Artificial Intelligence risk measurement

Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high pre...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 235; p. 121220
Main Authors Giudici, Paolo, Centurelli, Mattia, Turchetta, Stefano
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high predictive accuracy, Machine Learning models may not provide sufficient explainability, robustness and/or fairness; therefore, they may not be trustworthy for the involved stakeholders, such as business users, auditors, regulators and end-customers. To measure the trustworthiness of AI applications, we propose the first Key AI Risk Indicators (KAIRI) framework for AI systems, considering financial services as a reference industry. To this aim, we map the recently proposed regulatory requirements proposed for Artificial Intelligence Act into a set of four measurable principles (Sustainability, Accuracy, Fairness, Explainability) and, for each of them, we propose a set of interrelated statistical metrics that can be employed to measure, manage and mitigate the risks that arise from artificial intelligence. We apply the proposed framework to a collection of case studies, that have been indicated as highly relevant by the European financial institutions we interviewed during our research activities. The results from data analysis indicate that the proposed framework can be employed to effectively measure AI risks, thereby promoting a safe and trustworthy AI in finance. •We propose the first Risk Management framework for AI systems based on the recent proposed regulatory frameworks for Artificial Intelligence.•The proposed Risk Management System consists of four main principles: Sustainability, Accuracy, Fairness, Explainability, for each of which we propose statistical metrics, to make them operational.•We apply the metrics to the most known machine learning methods: regression models, classification trees, ensemble methods, neural networks.•We illustrate the proposed framework and metrics to a set of four uses cases, selected as very relevant and promising applications of artificial intelligence by experts from the financial industry.
AbstractList Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high predictive accuracy, Machine Learning models may not provide sufficient explainability, robustness and/or fairness; therefore, they may not be trustworthy for the involved stakeholders, such as business users, auditors, regulators and end-customers. To measure the trustworthiness of AI applications, we propose the first Key AI Risk Indicators (KAIRI) framework for AI systems, considering financial services as a reference industry. To this aim, we map the recently proposed regulatory requirements proposed for Artificial Intelligence Act into a set of four measurable principles (Sustainability, Accuracy, Fairness, Explainability) and, for each of them, we propose a set of interrelated statistical metrics that can be employed to measure, manage and mitigate the risks that arise from artificial intelligence. We apply the proposed framework to a collection of case studies, that have been indicated as highly relevant by the European financial institutions we interviewed during our research activities. The results from data analysis indicate that the proposed framework can be employed to effectively measure AI risks, thereby promoting a safe and trustworthy AI in finance. •We propose the first Risk Management framework for AI systems based on the recent proposed regulatory frameworks for Artificial Intelligence.•The proposed Risk Management System consists of four main principles: Sustainability, Accuracy, Fairness, Explainability, for each of which we propose statistical metrics, to make them operational.•We apply the metrics to the most known machine learning methods: regression models, classification trees, ensemble methods, neural networks.•We illustrate the proposed framework and metrics to a set of four uses cases, selected as very relevant and promising applications of artificial intelligence by experts from the financial industry.
ArticleNumber 121220
Author Giudici, Paolo
Centurelli, Mattia
Turchetta, Stefano
Author_xml – sequence: 1
  givenname: Paolo
  orcidid: 0000-0002-4198-0127
  surname: Giudici
  fullname: Giudici, Paolo
  email: giudici@unipv.it
  organization: University of Pavia, Italy
– sequence: 2
  givenname: Mattia
  surname: Centurelli
  fullname: Centurelli, Mattia
  organization: Credito Emiliano, Italy
– sequence: 3
  givenname: Stefano
  surname: Turchetta
  fullname: Turchetta, Stefano
  organization: Independent, Italy
BookMark eNp90LtOAzEQhWEXQSIJvADVljS7eLwXryWaKOISKRIN1JY1GaMJe0G2AfH2ZBWqFKmm-kf6zkLMhnEgIW5AFiChudsXFH9coaQqC1CglJyJuTS1zivQ1aVYxLiXErSUei5uVyGxZ2TXZZshUdfxOw1IWeD4kfXk4legnoZ0JS686yJd_9-leHt8eF0_59uXp816tc2xrKqUY9OQ8W2NFWktsdaOJGqsodUejDe-dFijL3XjjQMArYz3LZrGt1pXBsulaI9_MYwxBvIWObnE45CC486CtJPS7u2ktJPSHpWHVJ2kn4F7F37PR_fHiA6ob6ZgI_K0wI4DYbK7kc_lf5zsb1c
CitedBy_id crossref_primary_10_1111_risa_14666
crossref_primary_10_1051_sands_2024020
crossref_primary_10_1016_j_eswa_2024_125239
crossref_primary_10_1371_journal_pone_0315270
crossref_primary_10_59400_cai_v2i1_1290
crossref_primary_10_1089_apb_2023_0031
crossref_primary_10_1109_MRL_2024_3468213
crossref_primary_10_1007_s00146_024_02040_9
crossref_primary_10_1016_j_neunet_2024_106634
crossref_primary_10_20304_humanitas_1602451
crossref_primary_10_1111_1467_8551_12910
crossref_primary_10_1142_S0218213025500010
crossref_primary_10_1007_s41060_024_00672_0
crossref_primary_10_2478_ebce_2024_0007
crossref_primary_10_2478_picbe_2024_0007
crossref_primary_10_1016_j_eng_2025_01_002
crossref_primary_10_3390_risks12080125
crossref_primary_10_47473_2020rmm0131
crossref_primary_10_56294_saludcyt20251227
crossref_primary_10_1109_TAI_2024_3387403
crossref_primary_10_1016_j_mlwa_2024_100534
crossref_primary_10_1016_j_physa_2024_130176
crossref_primary_10_1016_j_eap_2024_11_021
crossref_primary_10_3390_info14120645
crossref_primary_10_1016_j_jik_2024_100622
crossref_primary_10_2478_jlst_2024_0001
crossref_primary_10_1007_s10462_024_10854_8
crossref_primary_10_2139_ssrn_4649285
crossref_primary_10_1016_j_engappai_2024_109137
crossref_primary_10_1016_j_frl_2024_105651
crossref_primary_10_1109_ACCESS_2024_3508467
crossref_primary_10_1080_01605682_2024_2416908
crossref_primary_10_24136_oc_3183
crossref_primary_10_1007_s41060_024_00601_1
crossref_primary_10_32604_cmes_2024_052549
crossref_primary_10_1111_ejed_70000
crossref_primary_10_1080_02331888_2025_2478203
crossref_primary_10_3390_en17246366
crossref_primary_10_23939_ujit2024_01_120
crossref_primary_10_47473_2020rmm0138
Cites_doi 10.1257/aer.20120555
10.1109/BigData.2016.7840733
10.1016/j.frl.2022.102915
10.1016/j.eswa.2019.113100
10.1080/01605682.2021.1922098
10.1093/epolic/eiaa003
10.1007/s11277-021-09158-9
10.1287/inte.2020.1055
10.1016/j.jfs.2022.100989
10.1007/s10115-017-1144-z
10.1016/j.frl.2018.05.013
10.1007/s10479-019-03282-3
10.1016/j.jeconbus.2023.106126
10.1016/j.eswa.2021.116034
10.1016/j.ejor.2010.09.029
10.1080/07350015.1995.10524599
10.1111/1467-9965.00068
10.1016/j.eswa.2020.113986
10.1002/qre.2939
10.2307/2531595
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121220
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2023_121220
S0957417423017220
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-c66e9f85c4e770c57ae0c7c5187f19f9f3ac5cf376f9a111729ff8c96f87749c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:13 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Sat Dec 14 16:13:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Accuracy
Financial risk management
Explainability
Sustainability
Fairness
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-c66e9f85c4e770c57ae0c7c5187f19f9f3ac5cf376f9a111729ff8c96f87749c3
ORCID 0000-0002-4198-0127
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417423017220
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_121220
crossref_primary_10_1016_j_eswa_2023_121220
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Giudici, Raffinetti (b19) 2021; 38
Liu, Fan, Xi (b23) 2022; 189
Melancon, Grangier, Prescott-Gagnon, Sabourin, Roussseau (b26) 2021; 51
Sachan, Yang, Xu, Li (b29) 2020; 144
Giudici, Polinesi (b18) 2021; 299
Adrian, Brunnermeier (b2) 2016; 166
Bussmann, Giudici, Marinelli, Papenbrock (b8) 2020; 57
Tripathi, Shukla, Reddy, Bopche, Chandramohan (b32) 2022; 123
Bracke, Datta, Jung, Sen (b6) 2019
Bank for International Settlements (b21) 2011
Finlay (b14) 2011; 210
Babaei, Giudici, Raffinetti (b5) 2023
Sundra, Sathiyamurthi, Subramanian (b31) 2023; 35
Artzner, Delbaen, Eber, Heath (b4) 2001; 9
Chen, Van Khoa, Teoh (b9) 2018; 57
DeLong, DeLong, Clarke-Pearson (b11) 1988; 44
Shapley (b30) 1953; 2
Achakzai, Juan (b1) 2022; 48
Ganesh, Kalpana (b16) 2022
United States National Institute of Standards and Technologies (b33) 2022
Kuiper, Berg, Burgt, Leijnen (b22) 2021
(pp. 1291–1300).
Deeckel, Vandermeulen, Ruff, Mandt (b10) 2018; Vol. 11051
European Commission (b13) 2022
Frost, Gambacorta, Huang, Zbindnen (b15) 2019; 34
Bücker, Szepannek, Gosiewska, Biecek (b7) 2022; 73
McCall, Shakya, Owusu (b25) 2017
Lundberg, Lee (b24) 2017
Zhang, K., Xu, J., Renqiang, M., Jiang, G., & Pelechrinis, K. (2016). Automated IT system failure prediction: A deep learning approach. In
Giudici, Raffinetti (b20) 2023; 56
Giudici, Abu-Hashish (b17) 2019; 28
Moscato, Picariello, Sperlí (b27) 2021; 165
Aldasoro, Gambacorta, Giudici, Leach (b3) 2022; 60
Diebold, Mariano (b12) 1995; 13
Naim (b28) 2022; 1
DeLong (10.1016/j.eswa.2023.121220_b11) 1988; 44
Frost (10.1016/j.eswa.2023.121220_b15) 2019; 34
Babaei (10.1016/j.eswa.2023.121220_b5) 2023
European Commission (10.1016/j.eswa.2023.121220_b13) 2022
Ganesh (10.1016/j.eswa.2023.121220_b16) 2022
Giudici (10.1016/j.eswa.2023.121220_b20) 2023; 56
Moscato (10.1016/j.eswa.2023.121220_b27) 2021; 165
Bussmann (10.1016/j.eswa.2023.121220_b8) 2020; 57
Bank for International Settlements (10.1016/j.eswa.2023.121220_b21) 2011
McCall (10.1016/j.eswa.2023.121220_b25) 2017
Deeckel (10.1016/j.eswa.2023.121220_b10) 2018; Vol. 11051
Artzner (10.1016/j.eswa.2023.121220_b4) 2001; 9
Kuiper (10.1016/j.eswa.2023.121220_b22) 2021
Giudici (10.1016/j.eswa.2023.121220_b17) 2019; 28
Naim (10.1016/j.eswa.2023.121220_b28) 2022; 1
Tripathi (10.1016/j.eswa.2023.121220_b32) 2022; 123
Achakzai (10.1016/j.eswa.2023.121220_b1) 2022; 48
Chen (10.1016/j.eswa.2023.121220_b9) 2018; 57
Giudici (10.1016/j.eswa.2023.121220_b19) 2021; 38
Bücker (10.1016/j.eswa.2023.121220_b7) 2022; 73
Diebold (10.1016/j.eswa.2023.121220_b12) 1995; 13
Giudici (10.1016/j.eswa.2023.121220_b18) 2021; 299
United States National Institute of Standards and Technologies (10.1016/j.eswa.2023.121220_b33) 2022
Sachan (10.1016/j.eswa.2023.121220_b29) 2020; 144
Shapley (10.1016/j.eswa.2023.121220_b30) 1953; 2
Melancon (10.1016/j.eswa.2023.121220_b26) 2021; 51
Liu (10.1016/j.eswa.2023.121220_b23) 2022; 189
Finlay (10.1016/j.eswa.2023.121220_b14) 2011; 210
Lundberg (10.1016/j.eswa.2023.121220_b24) 2017
10.1016/j.eswa.2023.121220_b34
Sundra (10.1016/j.eswa.2023.121220_b31) 2023; 35
Aldasoro (10.1016/j.eswa.2023.121220_b3) 2022; 60
Adrian (10.1016/j.eswa.2023.121220_b2) 2016; 166
Bracke (10.1016/j.eswa.2023.121220_b6) 2019
References_xml – reference: (pp. 1291–1300).
– year: 2021
  ident: b22
  article-title: Exploring explainable AI in the financial sector: Perspectives of banks and supervisory authorities
  publication-title: Artificial intelligence and machine learning
– volume: 210
  start-page: 368
  year: 2011
  end-page: 378
  ident: b14
  article-title: Multiple classifier architectures and their application to credit risk assessment
  publication-title: European Journal of Operational Research
– volume: 34
  start-page: 761
  year: 2019
  end-page: 799
  ident: b15
  article-title: BigTech and the changing structure of financial intermediation
  publication-title: Economic Policy
– year: 2011
  ident: b21
  article-title: Basel III: A global regulatory framework for more resilient banks and banking systems
– year: 2023
  ident: b5
  article-title: Explainable fintech lending
  publication-title: Journal of Economics and Business
– volume: 57
  start-page: 2013
  year: 2020
  end-page: 2016
  ident: b8
  article-title: Explainable machine learning in credit risk management
  publication-title: Computational Economics
– volume: 38
  start-page: 1318
  year: 2021
  end-page: 1326
  ident: b19
  article-title: Explainable AI in cyber risk management
  publication-title: Quality and Reliability Engineering International
– year: 2022
  ident: b33
  article-title: AI risk management framework
– year: 2022
  ident: b13
  article-title: Artificial intelligence act
– volume: 56
  year: 2023
  ident: b20
  article-title: S.A.F.E. artificial intelligence in finance
  publication-title: Finance Research Letter
– volume: 48
  year: 2022
  ident: b1
  article-title: Using machine learning meta-classifiers to detect financial frauds
  publication-title: Finance Research Letters
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: b24
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of neural information processing systems 2017
– year: 2019
  ident: b6
  article-title: Machine learning explainability in finance: an application to default risk analysis
– volume: 1
  start-page: 55
  year: 2022
  end-page: 66
  ident: b28
  article-title: Role of artificial intelligence in business risk management
  publication-title: American Journal of Business Management, Economics and Banking
– volume: 2
  start-page: 307
  year: 1953
  end-page: 317
  ident: b30
  article-title: A value for n-person games
  publication-title: Contribution to Theory of Games
– volume: 299
  start-page: 443
  year: 2021
  end-page: 457
  ident: b18
  article-title: Crypto price discovery through correlation networks
  publication-title: Annals of Operations Research
– volume: 51
  start-page: 200
  year: 2021
  end-page: 212
  ident: b26
  article-title: A machine learning-based system for predicting service-level failures in supply chains
  publication-title: INFORMS Journal on Applied Analytics
– volume: 57
  start-page: 245
  year: 2018
  end-page: 285
  ident: b9
  article-title: Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review
  publication-title: Knowldege in Information Systems
– volume: 123
  start-page: 785
  year: 2022
  end-page: 812
  ident: b32
  article-title: Credit scoring models using ensemble learning and classification approaches: A comprehensive survey
  publication-title: Wireless Personal Communications
– reference: Zhang, K., Xu, J., Renqiang, M., Jiang, G., & Pelechrinis, K. (2016). Automated IT system failure prediction: A deep learning approach. In
– start-page: 169
  year: 2022
  ident: b16
  article-title: Future of artificial intelligence and its influence on supply chain risk management – A systematic review
  publication-title: Computers & Industrial Engineering
– volume: 144
  year: 2020
  ident: b29
  article-title: An explainable AI decision-support-system to automate loan underwriting
  publication-title: Expert Systems with Applications
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: b11
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 166
  start-page: 1705
  year: 2016
  end-page: 1741
  ident: b2
  article-title: CoVaR
  publication-title: American Economic Review
– start-page: 411
  year: 2017
  end-page: 416
  ident: b25
  article-title: Predicting service levels using neural networks
  publication-title: International conference on innovative techniques and applications of artificial intelligence
– volume: 165
  year: 2021
  ident: b27
  article-title: A benchmark of machine learning approaches for credit score prediction
  publication-title: Expert Systems with Applications
– volume: Vol. 11051
  year: 2018
  ident: b10
  article-title: Image anomaly detection with generative adversarial networks
  publication-title: Machine learning and knowledge discovery in databases
– volume: 28
  start-page: 309
  year: 2019
  end-page: 318
  ident: b17
  article-title: What determines bitcoin exchange prices? A network VAR approach
  publication-title: Finance Research Letters
– volume: 60
  year: 2022
  ident: b3
  article-title: The drivers of cyber risk
  publication-title: Journal of financial stability
– volume: 189
  year: 2022
  ident: b23
  article-title: Credit scoring based on tree-enhanced gradient boosting decision trees
  publication-title: Expert Systems with Applications
– volume: 73
  start-page: 70
  year: 2022
  end-page: 90
  ident: b7
  article-title: Transparency, auditability, and explainability of machine learning models in credit scoring
  publication-title: Journal of the Operational Research Society
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b12
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
– volume: 9
  start-page: 203
  year: 2001
  end-page: 228
  ident: b4
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
– volume: 35
  start-page: 1228
  year: 2023
  end-page: 1231
  ident: b31
  article-title: Critical evaluation of applying machine learning approaches for better handling bank risk management in the post-modern era
  publication-title: Scandinavian Journal of Information Systems
– volume: 166
  start-page: 1705
  issue: 7
  year: 2016
  ident: 10.1016/j.eswa.2023.121220_b2
  article-title: CoVaR
  publication-title: American Economic Review
  doi: 10.1257/aer.20120555
– year: 2022
  ident: 10.1016/j.eswa.2023.121220_b13
– ident: 10.1016/j.eswa.2023.121220_b34
  doi: 10.1109/BigData.2016.7840733
– volume: 56
  issue: 104088
  year: 2023
  ident: 10.1016/j.eswa.2023.121220_b20
  article-title: S.A.F.E. artificial intelligence in finance
  publication-title: Finance Research Letter
– volume: 48
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b1
  article-title: Using machine learning meta-classifiers to detect financial frauds
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2022.102915
– volume: 57
  start-page: 2013
  year: 2020
  ident: 10.1016/j.eswa.2023.121220_b8
  article-title: Explainable machine learning in credit risk management
  publication-title: Computational Economics
– volume: 144
  year: 2020
  ident: 10.1016/j.eswa.2023.121220_b29
  article-title: An explainable AI decision-support-system to automate loan underwriting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113100
– year: 2011
  ident: 10.1016/j.eswa.2023.121220_b21
– volume: 73
  start-page: 70
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b7
  article-title: Transparency, auditability, and explainability of machine learning models in credit scoring
  publication-title: Journal of the Operational Research Society
  doi: 10.1080/01605682.2021.1922098
– volume: 34
  start-page: 761
  issue: 100
  year: 2019
  ident: 10.1016/j.eswa.2023.121220_b15
  article-title: BigTech and the changing structure of financial intermediation
  publication-title: Economic Policy
  doi: 10.1093/epolic/eiaa003
– volume: 123
  start-page: 785
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b32
  article-title: Credit scoring models using ensemble learning and classification approaches: A comprehensive survey
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-021-09158-9
– volume: 51
  start-page: 200
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121220_b26
  article-title: A machine learning-based system for predicting service-level failures in supply chains
  publication-title: INFORMS Journal on Applied Analytics
  doi: 10.1287/inte.2020.1055
– year: 2022
  ident: 10.1016/j.eswa.2023.121220_b33
– volume: 60
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b3
  article-title: The drivers of cyber risk
  publication-title: Journal of financial stability
  doi: 10.1016/j.jfs.2022.100989
– volume: 35
  start-page: 1228
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2023.121220_b31
  article-title: Critical evaluation of applying machine learning approaches for better handling bank risk management in the post-modern era
  publication-title: Scandinavian Journal of Information Systems
– volume: 57
  start-page: 245
  year: 2018
  ident: 10.1016/j.eswa.2023.121220_b9
  article-title: Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review
  publication-title: Knowldege in Information Systems
  doi: 10.1007/s10115-017-1144-z
– volume: 28
  start-page: 309
  year: 2019
  ident: 10.1016/j.eswa.2023.121220_b17
  article-title: What determines bitcoin exchange prices? A network VAR approach
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2018.05.013
– volume: 299
  start-page: 443
  issue: 1–2
  year: 2021
  ident: 10.1016/j.eswa.2023.121220_b18
  article-title: Crypto price discovery through correlation networks
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03282-3
– year: 2023
  ident: 10.1016/j.eswa.2023.121220_b5
  article-title: Explainable fintech lending
  publication-title: Journal of Economics and Business
  doi: 10.1016/j.jeconbus.2023.106126
– volume: 189
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b23
  article-title: Credit scoring based on tree-enhanced gradient boosting decision trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116034
– volume: 210
  start-page: 368
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2023.121220_b14
  article-title: Multiple classifier architectures and their application to credit risk assessment
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.09.029
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2023.121220_b12
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– year: 2021
  ident: 10.1016/j.eswa.2023.121220_b22
  article-title: Exploring explainable AI in the financial sector: Perspectives of banks and supervisory authorities
– volume: 9
  start-page: 203
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2023.121220_b4
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
  doi: 10.1111/1467-9965.00068
– start-page: 169
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b16
  article-title: Future of artificial intelligence and its influence on supply chain risk management – A systematic review
  publication-title: Computers & Industrial Engineering
– start-page: 411
  year: 2017
  ident: 10.1016/j.eswa.2023.121220_b25
  article-title: Predicting service levels using neural networks
– year: 2019
  ident: 10.1016/j.eswa.2023.121220_b6
– start-page: 4768
  year: 2017
  ident: 10.1016/j.eswa.2023.121220_b24
  article-title: A unified approach to interpreting model predictions
– volume: 165
  year: 2021
  ident: 10.1016/j.eswa.2023.121220_b27
  article-title: A benchmark of machine learning approaches for credit score prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113986
– volume: 2
  start-page: 307
  year: 1953
  ident: 10.1016/j.eswa.2023.121220_b30
  article-title: A value for n-person games
  publication-title: Contribution to Theory of Games
– volume: 38
  start-page: 1318
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121220_b19
  article-title: Explainable AI in cyber risk management
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.2939
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 10.1016/j.eswa.2023.121220_b11
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 1
  start-page: 55
  year: 2022
  ident: 10.1016/j.eswa.2023.121220_b28
  article-title: Role of artificial intelligence in business risk management
  publication-title: American Journal of Business Management, Economics and Banking
– volume: Vol. 11051
  year: 2018
  ident: 10.1016/j.eswa.2023.121220_b10
  article-title: Image anomaly detection with generative adversarial networks
SSID ssj0017007
Score 2.6183808
Snippet Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121220
SubjectTerms Accuracy
Explainability
Fairness
Financial risk management
Machine learning
Sustainability
Title Artificial Intelligence risk measurement
URI https://dx.doi.org/10.1016/j.eswa.2023.121220
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLT7LHjwIEtvdTTbJsRRLq9iLFnpbdtMEKlqLVrz5251psrWC9OBxlxnYnUnmkcx8A3ChElOoWEomS0xXOSqWldaWDGN3axNRjFVJDc73g6w35LcjMapBp-qFobLKYPu9TV9Y6_CmGaTZnE0mzQcMDtAd0k0j5TEJ5e2cS1rl11_LMg-Cn5Meb08yog6NM77Gy75_EvZQkhLIQkIzv_9yTisOp7sDWyFSjNr-Y3ahZqd7sF1NYYjCptyHS6LwOBBRfwVgM6Kq8ejl5wzwAIbdm8dOj4X5B8yknM-ZyTKrnRKGWylbRsjCtow0IlbSxdpplxZGGIcmwukCbRbGyc4pozOnMKjTJj2E-vR1ao8gSjPMswTuzlJpVILSwsS2lY4LHbvSSnsMcfXjuQng4DSj4jmvqsCechJWTsLKvbCO4WrJM_PQGGupRSXP_JeCc7Tda_hO_sl3Cpv4xP1pyRnU528f9hzjh3nZWCyQBmy0-3e9wTe6hsMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5Ke9CLb7E-9-BBkNB9ZZMcS7Fs7eNiC72F3TSBitaiFf--E5OtFcSD190Z2J1J5pHMfANwzWNV8IgxwkpMV1NULCm1LgnG7lrHtJjx0jY4D0dZPknvp3Rag07VC2PLKr3tdzb9y1r7Jy0vzdZyPm89YHCA7tDeNNo8Jsa8vWHRqWgdGu1ePx-tLxNY6LqmkZ5YBt8748q89NuHhR-KE4uzENux37_5pw2f092DHR8sBm33PftQ04sD2K0GMQR-Xx7CjaVwUBBBbwNjM7CF48Hz9zHgEUy6d-NOTvwIBKKSNF0RlWVaGE5VqhkLFWWFDhVTNOLMRMIIkxSKKoNWwogCzRaGysZwJTLDMa4TKjmG-uJloU8gSDJMtShu0JIL1AMXVEU6TGaFiEypmW5CVP24VB4f3I6peJJVIdijtMKSVljSCasJt2uepUPH-JOaVvKUP3Qs0Xz_wXf6T74r2MrHw4Ec9Eb9M9jGN6k7PDmH-ur1XV9gOLEqL_1y-QSGtsXh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+risk+measurement&rft.jtitle=Expert+systems+with+applications&rft.au=Giudici%2C+Paolo&rft.au=Centurelli%2C+Mattia&rft.au=Turchetta%2C+Stefano&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=235&rft_id=info:doi/10.1016%2Fj.eswa.2023.121220&rft.externalDocID=S0957417423017220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon