Generating BIM model from structural and architectural plans using Artificial Intelligence

Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 78; p. 107672
Main Authors Urbieta, Martin, Urbieta, Matias, Laborde, Tomas, Villarreal, Guillermo, Rossi, Gustavo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN2352-7102
2352-7102
DOI10.1016/j.jobe.2023.107672

Cover

Loading…
Abstract Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since adopting the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated validations and analysis. However, legacy analog plans cannot profit from sophisticated BIM analysis, and it is not feasible to manually generate BIM representations at low cost. There is a demand for BIM models of existing buildings that are feasible to be integrated into a workflow for building energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial intelligence algorithms by parsing architectural and structural drawings. To identify elements from blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9 concrete buildings composed of architectural and structural blueprints. The outcome of the process is a BIM model corresponding to one of the multi-storey buildings using the Industry Foundation Classes (IFC) format. Building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. •An approach for identifying drawing elements from plans using machine learning.•Novel public dataset with structural and architectural plans.•Building Model Information model generation from structural and architectural plans.•Extensible to include specialties like mechanical, electrical, and plumbing.•We illustrate our approach in a building case study.
AbstractList Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since adopting the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated validations and analysis. However, legacy analog plans cannot profit from sophisticated BIM analysis, and it is not feasible to manually generate BIM representations at low cost. There is a demand for BIM models of existing buildings that are feasible to be integrated into a workflow for building energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial intelligence algorithms by parsing architectural and structural drawings. To identify elements from blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9 concrete buildings composed of architectural and structural blueprints. The outcome of the process is a BIM model corresponding to one of the multi-storey buildings using the Industry Foundation Classes (IFC) format. Building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. •An approach for identifying drawing elements from plans using machine learning.•Novel public dataset with structural and architectural plans.•Building Model Information model generation from structural and architectural plans.•Extensible to include specialties like mechanical, electrical, and plumbing.•We illustrate our approach in a building case study.
ArticleNumber 107672
Author Laborde, Tomas
Urbieta, Martin
Rossi, Gustavo
Urbieta, Matias
Villarreal, Guillermo
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-5824-089X
  surname: Urbieta
  fullname: Urbieta, Martin
  organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina
– sequence: 2
  givenname: Matias
  orcidid: 0000-0002-4508-1209
  surname: Urbieta
  fullname: Urbieta, Matias
  email: matias.urbieta@lifia.info.unlp.edu.ar
  organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina
– sequence: 3
  givenname: Tomas
  surname: Laborde
  fullname: Laborde, Tomas
  organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina
– sequence: 4
  givenname: Guillermo
  surname: Villarreal
  fullname: Villarreal, Guillermo
  organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina
– sequence: 5
  givenname: Gustavo
  orcidid: 0000-0002-3348-2144
  surname: Rossi
  fullname: Rossi, Gustavo
  organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina
BookMark eNp9kMtKAzEUhoNUsNa-gKu8wNRcZiYdcFOLtoWKG924CbmcqRmmmZKkgm_vDO1CXHR1Dj_nO_B_t2jkOw8I3VMyo4SWD82s6TTMGGG8D0Qp2BUaM16wTFDCRn_2GzSNsSGEsKrg8zIfo88VeAgqOb_DT5tXvO8stLgO3R7HFI4mHYNqsfIWq2C-XIJzcmiVj_gYB24RkqudcX288Qna1u3AG7hD17VqI0zPc4I-Xp7fl-ts-7baLBfbzPA8T5kxTDEQxBS8hpzYQhW8yq01uuKQK1oRXdZCCy4YMXNq-4uKU86YrbjWQvMJYqe_JnQxBqjlIbi9Cj-SEjkIko0cBMlBkDwJ6qH5P8i41GvofArKtZfRxxMKfalvB0FG44bC1oVej7Sdu4T_AibLhCk
CitedBy_id crossref_primary_10_3390_buildings14061613
crossref_primary_10_3390_buildings14082475
crossref_primary_10_3390_infrastructures9040075
crossref_primary_10_1109_ACCESS_2024_3425898
crossref_primary_10_2139_ssrn_4645601
crossref_primary_10_3390_buildings15050691
crossref_primary_10_3390_eng5020042
crossref_primary_10_2478_amns_2024_2110
crossref_primary_10_1088_1742_6596_2916_1_012022
Cites_doi 10.3390/en16103976
10.1016/j.autcon.2020.103082
10.5194/isprs-archives-XLVI-4-W4-2021-49-2021
10.1061/(ASCE)CP.1943-5487.0000885
10.1016/j.autcon.2018.03.034
10.3390/buildings9050109
10.1109/ICPR48806.2021.9412866
10.1016/j.autcon.2021.103750
10.1016/j.autcon.2022.104348
10.1109/ICCV.2017.241
10.3390/app10207347
10.1016/j.autcon.2018.03.018
10.1109/CVPRW.2019.00084
10.1016/j.proeng.2016.04.192
10.1061/9780784480823.011
10.1061/(ASCE)ME.1943-5479.0000763
10.1080/16864360.2014.914388
10.1061/(ASCE)CP.1943-5487.0000164
10.1007/s10032-014-0236-5
10.1016/j.rser.2018.03.064
10.1016/j.autcon.2019.102838
10.1109/ICCV.2015.169
10.1080/13658816.2020.1781130
10.1016/j.buildenv.2022.108854
10.1016/j.enbuild.2020.109831
10.1016/j.autcon.2020.103183
10.3390/buildings12010045
10.3390/ijgi9040215
10.1109/CVPR.2016.91
10.1016/j.autcon.2015.12.008
10.14358/PERS.21-00032R2
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2023.107672
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2023_107672
S2352710223018521
GrantInformation_xml – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  sequence: 0
  funderid: http://dx.doi.org/10.13039/501100002923
GroupedDBID --M
0R~
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
4.4
AATTM
AAYWO
AAYXX
ABJNI
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c344t-cc2a2e70c53fe40d5a5394ddcb93e4a190b6f7b73720c81d0d5931322d93bb7b3
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Tue Jul 01 04:03:49 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Wed Dec 04 16:46:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Building
Architectural plans
Structural plans
Blueprints
BIM
Floor plans
IFC
Model generation
2D drawings
Machine-learning
As-build
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-cc2a2e70c53fe40d5a5394ddcb93e4a190b6f7b73720c81d0d5931322d93bb7b3
ORCID 0000-0002-3348-2144
0000-0002-4508-1209
0000-0001-5824-089X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352710223018521
ParticipantIDs crossref_primary_10_1016_j_jobe_2023_107672
crossref_citationtrail_10_1016_j_jobe_2023_107672
elsevier_sciencedirect_doi_10_1016_j_jobe_2023_107672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, Vol. 2015 International Conference on Computer Vision, ICCV 2015, 2015, pp. 1440–1448.
He, Gkioxari, Dollár, Girshick (b38) 2017
Peters, Dukai, Vitalis, van Liempt, Stoter (b12) 2022; 88
D’Angelo, Hajdukiewicz, Seri, Keane (b6) 2022; 50
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2016-December, 2016, pp. 779–788.
Zhang, Zou, Dimyadi (b16) 2021
Ismail, Ali, Iahad (b50) 2017
Ullah, Witt, Lill (b9) 2022; 12
Ren, He, Girshick, Sun (b30) 2015; 28
Zeng, Li, Yu, Fu (b31) 2019
Zhao, Deng, Lai (b28) 2021; 128
Yang, Liu, Zhu, Zhang, Wang, Lei (b21) 2020; 34
Szeliski (b43) 2011
Noardo, Guler, Fauth, Malacarne, Mastrolembo Ventura, Azenha, Olsson, Senger (b8) 2022; 213
Hong, Wang, Luo, Zhang (b15) 2020; 212
Gimenez, Robert, Suard, Zreik (b18) 2016; 63
Wu, Shang, Chen, Zlatanova, Hu, Zhou (b37) 2021; 35
P.R., Krishnamoorthy, Srivatsan, Goyal, Santhiappan (b53) 2022
Lu, Chen, Li, Pitt (b48) 2020; 115
Zhu, Zhang, Wen (b19) 2014; 11
Bloch, Sacks (b41) 2018; 91
Qiuchen Lu, Sanghoon Lee, A semi-automatic approach to detect structural components from cad drawings for constructing As-Is bim objects, in: Congress on Computing in Civil Engineering, Proceedings, 2017, pp. 84–91.
Truong, Luong, Nguyen (b14) 2023; 16
Gerbert, Castagnino, Rothballer, Renz, Filitz (b5) 2016
Sanhudo, Ramos, Poças Martins, Almeida, Barreira, Simōes, Cardoso (b13) 2018; 89
F. Ozge Unel, Burak O. Ozkalayci, Cevahir Cigla, The power of tiling for small object detection, in: IEEE Computer Society Conference on Computer Vision and Pattern recognition Workshops, Vol. 2019-June, 2019, pp. 582–591.
Yin, Tang, Zhou, Wen, Xu, Deng (b23) 2020; 113
Lu, Parlikad, Woodall, Ranasinghe, Xie, Liang, Konstantinou, Heaton, Schooling (b10) 2020; 36
Pizarro, Hitschfeld, Sipiran, Saavedra (b17) 2022; 140
Cassino, Bernstein, Asce, Ap, Russo, Advisor, Author, Jones, Laquidara-Carr, Taylor, Ramos, Director, Lorenz, Yamada, Buckley, Glenn, Logan, Yoders (b3) 2014
Wen, Zhu (b25) 2020; 2020
Uusitalo, Seppänen, Lappalainen, Peltokorpi, Olivieri (b52) 2019; 9
Long, Shelhamer, Darrell (b39) 2014
Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer, Machine-learned Regularization and Polygonization of Building Segmentation Masks, in: 2020 25th International Conference on Pattern Recognition, ICPR, 2021, pp. 3098–3105.
Abdulla (b45) 2017
Standard (b2) 2018
Lin (b44) 2020; 9
Lu, Lee, Chen (b49) 2018; 92
Seo, Park, Choo (b32) 2020; 10
Khaddaj, Srour (b7) 2016; 145
Bortoluzzi, Efremov, Medina, Sobieraj, McArthur (b22) 2019; 105
Zhao, Deng, Lai (b26) 2020; 10
Standard (b1) 2016
Kippers, Koeva, Keulen, Oude Elberink (b11) 2021; XLVI-4/W4-2021
Dodge, Xu, Stenger (b33) 2017
Kalervo, Ylioinas, Häikiö, Karhu, Kannala (b35) 2019
Liu, Schwing, Kundu, Urtasun, Fidler (b34) 2015
Wada, mpitid, Buijs, N., ík (b46) 2021
Huang, Zheng (b47) 2018
Giel, Issa (b4) 2013; 27
de las Heras, Terrades, Robles, Sánchez (b36) 2015; 18
Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa, Raster-to-vector: Revisiting floorplan transformation, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2214–2222.
BIMForum (b51) 2020
Lin, Dollár, Girshick, He, Hariharan, Belongie (b40) 2016
Kalervo (10.1016/j.jobe.2023.107672_b35) 2019
He (10.1016/j.jobe.2023.107672_b38) 2017
Yang (10.1016/j.jobe.2023.107672_b21) 2020; 34
Zhao (10.1016/j.jobe.2023.107672_b26) 2020; 10
Abdulla (10.1016/j.jobe.2023.107672_b45) 2017
Yin (10.1016/j.jobe.2023.107672_b23) 2020; 113
Standard (10.1016/j.jobe.2023.107672_b2) 2018
Noardo (10.1016/j.jobe.2023.107672_b8) 2022; 213
Szeliski (10.1016/j.jobe.2023.107672_b43) 2011
Lu (10.1016/j.jobe.2023.107672_b10) 2020; 36
P.R. (10.1016/j.jobe.2023.107672_b53) 2022
Peters (10.1016/j.jobe.2023.107672_b12) 2022; 88
Giel (10.1016/j.jobe.2023.107672_b4) 2013; 27
Lu (10.1016/j.jobe.2023.107672_b48) 2020; 115
Lin (10.1016/j.jobe.2023.107672_b40) 2016
Dodge (10.1016/j.jobe.2023.107672_b33) 2017
Gerbert (10.1016/j.jobe.2023.107672_b5) 2016
D’Angelo (10.1016/j.jobe.2023.107672_b6) 2022; 50
10.1016/j.jobe.2023.107672_b27
10.1016/j.jobe.2023.107672_b29
Ismail (10.1016/j.jobe.2023.107672_b50) 2017
10.1016/j.jobe.2023.107672_b20
10.1016/j.jobe.2023.107672_b24
Wada (10.1016/j.jobe.2023.107672_b46) 2021
Kippers (10.1016/j.jobe.2023.107672_b11) 2021; XLVI-4/W4-2021
Lu (10.1016/j.jobe.2023.107672_b49) 2018; 92
Bloch (10.1016/j.jobe.2023.107672_b41) 2018; 91
Gimenez (10.1016/j.jobe.2023.107672_b18) 2016; 63
Wen (10.1016/j.jobe.2023.107672_b25) 2020; 2020
Zhu (10.1016/j.jobe.2023.107672_b19) 2014; 11
Pizarro (10.1016/j.jobe.2023.107672_b17) 2022; 140
Ren (10.1016/j.jobe.2023.107672_b30) 2015; 28
Huang (10.1016/j.jobe.2023.107672_b47) 2018
Ullah (10.1016/j.jobe.2023.107672_b9) 2022; 12
Zeng (10.1016/j.jobe.2023.107672_b31) 2019
Cassino (10.1016/j.jobe.2023.107672_b3) 2014
Bortoluzzi (10.1016/j.jobe.2023.107672_b22) 2019; 105
Hong (10.1016/j.jobe.2023.107672_b15) 2020; 212
Khaddaj (10.1016/j.jobe.2023.107672_b7) 2016; 145
10.1016/j.jobe.2023.107672_b54
Zhao (10.1016/j.jobe.2023.107672_b28) 2021; 128
Standard (10.1016/j.jobe.2023.107672_b1) 2016
Long (10.1016/j.jobe.2023.107672_b39) 2014
Truong (10.1016/j.jobe.2023.107672_b14) 2023; 16
Zhang (10.1016/j.jobe.2023.107672_b16) 2021
Wu (10.1016/j.jobe.2023.107672_b37) 2021; 35
Lin (10.1016/j.jobe.2023.107672_b44) 2020; 9
Liu (10.1016/j.jobe.2023.107672_b34) 2015
Seo (10.1016/j.jobe.2023.107672_b32) 2020; 10
10.1016/j.jobe.2023.107672_b42
Uusitalo (10.1016/j.jobe.2023.107672_b52) 2019; 9
Sanhudo (10.1016/j.jobe.2023.107672_b13) 2018; 89
de las Heras (10.1016/j.jobe.2023.107672_b36) 2015; 18
BIMForum (10.1016/j.jobe.2023.107672_b51) 2020
References_xml – start-page: 1
  year: 2016
  end-page: 22
  ident: b5
  article-title: Digital in engineering and construction
– start-page: 220
  year: 2021
  end-page: 226
  ident: b16
  article-title: A systematic review of automated BIM modelling for existing buildings from 2D documentation
  publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 38
– start-page: 9096
  year: 2019
  end-page: 9104
  ident: b31
  article-title: Deep floor plan recognition using a multi-task network with room-boundary-guided attention
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 213
  year: 2022
  ident: b8
  article-title: Unveiling the actual progress of digital building permit: Getting awareness through a critical state of the art review
  publication-title: Build. Environ.
– volume: XLVI-4/W4-2021
  start-page: 49
  year: 2021
  end-page: 54
  ident: b11
  article-title: Automatic 3d building model generation using deep learning methods based on cityjson and 2D floor plans
  publication-title: Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.
– year: 2018
  ident: b2
  article-title: Industry Foundation Classes (IFC) For Data Sharing in the Construction and Facility Management Industries — Part 1: Data schema
– start-page: 156
  year: 2018
  end-page: 165
  ident: b47
  article-title: Architectural drawings recognition and generation through machine learning
  publication-title: Recalibration on Imprecision and Infidelity - Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture
– volume: 27
  start-page: 511
  year: 2013
  end-page: 521
  ident: b4
  article-title: Return on investment analysis of using building information modeling in construction
  publication-title: J. Comput. Civ. Eng.
– year: 2022
  ident: b53
  article-title: DEXTER: An end-to-end system to extract table contents from electronic medical health documents
– volume: 9
  year: 2020
  ident: b44
  article-title: Automatic generation of high-accuracy stair paths for straight, spiral, and winder stairs using IFC-based models
  publication-title: ISPRS Int. J. Geo-Inf.
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2016-December, 2016, pp. 779–788.
– volume: 10
  year: 2020
  ident: b26
  article-title: A deep learning-based method to detect components from scanned structural drawings for reconstructing 3D models
  publication-title: Appl. Sci. (Switzerland)
– volume: 92
  start-page: 68
  year: 2018
  end-page: 87
  ident: b49
  article-title: Image-driven fuzzy-based system to construct as-is IFC BIM objects
  publication-title: Autom. Constr.
– start-page: 28
  year: 2019
  end-page: 40
  ident: b35
  article-title: Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis
  publication-title: Scandinavian Conference on Image Analysis
– year: 2016
  ident: b1
  article-title: Building Information Modeling—Information Delivery Manual—Part 1: Methodology and Format
– year: 2014
  ident: b3
  article-title: Design and construction intelligence SmartMarket report McGraw hill construction the business value of BIM for owners SmartMarket report executive editor
– volume: 88
  start-page: 165
  year: 2022
  end-page: 170
  ident: b12
  article-title: Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million buildings of the netherlands
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 89
  start-page: 249
  year: 2018
  end-page: 260
  ident: b13
  article-title: Building information modeling for energy retrofitting – A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  ident: b30
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Systems
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 16
  ident: b25
  article-title: Automatic generation of 3D building models based on line segment vectorization
  publication-title: Math. Probl. Eng.
– volume: 18
  start-page: 15
  year: 2015
  end-page: 30
  ident: b36
  article-title: CVC-FP and SGT: A new database for structural floor plan analysis and its groundtruthing tool
  publication-title: Int. J. Document Anal. Recognit. (IJDAR)
– start-page: 1
  year: 2017
  end-page: 6
  ident: b50
  article-title: A review on BIM-based automated code compliance checking system
  publication-title: 2017 International Conference on Research and Innovation in Information Systems
– volume: 113
  year: 2020
  ident: b23
  article-title: Automatic layer classification method-based elevation recognition in architectural drawings for reconstruction of 3D BIM models
  publication-title: Autom. Constr.
– start-page: 3431
  year: 2014
  end-page: 3440
  ident: b39
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer, Machine-learned Regularization and Polygonization of Building Segmentation Masks, in: 2020 25th International Conference on Pattern Recognition, ICPR, 2021, pp. 3098–3105.
– volume: 35
  start-page: 1205
  year: 2021
  end-page: 1231
  ident: b37
  article-title: Indoor mapping and modeling by parsing floor plan images
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 34
  year: 2020
  ident: b21
  article-title: Semiautomatic structural BIM-model generation methodology using CAD construction drawings
  publication-title: J. Comput. Civ. Eng.
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: b38
  article-title: Mask r-cnn
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 145
  start-page: 1526
  year: 2016
  end-page: 1533
  ident: b7
  article-title: Using BIM to retrofit existing buildings
  publication-title: Procedia Eng.
– reference: Qiuchen Lu, Sanghoon Lee, A semi-automatic approach to detect structural components from cad drawings for constructing As-Is bim objects, in: Congress on Computing in Civil Engineering, Proceedings, 2017, pp. 84–91.
– volume: 16
  year: 2023
  ident: b14
  article-title: BIM to BEM transition for optimizing envelope design selection to enhance building energy efficiency and cost-effectiveness
  publication-title: Energies
– year: 2020
  ident: b51
  article-title: Level of Development (LOD) Specification Part I & Comentary
– volume: 128
  year: 2021
  ident: b28
  article-title: Reconstructing BIM from 2D structural drawings for existing buildings
  publication-title: Autom. Constr.
– volume: 212
  year: 2020
  ident: b15
  article-title: State-of-the-art on research and applications of machine learning in the building life cycle
  publication-title: Energy Build.
– volume: 10
  year: 2020
  ident: b32
  article-title: Inference of drawing elements and space usage on architectural drawings using semantic segmentation
  publication-title: Appl. Sci.
– volume: 91
  start-page: 256
  year: 2018
  end-page: 272
  ident: b41
  article-title: Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models
  publication-title: Autom. Constr.
– year: 2017
  ident: b45
  article-title: Mask R-CNN for object detection and instance segmentation on keras and TensorFlow
– start-page: 3413
  year: 2015
  end-page: 3421
  ident: b34
  article-title: Rent3D: Floor-plan priors for monocular layout estimation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 50
  year: 2022
  ident: b6
  article-title: A novel BIM-based process workflow for building retrofit
  publication-title: J. Build. Eng.
– start-page: 358
  year: 2017
  end-page: 361
  ident: b33
  article-title: Parsing floor plan images
  publication-title: 2017 Fifteenth IAPR International Conference on Machine Vision Applications
– volume: 12
  year: 2022
  ident: b9
  article-title: The BIM-based building permit process: Factors affecting adoption
  publication-title: Buildings
– volume: 63
  start-page: 48
  year: 2016
  end-page: 56
  ident: b18
  article-title: Automatic reconstruction of 3D building models from scanned 2D floor plans
  publication-title: Autom. Constr.
– reference: Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa, Raster-to-vector: Revisiting floorplan transformation, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2214–2222.
– volume: 105
  year: 2019
  ident: b22
  article-title: Automating the creation of building information models for existing buildings
  publication-title: Autom. Constr.
– volume: 140
  year: 2022
  ident: b17
  article-title: Automatic floor plan analysis and recognition
  publication-title: Autom. Constr.
– reference: R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, Vol. 2015 International Conference on Computer Vision, ICCV 2015, 2015, pp. 1440–1448.
– start-page: 273
  year: 2011
  end-page: 301
  ident: b43
  article-title: Feature-based alignment
  publication-title: Computer Vision: Algorithms and Applications
– volume: 36
  year: 2020
  ident: b10
  article-title: Developing a digital twin at building and city levels: Case study of west cambridge campus
  publication-title: J. Manage. Eng.
– start-page: 2117
  year: 2016
  end-page: 2125
  ident: b40
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  year: 2019
  ident: b52
  article-title: Applying level of detail in a BIM-based project: An overall process for lean design management
  publication-title: Buildings
– volume: 115
  year: 2020
  ident: b48
  article-title: Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings
  publication-title: Autom. Constr.
– year: 2021
  ident: b46
  article-title: Wkentaro/labelme: v4.6.0
– volume: 11
  start-page: 704
  year: 2014
  end-page: 714
  ident: b19
  article-title: A new reconstruction method for 3D buildings from 2D vector floor plan
  publication-title: Comput.-Aided Des. Appl.
– reference: F. Ozge Unel, Burak O. Ozkalayci, Cevahir Cigla, The power of tiling for small object detection, in: IEEE Computer Society Conference on Computer Vision and Pattern recognition Workshops, Vol. 2019-June, 2019, pp. 582–591.
– start-page: 358
  year: 2017
  ident: 10.1016/j.jobe.2023.107672_b33
  article-title: Parsing floor plan images
– start-page: 2961
  year: 2017
  ident: 10.1016/j.jobe.2023.107672_b38
  article-title: Mask r-cnn
– volume: 16
  issue: 10
  year: 2023
  ident: 10.1016/j.jobe.2023.107672_b14
  article-title: BIM to BEM transition for optimizing envelope design selection to enhance building energy efficiency and cost-effectiveness
  publication-title: Energies
  doi: 10.3390/en16103976
– volume: 10
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b26
  article-title: A deep learning-based method to detect components from scanned structural drawings for reconstructing 3D models
  publication-title: Appl. Sci. (Switzerland)
– year: 2022
  ident: 10.1016/j.jobe.2023.107672_b53
– volume: 113
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b23
  article-title: Automatic layer classification method-based elevation recognition in architectural drawings for reconstruction of 3D BIM models
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103082
– volume: XLVI-4/W4-2021
  start-page: 49
  year: 2021
  ident: 10.1016/j.jobe.2023.107672_b11
  article-title: Automatic 3d building model generation using deep learning methods based on cityjson and 2D floor plans
  publication-title: Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLVI-4-W4-2021-49-2021
– start-page: 3413
  year: 2015
  ident: 10.1016/j.jobe.2023.107672_b34
  article-title: Rent3D: Floor-plan priors for monocular layout estimation
– start-page: 1
  year: 2016
  ident: 10.1016/j.jobe.2023.107672_b5
– volume: 34
  issue: 3
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b21
  article-title: Semiautomatic structural BIM-model generation methodology using CAD construction drawings
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000885
– volume: 92
  start-page: 68
  year: 2018
  ident: 10.1016/j.jobe.2023.107672_b49
  article-title: Image-driven fuzzy-based system to construct as-is IFC BIM objects
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.034
– volume: 9
  issue: 5
  year: 2019
  ident: 10.1016/j.jobe.2023.107672_b52
  article-title: Applying level of detail in a BIM-based project: An overall process for lean design management
  publication-title: Buildings
  doi: 10.3390/buildings9050109
– year: 2016
  ident: 10.1016/j.jobe.2023.107672_b1
– year: 2014
  ident: 10.1016/j.jobe.2023.107672_b3
– ident: 10.1016/j.jobe.2023.107672_b42
  doi: 10.1109/ICPR48806.2021.9412866
– volume: 128
  year: 2021
  ident: 10.1016/j.jobe.2023.107672_b28
  article-title: Reconstructing BIM from 2D structural drawings for existing buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103750
– start-page: 3431
  year: 2014
  ident: 10.1016/j.jobe.2023.107672_b39
  article-title: Fully convolutional networks for semantic segmentation
– volume: 140
  year: 2022
  ident: 10.1016/j.jobe.2023.107672_b17
  article-title: Automatic floor plan analysis and recognition
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104348
– start-page: 273
  year: 2011
  ident: 10.1016/j.jobe.2023.107672_b43
  article-title: Feature-based alignment
– ident: 10.1016/j.jobe.2023.107672_b20
  doi: 10.1109/ICCV.2017.241
– start-page: 9096
  year: 2019
  ident: 10.1016/j.jobe.2023.107672_b31
  article-title: Deep floor plan recognition using a multi-task network with room-boundary-guided attention
– volume: 10
  issue: 20
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b32
  article-title: Inference of drawing elements and space usage on architectural drawings using semantic segmentation
  publication-title: Appl. Sci.
  doi: 10.3390/app10207347
– volume: 91
  start-page: 256
  year: 2018
  ident: 10.1016/j.jobe.2023.107672_b41
  article-title: Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.018
– volume: 50
  year: 2022
  ident: 10.1016/j.jobe.2023.107672_b6
  article-title: A novel BIM-based process workflow for building retrofit
  publication-title: J. Build. Eng.
– year: 2017
  ident: 10.1016/j.jobe.2023.107672_b45
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b25
  article-title: Automatic generation of 3D building models based on line segment vectorization
  publication-title: Math. Probl. Eng.
– ident: 10.1016/j.jobe.2023.107672_b54
  doi: 10.1109/CVPRW.2019.00084
– volume: 145
  start-page: 1526
  year: 2016
  ident: 10.1016/j.jobe.2023.107672_b7
  article-title: Using BIM to retrofit existing buildings
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.04.192
– ident: 10.1016/j.jobe.2023.107672_b24
  doi: 10.1061/9780784480823.011
– volume: 28
  start-page: 91
  year: 2015
  ident: 10.1016/j.jobe.2023.107672_b30
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Systems
– volume: 36
  issue: 3
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b10
  article-title: Developing a digital twin at building and city levels: Case study of west cambridge campus
  publication-title: J. Manage. Eng.
  doi: 10.1061/(ASCE)ME.1943-5479.0000763
– volume: 11
  start-page: 704
  year: 2014
  ident: 10.1016/j.jobe.2023.107672_b19
  article-title: A new reconstruction method for 3D buildings from 2D vector floor plan
  publication-title: Comput.-Aided Des. Appl.
  doi: 10.1080/16864360.2014.914388
– volume: 27
  start-page: 511
  issue: 5
  year: 2013
  ident: 10.1016/j.jobe.2023.107672_b4
  article-title: Return on investment analysis of using building information modeling in construction
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000164
– start-page: 220
  year: 2021
  ident: 10.1016/j.jobe.2023.107672_b16
  article-title: A systematic review of automated BIM modelling for existing buildings from 2D documentation
– start-page: 28
  year: 2019
  ident: 10.1016/j.jobe.2023.107672_b35
  article-title: Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis
– volume: 18
  start-page: 15
  issue: 1
  year: 2015
  ident: 10.1016/j.jobe.2023.107672_b36
  article-title: CVC-FP and SGT: A new database for structural floor plan analysis and its groundtruthing tool
  publication-title: Int. J. Document Anal. Recognit. (IJDAR)
  doi: 10.1007/s10032-014-0236-5
– year: 2020
  ident: 10.1016/j.jobe.2023.107672_b51
– volume: 89
  start-page: 249
  year: 2018
  ident: 10.1016/j.jobe.2023.107672_b13
  article-title: Building information modeling for energy retrofitting – A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.064
– start-page: 2117
  year: 2016
  ident: 10.1016/j.jobe.2023.107672_b40
  article-title: Feature pyramid networks for object detection
– volume: 105
  year: 2019
  ident: 10.1016/j.jobe.2023.107672_b22
  article-title: Automating the creation of building information models for existing buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102838
– year: 2018
  ident: 10.1016/j.jobe.2023.107672_b2
– ident: 10.1016/j.jobe.2023.107672_b29
  doi: 10.1109/ICCV.2015.169
– volume: 35
  start-page: 1205
  issue: 6
  year: 2021
  ident: 10.1016/j.jobe.2023.107672_b37
  article-title: Indoor mapping and modeling by parsing floor plan images
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2020.1781130
– start-page: 156
  year: 2018
  ident: 10.1016/j.jobe.2023.107672_b47
  article-title: Architectural drawings recognition and generation through machine learning
– year: 2021
  ident: 10.1016/j.jobe.2023.107672_b46
– volume: 213
  year: 2022
  ident: 10.1016/j.jobe.2023.107672_b8
  article-title: Unveiling the actual progress of digital building permit: Getting awareness through a critical state of the art review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.108854
– volume: 212
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b15
  article-title: State-of-the-art on research and applications of machine learning in the building life cycle
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109831
– volume: 115
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b48
  article-title: Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103183
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.jobe.2023.107672_b9
  article-title: The BIM-based building permit process: Factors affecting adoption
  publication-title: Buildings
  doi: 10.3390/buildings12010045
– volume: 9
  issue: 4
  year: 2020
  ident: 10.1016/j.jobe.2023.107672_b44
  article-title: Automatic generation of high-accuracy stair paths for straight, spiral, and winder stairs using IFC-based models
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9040215
– ident: 10.1016/j.jobe.2023.107672_b27
  doi: 10.1109/CVPR.2016.91
– volume: 63
  start-page: 48
  year: 2016
  ident: 10.1016/j.jobe.2023.107672_b18
  article-title: Automatic reconstruction of 3D building models from scanned 2D floor plans
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.12.008
– volume: 88
  start-page: 165
  year: 2022
  ident: 10.1016/j.jobe.2023.107672_b12
  article-title: Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million buildings of the netherlands
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.21-00032R2
– start-page: 1
  year: 2017
  ident: 10.1016/j.jobe.2023.107672_b50
  article-title: A review on BIM-based automated code compliance checking system
SSID ssj0002953864
Score 2.3843215
Snippet Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107672
SubjectTerms 2D drawings
Architectural plans
As-build
BIM
Building
Floor plans
IFC
Machine-learning
Model generation
Structural plans
Title Generating BIM model from structural and architectural plans using Artificial Intelligence
URI https://dx.doi.org/10.1016/j.jobe.2023.107672
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhWbqUlrY0faGhWzFxZMm2xjQ0JC3J0gZCF6FXSkJwM-T_0ztLDimUDN1soTPmLN19Z919R8hjzqUzUnDY32mZcMN9onWRJn1jtGGidEV9ej6d5eM5f12IRYsMm1oYTKuMtj_Y9Npax5Fe1GZvu1r13hlgB_SPAKKxAhhCoA7LZA5LuzOYvI1n-18tTMKuromkUASzD1ksnwmZXmusu8E24jBQ5AX720UduJ3RGTmNeJEOwiudk5avLshnIIvGjGX6PJnSup0NxUoRGvhgkUuD6srRg3MCGNluwDFRTHX_qp8Y2CPo5ICW85LMRy8fw3ESmyQkNuN8l1jLNPNFakW29Dx1QotMcueskZnnGvy9yZeFqbvRWACnMEMiXSNzMjOmMNkVaVfflb8mFIKnpXFcIOripYSYG6JXCdIpXANS7JJ-oxdlI4M4NrLYqCZVbK1Qlwp1qYIuu-RpL7MN_BlHZ4tG3erXKlBg4I_I3fxT7pac4F2oLbwjbfhE_h5Axs48xEX0AxhtzpU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhGdqltLSl6VNDt2LiyJIdjWlosJvH0gRCFyFZTkkIbob8f3pnySGFkqGbkXXGnKW776y77wh5jrm0RgoO-zvsBdzwItA6CYOuMdow0bNJdXo-mcbpnL8vxKJBBnUtDKZVetvvbHplrf1Ix2uzs12tOh8MsAP6RwDRWAEMIVAL2alEk7T62Sid7n-1MAm7uiKSQhHMPmS-fMZleq2x7gbbiMNAEifsbxd14HaG5-TM40Xad690QRpFeUk-HVk0ZizT12xCq3Y2FCtFqOODRS4NqktLD84JYGS7AcdEMdX9q3qiY4-g2QEt5xWZD99mgzTwTRKCPOJ8F-Q506xIwlxEy4KHVmgRSW5tbmRUcA3-3sTLxFTdaHIApzBDIl0jszIyJjHRNWmW32VxQygET0tjuUDUxXsSYm6IXiVIh3ANSLFNurVeVO4ZxLGRxUbVqWJrhbpUqEvldNkmL3uZrePPODpb1OpWv1aBAgN_RO72n3JP5CSdTcZqnE1Hd-QU77g6w3vShM9VPADg2JlHv6B-AN6v0Xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+BIM+model+from+structural+and+architectural+plans+using+Artificial+Intelligence&rft.jtitle=Journal+of+Building+Engineering&rft.au=Urbieta%2C+Martin&rft.au=Urbieta%2C+Matias&rft.au=Laborde%2C+Tomas&rft.au=Villarreal%2C+Guillermo&rft.date=2023-11-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=78&rft.spage=107672&rft_id=info:doi/10.1016%2Fj.jobe.2023.107672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2023_107672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon