Generating BIM model from structural and architectural plans using Artificial Intelligence
Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since...
Saved in:
Published in | Journal of Building Engineering Vol. 78; p. 107672 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-7102 2352-7102 |
DOI | 10.1016/j.jobe.2023.107672 |
Cover
Loading…
Abstract | Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since adopting the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated validations and analysis. However, legacy analog plans cannot profit from sophisticated BIM analysis, and it is not feasible to manually generate BIM representations at low cost. There is a demand for BIM models of existing buildings that are feasible to be integrated into a workflow for building energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial intelligence algorithms by parsing architectural and structural drawings. To identify elements from blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9 concrete buildings composed of architectural and structural blueprints. The outcome of the process is a BIM model corresponding to one of the multi-storey buildings using the Industry Foundation Classes (IFC) format. Building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans.
•An approach for identifying drawing elements from plans using machine learning.•Novel public dataset with structural and architectural plans.•Building Model Information model generation from structural and architectural plans.•Extensible to include specialties like mechanical, electrical, and plumbing.•We illustrate our approach in a building case study. |
---|---|
AbstractList | Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is a large amount of information in millions of assets that are hard to process because of their analog nature. Since adopting the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated validations and analysis. However, legacy analog plans cannot profit from sophisticated BIM analysis, and it is not feasible to manually generate BIM representations at low cost. There is a demand for BIM models of existing buildings that are feasible to be integrated into a workflow for building energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial intelligence algorithms by parsing architectural and structural drawings. To identify elements from blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9 concrete buildings composed of architectural and structural blueprints. The outcome of the process is a BIM model corresponding to one of the multi-storey buildings using the Industry Foundation Classes (IFC) format. Building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans.
•An approach for identifying drawing elements from plans using machine learning.•Novel public dataset with structural and architectural plans.•Building Model Information model generation from structural and architectural plans.•Extensible to include specialties like mechanical, electrical, and plumbing.•We illustrate our approach in a building case study. |
ArticleNumber | 107672 |
Author | Laborde, Tomas Urbieta, Martin Rossi, Gustavo Urbieta, Matias Villarreal, Guillermo |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-5824-089X surname: Urbieta fullname: Urbieta, Martin organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina – sequence: 2 givenname: Matias orcidid: 0000-0002-4508-1209 surname: Urbieta fullname: Urbieta, Matias email: matias.urbieta@lifia.info.unlp.edu.ar organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina – sequence: 3 givenname: Tomas surname: Laborde fullname: Laborde, Tomas organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina – sequence: 4 givenname: Guillermo surname: Villarreal fullname: Villarreal, Guillermo organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina – sequence: 5 givenname: Gustavo orcidid: 0000-0002-3348-2144 surname: Rossi fullname: Rossi, Gustavo organization: Centro de investigación LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Calle 50 y 120, La Plata, 1900, Buenos Aires, Argentina |
BookMark | eNp9kMtKAzEUhoNUsNa-gKu8wNRcZiYdcFOLtoWKG924CbmcqRmmmZKkgm_vDO1CXHR1Dj_nO_B_t2jkOw8I3VMyo4SWD82s6TTMGGG8D0Qp2BUaM16wTFDCRn_2GzSNsSGEsKrg8zIfo88VeAgqOb_DT5tXvO8stLgO3R7HFI4mHYNqsfIWq2C-XIJzcmiVj_gYB24RkqudcX288Qna1u3AG7hD17VqI0zPc4I-Xp7fl-ts-7baLBfbzPA8T5kxTDEQxBS8hpzYQhW8yq01uuKQK1oRXdZCCy4YMXNq-4uKU86YrbjWQvMJYqe_JnQxBqjlIbi9Cj-SEjkIko0cBMlBkDwJ6qH5P8i41GvofArKtZfRxxMKfalvB0FG44bC1oVej7Sdu4T_AibLhCk |
CitedBy_id | crossref_primary_10_3390_buildings14061613 crossref_primary_10_3390_buildings14082475 crossref_primary_10_3390_infrastructures9040075 crossref_primary_10_1109_ACCESS_2024_3425898 crossref_primary_10_2139_ssrn_4645601 crossref_primary_10_3390_buildings15050691 crossref_primary_10_3390_eng5020042 crossref_primary_10_2478_amns_2024_2110 crossref_primary_10_1088_1742_6596_2916_1_012022 |
Cites_doi | 10.3390/en16103976 10.1016/j.autcon.2020.103082 10.5194/isprs-archives-XLVI-4-W4-2021-49-2021 10.1061/(ASCE)CP.1943-5487.0000885 10.1016/j.autcon.2018.03.034 10.3390/buildings9050109 10.1109/ICPR48806.2021.9412866 10.1016/j.autcon.2021.103750 10.1016/j.autcon.2022.104348 10.1109/ICCV.2017.241 10.3390/app10207347 10.1016/j.autcon.2018.03.018 10.1109/CVPRW.2019.00084 10.1016/j.proeng.2016.04.192 10.1061/9780784480823.011 10.1061/(ASCE)ME.1943-5479.0000763 10.1080/16864360.2014.914388 10.1061/(ASCE)CP.1943-5487.0000164 10.1007/s10032-014-0236-5 10.1016/j.rser.2018.03.064 10.1016/j.autcon.2019.102838 10.1109/ICCV.2015.169 10.1080/13658816.2020.1781130 10.1016/j.buildenv.2022.108854 10.1016/j.enbuild.2020.109831 10.1016/j.autcon.2020.103183 10.3390/buildings12010045 10.3390/ijgi9040215 10.1109/CVPR.2016.91 10.1016/j.autcon.2015.12.008 10.14358/PERS.21-00032R2 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jobe.2023.107672 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-7102 |
ExternalDocumentID | 10_1016_j_jobe_2023_107672 S2352710223018521 |
GrantInformation_xml | – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina sequence: 0 funderid: http://dx.doi.org/10.13039/501100002923 |
GroupedDBID | --M 0R~ 457 7-5 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ACDAQ ACGFS ACHRH ACNTT ACRLP ADBBV ADEZE AEBSH AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE ROL SPC SPCBC SSB SSL SST SSZ T5K ~G- 4.4 AATTM AAYWO AAYXX ABJNI ABXDB ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EJD SSH |
ID | FETCH-LOGICAL-c344t-cc2a2e70c53fe40d5a5394ddcb93e4a190b6f7b73720c81d0d5931322d93bb7b3 |
IEDL.DBID | AIKHN |
ISSN | 2352-7102 |
IngestDate | Tue Jul 01 04:03:49 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Wed Dec 04 16:46:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Building Architectural plans Structural plans Blueprints BIM Floor plans IFC Model generation 2D drawings Machine-learning As-build |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-cc2a2e70c53fe40d5a5394ddcb93e4a190b6f7b73720c81d0d5931322d93bb7b3 |
ORCID | 0000-0002-3348-2144 0000-0002-4508-1209 0000-0001-5824-089X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352710223018521 |
ParticipantIDs | crossref_primary_10_1016_j_jobe_2023_107672 crossref_citationtrail_10_1016_j_jobe_2023_107672 elsevier_sciencedirect_doi_10_1016_j_jobe_2023_107672 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Building Engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – sequence: 0 name: Elsevier Ltd |
References | R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, Vol. 2015 International Conference on Computer Vision, ICCV 2015, 2015, pp. 1440–1448. He, Gkioxari, Dollár, Girshick (b38) 2017 Peters, Dukai, Vitalis, van Liempt, Stoter (b12) 2022; 88 D’Angelo, Hajdukiewicz, Seri, Keane (b6) 2022; 50 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2016-December, 2016, pp. 779–788. Zhang, Zou, Dimyadi (b16) 2021 Ismail, Ali, Iahad (b50) 2017 Ullah, Witt, Lill (b9) 2022; 12 Ren, He, Girshick, Sun (b30) 2015; 28 Zeng, Li, Yu, Fu (b31) 2019 Zhao, Deng, Lai (b28) 2021; 128 Yang, Liu, Zhu, Zhang, Wang, Lei (b21) 2020; 34 Szeliski (b43) 2011 Noardo, Guler, Fauth, Malacarne, Mastrolembo Ventura, Azenha, Olsson, Senger (b8) 2022; 213 Hong, Wang, Luo, Zhang (b15) 2020; 212 Gimenez, Robert, Suard, Zreik (b18) 2016; 63 Wu, Shang, Chen, Zlatanova, Hu, Zhou (b37) 2021; 35 P.R., Krishnamoorthy, Srivatsan, Goyal, Santhiappan (b53) 2022 Lu, Chen, Li, Pitt (b48) 2020; 115 Zhu, Zhang, Wen (b19) 2014; 11 Bloch, Sacks (b41) 2018; 91 Qiuchen Lu, Sanghoon Lee, A semi-automatic approach to detect structural components from cad drawings for constructing As-Is bim objects, in: Congress on Computing in Civil Engineering, Proceedings, 2017, pp. 84–91. Truong, Luong, Nguyen (b14) 2023; 16 Gerbert, Castagnino, Rothballer, Renz, Filitz (b5) 2016 Sanhudo, Ramos, Poças Martins, Almeida, Barreira, Simōes, Cardoso (b13) 2018; 89 F. Ozge Unel, Burak O. Ozkalayci, Cevahir Cigla, The power of tiling for small object detection, in: IEEE Computer Society Conference on Computer Vision and Pattern recognition Workshops, Vol. 2019-June, 2019, pp. 582–591. Yin, Tang, Zhou, Wen, Xu, Deng (b23) 2020; 113 Lu, Parlikad, Woodall, Ranasinghe, Xie, Liang, Konstantinou, Heaton, Schooling (b10) 2020; 36 Pizarro, Hitschfeld, Sipiran, Saavedra (b17) 2022; 140 Cassino, Bernstein, Asce, Ap, Russo, Advisor, Author, Jones, Laquidara-Carr, Taylor, Ramos, Director, Lorenz, Yamada, Buckley, Glenn, Logan, Yoders (b3) 2014 Wen, Zhu (b25) 2020; 2020 Uusitalo, Seppänen, Lappalainen, Peltokorpi, Olivieri (b52) 2019; 9 Long, Shelhamer, Darrell (b39) 2014 Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer, Machine-learned Regularization and Polygonization of Building Segmentation Masks, in: 2020 25th International Conference on Pattern Recognition, ICPR, 2021, pp. 3098–3105. Abdulla (b45) 2017 Standard (b2) 2018 Lin (b44) 2020; 9 Lu, Lee, Chen (b49) 2018; 92 Seo, Park, Choo (b32) 2020; 10 Khaddaj, Srour (b7) 2016; 145 Bortoluzzi, Efremov, Medina, Sobieraj, McArthur (b22) 2019; 105 Zhao, Deng, Lai (b26) 2020; 10 Standard (b1) 2016 Kippers, Koeva, Keulen, Oude Elberink (b11) 2021; XLVI-4/W4-2021 Dodge, Xu, Stenger (b33) 2017 Kalervo, Ylioinas, Häikiö, Karhu, Kannala (b35) 2019 Liu, Schwing, Kundu, Urtasun, Fidler (b34) 2015 Wada, mpitid, Buijs, N., ík (b46) 2021 Huang, Zheng (b47) 2018 Giel, Issa (b4) 2013; 27 de las Heras, Terrades, Robles, Sánchez (b36) 2015; 18 Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa, Raster-to-vector: Revisiting floorplan transformation, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2214–2222. BIMForum (b51) 2020 Lin, Dollár, Girshick, He, Hariharan, Belongie (b40) 2016 Kalervo (10.1016/j.jobe.2023.107672_b35) 2019 He (10.1016/j.jobe.2023.107672_b38) 2017 Yang (10.1016/j.jobe.2023.107672_b21) 2020; 34 Zhao (10.1016/j.jobe.2023.107672_b26) 2020; 10 Abdulla (10.1016/j.jobe.2023.107672_b45) 2017 Yin (10.1016/j.jobe.2023.107672_b23) 2020; 113 Standard (10.1016/j.jobe.2023.107672_b2) 2018 Noardo (10.1016/j.jobe.2023.107672_b8) 2022; 213 Szeliski (10.1016/j.jobe.2023.107672_b43) 2011 Lu (10.1016/j.jobe.2023.107672_b10) 2020; 36 P.R. (10.1016/j.jobe.2023.107672_b53) 2022 Peters (10.1016/j.jobe.2023.107672_b12) 2022; 88 Giel (10.1016/j.jobe.2023.107672_b4) 2013; 27 Lu (10.1016/j.jobe.2023.107672_b48) 2020; 115 Lin (10.1016/j.jobe.2023.107672_b40) 2016 Dodge (10.1016/j.jobe.2023.107672_b33) 2017 Gerbert (10.1016/j.jobe.2023.107672_b5) 2016 D’Angelo (10.1016/j.jobe.2023.107672_b6) 2022; 50 10.1016/j.jobe.2023.107672_b27 10.1016/j.jobe.2023.107672_b29 Ismail (10.1016/j.jobe.2023.107672_b50) 2017 10.1016/j.jobe.2023.107672_b20 10.1016/j.jobe.2023.107672_b24 Wada (10.1016/j.jobe.2023.107672_b46) 2021 Kippers (10.1016/j.jobe.2023.107672_b11) 2021; XLVI-4/W4-2021 Lu (10.1016/j.jobe.2023.107672_b49) 2018; 92 Bloch (10.1016/j.jobe.2023.107672_b41) 2018; 91 Gimenez (10.1016/j.jobe.2023.107672_b18) 2016; 63 Wen (10.1016/j.jobe.2023.107672_b25) 2020; 2020 Zhu (10.1016/j.jobe.2023.107672_b19) 2014; 11 Pizarro (10.1016/j.jobe.2023.107672_b17) 2022; 140 Ren (10.1016/j.jobe.2023.107672_b30) 2015; 28 Huang (10.1016/j.jobe.2023.107672_b47) 2018 Ullah (10.1016/j.jobe.2023.107672_b9) 2022; 12 Zeng (10.1016/j.jobe.2023.107672_b31) 2019 Cassino (10.1016/j.jobe.2023.107672_b3) 2014 Bortoluzzi (10.1016/j.jobe.2023.107672_b22) 2019; 105 Hong (10.1016/j.jobe.2023.107672_b15) 2020; 212 Khaddaj (10.1016/j.jobe.2023.107672_b7) 2016; 145 10.1016/j.jobe.2023.107672_b54 Zhao (10.1016/j.jobe.2023.107672_b28) 2021; 128 Standard (10.1016/j.jobe.2023.107672_b1) 2016 Long (10.1016/j.jobe.2023.107672_b39) 2014 Truong (10.1016/j.jobe.2023.107672_b14) 2023; 16 Zhang (10.1016/j.jobe.2023.107672_b16) 2021 Wu (10.1016/j.jobe.2023.107672_b37) 2021; 35 Lin (10.1016/j.jobe.2023.107672_b44) 2020; 9 Liu (10.1016/j.jobe.2023.107672_b34) 2015 Seo (10.1016/j.jobe.2023.107672_b32) 2020; 10 10.1016/j.jobe.2023.107672_b42 Uusitalo (10.1016/j.jobe.2023.107672_b52) 2019; 9 Sanhudo (10.1016/j.jobe.2023.107672_b13) 2018; 89 de las Heras (10.1016/j.jobe.2023.107672_b36) 2015; 18 BIMForum (10.1016/j.jobe.2023.107672_b51) 2020 |
References_xml | – start-page: 1 year: 2016 end-page: 22 ident: b5 article-title: Digital in engineering and construction – start-page: 220 year: 2021 end-page: 226 ident: b16 article-title: A systematic review of automated BIM modelling for existing buildings from 2D documentation publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 38 – start-page: 9096 year: 2019 end-page: 9104 ident: b31 article-title: Deep floor plan recognition using a multi-task network with room-boundary-guided attention publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 213 year: 2022 ident: b8 article-title: Unveiling the actual progress of digital building permit: Getting awareness through a critical state of the art review publication-title: Build. Environ. – volume: XLVI-4/W4-2021 start-page: 49 year: 2021 end-page: 54 ident: b11 article-title: Automatic 3d building model generation using deep learning methods based on cityjson and 2D floor plans publication-title: Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. – year: 2018 ident: b2 article-title: Industry Foundation Classes (IFC) For Data Sharing in the Construction and Facility Management Industries — Part 1: Data schema – start-page: 156 year: 2018 end-page: 165 ident: b47 article-title: Architectural drawings recognition and generation through machine learning publication-title: Recalibration on Imprecision and Infidelity - Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture – volume: 27 start-page: 511 year: 2013 end-page: 521 ident: b4 article-title: Return on investment analysis of using building information modeling in construction publication-title: J. Comput. Civ. Eng. – year: 2022 ident: b53 article-title: DEXTER: An end-to-end system to extract table contents from electronic medical health documents – volume: 9 year: 2020 ident: b44 article-title: Automatic generation of high-accuracy stair paths for straight, spiral, and winder stairs using IFC-based models publication-title: ISPRS Int. J. Geo-Inf. – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2016-December, 2016, pp. 779–788. – volume: 10 year: 2020 ident: b26 article-title: A deep learning-based method to detect components from scanned structural drawings for reconstructing 3D models publication-title: Appl. Sci. (Switzerland) – volume: 92 start-page: 68 year: 2018 end-page: 87 ident: b49 article-title: Image-driven fuzzy-based system to construct as-is IFC BIM objects publication-title: Autom. Constr. – start-page: 28 year: 2019 end-page: 40 ident: b35 article-title: Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis publication-title: Scandinavian Conference on Image Analysis – year: 2016 ident: b1 article-title: Building Information Modeling—Information Delivery Manual—Part 1: Methodology and Format – year: 2014 ident: b3 article-title: Design and construction intelligence SmartMarket report McGraw hill construction the business value of BIM for owners SmartMarket report executive editor – volume: 88 start-page: 165 year: 2022 end-page: 170 ident: b12 article-title: Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million buildings of the netherlands publication-title: Photogramm. Eng. Remote Sens. – volume: 89 start-page: 249 year: 2018 end-page: 260 ident: b13 article-title: Building information modeling for energy retrofitting – A review publication-title: Renew. Sustain. Energy Rev. – volume: 28 start-page: 91 year: 2015 end-page: 99 ident: b30 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Systems – volume: 2020 start-page: 1 year: 2020 end-page: 16 ident: b25 article-title: Automatic generation of 3D building models based on line segment vectorization publication-title: Math. Probl. Eng. – volume: 18 start-page: 15 year: 2015 end-page: 30 ident: b36 article-title: CVC-FP and SGT: A new database for structural floor plan analysis and its groundtruthing tool publication-title: Int. J. Document Anal. Recognit. (IJDAR) – start-page: 1 year: 2017 end-page: 6 ident: b50 article-title: A review on BIM-based automated code compliance checking system publication-title: 2017 International Conference on Research and Innovation in Information Systems – volume: 113 year: 2020 ident: b23 article-title: Automatic layer classification method-based elevation recognition in architectural drawings for reconstruction of 3D BIM models publication-title: Autom. Constr. – start-page: 3431 year: 2014 end-page: 3440 ident: b39 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Stefano Zorzi, Ksenia Bittner, Friedrich Fraundorfer, Machine-learned Regularization and Polygonization of Building Segmentation Masks, in: 2020 25th International Conference on Pattern Recognition, ICPR, 2021, pp. 3098–3105. – volume: 35 start-page: 1205 year: 2021 end-page: 1231 ident: b37 article-title: Indoor mapping and modeling by parsing floor plan images publication-title: Int. J. Geogr. Inf. Sci. – volume: 34 year: 2020 ident: b21 article-title: Semiautomatic structural BIM-model generation methodology using CAD construction drawings publication-title: J. Comput. Civ. Eng. – start-page: 2961 year: 2017 end-page: 2969 ident: b38 article-title: Mask r-cnn publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 145 start-page: 1526 year: 2016 end-page: 1533 ident: b7 article-title: Using BIM to retrofit existing buildings publication-title: Procedia Eng. – reference: Qiuchen Lu, Sanghoon Lee, A semi-automatic approach to detect structural components from cad drawings for constructing As-Is bim objects, in: Congress on Computing in Civil Engineering, Proceedings, 2017, pp. 84–91. – volume: 16 year: 2023 ident: b14 article-title: BIM to BEM transition for optimizing envelope design selection to enhance building energy efficiency and cost-effectiveness publication-title: Energies – year: 2020 ident: b51 article-title: Level of Development (LOD) Specification Part I & Comentary – volume: 128 year: 2021 ident: b28 article-title: Reconstructing BIM from 2D structural drawings for existing buildings publication-title: Autom. Constr. – volume: 212 year: 2020 ident: b15 article-title: State-of-the-art on research and applications of machine learning in the building life cycle publication-title: Energy Build. – volume: 10 year: 2020 ident: b32 article-title: Inference of drawing elements and space usage on architectural drawings using semantic segmentation publication-title: Appl. Sci. – volume: 91 start-page: 256 year: 2018 end-page: 272 ident: b41 article-title: Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models publication-title: Autom. Constr. – year: 2017 ident: b45 article-title: Mask R-CNN for object detection and instance segmentation on keras and TensorFlow – start-page: 3413 year: 2015 end-page: 3421 ident: b34 article-title: Rent3D: Floor-plan priors for monocular layout estimation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 50 year: 2022 ident: b6 article-title: A novel BIM-based process workflow for building retrofit publication-title: J. Build. Eng. – start-page: 358 year: 2017 end-page: 361 ident: b33 article-title: Parsing floor plan images publication-title: 2017 Fifteenth IAPR International Conference on Machine Vision Applications – volume: 12 year: 2022 ident: b9 article-title: The BIM-based building permit process: Factors affecting adoption publication-title: Buildings – volume: 63 start-page: 48 year: 2016 end-page: 56 ident: b18 article-title: Automatic reconstruction of 3D building models from scanned 2D floor plans publication-title: Autom. Constr. – reference: Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa, Raster-to-vector: Revisiting floorplan transformation, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2214–2222. – volume: 105 year: 2019 ident: b22 article-title: Automating the creation of building information models for existing buildings publication-title: Autom. Constr. – volume: 140 year: 2022 ident: b17 article-title: Automatic floor plan analysis and recognition publication-title: Autom. Constr. – reference: R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, Vol. 2015 International Conference on Computer Vision, ICCV 2015, 2015, pp. 1440–1448. – start-page: 273 year: 2011 end-page: 301 ident: b43 article-title: Feature-based alignment publication-title: Computer Vision: Algorithms and Applications – volume: 36 year: 2020 ident: b10 article-title: Developing a digital twin at building and city levels: Case study of west cambridge campus publication-title: J. Manage. Eng. – start-page: 2117 year: 2016 end-page: 2125 ident: b40 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 9 year: 2019 ident: b52 article-title: Applying level of detail in a BIM-based project: An overall process for lean design management publication-title: Buildings – volume: 115 year: 2020 ident: b48 article-title: Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings publication-title: Autom. Constr. – year: 2021 ident: b46 article-title: Wkentaro/labelme: v4.6.0 – volume: 11 start-page: 704 year: 2014 end-page: 714 ident: b19 article-title: A new reconstruction method for 3D buildings from 2D vector floor plan publication-title: Comput.-Aided Des. Appl. – reference: F. Ozge Unel, Burak O. Ozkalayci, Cevahir Cigla, The power of tiling for small object detection, in: IEEE Computer Society Conference on Computer Vision and Pattern recognition Workshops, Vol. 2019-June, 2019, pp. 582–591. – start-page: 358 year: 2017 ident: 10.1016/j.jobe.2023.107672_b33 article-title: Parsing floor plan images – start-page: 2961 year: 2017 ident: 10.1016/j.jobe.2023.107672_b38 article-title: Mask r-cnn – volume: 16 issue: 10 year: 2023 ident: 10.1016/j.jobe.2023.107672_b14 article-title: BIM to BEM transition for optimizing envelope design selection to enhance building energy efficiency and cost-effectiveness publication-title: Energies doi: 10.3390/en16103976 – volume: 10 year: 2020 ident: 10.1016/j.jobe.2023.107672_b26 article-title: A deep learning-based method to detect components from scanned structural drawings for reconstructing 3D models publication-title: Appl. Sci. (Switzerland) – year: 2022 ident: 10.1016/j.jobe.2023.107672_b53 – volume: 113 year: 2020 ident: 10.1016/j.jobe.2023.107672_b23 article-title: Automatic layer classification method-based elevation recognition in architectural drawings for reconstruction of 3D BIM models publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103082 – volume: XLVI-4/W4-2021 start-page: 49 year: 2021 ident: 10.1016/j.jobe.2023.107672_b11 article-title: Automatic 3d building model generation using deep learning methods based on cityjson and 2D floor plans publication-title: Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-archives-XLVI-4-W4-2021-49-2021 – start-page: 3413 year: 2015 ident: 10.1016/j.jobe.2023.107672_b34 article-title: Rent3D: Floor-plan priors for monocular layout estimation – start-page: 1 year: 2016 ident: 10.1016/j.jobe.2023.107672_b5 – volume: 34 issue: 3 year: 2020 ident: 10.1016/j.jobe.2023.107672_b21 article-title: Semiautomatic structural BIM-model generation methodology using CAD construction drawings publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000885 – volume: 92 start-page: 68 year: 2018 ident: 10.1016/j.jobe.2023.107672_b49 article-title: Image-driven fuzzy-based system to construct as-is IFC BIM objects publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.034 – volume: 9 issue: 5 year: 2019 ident: 10.1016/j.jobe.2023.107672_b52 article-title: Applying level of detail in a BIM-based project: An overall process for lean design management publication-title: Buildings doi: 10.3390/buildings9050109 – year: 2016 ident: 10.1016/j.jobe.2023.107672_b1 – year: 2014 ident: 10.1016/j.jobe.2023.107672_b3 – ident: 10.1016/j.jobe.2023.107672_b42 doi: 10.1109/ICPR48806.2021.9412866 – volume: 128 year: 2021 ident: 10.1016/j.jobe.2023.107672_b28 article-title: Reconstructing BIM from 2D structural drawings for existing buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103750 – start-page: 3431 year: 2014 ident: 10.1016/j.jobe.2023.107672_b39 article-title: Fully convolutional networks for semantic segmentation – volume: 140 year: 2022 ident: 10.1016/j.jobe.2023.107672_b17 article-title: Automatic floor plan analysis and recognition publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104348 – start-page: 273 year: 2011 ident: 10.1016/j.jobe.2023.107672_b43 article-title: Feature-based alignment – ident: 10.1016/j.jobe.2023.107672_b20 doi: 10.1109/ICCV.2017.241 – start-page: 9096 year: 2019 ident: 10.1016/j.jobe.2023.107672_b31 article-title: Deep floor plan recognition using a multi-task network with room-boundary-guided attention – volume: 10 issue: 20 year: 2020 ident: 10.1016/j.jobe.2023.107672_b32 article-title: Inference of drawing elements and space usage on architectural drawings using semantic segmentation publication-title: Appl. Sci. doi: 10.3390/app10207347 – volume: 91 start-page: 256 year: 2018 ident: 10.1016/j.jobe.2023.107672_b41 article-title: Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.018 – volume: 50 year: 2022 ident: 10.1016/j.jobe.2023.107672_b6 article-title: A novel BIM-based process workflow for building retrofit publication-title: J. Build. Eng. – year: 2017 ident: 10.1016/j.jobe.2023.107672_b45 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.jobe.2023.107672_b25 article-title: Automatic generation of 3D building models based on line segment vectorization publication-title: Math. Probl. Eng. – ident: 10.1016/j.jobe.2023.107672_b54 doi: 10.1109/CVPRW.2019.00084 – volume: 145 start-page: 1526 year: 2016 ident: 10.1016/j.jobe.2023.107672_b7 article-title: Using BIM to retrofit existing buildings publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.04.192 – ident: 10.1016/j.jobe.2023.107672_b24 doi: 10.1061/9780784480823.011 – volume: 28 start-page: 91 year: 2015 ident: 10.1016/j.jobe.2023.107672_b30 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Systems – volume: 36 issue: 3 year: 2020 ident: 10.1016/j.jobe.2023.107672_b10 article-title: Developing a digital twin at building and city levels: Case study of west cambridge campus publication-title: J. Manage. Eng. doi: 10.1061/(ASCE)ME.1943-5479.0000763 – volume: 11 start-page: 704 year: 2014 ident: 10.1016/j.jobe.2023.107672_b19 article-title: A new reconstruction method for 3D buildings from 2D vector floor plan publication-title: Comput.-Aided Des. Appl. doi: 10.1080/16864360.2014.914388 – volume: 27 start-page: 511 issue: 5 year: 2013 ident: 10.1016/j.jobe.2023.107672_b4 article-title: Return on investment analysis of using building information modeling in construction publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000164 – start-page: 220 year: 2021 ident: 10.1016/j.jobe.2023.107672_b16 article-title: A systematic review of automated BIM modelling for existing buildings from 2D documentation – start-page: 28 year: 2019 ident: 10.1016/j.jobe.2023.107672_b35 article-title: Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis – volume: 18 start-page: 15 issue: 1 year: 2015 ident: 10.1016/j.jobe.2023.107672_b36 article-title: CVC-FP and SGT: A new database for structural floor plan analysis and its groundtruthing tool publication-title: Int. J. Document Anal. Recognit. (IJDAR) doi: 10.1007/s10032-014-0236-5 – year: 2020 ident: 10.1016/j.jobe.2023.107672_b51 – volume: 89 start-page: 249 year: 2018 ident: 10.1016/j.jobe.2023.107672_b13 article-title: Building information modeling for energy retrofitting – A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.064 – start-page: 2117 year: 2016 ident: 10.1016/j.jobe.2023.107672_b40 article-title: Feature pyramid networks for object detection – volume: 105 year: 2019 ident: 10.1016/j.jobe.2023.107672_b22 article-title: Automating the creation of building information models for existing buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102838 – year: 2018 ident: 10.1016/j.jobe.2023.107672_b2 – ident: 10.1016/j.jobe.2023.107672_b29 doi: 10.1109/ICCV.2015.169 – volume: 35 start-page: 1205 issue: 6 year: 2021 ident: 10.1016/j.jobe.2023.107672_b37 article-title: Indoor mapping and modeling by parsing floor plan images publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2020.1781130 – start-page: 156 year: 2018 ident: 10.1016/j.jobe.2023.107672_b47 article-title: Architectural drawings recognition and generation through machine learning – year: 2021 ident: 10.1016/j.jobe.2023.107672_b46 – volume: 213 year: 2022 ident: 10.1016/j.jobe.2023.107672_b8 article-title: Unveiling the actual progress of digital building permit: Getting awareness through a critical state of the art review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.108854 – volume: 212 year: 2020 ident: 10.1016/j.jobe.2023.107672_b15 article-title: State-of-the-art on research and applications of machine learning in the building life cycle publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.109831 – volume: 115 year: 2020 ident: 10.1016/j.jobe.2023.107672_b48 article-title: Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103183 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.jobe.2023.107672_b9 article-title: The BIM-based building permit process: Factors affecting adoption publication-title: Buildings doi: 10.3390/buildings12010045 – volume: 9 issue: 4 year: 2020 ident: 10.1016/j.jobe.2023.107672_b44 article-title: Automatic generation of high-accuracy stair paths for straight, spiral, and winder stairs using IFC-based models publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi9040215 – ident: 10.1016/j.jobe.2023.107672_b27 doi: 10.1109/CVPR.2016.91 – volume: 63 start-page: 48 year: 2016 ident: 10.1016/j.jobe.2023.107672_b18 article-title: Automatic reconstruction of 3D building models from scanned 2D floor plans publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.12.008 – volume: 88 start-page: 165 year: 2022 ident: 10.1016/j.jobe.2023.107672_b12 article-title: Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million buildings of the netherlands publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.21-00032R2 – start-page: 1 year: 2017 ident: 10.1016/j.jobe.2023.107672_b50 article-title: A review on BIM-based automated code compliance checking system |
SSID | ssj0002953864 |
Score | 2.3843215 |
Snippet | Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107672 |
SubjectTerms | 2D drawings Architectural plans As-build BIM Building Floor plans IFC Machine-learning Model generation Structural plans |
Title | Generating BIM model from structural and architectural plans using Artificial Intelligence |
URI | https://dx.doi.org/10.1016/j.jobe.2023.107672 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhWbqUlrY0faGhWzFxZMm2xjQ0JC3J0gZCF6FXSkJwM-T_0ztLDimUDN1soTPmLN19Z919R8hjzqUzUnDY32mZcMN9onWRJn1jtGGidEV9ej6d5eM5f12IRYsMm1oYTKuMtj_Y9Npax5Fe1GZvu1r13hlgB_SPAKKxAhhCoA7LZA5LuzOYvI1n-18tTMKuromkUASzD1ksnwmZXmusu8E24jBQ5AX720UduJ3RGTmNeJEOwiudk5avLshnIIvGjGX6PJnSup0NxUoRGvhgkUuD6srRg3MCGNluwDFRTHX_qp8Y2CPo5ICW85LMRy8fw3ESmyQkNuN8l1jLNPNFakW29Dx1QotMcueskZnnGvy9yZeFqbvRWACnMEMiXSNzMjOmMNkVaVfflb8mFIKnpXFcIOripYSYG6JXCdIpXANS7JJ-oxdlI4M4NrLYqCZVbK1Qlwp1qYIuu-RpL7MN_BlHZ4tG3erXKlBg4I_I3fxT7pac4F2oLbwjbfhE_h5Axs48xEX0AxhtzpU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhGdqltLSl6VNDt2LiyJIdjWlosJvH0gRCFyFZTkkIbob8f3pnySGFkqGbkXXGnKW776y77wh5jrm0RgoO-zvsBdzwItA6CYOuMdow0bNJdXo-mcbpnL8vxKJBBnUtDKZVetvvbHplrf1Ix2uzs12tOh8MsAP6RwDRWAEMIVAL2alEk7T62Sid7n-1MAm7uiKSQhHMPmS-fMZleq2x7gbbiMNAEifsbxd14HaG5-TM40Xad690QRpFeUk-HVk0ZizT12xCq3Y2FCtFqOODRS4NqktLD84JYGS7AcdEMdX9q3qiY4-g2QEt5xWZD99mgzTwTRKCPOJ8F-Q506xIwlxEy4KHVmgRSW5tbmRUcA3-3sTLxFTdaHIApzBDIl0jszIyJjHRNWmW32VxQygET0tjuUDUxXsSYm6IXiVIh3ANSLFNurVeVO4ZxLGRxUbVqWJrhbpUqEvldNkmL3uZrePPODpb1OpWv1aBAgN_RO72n3JP5CSdTcZqnE1Hd-QU77g6w3vShM9VPADg2JlHv6B-AN6v0Xs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+BIM+model+from+structural+and+architectural+plans+using+Artificial+Intelligence&rft.jtitle=Journal+of+Building+Engineering&rft.au=Urbieta%2C+Martin&rft.au=Urbieta%2C+Matias&rft.au=Laborde%2C+Tomas&rft.au=Villarreal%2C+Guillermo&rft.date=2023-11-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=78&rft.spage=107672&rft_id=info:doi/10.1016%2Fj.jobe.2023.107672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2023_107672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon |