Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application
Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simpli...
Saved in:
Published in | Applied soft computing Vol. 109; p. 107574 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.107574 |
Cover
Loading…
Abstract | Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simplicity of implementation, and a high level of exploration and exploitation. To alleviate the drawbacks of this algorithm, a modified version called Nonlinear based Chaotic Harris Hawks Optimization (NCHHO) is proposed in this paper. NCHHO uses chaotic and nonlinear control parameters to improve HHO’s optimization performance. The main goal of using the chaotic maps in the proposed method is to improve the exploratory behavior of HHO. In addition, this paper introduces a nonlinear control parameter to adjust HHO’s exploratory and exploitative behaviors. The proposed NCHHO algorithm shows an improved performance using a variety of chaotic maps that were implemented to identify the most effective one, and tested on several well-known benchmark functions. The paper also considers solving an Internet of Vehicles (IoV) optimization problem that showcases the applicability of NCHHO in solving large-scale, real-world problems. The results demonstrate that the NCHHO algorithm is very competitive, and often superior, compared to the other algorithms. In particular, NCHHO provides 92% better results in average to solve the uni-modal and multi-modal functions with problem dimension sizes of D = 30 and 50, whereas, with respect to the higher dimension problem, our proposed algorithm shows 100% consistent improvement with D = 100 and 1000 compared to other algorithms. In solving the IoV problem, the success rate was 62.5%, which is substantially better in comparison with the state-of-the-art algorithms. To this end, the proposed NCHHO algorithm in this paper demonstrates a promising method to be widely used by different applications, which brings benefits to industries and businesses in solving their optimization problems experienced daily , such as resource allocation, information retrieval, finding the optimal path for sending data over networks, path planning, and so many other applications.
•Proposing an improved Harris Hawk Optimizer.•Chaotic map and nonlinear control parameters are used.•Several benchmark functions in a comprehensive comparative study.•Solving a case study in autonomous vehicles using the proposed algorithm. |
---|---|
AbstractList | Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simplicity of implementation, and a high level of exploration and exploitation. To alleviate the drawbacks of this algorithm, a modified version called Nonlinear based Chaotic Harris Hawks Optimization (NCHHO) is proposed in this paper. NCHHO uses chaotic and nonlinear control parameters to improve HHO’s optimization performance. The main goal of using the chaotic maps in the proposed method is to improve the exploratory behavior of HHO. In addition, this paper introduces a nonlinear control parameter to adjust HHO’s exploratory and exploitative behaviors. The proposed NCHHO algorithm shows an improved performance using a variety of chaotic maps that were implemented to identify the most effective one, and tested on several well-known benchmark functions. The paper also considers solving an Internet of Vehicles (IoV) optimization problem that showcases the applicability of NCHHO in solving large-scale, real-world problems. The results demonstrate that the NCHHO algorithm is very competitive, and often superior, compared to the other algorithms. In particular, NCHHO provides 92% better results in average to solve the uni-modal and multi-modal functions with problem dimension sizes of D = 30 and 50, whereas, with respect to the higher dimension problem, our proposed algorithm shows 100% consistent improvement with D = 100 and 1000 compared to other algorithms. In solving the IoV problem, the success rate was 62.5%, which is substantially better in comparison with the state-of-the-art algorithms. To this end, the proposed NCHHO algorithm in this paper demonstrates a promising method to be widely used by different applications, which brings benefits to industries and businesses in solving their optimization problems experienced daily , such as resource allocation, information retrieval, finding the optimal path for sending data over networks, path planning, and so many other applications.
•Proposing an improved Harris Hawk Optimizer.•Chaotic map and nonlinear control parameters are used.•Several benchmark functions in a comprehensive comparative study.•Solving a case study in autonomous vehicles using the proposed algorithm. |
ArticleNumber | 107574 |
Author | Sadiq, Ali Safaa Ghafoor, Kayhan Zrar Dehkordi, Amin Abdollahi Mirjalili, Seyedali |
Author_xml | – sequence: 1 givenname: Amin Abdollahi orcidid: 0000-0002-9753-3035 surname: Dehkordi fullname: Dehkordi, Amin Abdollahi organization: Computer Engineering Faculty, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 2 givenname: Ali Safaa surname: Sadiq fullname: Sadiq, Ali Safaa email: ali.sadiq@wlv.ac.uk organization: School of Mathematics and Computer Science, University of Wolverhampton, Wulfurna Street, Wolverhampton, WV1 1LY, UK – sequence: 3 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre of Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, Australia – sequence: 4 givenname: Kayhan Zrar surname: Ghafoor fullname: Ghafoor, Kayhan Zrar organization: Department of Software Engineering, College of Engineering, Salahaddin University-Erbil, Iraq |
BookMark | eNp9kMFKAzEQhoNUsFZfwFNeYGuSTbJZ8VKK2kKxF_VoSLOzNnWblCQo-vRurScPPf3DwPcz852jgQ8eELqiZEwJldebsUnBjhlhtF9UouInaEhVxYpaKjroZyFVwWsuz9B5ShvSQzVTQ_T6GHznPJhYrEyCBk_XJmRn8czE6FIfn-8JL3fZbd03xBs86d5CdHm9xcY3eO4zRA8Zhxa_wNrZDhI2u13nrMku-At02pouweVfjtDz_d3TdFYslg_z6WRR2JLzXFijrGmIEMCYpYRUkvDSNiVRnBEpVlUtGeO2lQR4SRolWrkSdUsYU0bQui1HSB16bQwpRWi1dfn3ghyN6zQleu9Jb_Tek9570gdPPcr-obvotiZ-HYduDxD0T304iDpZB95C4yLYrJvgjuE_bzyDtg |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2025_103063 crossref_primary_10_1002_cpe_7663 crossref_primary_10_1016_j_eswa_2024_123299 crossref_primary_10_1016_j_prime_2024_100643 crossref_primary_10_3390_math11020390 crossref_primary_10_2139_ssrn_4170148 crossref_primary_10_32604_cmc_2023_038787 crossref_primary_10_1016_j_engappai_2023_107532 crossref_primary_10_3390_app142210581 crossref_primary_10_1007_s10462_024_10802_6 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_3390_jmse11101975 crossref_primary_10_1007_s00202_023_01803_9 crossref_primary_10_1007_s10586_024_04618_w crossref_primary_10_1007_s10825_022_01891_z crossref_primary_10_1016_j_vehcom_2023_100686 crossref_primary_10_3390_biomimetics9090552 crossref_primary_10_1007_s10586_024_04441_3 crossref_primary_10_1007_s13042_022_01656_x crossref_primary_10_1016_j_aej_2024_02_024 crossref_primary_10_1007_s10586_023_04021_x crossref_primary_10_1016_j_asoc_2022_109730 crossref_primary_10_1016_j_cie_2023_109237 crossref_primary_10_3390_electronics11050831 crossref_primary_10_3389_fninf_2022_1055241 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_1016_j_compbiomed_2024_108035 crossref_primary_10_1002_eng2_12974 crossref_primary_10_1002_int_23091 crossref_primary_10_32604_cmc_2023_039227 crossref_primary_10_3390_electronics11121919 crossref_primary_10_3934_mbe_2022344 crossref_primary_10_3934_mbe_2022660 crossref_primary_10_1007_s13042_024_02273_6 crossref_primary_10_1007_s40747_025_01791_2 crossref_primary_10_1002_srin_202300241 crossref_primary_10_1007_s10825_023_02095_9 crossref_primary_10_1016_j_asoc_2024_111836 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_3390_app12094521 crossref_primary_10_3390_sym16050533 crossref_primary_10_1007_s10489_024_05413_1 crossref_primary_10_1093_jcde_qwab082 crossref_primary_10_1007_s10586_024_04685_z crossref_primary_10_1142_S0129183124501584 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_1016_j_cie_2023_109425 crossref_primary_10_1016_j_eswa_2022_117395 crossref_primary_10_1007_s10614_023_10361_y crossref_primary_10_1155_2023_4831209 crossref_primary_10_1007_s10586_024_04396_5 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1109_ACCESS_2024_3390723 crossref_primary_10_1007_s10586_024_04348_z crossref_primary_10_3390_machines10060469 crossref_primary_10_3390_a17120573 crossref_primary_10_1016_j_eswa_2023_119898 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_4236_jcc_2024_1212010 crossref_primary_10_1371_journal_pone_0271692 crossref_primary_10_1016_j_eswa_2023_123115 crossref_primary_10_1371_journal_pone_0300803 crossref_primary_10_3390_jmse11030557 crossref_primary_10_3934_mbe_2022512 crossref_primary_10_3390_w16060874 crossref_primary_10_1109_ACCESS_2023_3266991 crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1016_j_matcom_2023_06_021 crossref_primary_10_1016_j_asoc_2025_112691 crossref_primary_10_3390_biomimetics9100602 crossref_primary_10_1016_j_asoc_2024_112271 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_1142_S0129183124500839 crossref_primary_10_3233_JIFS_202098 crossref_primary_10_59782_sidr_v3i1_140 crossref_primary_10_1016_j_swevo_2024_101725 crossref_primary_10_1088_2515_7620_ac5feb crossref_primary_10_1016_j_asoc_2024_111976 crossref_primary_10_1007_s10462_022_10324_z crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_1016_j_conbuildmat_2024_136550 crossref_primary_10_1007_s00521_023_08695_7 crossref_primary_10_1016_j_advengsoft_2022_103158 crossref_primary_10_1016_j_compbiomed_2023_107392 |
Cites_doi | 10.3923/itj.2011.1908.1916 10.1109/ACCESS.2018.2879848 10.1016/j.ins.2009.03.004 10.3390/en10070865 10.1007/978-3-319-63754-9_2 10.1016/j.knosys.2015.08.010 10.1016/j.knosys.2015.07.006 10.1016/j.cnsns.2012.07.017 10.1007/s10586-012-0208-9 10.1109/JIOT.2018.2875482 10.1016/j.chaos.2005.08.110 10.1016/j.asoc.2018.11.047 10.1080/00207160108805080 10.1016/j.engappai.2019.103370 10.1109/4235.771163 10.1016/j.advengsoft.2013.12.007 10.1023/A:1008202821328 10.1109/TVT.2012.2188552 10.1016/j.ins.2012.04.039 10.1016/j.asoc.2021.107097 10.3233/JIFS-182706 10.1109/PIC.2016.7949476 10.1023/A:1022602019183 10.1109/NABIC.2009.5393690 10.1007/s00521-020-05124-x 10.1016/j.knosys.2018.02.029 10.1016/j.eswa.2018.06.023 10.1109/TEVC.2008.919004 10.1016/j.asoc.2019.105946 10.1007/s11042-018-5840-9 10.1016/j.advengsoft.2017.07.002 10.1016/j.ins.2013.01.020 10.1016/j.swevo.2011.02.002 10.1016/j.ins.2014.02.123 10.1016/j.inffus.2018.08.002 10.1016/j.engappai.2010.01.012 10.1007/s10898-007-9149-x 10.1016/j.asoc.2021.107100 10.1007/s00500-015-1726-1 10.1108/K-11-2012-0108 10.1371/journal.pone.0150652 10.1016/j.future.2019.02.028 10.1109/4235.585893 10.1145/2428556.2428575 10.1007/s13748-014-0051-8 10.1109/TCYB.2019.2908485 10.1007/s00521-017-3131-4 10.1016/j.advengsoft.2013.03.004 10.1007/s00521-015-1870-7 10.1007/978-3-319-70139-4_15 10.1016/j.asoc.2017.06.044 10.1016/j.ins.2005.02.003 10.1016/j.advengsoft.2016.01.008 10.1007/s00357-018-9261-2 10.1016/j.chaos.2006.04.057 10.1016/j.asoc.2018.10.032 10.1016/j.knosys.2011.07.001 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107574 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107574 S1568494621004956 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-ca8cad055e22c10076043cd30842065b796224cf60e430d85f6b59f0228a519f3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 01:50:10 EDT 2025 Fri Feb 23 02:44:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Harris Hawks Optimization algorithm Grey Wolf optimizer Chaos theory Genetic Algorithm Artificial intelligence Algorithm Optimization Particle Swarm Optimization Internet of Vehicles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-ca8cad055e22c10076043cd30842065b796224cf60e430d85f6b59f0228a519f3 |
ORCID | 0000-0002-1443-9458 0000-0002-9753-3035 |
OpenAccessLink | http://hdl.handle.net/10072/405049 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107574 crossref_primary_10_1016_j_asoc_2021_107574 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rashedi, Nezamabadi-pour, Saryazdi (b71) 2009; 179 Toutouh, Alba, Nesmachnow (b59) 2013; 16 Tu, Chen, Liu (b2) 2019; 76 Talbi (b9) 2009 Cicek, Ozturk (b30) 2021; 102 Ewees, El Aziz, Hassanien (b47) 2019; 31 Yang (b61) 2008 A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the first European Conference on Artificial Life, 1991, pp. 134–142. Toutouh, Garcia-Nieto, Alba (b58) 2012; 61 Zawbaa, Emary, Grosan (b23) 2016; 11 Molga, Smutnicki (b35) 2005 El Aziz, Ewees, Hassanien (b6) 2018; 77 Asghar, Mirjalili, Faris, Aljarah (b7) 2019; 97 El Aziz, Ewees, Hassanien, Mudhsh, Xiong (b26) 2018; 730 Wang, Deb, Gandomi (b63) 2016; 20 Yang Xin-She, S. Deb, Cuckoo Search via Lévy flights, in: World Congr. Nat. Biol. Inspired Comput., 2009, pp. 210–214. Derrac, García, Molina, Herrera (b74) 2011; 1 Ghafoor, Kong, Rawat, Hosseini, Sadiq (b60) 2019; 6 Wang, Gandomi, Alavi (b67) 2013; 42 R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43. Hosseini, Sadiq, Ghafoor (b41) 2021; 33 Jianzhong (b66) 2019; 37 Kim, Wang, Seo (b32) 2020; 14 Wang, Wang, Dong, Huang, Sun (b36) 2021; 15 Song, Dong, Huang, Qin, Han (b37) 2020; 14 Pan (b18) 2012; 26 Fomin, Kaski (b34) 2013; 56 Mirjalili, Mirjalili, Lewis (b20) 2014; 69 van den Bergh, Engelbrecht (b75) 2006; 176 Mirjalili, Lewis (b22) 2016; 95 Yang (b69) 2010 Sayed, Darwish, Hassanien (b43) 2018; 35 Oliva, Ewees, El Aziz, Hassanien, Peréz-Cisneros (b65) 2017; 10 Simon (b13) 2008; 12 Yang, Li, Cheng (b46) 2007; 34 Torres-Jiménez, Pavón (b33) 2014; 4 Gong, Yuyan, Sun (b31) 2018; 148 Feldman (b45) 2012 Wolpert, Macready (b42) 1997; 1 Digalakis, Margaritis (b68) 2001; 77 Dreo, Petrowski, Siarry, Taillard (b8) 2008 Yao, Liu, Lin (b70) 1999; 3 Faris (b1) 2019; 48 Liang, Qu, Suganthan, Ponnuthurai (b72) 2014 Jin, Zhang, Zhao, Jin, Zhang (b38) 2021; 15 Mitić, Vuković, Petrović, Miljković (b49) 2015; 89 H. Yu, Y. Yu, Y. Liu, Y. Wang, S. Gao, Chaotic grey wolf optimization, in: Int. Conf. Prog. Informatics Comput., 2016, pp. 103–113. Karaboga, Basturk (b24) 2007; 39 Doan, Le, Thai (b5) 2021; 102 Mirjalili, Mirjalili, Hatamlou (b40) 2016; 27 Wang, Guo, Gandomi, Hao, Wang (b48) 2014; 274 Y (b44) 2019; 7 Gong, Sun, Xinfang (b27) 2013; 233 Gandomi, Yun, Yang, Talatahari (b52) 2013; 18 Ewees, Abd (b29) 2020; 88 Rehab Ali, Diego, Ewees, Songfeng (b50) 2017 Wang, Chen (b54) 2020; 88 Storn, Price (b12) 1997; 11 Gao, Zhang, Liang, Li (b62) 2016; 29 Mirjalili (b73) 2015; 89 Ewees, Abd Elaziz, Houssein (b3) 2018; 112 Rechenberg (b10) 1989; vol. 47 Mirjalili, Gandomi, Zahra, Saremi (b16) 2017; 114 Han, Chang (b53) 2012; 208 M.E.A. Elaziz, A.A. Ewees, D. Oliva, P. Duan, S. Xiong, A hybrid method of sine cosine algorithm and differential evolution for feature selection, 10638 (2017) 145–155. Sun, Miao, Gong, Zeng, Li, Wang (b28) 2020; 50 Yousri, Allam, Eteiba (b55) 2019; 74 Goldberg, Holland (b11) 1988; 3 Kong, Wu, Jin, Cen, Dong (b39) 2021; 15 Yang (b21) 2010; vol. 284 Burhan, Attea, Abbood, Abbas, Al-Ani (b56) 2021; 102 Heidari, Pahlavani (b4) 2017; 60 García-Nieto, Toutouh, Alba (b57) 2010; 23 Kaveh (b19) 2013; 59 Ren, Zhong (b51) 2011 Han (10.1016/j.asoc.2021.107574_b53) 2012; 208 García-Nieto (10.1016/j.asoc.2021.107574_b57) 2010; 23 Digalakis (10.1016/j.asoc.2021.107574_b68) 2001; 77 Ewees (10.1016/j.asoc.2021.107574_b29) 2020; 88 Molga (10.1016/j.asoc.2021.107574_b35) 2005 Yao (10.1016/j.asoc.2021.107574_b70) 1999; 3 Dreo (10.1016/j.asoc.2021.107574_b8) 2008 Mirjalili (10.1016/j.asoc.2021.107574_b22) 2016; 95 Goldberg (10.1016/j.asoc.2021.107574_b11) 1988; 3 van den Bergh (10.1016/j.asoc.2021.107574_b75) 2006; 176 Gong (10.1016/j.asoc.2021.107574_b27) 2013; 233 Wang (10.1016/j.asoc.2021.107574_b67) 2013; 42 Ewees (10.1016/j.asoc.2021.107574_b3) 2018; 112 Asghar (10.1016/j.asoc.2021.107574_b7) 2019; 97 Mitić (10.1016/j.asoc.2021.107574_b49) 2015; 89 Rashedi (10.1016/j.asoc.2021.107574_b71) 2009; 179 Heidari (10.1016/j.asoc.2021.107574_b4) 2017; 60 Yang (10.1016/j.asoc.2021.107574_b61) 2008 Kaveh (10.1016/j.asoc.2021.107574_b19) 2013; 59 Ghafoor (10.1016/j.asoc.2021.107574_b60) 2019; 6 Wang (10.1016/j.asoc.2021.107574_b63) 2016; 20 Faris (10.1016/j.asoc.2021.107574_b1) 2019; 48 Wolpert (10.1016/j.asoc.2021.107574_b42) 1997; 1 Toutouh (10.1016/j.asoc.2021.107574_b59) 2013; 16 Mirjalili (10.1016/j.asoc.2021.107574_b20) 2014; 69 Rechenberg (10.1016/j.asoc.2021.107574_b10) 1989; vol. 47 10.1016/j.asoc.2021.107574_b15 10.1016/j.asoc.2021.107574_b14 Jianzhong (10.1016/j.asoc.2021.107574_b66) 2019; 37 Simon (10.1016/j.asoc.2021.107574_b13) 2008; 12 10.1016/j.asoc.2021.107574_b17 Gao (10.1016/j.asoc.2021.107574_b62) 2016; 29 Gong (10.1016/j.asoc.2021.107574_b31) 2018; 148 Kim (10.1016/j.asoc.2021.107574_b32) 2020; 14 Ewees (10.1016/j.asoc.2021.107574_b47) 2019; 31 Storn (10.1016/j.asoc.2021.107574_b12) 1997; 11 Cicek (10.1016/j.asoc.2021.107574_b30) 2021; 102 Y (10.1016/j.asoc.2021.107574_b44) 2019; 7 Pan (10.1016/j.asoc.2021.107574_b18) 2012; 26 Yang (10.1016/j.asoc.2021.107574_b21) 2010; vol. 284 Sun (10.1016/j.asoc.2021.107574_b28) 2020; 50 Wang (10.1016/j.asoc.2021.107574_b48) 2014; 274 Mirjalili (10.1016/j.asoc.2021.107574_b73) 2015; 89 Gandomi (10.1016/j.asoc.2021.107574_b52) 2013; 18 Wang (10.1016/j.asoc.2021.107574_b36) 2021; 15 Feldman (10.1016/j.asoc.2021.107574_b45) 2012 Burhan (10.1016/j.asoc.2021.107574_b56) 2021; 102 Wang (10.1016/j.asoc.2021.107574_b54) 2020; 88 Hosseini (10.1016/j.asoc.2021.107574_b41) 2021; 33 El Aziz (10.1016/j.asoc.2021.107574_b6) 2018; 77 Sayed (10.1016/j.asoc.2021.107574_b43) 2018; 35 Toutouh (10.1016/j.asoc.2021.107574_b58) 2012; 61 10.1016/j.asoc.2021.107574_b25 Yang (10.1016/j.asoc.2021.107574_b46) 2007; 34 Doan (10.1016/j.asoc.2021.107574_b5) 2021; 102 Talbi (10.1016/j.asoc.2021.107574_b9) 2009 Torres-Jiménez (10.1016/j.asoc.2021.107574_b33) 2014; 4 Liang (10.1016/j.asoc.2021.107574_b72) 2014 Fomin (10.1016/j.asoc.2021.107574_b34) 2013; 56 Mirjalili (10.1016/j.asoc.2021.107574_b16) 2017; 114 Kong (10.1016/j.asoc.2021.107574_b39) 2021; 15 10.1016/j.asoc.2021.107574_b64 Yousri (10.1016/j.asoc.2021.107574_b55) 2019; 74 Oliva (10.1016/j.asoc.2021.107574_b65) 2017; 10 Jin (10.1016/j.asoc.2021.107574_b38) 2021; 15 Mirjalili (10.1016/j.asoc.2021.107574_b40) 2016; 27 Karaboga (10.1016/j.asoc.2021.107574_b24) 2007; 39 Ren (10.1016/j.asoc.2021.107574_b51) 2011 Yang (10.1016/j.asoc.2021.107574_b69) 2010 Rehab Ali (10.1016/j.asoc.2021.107574_b50) 2017 Zawbaa (10.1016/j.asoc.2021.107574_b23) 2016; 11 El Aziz (10.1016/j.asoc.2021.107574_b26) 2018; 730 Song (10.1016/j.asoc.2021.107574_b37) 2020; 14 Tu (10.1016/j.asoc.2021.107574_b2) 2019; 76 Derrac (10.1016/j.asoc.2021.107574_b74) 2011; 1 |
References_xml | – volume: 29 start-page: 393 year: 2016 end-page: 399 ident: b62 article-title: A new chaotic algorithm for image encryption publication-title: Chaos Solitons Fractals – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b7 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – year: 2005 ident: b35 article-title: Test functions for optimization needs – volume: 274 start-page: 17 year: 2014 end-page: 34 ident: b48 article-title: Chaotic krill herd algorithm publication-title: Inf. Sci. (Ny) – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b22 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b40 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – reference: Yang Xin-She, S. Deb, Cuckoo Search via Lévy flights, in: World Congr. Nat. Biol. Inspired Comput., 2009, pp. 210–214. – volume: 31 start-page: 991 year: 2019 end-page: 1006 ident: b47 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput. Appl. – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b2 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. – start-page: 1908 year: 2011 end-page: 1916 ident: b51 article-title: Multi-objective optimization using chaos based pso publication-title: Inf. Technol. J. – volume: 74 start-page: 479 year: 2019 end-page: 503 ident: b55 article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor publication-title: Appl. Soft Comput. – volume: 16 start-page: 435 year: 2013 end-page: 450 ident: b59 article-title: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm publication-title: Clust. Comput. – volume: 14 start-page: 2919 year: 2020 end-page: 2937 ident: b32 article-title: PCA-CIA ensemble-based feature extraction for bio-key generation publication-title: KSII Trans. Internet Inf. Syst. – volume: 88 year: 2020 ident: b54 article-title: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis publication-title: Appl. Soft Comput. – reference: H. Yu, Y. Yu, Y. Liu, Y. Wang, S. Gao, Chaotic grey wolf optimization, in: Int. Conf. Prog. Informatics Comput., 2016, pp. 103–113. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b74 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 6 start-page: 2817 year: 2019 end-page: 2828 ident: b60 article-title: Quality of service aware routing protocol in software-defined internet of vehicles publication-title: IEEE Internet Things J. – volume: vol. 284 year: 2010 ident: b21 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization, NICSO 2010 – volume: 18 start-page: 327 year: 2013 end-page: 340 ident: b52 article-title: Chaos-enhanced accelerated particle swarm optimization publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 42 start-page: 962 year: 2013 end-page: 978 ident: b67 article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization publication-title: Kybernetes – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b20 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – reference: M.E.A. Elaziz, A.A. Ewees, D. Oliva, P. Duan, S. Xiong, A hybrid method of sine cosine algorithm and differential evolution for feature selection, 10638 (2017) 145–155. – volume: 20 start-page: 3349 year: 2016 end-page: 3362 ident: b63 article-title: Chaotic cuckoo search publication-title: Soft Comput. – start-page: 156 year: 2017 end-page: 166 ident: b50 article-title: Feature selection based on improved runner-root algorithm using chaotic Singer map and opposition-based learning publication-title: Neural Inf. Process – volume: 61 start-page: 1884 year: 2012 end-page: 1894 ident: b58 article-title: Intelligent OLSR routing protocol optimization for VANETs publication-title: IEEE Trans. Veh. Technol. – year: 2012 ident: b45 article-title: Chaos and Fractals: An Elementary Introduction – volume: 77 start-page: 481 year: 2001 end-page: 506 ident: b68 article-title: On benchmarking functions for genetic algorithms publication-title: Int. J. Comput. Math. – volume: 233 start-page: 141 year: 2013 end-page: 161 ident: b27 article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems publication-title: Inf. Sci. (Ny) – volume: 88 year: 2020 ident: b29 article-title: Engineering applications of artificial intelligence performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems publication-title: Eng. Appl. Artif. Intell. – volume: 33 start-page: 2321 year: 2021 end-page: 2337 ident: b41 article-title: Volcano eruption algorithm for solving optimization problems publication-title: Neural Comput. Appl. – volume: 4 start-page: 175 year: 2014 end-page: 176 ident: b33 article-title: Applications of metaheuristics in real-life problems publication-title: Prog. Artif. Intell. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b73 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b12 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 35 start-page: 300 year: 2018 end-page: 344 ident: b43 article-title: A new chaotic whale optimization algorithm for features selection publication-title: J. Classification – volume: 34 start-page: 1366 year: 2007 end-page: 1375 ident: b46 article-title: On the efficiency of chaos optimization algorithms for global optimization publication-title: Chaos Solitons Fractals – year: 2008 ident: b8 article-title: Metaheuristics for Hard Optimization: Methods and Case Studies – volume: 148 start-page: 115 year: 2018 end-page: 130 ident: b31 article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems publication-title: Knowl.-Based Syst. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b42 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43. – volume: 11 start-page: 1 year: 2016 end-page: 21 ident: b23 article-title: Feature selection via chaotic ant-lion optimization publication-title: PLoS One – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: b11 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b13 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 50 start-page: 3444 year: 2020 end-page: 3457 ident: b28 article-title: Interval multiobjective optimization with memetic algorithms publication-title: IEEE Trans. Cybern. – volume: 23 start-page: 795 year: 2010 end-page: 805 ident: b57 article-title: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics publication-title: Eng. Appl. Artif. Intell. – year: 2008 ident: b61 article-title: Nature-Inspired Metaheuristic Algorithms – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b71 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. (Ny) – year: 2009 ident: b9 article-title: Metaheuristics: From Design To Implementation – volume: 102 year: 2021 ident: b30 article-title: Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting publication-title: Appl. Soft Comput. – year: 2014 ident: b72 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – volume: 102 year: 2021 ident: b5 article-title: Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset publication-title: Appl. Soft Comput. – volume: 102 year: 2021 ident: b56 article-title: Evolutionary multi-objective set cover problem for task allocation in the internet of things publication-title: Appl. Soft Comput. – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b18 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b4 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. – volume: 7 start-page: 14908 year: 2019 end-page: 14923 ident: b44 article-title: Zheng and others a novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access – volume: 56 year: 2013 ident: b34 article-title: Exact exponential algorithms publication-title: Commun. ACM – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b70 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – volume: 15 start-page: 216 year: 2021 end-page: 239 ident: b36 article-title: Optimization methods for power allocation and interference coordination simultaneously with MIMO and full duplex for multi-robot networks publication-title: KSII Trans. Internet Inf. Syst – volume: 59 start-page: 53 year: 2013 end-page: 70 ident: b19 article-title: A new optimization method: Dolphin echolocation publication-title: Adv. Eng. Softw. – volume: 14 start-page: 4595 year: 2020 end-page: 4610 ident: b37 article-title: Energy-efficient power allocation based on worst-case performance optimization under channel uncertainties publication-title: KSII Trans. Internet Inf. Syst. – volume: 89 start-page: 446 year: 2015 end-page: 458 ident: b49 article-title: Chaotic fruit fly optimization algorithm publication-title: Knowl.-Based Syst. – volume: 37 start-page: 2367 year: 2019 end-page: 2384 ident: b66 article-title: Chaotic dynamic weight grey wolf optimizer for numerical function optimization publication-title: J. Intell. Fuzzy Syst. – volume: 77 start-page: 26135 year: 2018 end-page: 26172 ident: b6 article-title: Multi-objective whale optimization algorithm for content-based image retrieval publication-title: Multimedia Tools Appl. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b24 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 15 start-page: 1568 year: 2021 end-page: 1589 ident: b39 article-title: Improved AP deployment optimization scheme based on multi-objective particle swarm optimization algorithm publication-title: KSII Trans. Internet Inf. Syst. – volume: 10 start-page: 865 year: 2017 ident: b65 article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells publication-title: Energies – reference: A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the first European Conference on Artificial Life, 1991, pp. 134–142. – volume: 15 start-page: 383 year: 2021 end-page: 403 ident: b38 article-title: A context-aware task offloading scheme in collaborative vehicular edge computing systems publication-title: KSII Trans. Internet Inf. Syst. – volume: 208 start-page: 14 year: 2012 end-page: 27 ident: b53 article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter publication-title: Inf. Sci. (Ny) – volume: 48 start-page: 67 year: 2019 end-page: 83 ident: b1 article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks publication-title: Inf. Fusion – volume: 114 start-page: 1 year: 2017 end-page: 29 ident: b16 article-title: Salp swarm algorithm : A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – year: 2010 ident: b69 article-title: Engineering Optimization: An Introduction with Metaheuristic Applications – volume: 730 start-page: 23 year: 2018 end-page: 39 ident: b26 article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation publication-title: Adv. Soft Comput. Mach. Learn. Image Process – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: b3 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. – volume: 176 start-page: 937 year: 2006 end-page: 971 ident: b75 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. (Ny) – volume: vol. 47 year: 1989 ident: b10 article-title: Evolution strategy: Nature’s way of optimization publication-title: Optimization: Methods and Applications, Possibilities and Limitations – volume: 15 start-page: 216 issue: 1 year: 2021 ident: 10.1016/j.asoc.2021.107574_b36 article-title: Optimization methods for power allocation and interference coordination simultaneously with MIMO and full duplex for multi-robot networks publication-title: KSII Trans. Internet Inf. Syst – start-page: 1908 year: 2011 ident: 10.1016/j.asoc.2021.107574_b51 article-title: Multi-objective optimization using chaos based pso publication-title: Inf. Technol. J. doi: 10.3923/itj.2011.1908.1916 – volume: 14 start-page: 2919 issue: 7 year: 2020 ident: 10.1016/j.asoc.2021.107574_b32 article-title: PCA-CIA ensemble-based feature extraction for bio-key generation publication-title: KSII Trans. Internet Inf. Syst. – volume: 7 start-page: 14908 year: 2019 ident: 10.1016/j.asoc.2021.107574_b44 article-title: Zheng and others a novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879848 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2021.107574_b71 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2009.03.004 – volume: 10 start-page: 865 issue: 7 year: 2017 ident: 10.1016/j.asoc.2021.107574_b65 article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells publication-title: Energies doi: 10.3390/en10070865 – volume: 730 start-page: 23 year: 2018 ident: 10.1016/j.asoc.2021.107574_b26 article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation publication-title: Adv. Soft Comput. Mach. Learn. Image Process doi: 10.1007/978-3-319-63754-9_2 – volume: 89 start-page: 446 year: 2015 ident: 10.1016/j.asoc.2021.107574_b49 article-title: Chaotic fruit fly optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.010 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.asoc.2021.107574_b73 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – year: 2008 ident: 10.1016/j.asoc.2021.107574_b8 – volume: 18 start-page: 327 year: 2013 ident: 10.1016/j.asoc.2021.107574_b52 article-title: Chaos-enhanced accelerated particle swarm optimization publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.07.017 – volume: 16 start-page: 435 year: 2013 ident: 10.1016/j.asoc.2021.107574_b59 article-title: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm publication-title: Clust. Comput. doi: 10.1007/s10586-012-0208-9 – year: 2009 ident: 10.1016/j.asoc.2021.107574_b9 – volume: 6 start-page: 2817 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107574_b60 article-title: Quality of service aware routing protocol in software-defined internet of vehicles publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2875482 – volume: 29 start-page: 393 issue: 2 year: 2016 ident: 10.1016/j.asoc.2021.107574_b62 article-title: A new chaotic algorithm for image encryption publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.08.110 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.asoc.2021.107574_b2 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.047 – volume: 77 start-page: 481 issue: 4 year: 2001 ident: 10.1016/j.asoc.2021.107574_b68 article-title: On benchmarking functions for genetic algorithms publication-title: Int. J. Comput. Math. doi: 10.1080/00207160108805080 – volume: 88 year: 2020 ident: 10.1016/j.asoc.2021.107574_b29 article-title: Engineering applications of artificial intelligence performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103370 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.asoc.2021.107574_b70 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – year: 2012 ident: 10.1016/j.asoc.2021.107574_b45 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2021.107574_b20 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.asoc.2021.107574_b12 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 61 start-page: 1884 issue: 4 year: 2012 ident: 10.1016/j.asoc.2021.107574_b58 article-title: Intelligent OLSR routing protocol optimization for VANETs publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2012.2188552 – volume: 208 start-page: 14 year: 2012 ident: 10.1016/j.asoc.2021.107574_b53 article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2012.04.039 – volume: 102 year: 2021 ident: 10.1016/j.asoc.2021.107574_b56 article-title: Evolutionary multi-objective set cover problem for task allocation in the internet of things publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107097 – volume: vol. 284 year: 2010 ident: 10.1016/j.asoc.2021.107574_b21 article-title: A new metaheuristic bat-inspired algorithm – volume: 37 start-page: 2367 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107574_b66 article-title: Chaotic dynamic weight grey wolf optimizer for numerical function optimization publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-182706 – ident: 10.1016/j.asoc.2021.107574_b64 doi: 10.1109/PIC.2016.7949476 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 10.1016/j.asoc.2021.107574_b11 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – ident: 10.1016/j.asoc.2021.107574_b17 doi: 10.1109/NABIC.2009.5393690 – volume: 102 year: 2021 ident: 10.1016/j.asoc.2021.107574_b30 article-title: Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting publication-title: Appl. Soft Comput. – volume: 33 start-page: 2321 year: 2021 ident: 10.1016/j.asoc.2021.107574_b41 article-title: Volcano eruption algorithm for solving optimization problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05124-x – start-page: 156 year: 2017 ident: 10.1016/j.asoc.2021.107574_b50 article-title: Feature selection based on improved runner-root algorithm using chaotic Singer map and opposition-based learning publication-title: Neural Inf. Process – volume: 148 start-page: 115 year: 2018 ident: 10.1016/j.asoc.2021.107574_b31 article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.02.029 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.asoc.2021.107574_b3 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.023 – volume: 15 start-page: 1568 issue: 4 year: 2021 ident: 10.1016/j.asoc.2021.107574_b39 article-title: Improved AP deployment optimization scheme based on multi-objective particle swarm optimization algorithm publication-title: KSII Trans. Internet Inf. Syst. – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.asoc.2021.107574_b13 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – year: 2010 ident: 10.1016/j.asoc.2021.107574_b69 – ident: 10.1016/j.asoc.2021.107574_b14 – volume: 88 year: 2020 ident: 10.1016/j.asoc.2021.107574_b54 article-title: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105946 – volume: 77 start-page: 26135 year: 2018 ident: 10.1016/j.asoc.2021.107574_b6 article-title: Multi-objective whale optimization algorithm for content-based image retrieval publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5840-9 – volume: 114 start-page: 1 year: 2017 ident: 10.1016/j.asoc.2021.107574_b16 article-title: Salp swarm algorithm : A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 233 start-page: 141 year: 2013 ident: 10.1016/j.asoc.2021.107574_b27 article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2013.01.020 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2021.107574_b74 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 274 start-page: 17 year: 2014 ident: 10.1016/j.asoc.2021.107574_b48 article-title: Chaotic krill herd algorithm publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.02.123 – volume: 48 start-page: 67 year: 2019 ident: 10.1016/j.asoc.2021.107574_b1 article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.08.002 – volume: 23 start-page: 795 year: 2010 ident: 10.1016/j.asoc.2021.107574_b57 article-title: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.012 – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2021.107574_b24 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 102 year: 2021 ident: 10.1016/j.asoc.2021.107574_b5 article-title: Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107100 – volume: 20 start-page: 3349 year: 2016 ident: 10.1016/j.asoc.2021.107574_b63 article-title: Chaotic cuckoo search publication-title: Soft Comput. doi: 10.1007/s00500-015-1726-1 – volume: 42 start-page: 962 issue: 6 year: 2013 ident: 10.1016/j.asoc.2021.107574_b67 article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization publication-title: Kybernetes doi: 10.1108/K-11-2012-0108 – volume: 11 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.asoc.2021.107574_b23 article-title: Feature selection via chaotic ant-lion optimization publication-title: PLoS One doi: 10.1371/journal.pone.0150652 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.asoc.2021.107574_b7 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.asoc.2021.107574_b42 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – year: 2008 ident: 10.1016/j.asoc.2021.107574_b61 – volume: 15 start-page: 383 issue: 2 year: 2021 ident: 10.1016/j.asoc.2021.107574_b38 article-title: A context-aware task offloading scheme in collaborative vehicular edge computing systems publication-title: KSII Trans. Internet Inf. Syst. – volume: 56 issue: 3 year: 2013 ident: 10.1016/j.asoc.2021.107574_b34 article-title: Exact exponential algorithms publication-title: Commun. ACM doi: 10.1145/2428556.2428575 – volume: 4 start-page: 175 year: 2014 ident: 10.1016/j.asoc.2021.107574_b33 article-title: Applications of metaheuristics in real-life problems publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-014-0051-8 – volume: 50 start-page: 3444 issue: 8 year: 2020 ident: 10.1016/j.asoc.2021.107574_b28 article-title: Interval multiobjective optimization with memetic algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2908485 – ident: 10.1016/j.asoc.2021.107574_b15 – year: 2005 ident: 10.1016/j.asoc.2021.107574_b35 – volume: vol. 47 year: 1989 ident: 10.1016/j.asoc.2021.107574_b10 article-title: Evolution strategy: Nature’s way of optimization – volume: 31 start-page: 991 year: 2019 ident: 10.1016/j.asoc.2021.107574_b47 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3131-4 – volume: 59 start-page: 53 year: 2013 ident: 10.1016/j.asoc.2021.107574_b19 article-title: A new optimization method: Dolphin echolocation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.03.004 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.asoc.2021.107574_b40 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – ident: 10.1016/j.asoc.2021.107574_b25 doi: 10.1007/978-3-319-70139-4_15 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.asoc.2021.107574_b4 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – volume: 14 start-page: 4595 issue: 11 year: 2020 ident: 10.1016/j.asoc.2021.107574_b37 article-title: Energy-efficient power allocation based on worst-case performance optimization under channel uncertainties publication-title: KSII Trans. Internet Inf. Syst. – volume: 176 start-page: 937 issue: 8 year: 2006 ident: 10.1016/j.asoc.2021.107574_b75 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2005.02.003 – volume: 95 start-page: 51 issue: 2016 year: 2016 ident: 10.1016/j.asoc.2021.107574_b22 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2014 ident: 10.1016/j.asoc.2021.107574_b72 – volume: 35 start-page: 300 year: 2018 ident: 10.1016/j.asoc.2021.107574_b43 article-title: A new chaotic whale optimization algorithm for features selection publication-title: J. Classification doi: 10.1007/s00357-018-9261-2 – volume: 34 start-page: 1366 issue: 4 year: 2007 ident: 10.1016/j.asoc.2021.107574_b46 article-title: On the efficiency of chaos optimization algorithms for global optimization publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.057 – volume: 74 start-page: 479 year: 2019 ident: 10.1016/j.asoc.2021.107574_b55 article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.032 – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.asoc.2021.107574_b18 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 |
SSID | ssj0016928 |
Score | 2.6102078 |
Snippet | Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107574 |
SubjectTerms | Algorithm Artificial intelligence Chaos theory Genetic Algorithm Grey Wolf optimizer Harris Hawks Optimization algorithm Internet of Vehicles Optimization Particle Swarm Optimization |
Title | Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107574 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QM3FJrFcRJuVUUVtoKAop6I7NimgW4KQUgc-HbGWaoioR44WbFmpOjFnhnHb2YQOjYDz-RUKMO3hTAIuASDcZ0rwz2lmI5BpM53vunRsE8uB-6ghjpVLoymVZa2v7DpubUuZ1olmq1ZkrQe4OThk4BQWxc9gzBfZ7ATT9P6Tr_nNA-LBnl_VS1saOkycabgeDFAAM6ItgUTnuuRv53TgsPpbqC1MlLE7eJlNlFNTrbQetWFAZebchs994pqFyw1tEsSuDNkU9DBIUthB8Pw-faOb8E0jJMvmZ7h9uhlmibZcIzZRODil6DM8FThJznMWXJ44Vp7B_W754-d0Ci7JhixQ0hmxMyPmTBdV9p2bOU3b8SJhWP6xIZ4g3sBBbcdK2pK4pjCdxXlbqB0HRwG4ZxydlF9Mp3IPYQJwCodHlBCBbGsgCkB50UuuC84C4hqIKuCK4rLkuK6s8Uoqrhjr5GGONIQRwXEDXQy15kVBTWWSrvVV4h-LYsILP4Svf1_6h2gVf1UkMgOUT1LP-QRRB0Zb-bLqolW2p376zs9XlyFvR8H5td4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCGzGeOXBD1fpI05bbNIEKG-PAQ5yokiZhgz1QKULi1-OsKQIJceBUKY2l6ktiO7X9GeDITSJXMKmd2JfSoWgSHC5MrYyItObGB1Gm3vmyz9JbenEf3s9Bp66FMWmVVvdXOn2mre1Iy6LZehkOW9d484hpQplvSM_QzZ-HBcNORRuw0D7vpv2vYAJLZi1WzXzHCNjamSrNiyMIeE30PRyIwoj-bp--2ZyzVVi2ziJpV9-zBnNqsg4rdSMGYs_lBjz0K8ILXjjGKknSGfApypCUF3iI8fH-_EquUDuMhx-qOCHt0eO0GJaDMeETSaq_gqokU03u1GCWKEe-RbY34fbs9KaTOrZxgpMHlJZOzuOcSzcMle_n3iz4RoNcBm5MfXQ5RJQwtNy5Zq6igSvjUDMRJtpQ4XD06HSwBY3JdKK2gVBEVgUiYZRJ6nkJ1xKvjEKKWAqeUN0Er4Yryy2ruGluMcrq9LGnzECcGYizCuImHH_JvFScGn_ODutVyH7sjAyV_h9yO_-UO4TF9Oayl_XO-91dWDJvqpyyPWiUxZvaRyekFAd2k30CuFHYlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear-based+Chaotic+Harris+Hawks+Optimizer%3A+Algorithm+and+Internet+of+Vehicles+application&rft.jtitle=Applied+soft+computing&rft.au=Dehkordi%2C+Amin+Abdollahi&rft.au=Sadiq%2C+Ali+Safaa&rft.au=Mirjalili%2C+Seyedali&rft.au=Ghafoor%2C+Kayhan+Zrar&rft.date=2021-09-01&rft.issn=1568-4946&rft.volume=109&rft.spage=107574&rft_id=info:doi/10.1016%2Fj.asoc.2021.107574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |