Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application

Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simpli...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 109; p. 107574
Main Authors Dehkordi, Amin Abdollahi, Sadiq, Ali Safaa, Mirjalili, Seyedali, Ghafoor, Kayhan Zrar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107574

Cover

Loading…
Abstract Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simplicity of implementation, and a high level of exploration and exploitation. To alleviate the drawbacks of this algorithm, a modified version called Nonlinear based Chaotic Harris Hawks Optimization (NCHHO) is proposed in this paper. NCHHO uses chaotic and nonlinear control parameters to improve HHO’s optimization performance. The main goal of using the chaotic maps in the proposed method is to improve the exploratory behavior of HHO. In addition, this paper introduces a nonlinear control parameter to adjust HHO’s exploratory and exploitative behaviors. The proposed NCHHO algorithm shows an improved performance using a variety of chaotic maps that were implemented to identify the most effective one, and tested on several well-known benchmark functions. The paper also considers solving an Internet of Vehicles (IoV) optimization problem that showcases the applicability of NCHHO in solving large-scale, real-world problems. The results demonstrate that the NCHHO algorithm is very competitive, and often superior, compared to the other algorithms. In particular, NCHHO provides 92% better results in average to solve the uni-modal and multi-modal functions with problem dimension sizes of D = 30 and 50, whereas, with respect to the higher dimension problem, our proposed algorithm shows 100% consistent improvement with D = 100 and 1000 compared to other algorithms. In solving the IoV problem, the success rate was 62.5%, which is substantially better in comparison with the state-of-the-art algorithms. To this end, the proposed NCHHO algorithm in this paper demonstrates a promising method to be widely used by different applications, which brings benefits to industries and businesses in solving their optimization problems experienced daily , such as resource allocation, information retrieval, finding the optimal path for sending data over networks, path planning, and so many other applications. •Proposing an improved Harris Hawk Optimizer.•Chaotic map and nonlinear control parameters are used.•Several benchmark functions in a comprehensive comparative study.•Solving a case study in autonomous vehicles using the proposed algorithm.
AbstractList Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris Hawks and their foraging behavior in nature called surprise pounce. HHO benefits from a small number of controlling parameters setting, simplicity of implementation, and a high level of exploration and exploitation. To alleviate the drawbacks of this algorithm, a modified version called Nonlinear based Chaotic Harris Hawks Optimization (NCHHO) is proposed in this paper. NCHHO uses chaotic and nonlinear control parameters to improve HHO’s optimization performance. The main goal of using the chaotic maps in the proposed method is to improve the exploratory behavior of HHO. In addition, this paper introduces a nonlinear control parameter to adjust HHO’s exploratory and exploitative behaviors. The proposed NCHHO algorithm shows an improved performance using a variety of chaotic maps that were implemented to identify the most effective one, and tested on several well-known benchmark functions. The paper also considers solving an Internet of Vehicles (IoV) optimization problem that showcases the applicability of NCHHO in solving large-scale, real-world problems. The results demonstrate that the NCHHO algorithm is very competitive, and often superior, compared to the other algorithms. In particular, NCHHO provides 92% better results in average to solve the uni-modal and multi-modal functions with problem dimension sizes of D = 30 and 50, whereas, with respect to the higher dimension problem, our proposed algorithm shows 100% consistent improvement with D = 100 and 1000 compared to other algorithms. In solving the IoV problem, the success rate was 62.5%, which is substantially better in comparison with the state-of-the-art algorithms. To this end, the proposed NCHHO algorithm in this paper demonstrates a promising method to be widely used by different applications, which brings benefits to industries and businesses in solving their optimization problems experienced daily , such as resource allocation, information retrieval, finding the optimal path for sending data over networks, path planning, and so many other applications. •Proposing an improved Harris Hawk Optimizer.•Chaotic map and nonlinear control parameters are used.•Several benchmark functions in a comprehensive comparative study.•Solving a case study in autonomous vehicles using the proposed algorithm.
ArticleNumber 107574
Author Sadiq, Ali Safaa
Ghafoor, Kayhan Zrar
Dehkordi, Amin Abdollahi
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Amin Abdollahi
  orcidid: 0000-0002-9753-3035
  surname: Dehkordi
  fullname: Dehkordi, Amin Abdollahi
  organization: Computer Engineering Faculty, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 2
  givenname: Ali Safaa
  surname: Sadiq
  fullname: Sadiq, Ali Safaa
  email: ali.sadiq@wlv.ac.uk
  organization: School of Mathematics and Computer Science, University of Wolverhampton, Wulfurna Street, Wolverhampton, WV1 1LY, UK
– sequence: 3
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre of Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, Australia
– sequence: 4
  givenname: Kayhan Zrar
  surname: Ghafoor
  fullname: Ghafoor, Kayhan Zrar
  organization: Department of Software Engineering, College of Engineering, Salahaddin University-Erbil, Iraq
BookMark eNp9kMFKAzEQhoNUsFZfwFNeYGuSTbJZ8VKK2kKxF_VoSLOzNnWblCQo-vRurScPPf3DwPcz852jgQ8eELqiZEwJldebsUnBjhlhtF9UouInaEhVxYpaKjroZyFVwWsuz9B5ShvSQzVTQ_T6GHznPJhYrEyCBk_XJmRn8czE6FIfn-8JL3fZbd03xBs86d5CdHm9xcY3eO4zRA8Zhxa_wNrZDhI2u13nrMku-At02pouweVfjtDz_d3TdFYslg_z6WRR2JLzXFijrGmIEMCYpYRUkvDSNiVRnBEpVlUtGeO2lQR4SRolWrkSdUsYU0bQui1HSB16bQwpRWi1dfn3ghyN6zQleu9Jb_Tek9570gdPPcr-obvotiZ-HYduDxD0T304iDpZB95C4yLYrJvgjuE_bzyDtg
CitedBy_id crossref_primary_10_1016_j_ecoinf_2025_103063
crossref_primary_10_1002_cpe_7663
crossref_primary_10_1016_j_eswa_2024_123299
crossref_primary_10_1016_j_prime_2024_100643
crossref_primary_10_3390_math11020390
crossref_primary_10_2139_ssrn_4170148
crossref_primary_10_32604_cmc_2023_038787
crossref_primary_10_1016_j_engappai_2023_107532
crossref_primary_10_3390_app142210581
crossref_primary_10_1007_s10462_024_10802_6
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_3390_jmse11101975
crossref_primary_10_1007_s00202_023_01803_9
crossref_primary_10_1007_s10586_024_04618_w
crossref_primary_10_1007_s10825_022_01891_z
crossref_primary_10_1016_j_vehcom_2023_100686
crossref_primary_10_3390_biomimetics9090552
crossref_primary_10_1007_s10586_024_04441_3
crossref_primary_10_1007_s13042_022_01656_x
crossref_primary_10_1016_j_aej_2024_02_024
crossref_primary_10_1007_s10586_023_04021_x
crossref_primary_10_1016_j_asoc_2022_109730
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_3390_electronics11050831
crossref_primary_10_3389_fninf_2022_1055241
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_1016_j_compbiomed_2024_108035
crossref_primary_10_1002_eng2_12974
crossref_primary_10_1002_int_23091
crossref_primary_10_32604_cmc_2023_039227
crossref_primary_10_3390_electronics11121919
crossref_primary_10_3934_mbe_2022344
crossref_primary_10_3934_mbe_2022660
crossref_primary_10_1007_s13042_024_02273_6
crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1002_srin_202300241
crossref_primary_10_1007_s10825_023_02095_9
crossref_primary_10_1016_j_asoc_2024_111836
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_3390_app12094521
crossref_primary_10_3390_sym16050533
crossref_primary_10_1007_s10489_024_05413_1
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1007_s10586_024_04685_z
crossref_primary_10_1142_S0129183124501584
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_1016_j_cie_2023_109425
crossref_primary_10_1016_j_eswa_2022_117395
crossref_primary_10_1007_s10614_023_10361_y
crossref_primary_10_1155_2023_4831209
crossref_primary_10_1007_s10586_024_04396_5
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1109_ACCESS_2024_3390723
crossref_primary_10_1007_s10586_024_04348_z
crossref_primary_10_3390_machines10060469
crossref_primary_10_3390_a17120573
crossref_primary_10_1016_j_eswa_2023_119898
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_4236_jcc_2024_1212010
crossref_primary_10_1371_journal_pone_0271692
crossref_primary_10_1016_j_eswa_2023_123115
crossref_primary_10_1371_journal_pone_0300803
crossref_primary_10_3390_jmse11030557
crossref_primary_10_3934_mbe_2022512
crossref_primary_10_3390_w16060874
crossref_primary_10_1109_ACCESS_2023_3266991
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1016_j_matcom_2023_06_021
crossref_primary_10_1016_j_asoc_2025_112691
crossref_primary_10_3390_biomimetics9100602
crossref_primary_10_1016_j_asoc_2024_112271
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_1142_S0129183124500839
crossref_primary_10_3233_JIFS_202098
crossref_primary_10_59782_sidr_v3i1_140
crossref_primary_10_1016_j_swevo_2024_101725
crossref_primary_10_1088_2515_7620_ac5feb
crossref_primary_10_1016_j_asoc_2024_111976
crossref_primary_10_1007_s10462_022_10324_z
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_1016_j_conbuildmat_2024_136550
crossref_primary_10_1007_s00521_023_08695_7
crossref_primary_10_1016_j_advengsoft_2022_103158
crossref_primary_10_1016_j_compbiomed_2023_107392
Cites_doi 10.3923/itj.2011.1908.1916
10.1109/ACCESS.2018.2879848
10.1016/j.ins.2009.03.004
10.3390/en10070865
10.1007/978-3-319-63754-9_2
10.1016/j.knosys.2015.08.010
10.1016/j.knosys.2015.07.006
10.1016/j.cnsns.2012.07.017
10.1007/s10586-012-0208-9
10.1109/JIOT.2018.2875482
10.1016/j.chaos.2005.08.110
10.1016/j.asoc.2018.11.047
10.1080/00207160108805080
10.1016/j.engappai.2019.103370
10.1109/4235.771163
10.1016/j.advengsoft.2013.12.007
10.1023/A:1008202821328
10.1109/TVT.2012.2188552
10.1016/j.ins.2012.04.039
10.1016/j.asoc.2021.107097
10.3233/JIFS-182706
10.1109/PIC.2016.7949476
10.1023/A:1022602019183
10.1109/NABIC.2009.5393690
10.1007/s00521-020-05124-x
10.1016/j.knosys.2018.02.029
10.1016/j.eswa.2018.06.023
10.1109/TEVC.2008.919004
10.1016/j.asoc.2019.105946
10.1007/s11042-018-5840-9
10.1016/j.advengsoft.2017.07.002
10.1016/j.ins.2013.01.020
10.1016/j.swevo.2011.02.002
10.1016/j.ins.2014.02.123
10.1016/j.inffus.2018.08.002
10.1016/j.engappai.2010.01.012
10.1007/s10898-007-9149-x
10.1016/j.asoc.2021.107100
10.1007/s00500-015-1726-1
10.1108/K-11-2012-0108
10.1371/journal.pone.0150652
10.1016/j.future.2019.02.028
10.1109/4235.585893
10.1145/2428556.2428575
10.1007/s13748-014-0051-8
10.1109/TCYB.2019.2908485
10.1007/s00521-017-3131-4
10.1016/j.advengsoft.2013.03.004
10.1007/s00521-015-1870-7
10.1007/978-3-319-70139-4_15
10.1016/j.asoc.2017.06.044
10.1016/j.ins.2005.02.003
10.1016/j.advengsoft.2016.01.008
10.1007/s00357-018-9261-2
10.1016/j.chaos.2006.04.057
10.1016/j.asoc.2018.10.032
10.1016/j.knosys.2011.07.001
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107574
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107574
S1568494621004956
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-ca8cad055e22c10076043cd30842065b796224cf60e430d85f6b59f0228a519f3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 01:50:10 EDT 2025
Fri Feb 23 02:44:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Harris Hawks Optimization algorithm
Grey Wolf optimizer
Chaos theory
Genetic Algorithm
Artificial intelligence
Algorithm
Optimization
Particle Swarm Optimization
Internet of Vehicles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-ca8cad055e22c10076043cd30842065b796224cf60e430d85f6b59f0228a519f3
ORCID 0000-0002-1443-9458
0000-0002-9753-3035
OpenAccessLink http://hdl.handle.net/10072/405049
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107574
crossref_primary_10_1016_j_asoc_2021_107574
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rashedi, Nezamabadi-pour, Saryazdi (b71) 2009; 179
Toutouh, Alba, Nesmachnow (b59) 2013; 16
Tu, Chen, Liu (b2) 2019; 76
Talbi (b9) 2009
Cicek, Ozturk (b30) 2021; 102
Ewees, El Aziz, Hassanien (b47) 2019; 31
Yang (b61) 2008
A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the first European Conference on Artificial Life, 1991, pp. 134–142.
Toutouh, Garcia-Nieto, Alba (b58) 2012; 61
Zawbaa, Emary, Grosan (b23) 2016; 11
Molga, Smutnicki (b35) 2005
El Aziz, Ewees, Hassanien (b6) 2018; 77
Asghar, Mirjalili, Faris, Aljarah (b7) 2019; 97
El Aziz, Ewees, Hassanien, Mudhsh, Xiong (b26) 2018; 730
Wang, Deb, Gandomi (b63) 2016; 20
Yang Xin-She, S. Deb, Cuckoo Search via Lévy flights, in: World Congr. Nat. Biol. Inspired Comput., 2009, pp. 210–214.
Derrac, García, Molina, Herrera (b74) 2011; 1
Ghafoor, Kong, Rawat, Hosseini, Sadiq (b60) 2019; 6
Wang, Gandomi, Alavi (b67) 2013; 42
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.
Hosseini, Sadiq, Ghafoor (b41) 2021; 33
Jianzhong (b66) 2019; 37
Kim, Wang, Seo (b32) 2020; 14
Wang, Wang, Dong, Huang, Sun (b36) 2021; 15
Song, Dong, Huang, Qin, Han (b37) 2020; 14
Pan (b18) 2012; 26
Fomin, Kaski (b34) 2013; 56
Mirjalili, Mirjalili, Lewis (b20) 2014; 69
van den Bergh, Engelbrecht (b75) 2006; 176
Mirjalili, Lewis (b22) 2016; 95
Yang (b69) 2010
Sayed, Darwish, Hassanien (b43) 2018; 35
Oliva, Ewees, El Aziz, Hassanien, Peréz-Cisneros (b65) 2017; 10
Simon (b13) 2008; 12
Yang, Li, Cheng (b46) 2007; 34
Torres-Jiménez, Pavón (b33) 2014; 4
Gong, Yuyan, Sun (b31) 2018; 148
Feldman (b45) 2012
Wolpert, Macready (b42) 1997; 1
Digalakis, Margaritis (b68) 2001; 77
Dreo, Petrowski, Siarry, Taillard (b8) 2008
Yao, Liu, Lin (b70) 1999; 3
Faris (b1) 2019; 48
Liang, Qu, Suganthan, Ponnuthurai (b72) 2014
Jin, Zhang, Zhao, Jin, Zhang (b38) 2021; 15
Mitić, Vuković, Petrović, Miljković (b49) 2015; 89
H. Yu, Y. Yu, Y. Liu, Y. Wang, S. Gao, Chaotic grey wolf optimization, in: Int. Conf. Prog. Informatics Comput., 2016, pp. 103–113.
Karaboga, Basturk (b24) 2007; 39
Doan, Le, Thai (b5) 2021; 102
Mirjalili, Mirjalili, Hatamlou (b40) 2016; 27
Wang, Guo, Gandomi, Hao, Wang (b48) 2014; 274
Y (b44) 2019; 7
Gong, Sun, Xinfang (b27) 2013; 233
Gandomi, Yun, Yang, Talatahari (b52) 2013; 18
Ewees, Abd (b29) 2020; 88
Rehab Ali, Diego, Ewees, Songfeng (b50) 2017
Wang, Chen (b54) 2020; 88
Storn, Price (b12) 1997; 11
Gao, Zhang, Liang, Li (b62) 2016; 29
Mirjalili (b73) 2015; 89
Ewees, Abd Elaziz, Houssein (b3) 2018; 112
Rechenberg (b10) 1989; vol. 47
Mirjalili, Gandomi, Zahra, Saremi (b16) 2017; 114
Han, Chang (b53) 2012; 208
M.E.A. Elaziz, A.A. Ewees, D. Oliva, P. Duan, S. Xiong, A hybrid method of sine cosine algorithm and differential evolution for feature selection, 10638 (2017) 145–155.
Sun, Miao, Gong, Zeng, Li, Wang (b28) 2020; 50
Yousri, Allam, Eteiba (b55) 2019; 74
Goldberg, Holland (b11) 1988; 3
Kong, Wu, Jin, Cen, Dong (b39) 2021; 15
Yang (b21) 2010; vol. 284
Burhan, Attea, Abbood, Abbas, Al-Ani (b56) 2021; 102
Heidari, Pahlavani (b4) 2017; 60
García-Nieto, Toutouh, Alba (b57) 2010; 23
Kaveh (b19) 2013; 59
Ren, Zhong (b51) 2011
Han (10.1016/j.asoc.2021.107574_b53) 2012; 208
García-Nieto (10.1016/j.asoc.2021.107574_b57) 2010; 23
Digalakis (10.1016/j.asoc.2021.107574_b68) 2001; 77
Ewees (10.1016/j.asoc.2021.107574_b29) 2020; 88
Molga (10.1016/j.asoc.2021.107574_b35) 2005
Yao (10.1016/j.asoc.2021.107574_b70) 1999; 3
Dreo (10.1016/j.asoc.2021.107574_b8) 2008
Mirjalili (10.1016/j.asoc.2021.107574_b22) 2016; 95
Goldberg (10.1016/j.asoc.2021.107574_b11) 1988; 3
van den Bergh (10.1016/j.asoc.2021.107574_b75) 2006; 176
Gong (10.1016/j.asoc.2021.107574_b27) 2013; 233
Wang (10.1016/j.asoc.2021.107574_b67) 2013; 42
Ewees (10.1016/j.asoc.2021.107574_b3) 2018; 112
Asghar (10.1016/j.asoc.2021.107574_b7) 2019; 97
Mitić (10.1016/j.asoc.2021.107574_b49) 2015; 89
Rashedi (10.1016/j.asoc.2021.107574_b71) 2009; 179
Heidari (10.1016/j.asoc.2021.107574_b4) 2017; 60
Yang (10.1016/j.asoc.2021.107574_b61) 2008
Kaveh (10.1016/j.asoc.2021.107574_b19) 2013; 59
Ghafoor (10.1016/j.asoc.2021.107574_b60) 2019; 6
Wang (10.1016/j.asoc.2021.107574_b63) 2016; 20
Faris (10.1016/j.asoc.2021.107574_b1) 2019; 48
Wolpert (10.1016/j.asoc.2021.107574_b42) 1997; 1
Toutouh (10.1016/j.asoc.2021.107574_b59) 2013; 16
Mirjalili (10.1016/j.asoc.2021.107574_b20) 2014; 69
Rechenberg (10.1016/j.asoc.2021.107574_b10) 1989; vol. 47
10.1016/j.asoc.2021.107574_b15
10.1016/j.asoc.2021.107574_b14
Jianzhong (10.1016/j.asoc.2021.107574_b66) 2019; 37
Simon (10.1016/j.asoc.2021.107574_b13) 2008; 12
10.1016/j.asoc.2021.107574_b17
Gao (10.1016/j.asoc.2021.107574_b62) 2016; 29
Gong (10.1016/j.asoc.2021.107574_b31) 2018; 148
Kim (10.1016/j.asoc.2021.107574_b32) 2020; 14
Ewees (10.1016/j.asoc.2021.107574_b47) 2019; 31
Storn (10.1016/j.asoc.2021.107574_b12) 1997; 11
Cicek (10.1016/j.asoc.2021.107574_b30) 2021; 102
Y (10.1016/j.asoc.2021.107574_b44) 2019; 7
Pan (10.1016/j.asoc.2021.107574_b18) 2012; 26
Yang (10.1016/j.asoc.2021.107574_b21) 2010; vol. 284
Sun (10.1016/j.asoc.2021.107574_b28) 2020; 50
Wang (10.1016/j.asoc.2021.107574_b48) 2014; 274
Mirjalili (10.1016/j.asoc.2021.107574_b73) 2015; 89
Gandomi (10.1016/j.asoc.2021.107574_b52) 2013; 18
Wang (10.1016/j.asoc.2021.107574_b36) 2021; 15
Feldman (10.1016/j.asoc.2021.107574_b45) 2012
Burhan (10.1016/j.asoc.2021.107574_b56) 2021; 102
Wang (10.1016/j.asoc.2021.107574_b54) 2020; 88
Hosseini (10.1016/j.asoc.2021.107574_b41) 2021; 33
El Aziz (10.1016/j.asoc.2021.107574_b6) 2018; 77
Sayed (10.1016/j.asoc.2021.107574_b43) 2018; 35
Toutouh (10.1016/j.asoc.2021.107574_b58) 2012; 61
10.1016/j.asoc.2021.107574_b25
Yang (10.1016/j.asoc.2021.107574_b46) 2007; 34
Doan (10.1016/j.asoc.2021.107574_b5) 2021; 102
Talbi (10.1016/j.asoc.2021.107574_b9) 2009
Torres-Jiménez (10.1016/j.asoc.2021.107574_b33) 2014; 4
Liang (10.1016/j.asoc.2021.107574_b72) 2014
Fomin (10.1016/j.asoc.2021.107574_b34) 2013; 56
Mirjalili (10.1016/j.asoc.2021.107574_b16) 2017; 114
Kong (10.1016/j.asoc.2021.107574_b39) 2021; 15
10.1016/j.asoc.2021.107574_b64
Yousri (10.1016/j.asoc.2021.107574_b55) 2019; 74
Oliva (10.1016/j.asoc.2021.107574_b65) 2017; 10
Jin (10.1016/j.asoc.2021.107574_b38) 2021; 15
Mirjalili (10.1016/j.asoc.2021.107574_b40) 2016; 27
Karaboga (10.1016/j.asoc.2021.107574_b24) 2007; 39
Ren (10.1016/j.asoc.2021.107574_b51) 2011
Yang (10.1016/j.asoc.2021.107574_b69) 2010
Rehab Ali (10.1016/j.asoc.2021.107574_b50) 2017
Zawbaa (10.1016/j.asoc.2021.107574_b23) 2016; 11
El Aziz (10.1016/j.asoc.2021.107574_b26) 2018; 730
Song (10.1016/j.asoc.2021.107574_b37) 2020; 14
Tu (10.1016/j.asoc.2021.107574_b2) 2019; 76
Derrac (10.1016/j.asoc.2021.107574_b74) 2011; 1
References_xml – volume: 29
  start-page: 393
  year: 2016
  end-page: 399
  ident: b62
  article-title: A new chaotic algorithm for image encryption
  publication-title: Chaos Solitons Fractals
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b7
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– year: 2005
  ident: b35
  article-title: Test functions for optimization needs
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b48
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b22
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b40
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– reference: Yang Xin-She, S. Deb, Cuckoo Search via Lévy flights, in: World Congr. Nat. Biol. Inspired Comput., 2009, pp. 210–214.
– volume: 31
  start-page: 991
  year: 2019
  end-page: 1006
  ident: b47
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput. Appl.
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b2
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
– start-page: 1908
  year: 2011
  end-page: 1916
  ident: b51
  article-title: Multi-objective optimization using chaos based pso
  publication-title: Inf. Technol. J.
– volume: 74
  start-page: 479
  year: 2019
  end-page: 503
  ident: b55
  article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 435
  year: 2013
  end-page: 450
  ident: b59
  article-title: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm
  publication-title: Clust. Comput.
– volume: 14
  start-page: 2919
  year: 2020
  end-page: 2937
  ident: b32
  article-title: PCA-CIA ensemble-based feature extraction for bio-key generation
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 88
  year: 2020
  ident: b54
  article-title: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis
  publication-title: Appl. Soft Comput.
– reference: H. Yu, Y. Yu, Y. Liu, Y. Wang, S. Gao, Chaotic grey wolf optimization, in: Int. Conf. Prog. Informatics Comput., 2016, pp. 103–113.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b74
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 2817
  year: 2019
  end-page: 2828
  ident: b60
  article-title: Quality of service aware routing protocol in software-defined internet of vehicles
  publication-title: IEEE Internet Things J.
– volume: vol. 284
  year: 2010
  ident: b21
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization, NICSO 2010
– volume: 18
  start-page: 327
  year: 2013
  end-page: 340
  ident: b52
  article-title: Chaos-enhanced accelerated particle swarm optimization
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 42
  start-page: 962
  year: 2013
  end-page: 978
  ident: b67
  article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization
  publication-title: Kybernetes
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b20
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– reference: M.E.A. Elaziz, A.A. Ewees, D. Oliva, P. Duan, S. Xiong, A hybrid method of sine cosine algorithm and differential evolution for feature selection, 10638 (2017) 145–155.
– volume: 20
  start-page: 3349
  year: 2016
  end-page: 3362
  ident: b63
  article-title: Chaotic cuckoo search
  publication-title: Soft Comput.
– start-page: 156
  year: 2017
  end-page: 166
  ident: b50
  article-title: Feature selection based on improved runner-root algorithm using chaotic Singer map and opposition-based learning
  publication-title: Neural Inf. Process
– volume: 61
  start-page: 1884
  year: 2012
  end-page: 1894
  ident: b58
  article-title: Intelligent OLSR routing protocol optimization for VANETs
  publication-title: IEEE Trans. Veh. Technol.
– year: 2012
  ident: b45
  article-title: Chaos and Fractals: An Elementary Introduction
– volume: 77
  start-page: 481
  year: 2001
  end-page: 506
  ident: b68
  article-title: On benchmarking functions for genetic algorithms
  publication-title: Int. J. Comput. Math.
– volume: 233
  start-page: 141
  year: 2013
  end-page: 161
  ident: b27
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci. (Ny)
– volume: 88
  year: 2020
  ident: b29
  article-title: Engineering applications of artificial intelligence performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 33
  start-page: 2321
  year: 2021
  end-page: 2337
  ident: b41
  article-title: Volcano eruption algorithm for solving optimization problems
  publication-title: Neural Comput. Appl.
– volume: 4
  start-page: 175
  year: 2014
  end-page: 176
  ident: b33
  article-title: Applications of metaheuristics in real-life problems
  publication-title: Prog. Artif. Intell.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b73
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b12
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 35
  start-page: 300
  year: 2018
  end-page: 344
  ident: b43
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J. Classification
– volume: 34
  start-page: 1366
  year: 2007
  end-page: 1375
  ident: b46
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solitons Fractals
– year: 2008
  ident: b8
  article-title: Metaheuristics for Hard Optimization: Methods and Case Studies
– volume: 148
  start-page: 115
  year: 2018
  end-page: 130
  ident: b31
  article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems
  publication-title: Knowl.-Based Syst.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b42
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 21
  ident: b23
  article-title: Feature selection via chaotic ant-lion optimization
  publication-title: PLoS One
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b11
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b13
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 50
  start-page: 3444
  year: 2020
  end-page: 3457
  ident: b28
  article-title: Interval multiobjective optimization with memetic algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 23
  start-page: 795
  year: 2010
  end-page: 805
  ident: b57
  article-title: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics
  publication-title: Eng. Appl. Artif. Intell.
– year: 2008
  ident: b61
  article-title: Nature-Inspired Metaheuristic Algorithms
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b71
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny)
– year: 2009
  ident: b9
  article-title: Metaheuristics: From Design To Implementation
– volume: 102
  year: 2021
  ident: b30
  article-title: Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting
  publication-title: Appl. Soft Comput.
– year: 2014
  ident: b72
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– volume: 102
  year: 2021
  ident: b5
  article-title: Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset
  publication-title: Appl. Soft Comput.
– volume: 102
  year: 2021
  ident: b56
  article-title: Evolutionary multi-objective set cover problem for task allocation in the internet of things
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b18
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b4
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 14908
  year: 2019
  end-page: 14923
  ident: b44
  article-title: Zheng and others a novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
– volume: 56
  year: 2013
  ident: b34
  article-title: Exact exponential algorithms
  publication-title: Commun. ACM
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b70
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– volume: 15
  start-page: 216
  year: 2021
  end-page: 239
  ident: b36
  article-title: Optimization methods for power allocation and interference coordination simultaneously with MIMO and full duplex for multi-robot networks
  publication-title: KSII Trans. Internet Inf. Syst
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: b19
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv. Eng. Softw.
– volume: 14
  start-page: 4595
  year: 2020
  end-page: 4610
  ident: b37
  article-title: Energy-efficient power allocation based on worst-case performance optimization under channel uncertainties
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 89
  start-page: 446
  year: 2015
  end-page: 458
  ident: b49
  article-title: Chaotic fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 37
  start-page: 2367
  year: 2019
  end-page: 2384
  ident: b66
  article-title: Chaotic dynamic weight grey wolf optimizer for numerical function optimization
  publication-title: J. Intell. Fuzzy Syst.
– volume: 77
  start-page: 26135
  year: 2018
  end-page: 26172
  ident: b6
  article-title: Multi-objective whale optimization algorithm for content-based image retrieval
  publication-title: Multimedia Tools Appl.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b24
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 15
  start-page: 1568
  year: 2021
  end-page: 1589
  ident: b39
  article-title: Improved AP deployment optimization scheme based on multi-objective particle swarm optimization algorithm
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 10
  start-page: 865
  year: 2017
  ident: b65
  article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells
  publication-title: Energies
– reference: A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the first European Conference on Artificial Life, 1991, pp. 134–142.
– volume: 15
  start-page: 383
  year: 2021
  end-page: 403
  ident: b38
  article-title: A context-aware task offloading scheme in collaborative vehicular edge computing systems
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 208
  start-page: 14
  year: 2012
  end-page: 27
  ident: b53
  article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter
  publication-title: Inf. Sci. (Ny)
– volume: 48
  start-page: 67
  year: 2019
  end-page: 83
  ident: b1
  article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks
  publication-title: Inf. Fusion
– volume: 114
  start-page: 1
  year: 2017
  end-page: 29
  ident: b16
  article-title: Salp swarm algorithm : A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– year: 2010
  ident: b69
  article-title: Engineering Optimization: An Introduction with Metaheuristic Applications
– volume: 730
  start-page: 23
  year: 2018
  end-page: 39
  ident: b26
  article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation
  publication-title: Adv. Soft Comput. Mach. Learn. Image Process
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: b3
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
– volume: 176
  start-page: 937
  year: 2006
  end-page: 971
  ident: b75
  article-title: A study of particle swarm optimization particle trajectories
  publication-title: Inf. Sci. (Ny)
– volume: vol. 47
  year: 1989
  ident: b10
  article-title: Evolution strategy: Nature’s way of optimization
  publication-title: Optimization: Methods and Applications, Possibilities and Limitations
– volume: 15
  start-page: 216
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b36
  article-title: Optimization methods for power allocation and interference coordination simultaneously with MIMO and full duplex for multi-robot networks
  publication-title: KSII Trans. Internet Inf. Syst
– start-page: 1908
  year: 2011
  ident: 10.1016/j.asoc.2021.107574_b51
  article-title: Multi-objective optimization using chaos based pso
  publication-title: Inf. Technol. J.
  doi: 10.3923/itj.2011.1908.1916
– volume: 14
  start-page: 2919
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2021.107574_b32
  article-title: PCA-CIA ensemble-based feature extraction for bio-key generation
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 7
  start-page: 14908
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b44
  article-title: Zheng and others a novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879848
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2021.107574_b71
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2009.03.004
– volume: 10
  start-page: 865
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2021.107574_b65
  article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells
  publication-title: Energies
  doi: 10.3390/en10070865
– volume: 730
  start-page: 23
  year: 2018
  ident: 10.1016/j.asoc.2021.107574_b26
  article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation
  publication-title: Adv. Soft Comput. Mach. Learn. Image Process
  doi: 10.1007/978-3-319-63754-9_2
– volume: 89
  start-page: 446
  year: 2015
  ident: 10.1016/j.asoc.2021.107574_b49
  article-title: Chaotic fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.010
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.asoc.2021.107574_b73
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– year: 2008
  ident: 10.1016/j.asoc.2021.107574_b8
– volume: 18
  start-page: 327
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b52
  article-title: Chaos-enhanced accelerated particle swarm optimization
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.07.017
– volume: 16
  start-page: 435
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b59
  article-title: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-012-0208-9
– year: 2009
  ident: 10.1016/j.asoc.2021.107574_b9
– volume: 6
  start-page: 2817
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b60
  article-title: Quality of service aware routing protocol in software-defined internet of vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2875482
– volume: 29
  start-page: 393
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2021.107574_b62
  article-title: A new chaotic algorithm for image encryption
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.110
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b2
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.047
– volume: 77
  start-page: 481
  issue: 4
  year: 2001
  ident: 10.1016/j.asoc.2021.107574_b68
  article-title: On benchmarking functions for genetic algorithms
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160108805080
– volume: 88
  year: 2020
  ident: 10.1016/j.asoc.2021.107574_b29
  article-title: Engineering applications of artificial intelligence performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103370
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.asoc.2021.107574_b70
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– year: 2012
  ident: 10.1016/j.asoc.2021.107574_b45
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2021.107574_b20
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.asoc.2021.107574_b12
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 61
  start-page: 1884
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2021.107574_b58
  article-title: Intelligent OLSR routing protocol optimization for VANETs
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2188552
– volume: 208
  start-page: 14
  year: 2012
  ident: 10.1016/j.asoc.2021.107574_b53
  article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2012.04.039
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b56
  article-title: Evolutionary multi-objective set cover problem for task allocation in the internet of things
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107097
– volume: vol. 284
  year: 2010
  ident: 10.1016/j.asoc.2021.107574_b21
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 37
  start-page: 2367
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b66
  article-title: Chaotic dynamic weight grey wolf optimizer for numerical function optimization
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-182706
– ident: 10.1016/j.asoc.2021.107574_b64
  doi: 10.1109/PIC.2016.7949476
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.1016/j.asoc.2021.107574_b11
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– ident: 10.1016/j.asoc.2021.107574_b17
  doi: 10.1109/NABIC.2009.5393690
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b30
  article-title: Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 2321
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b41
  article-title: Volcano eruption algorithm for solving optimization problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05124-x
– start-page: 156
  year: 2017
  ident: 10.1016/j.asoc.2021.107574_b50
  article-title: Feature selection based on improved runner-root algorithm using chaotic Singer map and opposition-based learning
  publication-title: Neural Inf. Process
– volume: 148
  start-page: 115
  year: 2018
  ident: 10.1016/j.asoc.2021.107574_b31
  article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.02.029
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.asoc.2021.107574_b3
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.023
– volume: 15
  start-page: 1568
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b39
  article-title: Improved AP deployment optimization scheme based on multi-objective particle swarm optimization algorithm
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2021.107574_b13
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– year: 2010
  ident: 10.1016/j.asoc.2021.107574_b69
– ident: 10.1016/j.asoc.2021.107574_b14
– volume: 88
  year: 2020
  ident: 10.1016/j.asoc.2021.107574_b54
  article-title: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105946
– volume: 77
  start-page: 26135
  year: 2018
  ident: 10.1016/j.asoc.2021.107574_b6
  article-title: Multi-objective whale optimization algorithm for content-based image retrieval
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5840-9
– volume: 114
  start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107574_b16
  article-title: Salp swarm algorithm : A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 233
  start-page: 141
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b27
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.01.020
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.107574_b74
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.asoc.2021.107574_b48
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.02.123
– volume: 48
  start-page: 67
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b1
  article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.08.002
– volume: 23
  start-page: 795
  year: 2010
  ident: 10.1016/j.asoc.2021.107574_b57
  article-title: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.012
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.asoc.2021.107574_b24
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b5
  article-title: Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107100
– volume: 20
  start-page: 3349
  year: 2016
  ident: 10.1016/j.asoc.2021.107574_b63
  article-title: Chaotic cuckoo search
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1726-1
– volume: 42
  start-page: 962
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b67
  article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization
  publication-title: Kybernetes
  doi: 10.1108/K-11-2012-0108
– volume: 11
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2021.107574_b23
  article-title: Feature selection via chaotic ant-lion optimization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150652
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b7
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2021.107574_b42
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– year: 2008
  ident: 10.1016/j.asoc.2021.107574_b61
– volume: 15
  start-page: 383
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2021.107574_b38
  article-title: A context-aware task offloading scheme in collaborative vehicular edge computing systems
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 56
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b34
  article-title: Exact exponential algorithms
  publication-title: Commun. ACM
  doi: 10.1145/2428556.2428575
– volume: 4
  start-page: 175
  year: 2014
  ident: 10.1016/j.asoc.2021.107574_b33
  article-title: Applications of metaheuristics in real-life problems
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-014-0051-8
– volume: 50
  start-page: 3444
  issue: 8
  year: 2020
  ident: 10.1016/j.asoc.2021.107574_b28
  article-title: Interval multiobjective optimization with memetic algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2908485
– ident: 10.1016/j.asoc.2021.107574_b15
– year: 2005
  ident: 10.1016/j.asoc.2021.107574_b35
– volume: vol. 47
  year: 1989
  ident: 10.1016/j.asoc.2021.107574_b10
  article-title: Evolution strategy: Nature’s way of optimization
– volume: 31
  start-page: 991
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b47
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3131-4
– volume: 59
  start-page: 53
  year: 2013
  ident: 10.1016/j.asoc.2021.107574_b19
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.03.004
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2021.107574_b40
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– ident: 10.1016/j.asoc.2021.107574_b25
  doi: 10.1007/978-3-319-70139-4_15
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.asoc.2021.107574_b4
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– volume: 14
  start-page: 4595
  issue: 11
  year: 2020
  ident: 10.1016/j.asoc.2021.107574_b37
  article-title: Energy-efficient power allocation based on worst-case performance optimization under channel uncertainties
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 176
  start-page: 937
  issue: 8
  year: 2006
  ident: 10.1016/j.asoc.2021.107574_b75
  article-title: A study of particle swarm optimization particle trajectories
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2005.02.003
– volume: 95
  start-page: 51
  issue: 2016
  year: 2016
  ident: 10.1016/j.asoc.2021.107574_b22
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2014
  ident: 10.1016/j.asoc.2021.107574_b72
– volume: 35
  start-page: 300
  year: 2018
  ident: 10.1016/j.asoc.2021.107574_b43
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J. Classification
  doi: 10.1007/s00357-018-9261-2
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2021.107574_b46
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.057
– volume: 74
  start-page: 479
  year: 2019
  ident: 10.1016/j.asoc.2021.107574_b55
  article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.032
– volume: 26
  start-page: 69
  year: 2012
  ident: 10.1016/j.asoc.2021.107574_b18
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
SSID ssj0016928
Score 2.6102078
Snippet Harris Hawks Optimizer (HHO) is one of the many recent algorithms in the field of metaheuristics. The HHO algorithm mimics the cooperative behavior of Harris...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107574
SubjectTerms Algorithm
Artificial intelligence
Chaos theory
Genetic Algorithm
Grey Wolf optimizer
Harris Hawks Optimization algorithm
Internet of Vehicles
Optimization
Particle Swarm Optimization
Title Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application
URI https://dx.doi.org/10.1016/j.asoc.2021.107574
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QM3FJrFcRJuVUUVtoKAop6I7NimgW4KQUgc-HbGWaoioR44WbFmpOjFnhnHb2YQOjYDz-RUKMO3hTAIuASDcZ0rwz2lmI5BpM53vunRsE8uB-6ghjpVLoymVZa2v7DpubUuZ1olmq1ZkrQe4OThk4BQWxc9gzBfZ7ATT9P6Tr_nNA-LBnl_VS1saOkycabgeDFAAM6ItgUTnuuRv53TgsPpbqC1MlLE7eJlNlFNTrbQetWFAZebchs994pqFyw1tEsSuDNkU9DBIUthB8Pw-faOb8E0jJMvmZ7h9uhlmibZcIzZRODil6DM8FThJznMWXJ44Vp7B_W754-d0Ci7JhixQ0hmxMyPmTBdV9p2bOU3b8SJhWP6xIZ4g3sBBbcdK2pK4pjCdxXlbqB0HRwG4ZxydlF9Mp3IPYQJwCodHlBCBbGsgCkB50UuuC84C4hqIKuCK4rLkuK6s8Uoqrhjr5GGONIQRwXEDXQy15kVBTWWSrvVV4h-LYsILP4Svf1_6h2gVf1UkMgOUT1LP-QRRB0Zb-bLqolW2p376zs9XlyFvR8H5td4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCGzGeOXBD1fpI05bbNIEKG-PAQ5yokiZhgz1QKULi1-OsKQIJceBUKY2l6ktiO7X9GeDITSJXMKmd2JfSoWgSHC5MrYyItObGB1Gm3vmyz9JbenEf3s9Bp66FMWmVVvdXOn2mre1Iy6LZehkOW9d484hpQplvSM_QzZ-HBcNORRuw0D7vpv2vYAJLZi1WzXzHCNjamSrNiyMIeE30PRyIwoj-bp--2ZyzVVi2ziJpV9-zBnNqsg4rdSMGYs_lBjz0K8ILXjjGKknSGfApypCUF3iI8fH-_EquUDuMhx-qOCHt0eO0GJaDMeETSaq_gqokU03u1GCWKEe-RbY34fbs9KaTOrZxgpMHlJZOzuOcSzcMle_n3iz4RoNcBm5MfXQ5RJQwtNy5Zq6igSvjUDMRJtpQ4XD06HSwBY3JdKK2gVBEVgUiYZRJ6nkJ1xKvjEKKWAqeUN0Er4Yryy2ruGluMcrq9LGnzECcGYizCuImHH_JvFScGn_ODutVyH7sjAyV_h9yO_-UO4TF9Oayl_XO-91dWDJvqpyyPWiUxZvaRyekFAd2k30CuFHYlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear-based+Chaotic+Harris+Hawks+Optimizer%3A+Algorithm+and+Internet+of+Vehicles+application&rft.jtitle=Applied+soft+computing&rft.au=Dehkordi%2C+Amin+Abdollahi&rft.au=Sadiq%2C+Ali+Safaa&rft.au=Mirjalili%2C+Seyedali&rft.au=Ghafoor%2C+Kayhan+Zrar&rft.date=2021-09-01&rft.issn=1568-4946&rft.volume=109&rft.spage=107574&rft_id=info:doi/10.1016%2Fj.asoc.2021.107574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon