Condition assessment of underground corroded pipelines subject to hydrogen damage and combined internal pressure and axial compression

•Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure. In this work, a 3D finite element (FE) based...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 142; p. 105389
Main Authors Qin, Guojin, Zhang, Zhenwei, Hou, Xiangqin, Lu, Hongfang, Huang, Y., Wang, Yihuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure. In this work, a 3D finite element (FE) based model was developed to assess the condition of an underground hydrogen transmission pipeline containing a corrosion defect under combined internal pressure and soil movement-induced axial compression. The use of mechanical properties of X100 pipeline steel under different hydrogen charging time models the degree of hydrogen damage in pipelines. Parameter effects, i.e., axial compressive stress, hydrogen damage, defect geometries, and pipeline diameter-to-thickness ratio, were determined. The results demonstrated that the synergistic effect of axial compression, internal pressure, corrosion, and hydrogen damage can lead to a significant decrease in the failure pressure of pipelines. The failure pressure decreased with the wall thickness reduction and increased hydrogen damage, axial compressive stress, defect length, defect depth, and pipe diameter. The competitive effect was observed between the degree of metal loss and hydrogen damage in determining the burst capacity of pipelines. In situations where the pipeline integrity was severely compromised, the failure pressure exhibited minimal reduction despite the increasing severity of hydrogen damage. The stress distribution at the defect zone was influenced by axial compressive stress but remained unaffected by hydrogen damage under normal operating conditions (i.e., an internal pressure of 10 MPa). This work is expected to help operators understand the applicability of elder and in-service pipelines for hydrogen transmission.
AbstractList •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure. In this work, a 3D finite element (FE) based model was developed to assess the condition of an underground hydrogen transmission pipeline containing a corrosion defect under combined internal pressure and soil movement-induced axial compression. The use of mechanical properties of X100 pipeline steel under different hydrogen charging time models the degree of hydrogen damage in pipelines. Parameter effects, i.e., axial compressive stress, hydrogen damage, defect geometries, and pipeline diameter-to-thickness ratio, were determined. The results demonstrated that the synergistic effect of axial compression, internal pressure, corrosion, and hydrogen damage can lead to a significant decrease in the failure pressure of pipelines. The failure pressure decreased with the wall thickness reduction and increased hydrogen damage, axial compressive stress, defect length, defect depth, and pipe diameter. The competitive effect was observed between the degree of metal loss and hydrogen damage in determining the burst capacity of pipelines. In situations where the pipeline integrity was severely compromised, the failure pressure exhibited minimal reduction despite the increasing severity of hydrogen damage. The stress distribution at the defect zone was influenced by axial compressive stress but remained unaffected by hydrogen damage under normal operating conditions (i.e., an internal pressure of 10 MPa). This work is expected to help operators understand the applicability of elder and in-service pipelines for hydrogen transmission.
ArticleNumber 105389
Author Wang, Yihuan
Lu, Hongfang
Hou, Xiangqin
Qin, Guojin
Huang, Y.
Zhang, Zhenwei
Author_xml – sequence: 1
  givenname: Guojin
  orcidid: 0000-0002-3472-7457
  surname: Qin
  fullname: Qin, Guojin
  organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 2
  givenname: Zhenwei
  orcidid: 0009-0005-7150-493X
  surname: Zhang
  fullname: Zhang, Zhenwei
  organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 3
  givenname: Xiangqin
  surname: Hou
  fullname: Hou, Xiangqin
  organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 4
  givenname: Hongfang
  surname: Lu
  fullname: Lu, Hongfang
  organization: China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing 210096, China
– sequence: 5
  givenname: Y.
  orcidid: 0000-0002-5518-2329
  surname: Huang
  fullname: Huang, Y.
  organization: Safety and Security Science Section, Department of Values, Technology, and Innovation, Faculty of Technology, Policy, and Management, Delft University of Technology, 2628 BX Delft, The Netherlands
– sequence: 6
  givenname: Yihuan
  orcidid: 0000-0001-9222-4949
  surname: Wang
  fullname: Wang, Yihuan
  email: yihuan.wang@swpu.edu.cn
  organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wNZsst1kwYsU_0HBi55DNpnWLN1kSVKxL-Bzm3Y9eehp4DfzzTDfDE2cd4DQbUkWJSnru26R9jEtKKEsB0smmgs0LQUXRcXqaoKmRIi64LwRV2gWY0cIWVLaTNHPyjtjk_UOqxghxh5cwn6D985A2AafK9Y-BG_A4MEOsLMOIo77tgOdcPL482CC34LDRvVqC1idiL7NcwZblyA4tcNDyMv3YWyrb5ujPHRK8_FrdLlRuwg3f3WOPp4e31cvxfrt-XX1sC40q6pUGNooTUUjmOCctURAU5uKQrURVSvIUgktKNS81K0mjCvCabMkzDRGGGJazuZIjHt18DEG2Ehtkzq-n4KyO1kSefQpO3n0KY8-5egzo_QfOgTbq3A4D92PEOSnviwEGbUFp8HYkPVJ4-05_BfvppWL
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_141601
crossref_primary_10_1016_j_energy_2025_135401
crossref_primary_10_1016_j_ijhydene_2024_01_106
crossref_primary_10_1016_j_tust_2024_106130
crossref_primary_10_1061_JPSEA2_PSENG_1577
Cites_doi 10.1016/0360-3199(76)90024-0
10.1016/j.jclepro.2010.05.024
10.1016/j.ijpvp.2021.104329
10.1016/j.engstruct.2018.03.040
10.1016/j.enconman.2022.116398
10.1016/j.engfailanal.2020.104607
10.1016/j.ijpvp.2011.09.008
10.1016/j.oceaneng.2022.112875
10.1016/j.engfracmech.2019.106528
10.1016/j.ijpvp.2008.11.011
10.1016/j.engstruct.2019.02.010
10.1016/j.corsci.2012.01.028
10.1177/1475921720968292
10.1016/j.ijhydene.2013.08.118
10.1016/j.ijhydene.2012.02.009
10.1016/j.ijhydene.2022.09.173
10.1139/T09-019
10.1016/j.oceaneng.2023.114663
10.1016/j.ijhydene.2021.11.082
10.1016/j.engfailanal.2021.105985
10.1016/j.oceaneng.2021.110004
10.1007/s10853-018-2291-7
10.1016/j.rser.2020.110525
10.1016/j.tust.2023.105101
10.1007/s40789-023-00580-x
10.1186/s40677-023-00237-6
10.1016/j.tws.2021.108771
10.1016/j.ijhydene.2014.12.040
10.1016/j.ijhydene.2012.05.143
10.1016/j.probengmech.2022.103315
10.1039/C8EE90006J
10.1007/s40430-019-1674-2
10.1080/15732479.2017.1285330
10.1016/j.corsci.2009.11.044
10.1016/j.ijhydene.2022.03.208
10.1016/j.jpse.2023.100112
10.3390/ma12091409
10.1016/j.engfailanal.2014.09.013
10.1038/s41597-023-02177-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2023.105389
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2023_105389
S0886779823004091
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-d29ac289838773b08e96d42e4f84b805a8c82e671cbc037a0729503d9d8d0db73
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 01:06:37 EDT 2025
Fri Feb 23 02:35:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Underground pipelines
Finite element modeling
Corrosion
Condition assessment
Hydrogen damage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-d29ac289838773b08e96d42e4f84b805a8c82e671cbc037a0729503d9d8d0db73
ORCID 0009-0005-7150-493X
0000-0002-5518-2329
0000-0002-3472-7457
0000-0001-9222-4949
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0886779823004091
ParticipantIDs crossref_citationtrail_10_1016_j_tust_2023_105389
crossref_primary_10_1016_j_tust_2023_105389
elsevier_sciencedirect_doi_10_1016_j_tust_2023_105389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wijewickreme, Karimian, Honegger (b0220) 2009; 46
Bhardwaj, Teixeira, Guedes Soares (b0015) 2021; 241
Mondal, Dhar (b0145) 2019; 186
Liu, Wang, Zhang, Guo (b0125) 2023; 10
Lu, Xu, Cheng, Peng, Xi, Jiang, Shan (b0135) 2023; 10
Chiodo, Ruggieri (b0065) 2009; 86
Kittel, Smanio, Fregonese, Garnier, Lefebvre (b0120) 2010; 52
European Gas pipeline Incident data Group (EGIG), 2020. 11th EGIG report: Period 2010–2019, Doc. Number VA 20.0432.
Jia, Lei, Li, Xu, Li, Lu, Cai (b0110) 2023
Chen, Zhang, Zhang, Liu, Li, Zhou (b0050) 2015; 47
Elazzizi, Hadj Meliani, Khelil, Pluvinage, Matvienko (b0070) 2015; 40
Nanninga, Levy, Drexler, Condon, Stevenson, Slifka (b0150) 2012; 59
Bruere, Bouchonneau, Motta, Afonso, Willmersdorf, Lyra, Torres, de Andrade, Cunha (b0030) 2019; 41
Zhang, Tian (b0235) 2022; 47
Cai, Bai, Gao, Li, Hou (b0035) 2022; 9
Guo, Fan, Liu, Liu, Wang, Xie, Jia (b0095) 2023; 10
Cheng (b0100) 2023; 42
Qin, Huang, Wang, Cheng (b0170) 2023; 136
Djukic, Bakic, Zeravcic, Sedmak, Rajicic (bib241) 2019; 216
Wang, Xia, Qin (b0210) 2022; 69
Cheng, Cheng (b0055) 2023
Zhang, Zhou (b0240) 2022; 171
Capelle, Dmytrakh, Azari, Pluvinage (b0045) 2013; 38
Huang, Qin, Hu (b0105) 2022; 266
Pipeline and Hazardous Materials Safety Administration (PHMSA) (b0160) 2020
Ogden (b0155) 1999; 24
Louthan, Caskey (b0130) 1976; 1
Canadian Energy Pipeline Association (CEPA) (b0040) 2019
Arsad, Hannan, Al-Shetwi, Mansur, Muttaqi, Dong, Blaabjerg (b0005) 2022; 47
Titov, Lun-Fu, Bubenchikov, Gayvaronskiy, Bubenchikov, Lider, Syrtanov, Kudiiarov (b0200) 2019; 12
Kere, Huang (b0115) 2022
Wang, H., 2018. Study on the Hydrogen Embrittlement Sensitivity of X100 Pipeline Steel. Tianjin University [Dissertation], Tianjin.
Barrera, Bombac, Chen, Daff, Galindo-Nava, Gong (b0010) 2018; 53
Xu, Cheng (b0230) 2012; 89
Briottet, Moro, Lemoine (b0025) 2012; 37
Miltner, Wukovits, Pröll, Friedl (b0140) 2010; 18
Gong, Zhou (b0080) 2017; 13
Saadi, Lewis, McFarland (b0175) 2018; 11
Gunawan, Cavana, Leone, Monaghan (b0085) 2022; 273
Guo, Liu, Li, Lu (b0090) 2023; 280
Shuai, Zhang, Feng, Han, Cheng (b0180) 2022
Briottet, Batisse, de Dinechin, Langlois, Thiers (b0020) 2012; 37
Ali, Qin, Faber (b0225) 2022; 21
Wang, Zhang, Hou, Qin (b0205) 2020; 115
Qin, Cheng (b0165) 2021; 191
Sun, Ren, Cheng (b0195) 2022; 47
Child, Koskinen, Linnanen, Breyer (b0060) 2021; 138
Sun, Cheng (b0185) 2018; 165
Sun, Cheng (b0190) 2022; 133
Barrera (10.1016/j.tust.2023.105389_b0010) 2018; 53
Cheng (10.1016/j.tust.2023.105389_b0055) 2023
Xu (10.1016/j.tust.2023.105389_b0230) 2012; 89
Louthan (10.1016/j.tust.2023.105389_b0130) 1976; 1
Lu (10.1016/j.tust.2023.105389_b0135) 2023; 10
Chiodo (10.1016/j.tust.2023.105389_b0065) 2009; 86
Sun (10.1016/j.tust.2023.105389_b0190) 2022; 133
Cai (10.1016/j.tust.2023.105389_b0035) 2022; 9
Saadi (10.1016/j.tust.2023.105389_b0175) 2018; 11
10.1016/j.tust.2023.105389_b0215
Briottet (10.1016/j.tust.2023.105389_b0025) 2012; 37
Sun (10.1016/j.tust.2023.105389_b0195) 2022; 47
Sun (10.1016/j.tust.2023.105389_b0185) 2018; 165
Kittel (10.1016/j.tust.2023.105389_b0120) 2010; 52
Cheng (10.1016/j.tust.2023.105389_b0100) 2023; 42
Wang (10.1016/j.tust.2023.105389_b0205) 2020; 115
Djukic (10.1016/j.tust.2023.105389_bib241) 2019; 216
Arsad (10.1016/j.tust.2023.105389_b0005) 2022; 47
Liu (10.1016/j.tust.2023.105389_b0125) 2023; 10
Bhardwaj (10.1016/j.tust.2023.105389_b0015) 2021; 241
Mondal (10.1016/j.tust.2023.105389_b0145) 2019; 186
Zhang (10.1016/j.tust.2023.105389_b0235) 2022; 47
Huang (10.1016/j.tust.2023.105389_b0105) 2022; 266
Wijewickreme (10.1016/j.tust.2023.105389_b0220) 2009; 46
Guo (10.1016/j.tust.2023.105389_b0095) 2023; 10
Shuai (10.1016/j.tust.2023.105389_b0180) 2022
Gong (10.1016/j.tust.2023.105389_b0080) 2017; 13
Chen (10.1016/j.tust.2023.105389_b0050) 2015; 47
Kere (10.1016/j.tust.2023.105389_b0115) 2022
Miltner (10.1016/j.tust.2023.105389_b0140) 2010; 18
Gunawan (10.1016/j.tust.2023.105389_b0085) 2022; 273
Pipeline and Hazardous Materials Safety Administration (PHMSA) (10.1016/j.tust.2023.105389_b0160) 2020
Guo (10.1016/j.tust.2023.105389_b0090) 2023; 280
Ogden (10.1016/j.tust.2023.105389_b0155) 1999; 24
Child (10.1016/j.tust.2023.105389_b0060) 2021; 138
Wang (10.1016/j.tust.2023.105389_b0210) 2022; 69
Qin (10.1016/j.tust.2023.105389_b0165) 2021; 191
Bruere (10.1016/j.tust.2023.105389_b0030) 2019; 41
Capelle (10.1016/j.tust.2023.105389_b0045) 2013; 38
Titov (10.1016/j.tust.2023.105389_b0200) 2019; 12
Briottet (10.1016/j.tust.2023.105389_b0020) 2012; 37
10.1016/j.tust.2023.105389_b0075
Elazzizi (10.1016/j.tust.2023.105389_b0070) 2015; 40
Jia (10.1016/j.tust.2023.105389_b0110) 2023
Ali (10.1016/j.tust.2023.105389_b0225) 2022; 21
Canadian Energy Pipeline Association (CEPA) (10.1016/j.tust.2023.105389_b0040) 2019
Zhang (10.1016/j.tust.2023.105389_b0240) 2022; 171
Nanninga (10.1016/j.tust.2023.105389_b0150) 2012; 59
Qin (10.1016/j.tust.2023.105389_b0170) 2023; 136
References_xml – volume: 1
  start-page: 291
  year: 1976
  end-page: 305
  ident: b0130
  article-title: Hydrogen transport and embrittlement in structural metals
  publication-title: Int. J. Hydrogen Energ.
– volume: 59
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0150
  article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments
  publication-title: Corros. Sci.
– volume: 186
  start-page: 43
  year: 2019
  end-page: 51
  ident: b0145
  article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments
  publication-title: Eng. Struct.
– volume: 13
  start-page: 1451
  year: 2017
  end-page: 1461
  ident: b0080
  article-title: First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes
  publication-title: Struct. Infrastruct. E.
– volume: 241
  year: 2021
  ident: b0015
  article-title: Burst strength assessment of X100 to X120 ultra-high strength corroded pipes
  publication-title: Ocean Eng.
– volume: 10
  start-page: 23
  year: 2023
  ident: b0095
  article-title: Deep seabed mining: frontiers in engineering geology and environment
  publication-title: Int. J. Coal Sci. Techn.
– volume: 216
  start-page: 106528
  year: 2019
  ident: bib241
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
– volume: 115
  start-page: 104607
  year: 2020
  ident: b0205
  article-title: Failure probability assessment and prediction of corroded pipeline under earthquake by introducing in-line inspection data
  publication-title: Eng. Fail. Anal.
– reference: Wang, H., 2018. Study on the Hydrogen Embrittlement Sensitivity of X100 Pipeline Steel. Tianjin University [Dissertation], Tianjin.
– volume: 40
  start-page: 2295
  year: 2015
  end-page: 2302
  ident: b0070
  article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement
  publication-title: Int. J. Hydrogen Energ.
– volume: 273
  year: 2022
  ident: b0085
  article-title: Solar hydrogen for high capacity, dispatchable, long-distance energy transmission – a case study for injection in the Greenstream natural gas pipeline
  publication-title: Energ. Convers. Manage.
– volume: 69
  year: 2022
  ident: b0210
  article-title: Probabilistic modeling for reliability analysis of buried pipelines subjected to spatiotemporal earthquakes
  publication-title: Probabilist. Eng. Mech.
– volume: 37
  start-page: 9423
  year: 2012
  end-page: 9430
  ident: b0020
  article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines
  publication-title: Int. J. Hydrogen Energ.
– volume: 191
  year: 2021
  ident: b0165
  article-title: A review on defect assessment of pipelines: principles, numerical solutions, and applications
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 133
  year: 2022
  ident: b0190
  article-title: Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review
  publication-title: Eng. Fail. Anal.
– volume: 10
  start-page: 10
  year: 2023
  ident: b0125
  article-title: Susceptibility of typical marine geological disasters: an overview
  publication-title: Geoenviron. Disast.
– volume: 47
  start-page: 4741
  year: 2022
  end-page: 4758
  ident: b0235
  article-title: Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network
  publication-title: Int. J. Hydrogen Energ.
– volume: 47
  start-page: 41069
  year: 2022
  end-page: 41086
  ident: b0195
  article-title: Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling
  publication-title: Int. J. Hydrogen Energ.
– volume: 136
  year: 2023
  ident: b0170
  article-title: Pipeline condition assessment and finite element modeling of mechano-electrochemical interaction between corrosion defects with varied orientations on pipelines
  publication-title: Tunn. Undergr. Sp. Tech.
– volume: 38
  start-page: 14356
  year: 2013
  end-page: 14363
  ident: b0045
  article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52
  publication-title: Int. J. Hydrogen Energ.
– volume: 41
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0030
  article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– start-page: 196
  year: 2022
  ident: b0180
  article-title: A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression
  publication-title: Int. J. Pres. Ves. Pip.
– reference: European Gas pipeline Incident data Group (EGIG), 2020. 11th EGIG report: Period 2010–2019, Doc. Number VA 20.0432.
– year: 2020
  ident: b0160
  article-title: Pipeline Incident 20 Year Trends
– volume: 280
  year: 2023
  ident: b0090
  article-title: Lateral force on buried pipelines caused by seabed slides using a CFD method with a shear interface weakening model
  publication-title: Ocean Eng.
– volume: 11
  start-page: 714
  year: 2018
  ident: b0175
  article-title: Correction: Relative costs of transporting electrical and chemical energy
  publication-title: Energy Environ. Sci.
– start-page: 100112
  year: 2023
  ident: b0055
  article-title: A techno-economic study of the strategy for hydrogen transport by pipelines in Canada
  publication-title: J. Pipeline Sci. Eng.
– volume: 171
  year: 2022
  ident: b0240
  article-title: Assessment of the interaction of corrosion defects on steel pipelines under combined internal pressure and longitudinal compression using finite element analysis
  publication-title: Thin Wall. Struct.
– start-page: 197
  year: 2022
  ident: b0115
  article-title: Development of probabilistic failure pressure models for pipelines with single corrosion defect
  publication-title: Int. J. Pressure Vessels Pip.
– volume: 21
  start-page: 59
  year: 2022
  end-page: 71
  ident: b0225
  article-title: On information modeling in structural integrity management
  publication-title: Struct. Health Monit.
– volume: 47
  start-page: 67
  year: 2015
  end-page: 76
  ident: b0050
  article-title: Failure assessment of X80 pipeline with interacting corrosion defects
  publication-title: Eng. Fail. Anal.
– volume: 138
  year: 2021
  ident: b0060
  article-title: Corrigendum to Sustainability guardrails for energy scenarios of the global energy transition [Renew. Sustain. Rev. (2018) 91 321-334]
  publication-title: Renew. Sust. Energ. Rev.
– volume: 10
  start-page: 282
  year: 2023
  ident: b0135
  article-title: an inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021
  publication-title: Sci. Data
– volume: 53
  start-page: 10593
  year: 2018
  end-page: 10594
  ident: b0010
  article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
  publication-title: J. Mater. Sci.
– volume: 89
  start-page: 75
  year: 2012
  end-page: 84
  ident: b0230
  article-title: Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 165
  start-page: 278
  year: 2018
  end-page: 286
  ident: b0185
  article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines
  publication-title: Eng. Struct.
– volume: 37
  start-page: 17616
  year: 2012
  end-page: 17623
  ident: b0025
  article-title: Quantifying the hydrogen embrittlement of pipeline steels for safety considerations
  publication-title: Int. J. Hydrogen Energ.
– volume: 52
  start-page: 1386
  year: 2010
  end-page: 1392
  ident: b0120
  article-title: Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: impact of time of exposure on the extent of damage
  publication-title: Corrosion Sci.
– volume: 42
  start-page: 1
  year: 2023
  end-page: 8
  ident: b0100
  article-title: Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments
  publication-title: Oil & Gas Storage and Transportation.
– volume: 12
  start-page: 1409
  year: 2019
  ident: b0200
  article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions
  publication-title: Materials
– year: 2023
  ident: b0110
  article-title: Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review
  publication-title: Int. J. Hydrog. Energy
– volume: 46
  start-page: 735
  year: 2009
  end-page: 752
  ident: b0220
  article-title: Response of buried steel pipelines subjected to relative axial soil movement
  publication-title: Can. Geotech. J.
– volume: 24
  start-page: 227
  year: 1999
  end-page: 279
  ident: b0155
  article-title: Prospects for building a hydrogen energy infrastructure
  publication-title: Ann. Rev. Environ. Resour.
– volume: 47
  start-page: 17285
  year: 2022
  end-page: 17312
  ident: b0005
  article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions
  publication-title: Int. J. Hydrogen Energ.
– volume: 18
  start-page: S51
  year: 2010
  end-page: S62
  ident: b0140
  article-title: Renewable hydrogen production: a technical evaluation based on process simulation
  publication-title: J. Clean. Prod.
– volume: 266
  year: 2022
  ident: b0105
  article-title: Failure pressure prediction by defect assessment and finite element modeling on pipelines containing a dent-corrosion defect
  publication-title: Ocean Eng.
– year: 2019
  ident: b0040
  article-title: Pipeline Performance Report
– volume: 9
  year: 2022
  ident: b0035
  article-title: Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels
  publication-title: Mater. Res. Exp.
– volume: 86
  start-page: 164
  year: 2009
  end-page: 176
  ident: b0065
  article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 1
  start-page: 291
  issue: 3
  year: 1976
  ident: 10.1016/j.tust.2023.105389_b0130
  article-title: Hydrogen transport and embrittlement in structural metals
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/0360-3199(76)90024-0
– start-page: 197
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0115
  article-title: Development of probabilistic failure pressure models for pipelines with single corrosion defect
  publication-title: Int. J. Pressure Vessels Pip.
– start-page: 196
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0180
  article-title: A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 18
  start-page: S51
  year: 2010
  ident: 10.1016/j.tust.2023.105389_b0140
  article-title: Renewable hydrogen production: a technical evaluation based on process simulation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2010.05.024
– volume: 191
  year: 2021
  ident: 10.1016/j.tust.2023.105389_b0165
  article-title: A review on defect assessment of pipelines: principles, numerical solutions, and applications
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2021.104329
– volume: 165
  start-page: 278
  year: 2018
  ident: 10.1016/j.tust.2023.105389_b0185
  article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.03.040
– volume: 24
  start-page: 227
  issue: 1
  year: 1999
  ident: 10.1016/j.tust.2023.105389_b0155
  article-title: Prospects for building a hydrogen energy infrastructure
  publication-title: Ann. Rev. Environ. Resour.
– year: 2019
  ident: 10.1016/j.tust.2023.105389_b0040
– volume: 9
  issue: 4
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0035
  article-title: Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels
  publication-title: Mater. Res. Exp.
– volume: 273
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0085
  article-title: Solar hydrogen for high capacity, dispatchable, long-distance energy transmission – a case study for injection in the Greenstream natural gas pipeline
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2022.116398
– volume: 115
  start-page: 104607
  year: 2020
  ident: 10.1016/j.tust.2023.105389_b0205
  article-title: Failure probability assessment and prediction of corroded pipeline under earthquake by introducing in-line inspection data
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104607
– volume: 89
  start-page: 75
  year: 2012
  ident: 10.1016/j.tust.2023.105389_b0230
  article-title: Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2011.09.008
– volume: 266
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0105
  article-title: Failure pressure prediction by defect assessment and finite element modeling on pipelines containing a dent-corrosion defect
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112875
– volume: 216
  start-page: 106528
  year: 2019
  ident: 10.1016/j.tust.2023.105389_bib241
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106528
– volume: 86
  start-page: 164
  year: 2009
  ident: 10.1016/j.tust.2023.105389_b0065
  article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2008.11.011
– volume: 186
  start-page: 43
  year: 2019
  ident: 10.1016/j.tust.2023.105389_b0145
  article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.02.010
– volume: 59
  start-page: 1
  year: 2012
  ident: 10.1016/j.tust.2023.105389_b0150
  article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.01.028
– volume: 21
  start-page: 59
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0225
  article-title: On information modeling in structural integrity management
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720968292
– volume: 38
  start-page: 14356
  issue: 33
  year: 2013
  ident: 10.1016/j.tust.2023.105389_b0045
  article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2013.08.118
– volume: 37
  start-page: 9423
  issue: 11
  year: 2012
  ident: 10.1016/j.tust.2023.105389_b0020
  article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2012.02.009
– ident: 10.1016/j.tust.2023.105389_b0215
– volume: 47
  start-page: 41069
  issue: 97
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0195
  article-title: Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2022.09.173
– volume: 46
  start-page: 735
  issue: 7
  year: 2009
  ident: 10.1016/j.tust.2023.105389_b0220
  article-title: Response of buried steel pipelines subjected to relative axial soil movement
  publication-title: Can. Geotech. J.
  doi: 10.1139/T09-019
– volume: 280
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0090
  article-title: Lateral force on buried pipelines caused by seabed slides using a CFD method with a shear interface weakening model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114663
– volume: 47
  start-page: 4741
  issue: 7
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0235
  article-title: Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2021.11.082
– volume: 133
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0190
  article-title: Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105985
– year: 2020
  ident: 10.1016/j.tust.2023.105389_b0160
– volume: 241
  year: 2021
  ident: 10.1016/j.tust.2023.105389_b0015
  article-title: Burst strength assessment of X100 to X120 ultra-high strength corroded pipes
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110004
– year: 2023
  ident: 10.1016/j.tust.2023.105389_b0110
  article-title: Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review
  publication-title: Int. J. Hydrog. Energy
– volume: 53
  start-page: 10593
  year: 2018
  ident: 10.1016/j.tust.2023.105389_b0010
  article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2291-7
– volume: 138
  year: 2021
  ident: 10.1016/j.tust.2023.105389_b0060
  article-title: Corrigendum to Sustainability guardrails for energy scenarios of the global energy transition [Renew. Sustain. Rev. (2018) 91 321-334]
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.110525
– volume: 136
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0170
  article-title: Pipeline condition assessment and finite element modeling of mechano-electrochemical interaction between corrosion defects with varied orientations on pipelines
  publication-title: Tunn. Undergr. Sp. Tech.
  doi: 10.1016/j.tust.2023.105101
– volume: 10
  start-page: 23
  issue: 1
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0095
  article-title: Deep seabed mining: frontiers in engineering geology and environment
  publication-title: Int. J. Coal Sci. Techn.
  doi: 10.1007/s40789-023-00580-x
– volume: 10
  start-page: 10
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0125
  article-title: Susceptibility of typical marine geological disasters: an overview
  publication-title: Geoenviron. Disast.
  doi: 10.1186/s40677-023-00237-6
– volume: 171
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0240
  article-title: Assessment of the interaction of corrosion defects on steel pipelines under combined internal pressure and longitudinal compression using finite element analysis
  publication-title: Thin Wall. Struct.
  doi: 10.1016/j.tws.2021.108771
– volume: 40
  start-page: 2295
  issue: 5
  year: 2015
  ident: 10.1016/j.tust.2023.105389_b0070
  article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2014.12.040
– volume: 37
  start-page: 17616
  issue: 22
  year: 2012
  ident: 10.1016/j.tust.2023.105389_b0025
  article-title: Quantifying the hydrogen embrittlement of pipeline steels for safety considerations
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2012.05.143
– volume: 42
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0100
  article-title: Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments
  publication-title: Oil & Gas Storage and Transportation.
– volume: 69
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0210
  article-title: Probabilistic modeling for reliability analysis of buried pipelines subjected to spatiotemporal earthquakes
  publication-title: Probabilist. Eng. Mech.
  doi: 10.1016/j.probengmech.2022.103315
– ident: 10.1016/j.tust.2023.105389_b0075
– volume: 11
  start-page: 714
  issue: 3
  year: 2018
  ident: 10.1016/j.tust.2023.105389_b0175
  article-title: Correction: Relative costs of transporting electrical and chemical energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE90006J
– volume: 41
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.tust.2023.105389_b0030
  article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-019-1674-2
– volume: 13
  start-page: 1451
  issue: 11
  year: 2017
  ident: 10.1016/j.tust.2023.105389_b0080
  article-title: First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes
  publication-title: Struct. Infrastruct. E.
  doi: 10.1080/15732479.2017.1285330
– volume: 52
  start-page: 1386
  issue: 4
  year: 2010
  ident: 10.1016/j.tust.2023.105389_b0120
  article-title: Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: impact of time of exposure on the extent of damage
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2009.11.044
– volume: 47
  start-page: 17285
  issue: 39
  year: 2022
  ident: 10.1016/j.tust.2023.105389_b0005
  article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2022.03.208
– start-page: 100112
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0055
  article-title: A techno-economic study of the strategy for hydrogen transport by pipelines in Canada
  publication-title: J. Pipeline Sci. Eng.
  doi: 10.1016/j.jpse.2023.100112
– volume: 12
  start-page: 1409
  issue: 9
  year: 2019
  ident: 10.1016/j.tust.2023.105389_b0200
  article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions
  publication-title: Materials
  doi: 10.3390/ma12091409
– volume: 47
  start-page: 67
  year: 2015
  ident: 10.1016/j.tust.2023.105389_b0050
  article-title: Failure assessment of X80 pipeline with interacting corrosion defects
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2014.09.013
– volume: 10
  start-page: 282
  issue: 1
  year: 2023
  ident: 10.1016/j.tust.2023.105389_b0135
  article-title: an inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02177-0
SSID ssj0005229
Score 2.4198875
Snippet •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105389
SubjectTerms Condition assessment
Corrosion
Finite element modeling
Hydrogen damage
Underground pipelines
Title Condition assessment of underground corroded pipelines subject to hydrogen damage and combined internal pressure and axial compression
URI https://dx.doi.org/10.1016/j.tust.2023.105389
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eZG26yW6yx1IsVaEXLfS25FWstLul3YJePPq7zWy2pYL04G0fM7BkZieZ5PtmELrVOuZEMdhesrI8ZgySBK4IlUYLqowqq30O4v6QPY2iUQ1111wYgFVWsd_H9DJaV09a1Wi25pNJ68X9HzHnCZwUOU_0DHbGwcvvv7ZhHmWnMhAOQLoizniMVwG0BmggDu1uKbR6_2ty2ppwekfosFop4o7_mGNUs9kJOtiqH3iKvrs5nDi7ocVyU2ET52MMzLAFEDYyg1166YKkNXg-mQP53C7xcqVg-wUXOX77NIvcORE2cuZCC5alxszly05j4rcLp7hEy64W_rX8cD4LQhWGNjtDw97Da7cfVI0VAk0ZKwITJlK7TEtQwTlVRNgkNiy0bCyYEiSSQovQxrytlSaUS6guHhFqEiMMMYrTc1TP8sxeIDyWtq0JN5RBZhkK6WRiJYkUkoaRjBqovR7RVFdVx6H5xTRdw8veU7BCClZIvRUa6G6jM_c1N3ZKR2tDpb88J3WTwg69y3_qXaF9uPOQlmtULxYre-MWJoVqlp7XRHudx-f-4AdqfuXn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCnVjJ3ZGVFEVKF1opW6RXxVFbVK1qQQLI78bX5JWRUId2KLkTop857PP_u4-hG60DjlRDI6XrMyvGb0ogidCpdGCKqPybp_dsN1nT4NgUEHNZS0MwCrL2F_E9Dxal2_q5WjWp6NR_dXNj5DzCG6KnCdCBfsWc9MXaAzuvtZxHjlVGUh7IF5WzhQgrwzqGoBBHPhuKXC9_7U6ra04rX20V24V8X3xNweoYpNDtLvWQPAIfTdTuHJ2Y4vlqsUmTocYSsNmULGRGOzySxclrcHT0RSqz-0czxcKzl9wluK3TzNLnRdhIycutmCZa0xcwuw0RsV54RjncNnFrPgsP5zTglAJok2OUb_10Gu2vZJZwdOUscwzfiS1S7UEFZxTRYSNQsN8y4aCKUECKbTwbcgbWmlCuYT24gGhJjLCEKM4PUHVJE3sKcJDaRuacEMZpJa-kE4mVJJIIakfyKCGGssRjXXZdhzYL8bxEl_2HoMVYrBCXFihhm5XOtOi6cZG6WBpqPiX68RuVdigd_ZPvWu03e69dOLOY_f5HO3AlwLfcoGq2WxhL90uJVNXuRf-ALu053U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition+assessment+of+underground+corroded+pipelines+subject+to+hydrogen+damage+and+combined+internal+pressure+and+axial+compression&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Qin%2C+Guojin&rft.au=Zhang%2C+Zhenwei&rft.au=Hou%2C+Xiangqin&rft.au=Lu%2C+Hongfang&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=142&rft_id=info:doi/10.1016%2Fj.tust.2023.105389&rft.externalDocID=S0886779823004091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon