident: D0CY01227K-(cit51)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914335
– volume: 8
  start-page: 1986
  year: 2016
  ident: D0CY01227K-(cit69)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR07380D
– volume: 6
  start-page: 730
  year: 2019
  ident: D0CY01227K-(cit43)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz019
– volume: 7
  start-page: 27547
  year: 2019
  ident: D0CY01227K-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09201C
– volume: 9
  start-page: 9739
  year: 2019
  ident: D0CY01227K-(cit56)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 54
  start-page: 8474
  year: 2018
  ident: D0CY01227K-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03627F
– volume: 142
  start-page: 308
  year: 2020
  ident: D0CY01227K-(cit82)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10588
SSID ssj0000491082
Score 2.4795122
SecondaryResourceType review_article
Snippet Efficient dinitrogen (N 2 ) utilization using nitrogen-containing compounds such as ammonia (NH 3 ) and nitrates, which are essential materials for modern...
Efficient dinitrogen (N2) utilization using nitrogen-containing compounds such as ammonia (NH3) and nitrates, which are essential materials for modern...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 698
SubjectTerms Ammonia
Defects
Energy consumption
Fertilizers
Nitrates
Nitrogen
Nitrogenation
Photocatalysis
Photocatalysts
Photooxidation
Raw materials
Surface defects
Synthesis
Title Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks
URI https://www.proquest.com/docview/2444376074
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEF8THQNZghdUeTiJEyePU-k0ShkSpFLHS5TYjlYNNVWbSIw_gb-ac2InmVYQ8BJFrnOqfD_fl893CL1OI8lTGlASyjACB8UJSOb7goiUC8l5lHmOvo388SI4n7Ppwl8MBj97WUtVmZ2IHzvvlfwPV2EM-Kpvyf4DZ1uiMADvwF94Aofh-Vc8_lJt8lQoIpVOyiDK1BYEG3J9VZRFHZq52ZZ1KiFs3U0BlEb58ntqMhzB7tTFvhXR4keOhC0ekINKA6NQXG_7tuu4IbfcjuxdIA2b8k5sfmwufCyqFjRTUJDksmqCAF2woJEzX5fkc2EUqJY_SzKtDIF-TAIcUH1M08UkmsiHTTut00pM87pOurmUMcJ4Uyn4RPXHmursrXimfRiGPWEb0KaBtVHcgdNMvaMUqKdrqkoqbvQ5Ir_uVJ897r_4lJzNZ7MkniziPXTggssBQv7gdBK_n7URO_ClHFp3H2v_u61360VvO_K3LZzObdnb2J4yte0SP0QPjNOBTxsEPUIDtXqM7rXL9QRlv0USvoUkDEjCFknYIglrJOEekrBFEu6Q9BTNzybx-JyY7htEeIyVRIItlyueu4qlfsYUdxzlB57IdEsDCYNBGFGPp-Dw5hJUasiEn4K77VIJRniqvEO0vypW6hnC1AeBwJQL3rPH_EiC3MiizA89xXQ-gTtEb-yKJcKUptcdUr4ldYqEFyXv6PiyXt0PQ_SqnbtuCrLsnHVsFz4xG3abgCXLdA4YZ0N0CMxov-94N0RHu39I1jI_-jPR5-h-txeO0X65qdQLsFjL7KWB0i-Kh5n2
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-defect-engineered+photocatalyst+for+nitrogen+fixation+into+value-added+chemical+feedstocks&rft.jtitle=Catalysis+science+%26+technology&rft.au=Chen%2C+Xue&rft.au=Jing-Yu%2C+Li&rft.au=Tang%2C+Zi-Rong&rft.au=Yi-Jun%2C+Xu&rft.date=2020-09-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=10&rft.issue=18&rft.spage=6098&rft.epage=6110&rft_id=info:doi/10.1039%2Fd0cy01227k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon