Condition assessment of underground corroded pipelines subject to hydrogen damage and combined internal pressure and axial compression
•Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure. In this work, a 3D finite element (FE) based...
Saved in:
Published in | Tunnelling and underground space technology Vol. 142; p. 105389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure.
In this work, a 3D finite element (FE) based model was developed to assess the condition of an underground hydrogen transmission pipeline containing a corrosion defect under combined internal pressure and soil movement-induced axial compression. The use of mechanical properties of X100 pipeline steel under different hydrogen charging time models the degree of hydrogen damage in pipelines. Parameter effects, i.e., axial compressive stress, hydrogen damage, defect geometries, and pipeline diameter-to-thickness ratio, were determined. The results demonstrated that the synergistic effect of axial compression, internal pressure, corrosion, and hydrogen damage can lead to a significant decrease in the failure pressure of pipelines. The failure pressure decreased with the wall thickness reduction and increased hydrogen damage, axial compressive stress, defect length, defect depth, and pipe diameter. The competitive effect was observed between the degree of metal loss and hydrogen damage in determining the burst capacity of pipelines. In situations where the pipeline integrity was severely compromised, the failure pressure exhibited minimal reduction despite the increasing severity of hydrogen damage. The stress distribution at the defect zone was influenced by axial compressive stress but remained unaffected by hydrogen damage under normal operating conditions (i.e., an internal pressure of 10 MPa). This work is expected to help operators understand the applicability of elder and in-service pipelines for hydrogen transmission. |
---|---|
AbstractList | •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various conditions.•Find competition of hydrogen damage and metal loss in determining failure pressure.
In this work, a 3D finite element (FE) based model was developed to assess the condition of an underground hydrogen transmission pipeline containing a corrosion defect under combined internal pressure and soil movement-induced axial compression. The use of mechanical properties of X100 pipeline steel under different hydrogen charging time models the degree of hydrogen damage in pipelines. Parameter effects, i.e., axial compressive stress, hydrogen damage, defect geometries, and pipeline diameter-to-thickness ratio, were determined. The results demonstrated that the synergistic effect of axial compression, internal pressure, corrosion, and hydrogen damage can lead to a significant decrease in the failure pressure of pipelines. The failure pressure decreased with the wall thickness reduction and increased hydrogen damage, axial compressive stress, defect length, defect depth, and pipe diameter. The competitive effect was observed between the degree of metal loss and hydrogen damage in determining the burst capacity of pipelines. In situations where the pipeline integrity was severely compromised, the failure pressure exhibited minimal reduction despite the increasing severity of hydrogen damage. The stress distribution at the defect zone was influenced by axial compressive stress but remained unaffected by hydrogen damage under normal operating conditions (i.e., an internal pressure of 10 MPa). This work is expected to help operators understand the applicability of elder and in-service pipelines for hydrogen transmission. |
ArticleNumber | 105389 |
Author | Wang, Yihuan Lu, Hongfang Hou, Xiangqin Qin, Guojin Huang, Y. Zhang, Zhenwei |
Author_xml | – sequence: 1 givenname: Guojin orcidid: 0000-0002-3472-7457 surname: Qin fullname: Qin, Guojin organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 2 givenname: Zhenwei orcidid: 0009-0005-7150-493X surname: Zhang fullname: Zhang, Zhenwei organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 3 givenname: Xiangqin surname: Hou fullname: Hou, Xiangqin organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 4 givenname: Hongfang surname: Lu fullname: Lu, Hongfang organization: China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing 210096, China – sequence: 5 givenname: Y. orcidid: 0000-0002-5518-2329 surname: Huang fullname: Huang, Y. organization: Safety and Security Science Section, Department of Values, Technology, and Innovation, Faculty of Technology, Policy, and Management, Delft University of Technology, 2628 BX Delft, The Netherlands – sequence: 6 givenname: Yihuan orcidid: 0000-0001-9222-4949 surname: Wang fullname: Wang, Yihuan email: yihuan.wang@swpu.edu.cn organization: School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China |
BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wNZsst1kwYsU_0HBi55DNpnWLN1kSVKxL-Bzm3Y9eehp4DfzzTDfDE2cd4DQbUkWJSnru26R9jEtKKEsB0smmgs0LQUXRcXqaoKmRIi64LwRV2gWY0cIWVLaTNHPyjtjk_UOqxghxh5cwn6D985A2AafK9Y-BG_A4MEOsLMOIo77tgOdcPL482CC34LDRvVqC1idiL7NcwZblyA4tcNDyMv3YWyrb5ujPHRK8_FrdLlRuwg3f3WOPp4e31cvxfrt-XX1sC40q6pUGNooTUUjmOCctURAU5uKQrURVSvIUgktKNS81K0mjCvCabMkzDRGGGJazuZIjHt18DEG2Ehtkzq-n4KyO1kSefQpO3n0KY8-5egzo_QfOgTbq3A4D92PEOSnviwEGbUFp8HYkPVJ4-05_BfvppWL |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_141601 crossref_primary_10_1016_j_energy_2025_135401 crossref_primary_10_1016_j_ijhydene_2024_01_106 crossref_primary_10_1016_j_tust_2024_106130 crossref_primary_10_1061_JPSEA2_PSENG_1577 |
Cites_doi | 10.1016/0360-3199(76)90024-0 10.1016/j.jclepro.2010.05.024 10.1016/j.ijpvp.2021.104329 10.1016/j.engstruct.2018.03.040 10.1016/j.enconman.2022.116398 10.1016/j.engfailanal.2020.104607 10.1016/j.ijpvp.2011.09.008 10.1016/j.oceaneng.2022.112875 10.1016/j.engfracmech.2019.106528 10.1016/j.ijpvp.2008.11.011 10.1016/j.engstruct.2019.02.010 10.1016/j.corsci.2012.01.028 10.1177/1475921720968292 10.1016/j.ijhydene.2013.08.118 10.1016/j.ijhydene.2012.02.009 10.1016/j.ijhydene.2022.09.173 10.1139/T09-019 10.1016/j.oceaneng.2023.114663 10.1016/j.ijhydene.2021.11.082 10.1016/j.engfailanal.2021.105985 10.1016/j.oceaneng.2021.110004 10.1007/s10853-018-2291-7 10.1016/j.rser.2020.110525 10.1016/j.tust.2023.105101 10.1007/s40789-023-00580-x 10.1186/s40677-023-00237-6 10.1016/j.tws.2021.108771 10.1016/j.ijhydene.2014.12.040 10.1016/j.ijhydene.2012.05.143 10.1016/j.probengmech.2022.103315 10.1039/C8EE90006J 10.1007/s40430-019-1674-2 10.1080/15732479.2017.1285330 10.1016/j.corsci.2009.11.044 10.1016/j.ijhydene.2022.03.208 10.1016/j.jpse.2023.100112 10.3390/ma12091409 10.1016/j.engfailanal.2014.09.013 10.1038/s41597-023-02177-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tust.2023.105389 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-4364 |
ExternalDocumentID | 10_1016_j_tust_2023_105389 S0886779823004091 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-d29ac289838773b08e96d42e4f84b805a8c82e671cbc037a0729503d9d8d0db73 |
IEDL.DBID | .~1 |
ISSN | 0886-7798 |
IngestDate | Thu Apr 24 22:59:51 EDT 2025 Tue Jul 01 01:06:37 EDT 2025 Fri Feb 23 02:35:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Underground pipelines Finite element modeling Corrosion Condition assessment Hydrogen damage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-d29ac289838773b08e96d42e4f84b805a8c82e671cbc037a0729503d9d8d0db73 |
ORCID | 0009-0005-7150-493X 0000-0002-5518-2329 0000-0002-3472-7457 0000-0001-9222-4949 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0886779823004091 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tust_2023_105389 crossref_primary_10_1016_j_tust_2023_105389 elsevier_sciencedirect_doi_10_1016_j_tust_2023_105389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Tunnelling and underground space technology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wijewickreme, Karimian, Honegger (b0220) 2009; 46 Bhardwaj, Teixeira, Guedes Soares (b0015) 2021; 241 Mondal, Dhar (b0145) 2019; 186 Liu, Wang, Zhang, Guo (b0125) 2023; 10 Lu, Xu, Cheng, Peng, Xi, Jiang, Shan (b0135) 2023; 10 Chiodo, Ruggieri (b0065) 2009; 86 Kittel, Smanio, Fregonese, Garnier, Lefebvre (b0120) 2010; 52 European Gas pipeline Incident data Group (EGIG), 2020. 11th EGIG report: Period 2010–2019, Doc. Number VA 20.0432. Jia, Lei, Li, Xu, Li, Lu, Cai (b0110) 2023 Chen, Zhang, Zhang, Liu, Li, Zhou (b0050) 2015; 47 Elazzizi, Hadj Meliani, Khelil, Pluvinage, Matvienko (b0070) 2015; 40 Nanninga, Levy, Drexler, Condon, Stevenson, Slifka (b0150) 2012; 59 Bruere, Bouchonneau, Motta, Afonso, Willmersdorf, Lyra, Torres, de Andrade, Cunha (b0030) 2019; 41 Zhang, Tian (b0235) 2022; 47 Cai, Bai, Gao, Li, Hou (b0035) 2022; 9 Guo, Fan, Liu, Liu, Wang, Xie, Jia (b0095) 2023; 10 Cheng (b0100) 2023; 42 Qin, Huang, Wang, Cheng (b0170) 2023; 136 Djukic, Bakic, Zeravcic, Sedmak, Rajicic (bib241) 2019; 216 Wang, Xia, Qin (b0210) 2022; 69 Cheng, Cheng (b0055) 2023 Zhang, Zhou (b0240) 2022; 171 Capelle, Dmytrakh, Azari, Pluvinage (b0045) 2013; 38 Huang, Qin, Hu (b0105) 2022; 266 Pipeline and Hazardous Materials Safety Administration (PHMSA) (b0160) 2020 Ogden (b0155) 1999; 24 Louthan, Caskey (b0130) 1976; 1 Canadian Energy Pipeline Association (CEPA) (b0040) 2019 Arsad, Hannan, Al-Shetwi, Mansur, Muttaqi, Dong, Blaabjerg (b0005) 2022; 47 Titov, Lun-Fu, Bubenchikov, Gayvaronskiy, Bubenchikov, Lider, Syrtanov, Kudiiarov (b0200) 2019; 12 Kere, Huang (b0115) 2022 Wang, H., 2018. Study on the Hydrogen Embrittlement Sensitivity of X100 Pipeline Steel. Tianjin University [Dissertation], Tianjin. Barrera, Bombac, Chen, Daff, Galindo-Nava, Gong (b0010) 2018; 53 Xu, Cheng (b0230) 2012; 89 Briottet, Moro, Lemoine (b0025) 2012; 37 Miltner, Wukovits, Pröll, Friedl (b0140) 2010; 18 Gong, Zhou (b0080) 2017; 13 Saadi, Lewis, McFarland (b0175) 2018; 11 Gunawan, Cavana, Leone, Monaghan (b0085) 2022; 273 Guo, Liu, Li, Lu (b0090) 2023; 280 Shuai, Zhang, Feng, Han, Cheng (b0180) 2022 Briottet, Batisse, de Dinechin, Langlois, Thiers (b0020) 2012; 37 Ali, Qin, Faber (b0225) 2022; 21 Wang, Zhang, Hou, Qin (b0205) 2020; 115 Qin, Cheng (b0165) 2021; 191 Sun, Ren, Cheng (b0195) 2022; 47 Child, Koskinen, Linnanen, Breyer (b0060) 2021; 138 Sun, Cheng (b0185) 2018; 165 Sun, Cheng (b0190) 2022; 133 Barrera (10.1016/j.tust.2023.105389_b0010) 2018; 53 Cheng (10.1016/j.tust.2023.105389_b0055) 2023 Xu (10.1016/j.tust.2023.105389_b0230) 2012; 89 Louthan (10.1016/j.tust.2023.105389_b0130) 1976; 1 Lu (10.1016/j.tust.2023.105389_b0135) 2023; 10 Chiodo (10.1016/j.tust.2023.105389_b0065) 2009; 86 Sun (10.1016/j.tust.2023.105389_b0190) 2022; 133 Cai (10.1016/j.tust.2023.105389_b0035) 2022; 9 Saadi (10.1016/j.tust.2023.105389_b0175) 2018; 11 10.1016/j.tust.2023.105389_b0215 Briottet (10.1016/j.tust.2023.105389_b0025) 2012; 37 Sun (10.1016/j.tust.2023.105389_b0195) 2022; 47 Sun (10.1016/j.tust.2023.105389_b0185) 2018; 165 Kittel (10.1016/j.tust.2023.105389_b0120) 2010; 52 Cheng (10.1016/j.tust.2023.105389_b0100) 2023; 42 Wang (10.1016/j.tust.2023.105389_b0205) 2020; 115 Djukic (10.1016/j.tust.2023.105389_bib241) 2019; 216 Arsad (10.1016/j.tust.2023.105389_b0005) 2022; 47 Liu (10.1016/j.tust.2023.105389_b0125) 2023; 10 Bhardwaj (10.1016/j.tust.2023.105389_b0015) 2021; 241 Mondal (10.1016/j.tust.2023.105389_b0145) 2019; 186 Zhang (10.1016/j.tust.2023.105389_b0235) 2022; 47 Huang (10.1016/j.tust.2023.105389_b0105) 2022; 266 Wijewickreme (10.1016/j.tust.2023.105389_b0220) 2009; 46 Guo (10.1016/j.tust.2023.105389_b0095) 2023; 10 Shuai (10.1016/j.tust.2023.105389_b0180) 2022 Gong (10.1016/j.tust.2023.105389_b0080) 2017; 13 Chen (10.1016/j.tust.2023.105389_b0050) 2015; 47 Kere (10.1016/j.tust.2023.105389_b0115) 2022 Miltner (10.1016/j.tust.2023.105389_b0140) 2010; 18 Gunawan (10.1016/j.tust.2023.105389_b0085) 2022; 273 Pipeline and Hazardous Materials Safety Administration (PHMSA) (10.1016/j.tust.2023.105389_b0160) 2020 Guo (10.1016/j.tust.2023.105389_b0090) 2023; 280 Ogden (10.1016/j.tust.2023.105389_b0155) 1999; 24 Child (10.1016/j.tust.2023.105389_b0060) 2021; 138 Wang (10.1016/j.tust.2023.105389_b0210) 2022; 69 Qin (10.1016/j.tust.2023.105389_b0165) 2021; 191 Bruere (10.1016/j.tust.2023.105389_b0030) 2019; 41 Capelle (10.1016/j.tust.2023.105389_b0045) 2013; 38 Titov (10.1016/j.tust.2023.105389_b0200) 2019; 12 Briottet (10.1016/j.tust.2023.105389_b0020) 2012; 37 10.1016/j.tust.2023.105389_b0075 Elazzizi (10.1016/j.tust.2023.105389_b0070) 2015; 40 Jia (10.1016/j.tust.2023.105389_b0110) 2023 Ali (10.1016/j.tust.2023.105389_b0225) 2022; 21 Canadian Energy Pipeline Association (CEPA) (10.1016/j.tust.2023.105389_b0040) 2019 Zhang (10.1016/j.tust.2023.105389_b0240) 2022; 171 Nanninga (10.1016/j.tust.2023.105389_b0150) 2012; 59 Qin (10.1016/j.tust.2023.105389_b0170) 2023; 136 |
References_xml | – volume: 1 start-page: 291 year: 1976 end-page: 305 ident: b0130 article-title: Hydrogen transport and embrittlement in structural metals publication-title: Int. J. Hydrogen Energ. – volume: 59 start-page: 1 year: 2012 end-page: 9 ident: b0150 article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments publication-title: Corros. Sci. – volume: 186 start-page: 43 year: 2019 end-page: 51 ident: b0145 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. – volume: 13 start-page: 1451 year: 2017 end-page: 1461 ident: b0080 article-title: First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes publication-title: Struct. Infrastruct. E. – volume: 241 year: 2021 ident: b0015 article-title: Burst strength assessment of X100 to X120 ultra-high strength corroded pipes publication-title: Ocean Eng. – volume: 10 start-page: 23 year: 2023 ident: b0095 article-title: Deep seabed mining: frontiers in engineering geology and environment publication-title: Int. J. Coal Sci. Techn. – volume: 216 start-page: 106528 year: 2019 ident: bib241 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion publication-title: Eng. Fract. Mech. – volume: 115 start-page: 104607 year: 2020 ident: b0205 article-title: Failure probability assessment and prediction of corroded pipeline under earthquake by introducing in-line inspection data publication-title: Eng. Fail. Anal. – reference: Wang, H., 2018. Study on the Hydrogen Embrittlement Sensitivity of X100 Pipeline Steel. Tianjin University [Dissertation], Tianjin. – volume: 40 start-page: 2295 year: 2015 end-page: 2302 ident: b0070 article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement publication-title: Int. J. Hydrogen Energ. – volume: 273 year: 2022 ident: b0085 article-title: Solar hydrogen for high capacity, dispatchable, long-distance energy transmission – a case study for injection in the Greenstream natural gas pipeline publication-title: Energ. Convers. Manage. – volume: 69 year: 2022 ident: b0210 article-title: Probabilistic modeling for reliability analysis of buried pipelines subjected to spatiotemporal earthquakes publication-title: Probabilist. Eng. Mech. – volume: 37 start-page: 9423 year: 2012 end-page: 9430 ident: b0020 article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines publication-title: Int. J. Hydrogen Energ. – volume: 191 year: 2021 ident: b0165 article-title: A review on defect assessment of pipelines: principles, numerical solutions, and applications publication-title: Int. J. Pres. Ves. Pip. – volume: 133 year: 2022 ident: b0190 article-title: Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review publication-title: Eng. Fail. Anal. – volume: 10 start-page: 10 year: 2023 ident: b0125 article-title: Susceptibility of typical marine geological disasters: an overview publication-title: Geoenviron. Disast. – volume: 47 start-page: 4741 year: 2022 end-page: 4758 ident: b0235 article-title: Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network publication-title: Int. J. Hydrogen Energ. – volume: 47 start-page: 41069 year: 2022 end-page: 41086 ident: b0195 article-title: Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling publication-title: Int. J. Hydrogen Energ. – volume: 136 year: 2023 ident: b0170 article-title: Pipeline condition assessment and finite element modeling of mechano-electrochemical interaction between corrosion defects with varied orientations on pipelines publication-title: Tunn. Undergr. Sp. Tech. – volume: 38 start-page: 14356 year: 2013 end-page: 14363 ident: b0045 article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52 publication-title: Int. J. Hydrogen Energ. – volume: 41 start-page: 1 year: 2019 end-page: 10 ident: b0030 article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force publication-title: J. Braz. Soc. Mech. Sci. Eng. – start-page: 196 year: 2022 ident: b0180 article-title: A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression publication-title: Int. J. Pres. Ves. Pip. – reference: European Gas pipeline Incident data Group (EGIG), 2020. 11th EGIG report: Period 2010–2019, Doc. Number VA 20.0432. – year: 2020 ident: b0160 article-title: Pipeline Incident 20 Year Trends – volume: 280 year: 2023 ident: b0090 article-title: Lateral force on buried pipelines caused by seabed slides using a CFD method with a shear interface weakening model publication-title: Ocean Eng. – volume: 11 start-page: 714 year: 2018 ident: b0175 article-title: Correction: Relative costs of transporting electrical and chemical energy publication-title: Energy Environ. Sci. – start-page: 100112 year: 2023 ident: b0055 article-title: A techno-economic study of the strategy for hydrogen transport by pipelines in Canada publication-title: J. Pipeline Sci. Eng. – volume: 171 year: 2022 ident: b0240 article-title: Assessment of the interaction of corrosion defects on steel pipelines under combined internal pressure and longitudinal compression using finite element analysis publication-title: Thin Wall. Struct. – start-page: 197 year: 2022 ident: b0115 article-title: Development of probabilistic failure pressure models for pipelines with single corrosion defect publication-title: Int. J. Pressure Vessels Pip. – volume: 21 start-page: 59 year: 2022 end-page: 71 ident: b0225 article-title: On information modeling in structural integrity management publication-title: Struct. Health Monit. – volume: 47 start-page: 67 year: 2015 end-page: 76 ident: b0050 article-title: Failure assessment of X80 pipeline with interacting corrosion defects publication-title: Eng. Fail. Anal. – volume: 138 year: 2021 ident: b0060 article-title: Corrigendum to Sustainability guardrails for energy scenarios of the global energy transition [Renew. Sustain. Rev. (2018) 91 321-334] publication-title: Renew. Sust. Energ. Rev. – volume: 10 start-page: 282 year: 2023 ident: b0135 article-title: an inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021 publication-title: Sci. Data – volume: 53 start-page: 10593 year: 2018 end-page: 10594 ident: b0010 article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum publication-title: J. Mater. Sci. – volume: 89 start-page: 75 year: 2012 end-page: 84 ident: b0230 article-title: Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain publication-title: Int. J. Pres. Ves. Pip. – volume: 165 start-page: 278 year: 2018 end-page: 286 ident: b0185 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng. Struct. – volume: 37 start-page: 17616 year: 2012 end-page: 17623 ident: b0025 article-title: Quantifying the hydrogen embrittlement of pipeline steels for safety considerations publication-title: Int. J. Hydrogen Energ. – volume: 52 start-page: 1386 year: 2010 end-page: 1392 ident: b0120 article-title: Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: impact of time of exposure on the extent of damage publication-title: Corrosion Sci. – volume: 42 start-page: 1 year: 2023 end-page: 8 ident: b0100 article-title: Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments publication-title: Oil & Gas Storage and Transportation. – volume: 12 start-page: 1409 year: 2019 ident: b0200 article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions publication-title: Materials – year: 2023 ident: b0110 article-title: Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review publication-title: Int. J. Hydrog. Energy – volume: 46 start-page: 735 year: 2009 end-page: 752 ident: b0220 article-title: Response of buried steel pipelines subjected to relative axial soil movement publication-title: Can. Geotech. J. – volume: 24 start-page: 227 year: 1999 end-page: 279 ident: b0155 article-title: Prospects for building a hydrogen energy infrastructure publication-title: Ann. Rev. Environ. Resour. – volume: 47 start-page: 17285 year: 2022 end-page: 17312 ident: b0005 article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions publication-title: Int. J. Hydrogen Energ. – volume: 18 start-page: S51 year: 2010 end-page: S62 ident: b0140 article-title: Renewable hydrogen production: a technical evaluation based on process simulation publication-title: J. Clean. Prod. – volume: 266 year: 2022 ident: b0105 article-title: Failure pressure prediction by defect assessment and finite element modeling on pipelines containing a dent-corrosion defect publication-title: Ocean Eng. – year: 2019 ident: b0040 article-title: Pipeline Performance Report – volume: 9 year: 2022 ident: b0035 article-title: Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels publication-title: Mater. Res. Exp. – volume: 86 start-page: 164 year: 2009 end-page: 176 ident: b0065 article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses publication-title: Int. J. Pres. Ves. Pip. – volume: 1 start-page: 291 issue: 3 year: 1976 ident: 10.1016/j.tust.2023.105389_b0130 article-title: Hydrogen transport and embrittlement in structural metals publication-title: Int. J. Hydrogen Energ. doi: 10.1016/0360-3199(76)90024-0 – start-page: 197 year: 2022 ident: 10.1016/j.tust.2023.105389_b0115 article-title: Development of probabilistic failure pressure models for pipelines with single corrosion defect publication-title: Int. J. Pressure Vessels Pip. – start-page: 196 year: 2022 ident: 10.1016/j.tust.2023.105389_b0180 article-title: A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression publication-title: Int. J. Pres. Ves. Pip. – volume: 18 start-page: S51 year: 2010 ident: 10.1016/j.tust.2023.105389_b0140 article-title: Renewable hydrogen production: a technical evaluation based on process simulation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2010.05.024 – volume: 191 year: 2021 ident: 10.1016/j.tust.2023.105389_b0165 article-title: A review on defect assessment of pipelines: principles, numerical solutions, and applications publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2021.104329 – volume: 165 start-page: 278 year: 2018 ident: 10.1016/j.tust.2023.105389_b0185 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.03.040 – volume: 24 start-page: 227 issue: 1 year: 1999 ident: 10.1016/j.tust.2023.105389_b0155 article-title: Prospects for building a hydrogen energy infrastructure publication-title: Ann. Rev. Environ. Resour. – year: 2019 ident: 10.1016/j.tust.2023.105389_b0040 – volume: 9 issue: 4 year: 2022 ident: 10.1016/j.tust.2023.105389_b0035 article-title: Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels publication-title: Mater. Res. Exp. – volume: 273 year: 2022 ident: 10.1016/j.tust.2023.105389_b0085 article-title: Solar hydrogen for high capacity, dispatchable, long-distance energy transmission – a case study for injection in the Greenstream natural gas pipeline publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2022.116398 – volume: 115 start-page: 104607 year: 2020 ident: 10.1016/j.tust.2023.105389_b0205 article-title: Failure probability assessment and prediction of corroded pipeline under earthquake by introducing in-line inspection data publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104607 – volume: 89 start-page: 75 year: 2012 ident: 10.1016/j.tust.2023.105389_b0230 article-title: Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2011.09.008 – volume: 266 year: 2022 ident: 10.1016/j.tust.2023.105389_b0105 article-title: Failure pressure prediction by defect assessment and finite element modeling on pipelines containing a dent-corrosion defect publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112875 – volume: 216 start-page: 106528 year: 2019 ident: 10.1016/j.tust.2023.105389_bib241 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106528 – volume: 86 start-page: 164 year: 2009 ident: 10.1016/j.tust.2023.105389_b0065 article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2008.11.011 – volume: 186 start-page: 43 year: 2019 ident: 10.1016/j.tust.2023.105389_b0145 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.02.010 – volume: 59 start-page: 1 year: 2012 ident: 10.1016/j.tust.2023.105389_b0150 article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.01.028 – volume: 21 start-page: 59 year: 2022 ident: 10.1016/j.tust.2023.105389_b0225 article-title: On information modeling in structural integrity management publication-title: Struct. Health Monit. doi: 10.1177/1475921720968292 – volume: 38 start-page: 14356 issue: 33 year: 2013 ident: 10.1016/j.tust.2023.105389_b0045 article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52 publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2013.08.118 – volume: 37 start-page: 9423 issue: 11 year: 2012 ident: 10.1016/j.tust.2023.105389_b0020 article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.02.009 – ident: 10.1016/j.tust.2023.105389_b0215 – volume: 47 start-page: 41069 issue: 97 year: 2022 ident: 10.1016/j.tust.2023.105389_b0195 article-title: Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2022.09.173 – volume: 46 start-page: 735 issue: 7 year: 2009 ident: 10.1016/j.tust.2023.105389_b0220 article-title: Response of buried steel pipelines subjected to relative axial soil movement publication-title: Can. Geotech. J. doi: 10.1139/T09-019 – volume: 280 year: 2023 ident: 10.1016/j.tust.2023.105389_b0090 article-title: Lateral force on buried pipelines caused by seabed slides using a CFD method with a shear interface weakening model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114663 – volume: 47 start-page: 4741 issue: 7 year: 2022 ident: 10.1016/j.tust.2023.105389_b0235 article-title: Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.11.082 – volume: 133 year: 2022 ident: 10.1016/j.tust.2023.105389_b0190 article-title: Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105985 – year: 2020 ident: 10.1016/j.tust.2023.105389_b0160 – volume: 241 year: 2021 ident: 10.1016/j.tust.2023.105389_b0015 article-title: Burst strength assessment of X100 to X120 ultra-high strength corroded pipes publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110004 – year: 2023 ident: 10.1016/j.tust.2023.105389_b0110 article-title: Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review publication-title: Int. J. Hydrog. Energy – volume: 53 start-page: 10593 year: 2018 ident: 10.1016/j.tust.2023.105389_b0010 article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2291-7 – volume: 138 year: 2021 ident: 10.1016/j.tust.2023.105389_b0060 article-title: Corrigendum to Sustainability guardrails for energy scenarios of the global energy transition [Renew. Sustain. Rev. (2018) 91 321-334] publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.110525 – volume: 136 year: 2023 ident: 10.1016/j.tust.2023.105389_b0170 article-title: Pipeline condition assessment and finite element modeling of mechano-electrochemical interaction between corrosion defects with varied orientations on pipelines publication-title: Tunn. Undergr. Sp. Tech. doi: 10.1016/j.tust.2023.105101 – volume: 10 start-page: 23 issue: 1 year: 2023 ident: 10.1016/j.tust.2023.105389_b0095 article-title: Deep seabed mining: frontiers in engineering geology and environment publication-title: Int. J. Coal Sci. Techn. doi: 10.1007/s40789-023-00580-x – volume: 10 start-page: 10 year: 2023 ident: 10.1016/j.tust.2023.105389_b0125 article-title: Susceptibility of typical marine geological disasters: an overview publication-title: Geoenviron. Disast. doi: 10.1186/s40677-023-00237-6 – volume: 171 year: 2022 ident: 10.1016/j.tust.2023.105389_b0240 article-title: Assessment of the interaction of corrosion defects on steel pipelines under combined internal pressure and longitudinal compression using finite element analysis publication-title: Thin Wall. Struct. doi: 10.1016/j.tws.2021.108771 – volume: 40 start-page: 2295 issue: 5 year: 2015 ident: 10.1016/j.tust.2023.105389_b0070 article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2014.12.040 – volume: 37 start-page: 17616 issue: 22 year: 2012 ident: 10.1016/j.tust.2023.105389_b0025 article-title: Quantifying the hydrogen embrittlement of pipeline steels for safety considerations publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.05.143 – volume: 42 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.tust.2023.105389_b0100 article-title: Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments publication-title: Oil & Gas Storage and Transportation. – volume: 69 year: 2022 ident: 10.1016/j.tust.2023.105389_b0210 article-title: Probabilistic modeling for reliability analysis of buried pipelines subjected to spatiotemporal earthquakes publication-title: Probabilist. Eng. Mech. doi: 10.1016/j.probengmech.2022.103315 – ident: 10.1016/j.tust.2023.105389_b0075 – volume: 11 start-page: 714 issue: 3 year: 2018 ident: 10.1016/j.tust.2023.105389_b0175 article-title: Correction: Relative costs of transporting electrical and chemical energy publication-title: Energy Environ. Sci. doi: 10.1039/C8EE90006J – volume: 41 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.tust.2023.105389_b0030 article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1674-2 – volume: 13 start-page: 1451 issue: 11 year: 2017 ident: 10.1016/j.tust.2023.105389_b0080 article-title: First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes publication-title: Struct. Infrastruct. E. doi: 10.1080/15732479.2017.1285330 – volume: 52 start-page: 1386 issue: 4 year: 2010 ident: 10.1016/j.tust.2023.105389_b0120 article-title: Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: impact of time of exposure on the extent of damage publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2009.11.044 – volume: 47 start-page: 17285 issue: 39 year: 2022 ident: 10.1016/j.tust.2023.105389_b0005 article-title: Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2022.03.208 – start-page: 100112 year: 2023 ident: 10.1016/j.tust.2023.105389_b0055 article-title: A techno-economic study of the strategy for hydrogen transport by pipelines in Canada publication-title: J. Pipeline Sci. Eng. doi: 10.1016/j.jpse.2023.100112 – volume: 12 start-page: 1409 issue: 9 year: 2019 ident: 10.1016/j.tust.2023.105389_b0200 article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions publication-title: Materials doi: 10.3390/ma12091409 – volume: 47 start-page: 67 year: 2015 ident: 10.1016/j.tust.2023.105389_b0050 article-title: Failure assessment of X80 pipeline with interacting corrosion defects publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2014.09.013 – volume: 10 start-page: 282 issue: 1 year: 2023 ident: 10.1016/j.tust.2023.105389_b0135 article-title: an inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021 publication-title: Sci. Data doi: 10.1038/s41597-023-02177-0 |
SSID | ssj0005229 |
Score | 2.4198875 |
Snippet | •Assess pipe condition with hydrogen damage, internal pressure and axial compression.•Model stress filed distribution at corrosion defect on pipe with various... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105389 |
SubjectTerms | Condition assessment Corrosion Finite element modeling Hydrogen damage Underground pipelines |
Title | Condition assessment of underground corroded pipelines subject to hydrogen damage and combined internal pressure and axial compression |
URI | https://dx.doi.org/10.1016/j.tust.2023.105389 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eZG26yW6yx1IsVaEXLfS25FWstLul3YJePPq7zWy2pYL04G0fM7BkZieZ5PtmELrVOuZEMdhesrI8ZgySBK4IlUYLqowqq30O4v6QPY2iUQ1111wYgFVWsd_H9DJaV09a1Wi25pNJ68X9HzHnCZwUOU_0DHbGwcvvv7ZhHmWnMhAOQLoizniMVwG0BmggDu1uKbR6_2ty2ppwekfosFop4o7_mGNUs9kJOtiqH3iKvrs5nDi7ocVyU2ET52MMzLAFEDYyg1166YKkNXg-mQP53C7xcqVg-wUXOX77NIvcORE2cuZCC5alxszly05j4rcLp7hEy64W_rX8cD4LQhWGNjtDw97Da7cfVI0VAk0ZKwITJlK7TEtQwTlVRNgkNiy0bCyYEiSSQovQxrytlSaUS6guHhFqEiMMMYrTc1TP8sxeIDyWtq0JN5RBZhkK6WRiJYkUkoaRjBqovR7RVFdVx6H5xTRdw8veU7BCClZIvRUa6G6jM_c1N3ZKR2tDpb88J3WTwg69y3_qXaF9uPOQlmtULxYre-MWJoVqlp7XRHudx-f-4AdqfuXn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCnVjJ3ZGVFEVKF1opW6RXxVFbVK1qQQLI78bX5JWRUId2KLkTop857PP_u4-hG60DjlRDI6XrMyvGb0ogidCpdGCKqPybp_dsN1nT4NgUEHNZS0MwCrL2F_E9Dxal2_q5WjWp6NR_dXNj5DzCG6KnCdCBfsWc9MXaAzuvtZxHjlVGUh7IF5WzhQgrwzqGoBBHPhuKXC9_7U6ra04rX20V24V8X3xNweoYpNDtLvWQPAIfTdTuHJ2Y4vlqsUmTocYSsNmULGRGOzySxclrcHT0RSqz-0czxcKzl9wluK3TzNLnRdhIycutmCZa0xcwuw0RsV54RjncNnFrPgsP5zTglAJok2OUb_10Gu2vZJZwdOUscwzfiS1S7UEFZxTRYSNQsN8y4aCKUECKbTwbcgbWmlCuYT24gGhJjLCEKM4PUHVJE3sKcJDaRuacEMZpJa-kE4mVJJIIakfyKCGGssRjXXZdhzYL8bxEl_2HoMVYrBCXFihhm5XOtOi6cZG6WBpqPiX68RuVdigd_ZPvWu03e69dOLOY_f5HO3AlwLfcoGq2WxhL90uJVNXuRf-ALu053U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition+assessment+of+underground+corroded+pipelines+subject+to+hydrogen+damage+and+combined+internal+pressure+and+axial+compression&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Qin%2C+Guojin&rft.au=Zhang%2C+Zhenwei&rft.au=Hou%2C+Xiangqin&rft.au=Lu%2C+Hongfang&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=142&rft_id=info:doi/10.1016%2Fj.tust.2023.105389&rft.externalDocID=S0886779823004091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |