Artificial Intelligence risk measurement
Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high pre...
Saved in:
Published in | Expert systems with applications Vol. 235; p. 121220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high predictive accuracy, Machine Learning models may not provide sufficient explainability, robustness and/or fairness; therefore, they may not be trustworthy for the involved stakeholders, such as business users, auditors, regulators and end-customers.
To measure the trustworthiness of AI applications, we propose the first Key AI Risk Indicators (KAIRI) framework for AI systems, considering financial services as a reference industry. To this aim, we map the recently proposed regulatory requirements proposed for Artificial Intelligence Act into a set of four measurable principles (Sustainability, Accuracy, Fairness, Explainability) and, for each of them, we propose a set of interrelated statistical metrics that can be employed to measure, manage and mitigate the risks that arise from artificial intelligence.
We apply the proposed framework to a collection of case studies, that have been indicated as highly relevant by the European financial institutions we interviewed during our research activities. The results from data analysis indicate that the proposed framework can be employed to effectively measure AI risks, thereby promoting a safe and trustworthy AI in finance.
•We propose the first Risk Management framework for AI systems based on the recent proposed regulatory frameworks for Artificial Intelligence.•The proposed Risk Management System consists of four main principles: Sustainability, Accuracy, Fairness, Explainability, for each of which we propose statistical metrics, to make them operational.•We apply the metrics to the most known machine learning methods: regression models, classification trees, ensemble methods, neural networks.•We illustrate the proposed framework and metrics to a set of four uses cases, selected as very relevant and promising applications of artificial intelligence by experts from the financial industry. |
---|---|
AbstractList | Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being integrated into several applications, such as credit scoring, anomaly detection, internal controls and regulatory compliance. Despite their high predictive accuracy, Machine Learning models may not provide sufficient explainability, robustness and/or fairness; therefore, they may not be trustworthy for the involved stakeholders, such as business users, auditors, regulators and end-customers.
To measure the trustworthiness of AI applications, we propose the first Key AI Risk Indicators (KAIRI) framework for AI systems, considering financial services as a reference industry. To this aim, we map the recently proposed regulatory requirements proposed for Artificial Intelligence Act into a set of four measurable principles (Sustainability, Accuracy, Fairness, Explainability) and, for each of them, we propose a set of interrelated statistical metrics that can be employed to measure, manage and mitigate the risks that arise from artificial intelligence.
We apply the proposed framework to a collection of case studies, that have been indicated as highly relevant by the European financial institutions we interviewed during our research activities. The results from data analysis indicate that the proposed framework can be employed to effectively measure AI risks, thereby promoting a safe and trustworthy AI in finance.
•We propose the first Risk Management framework for AI systems based on the recent proposed regulatory frameworks for Artificial Intelligence.•The proposed Risk Management System consists of four main principles: Sustainability, Accuracy, Fairness, Explainability, for each of which we propose statistical metrics, to make them operational.•We apply the metrics to the most known machine learning methods: regression models, classification trees, ensemble methods, neural networks.•We illustrate the proposed framework and metrics to a set of four uses cases, selected as very relevant and promising applications of artificial intelligence by experts from the financial industry. |
ArticleNumber | 121220 |
Author | Giudici, Paolo Centurelli, Mattia Turchetta, Stefano |
Author_xml | – sequence: 1 givenname: Paolo orcidid: 0000-0002-4198-0127 surname: Giudici fullname: Giudici, Paolo email: giudici@unipv.it organization: University of Pavia, Italy – sequence: 2 givenname: Mattia surname: Centurelli fullname: Centurelli, Mattia organization: Credito Emiliano, Italy – sequence: 3 givenname: Stefano surname: Turchetta fullname: Turchetta, Stefano organization: Independent, Italy |
BookMark | eNp90LtOAzEQhWEXQSIJvADVljS7eLwXryWaKOISKRIN1JY1GaMJe0G2AfH2ZBWqFKmm-kf6zkLMhnEgIW5AFiChudsXFH9coaQqC1CglJyJuTS1zivQ1aVYxLiXErSUei5uVyGxZ2TXZZshUdfxOw1IWeD4kfXk4legnoZ0JS686yJd_9-leHt8eF0_59uXp816tc2xrKqUY9OQ8W2NFWktsdaOJGqsodUejDe-dFijL3XjjQMArYz3LZrGt1pXBsulaI9_MYwxBvIWObnE45CC486CtJPS7u2ktJPSHpWHVJ2kn4F7F37PR_fHiA6ob6ZgI_K0wI4DYbK7kc_lf5zsb1c |
CitedBy_id | crossref_primary_10_1111_risa_14666 crossref_primary_10_1051_sands_2024020 crossref_primary_10_1016_j_eswa_2024_125239 crossref_primary_10_1371_journal_pone_0315270 crossref_primary_10_59400_cai_v2i1_1290 crossref_primary_10_1089_apb_2023_0031 crossref_primary_10_1109_MRL_2024_3468213 crossref_primary_10_1007_s00146_024_02040_9 crossref_primary_10_1016_j_neunet_2024_106634 crossref_primary_10_20304_humanitas_1602451 crossref_primary_10_1111_1467_8551_12910 crossref_primary_10_1142_S0218213025500010 crossref_primary_10_1007_s41060_024_00672_0 crossref_primary_10_2478_ebce_2024_0007 crossref_primary_10_2478_picbe_2024_0007 crossref_primary_10_1016_j_eng_2025_01_002 crossref_primary_10_3390_risks12080125 crossref_primary_10_47473_2020rmm0131 crossref_primary_10_56294_saludcyt20251227 crossref_primary_10_1109_TAI_2024_3387403 crossref_primary_10_1016_j_mlwa_2024_100534 crossref_primary_10_1016_j_physa_2024_130176 crossref_primary_10_1016_j_eap_2024_11_021 crossref_primary_10_3390_info14120645 crossref_primary_10_1016_j_jik_2024_100622 crossref_primary_10_2478_jlst_2024_0001 crossref_primary_10_1007_s10462_024_10854_8 crossref_primary_10_2139_ssrn_4649285 crossref_primary_10_1016_j_engappai_2024_109137 crossref_primary_10_1016_j_frl_2024_105651 crossref_primary_10_1109_ACCESS_2024_3508467 crossref_primary_10_1080_01605682_2024_2416908 crossref_primary_10_24136_oc_3183 crossref_primary_10_1007_s41060_024_00601_1 crossref_primary_10_32604_cmes_2024_052549 crossref_primary_10_1111_ejed_70000 crossref_primary_10_1080_02331888_2025_2478203 crossref_primary_10_3390_en17246366 crossref_primary_10_23939_ujit2024_01_120 crossref_primary_10_47473_2020rmm0138 |
Cites_doi | 10.1257/aer.20120555 10.1109/BigData.2016.7840733 10.1016/j.frl.2022.102915 10.1016/j.eswa.2019.113100 10.1080/01605682.2021.1922098 10.1093/epolic/eiaa003 10.1007/s11277-021-09158-9 10.1287/inte.2020.1055 10.1016/j.jfs.2022.100989 10.1007/s10115-017-1144-z 10.1016/j.frl.2018.05.013 10.1007/s10479-019-03282-3 10.1016/j.jeconbus.2023.106126 10.1016/j.eswa.2021.116034 10.1016/j.ejor.2010.09.029 10.1080/07350015.1995.10524599 10.1111/1467-9965.00068 10.1016/j.eswa.2020.113986 10.1002/qre.2939 10.2307/2531595 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.121220 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2023_121220 S0957417423017220 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABWVN ABXDB ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-c66e9f85c4e770c57ae0c7c5187f19f9f3ac5cf376f9a111729ff8c96f87749c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:13 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Sat Dec 14 16:13:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Accuracy Financial risk management Explainability Sustainability Fairness Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-c66e9f85c4e770c57ae0c7c5187f19f9f3ac5cf376f9a111729ff8c96f87749c3 |
ORCID | 0000-0002-4198-0127 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417423017220 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_121220 crossref_primary_10_1016_j_eswa_2023_121220 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – sequence: 0 name: Elsevier Ltd |
References | Giudici, Raffinetti (b19) 2021; 38 Liu, Fan, Xi (b23) 2022; 189 Melancon, Grangier, Prescott-Gagnon, Sabourin, Roussseau (b26) 2021; 51 Sachan, Yang, Xu, Li (b29) 2020; 144 Giudici, Polinesi (b18) 2021; 299 Adrian, Brunnermeier (b2) 2016; 166 Bussmann, Giudici, Marinelli, Papenbrock (b8) 2020; 57 Tripathi, Shukla, Reddy, Bopche, Chandramohan (b32) 2022; 123 Bracke, Datta, Jung, Sen (b6) 2019 Bank for International Settlements (b21) 2011 Finlay (b14) 2011; 210 Babaei, Giudici, Raffinetti (b5) 2023 Sundra, Sathiyamurthi, Subramanian (b31) 2023; 35 Artzner, Delbaen, Eber, Heath (b4) 2001; 9 Chen, Van Khoa, Teoh (b9) 2018; 57 DeLong, DeLong, Clarke-Pearson (b11) 1988; 44 Shapley (b30) 1953; 2 Achakzai, Juan (b1) 2022; 48 Ganesh, Kalpana (b16) 2022 United States National Institute of Standards and Technologies (b33) 2022 Kuiper, Berg, Burgt, Leijnen (b22) 2021 (pp. 1291–1300). Deeckel, Vandermeulen, Ruff, Mandt (b10) 2018; Vol. 11051 European Commission (b13) 2022 Frost, Gambacorta, Huang, Zbindnen (b15) 2019; 34 Bücker, Szepannek, Gosiewska, Biecek (b7) 2022; 73 McCall, Shakya, Owusu (b25) 2017 Lundberg, Lee (b24) 2017 Zhang, K., Xu, J., Renqiang, M., Jiang, G., & Pelechrinis, K. (2016). Automated IT system failure prediction: A deep learning approach. In Giudici, Raffinetti (b20) 2023; 56 Giudici, Abu-Hashish (b17) 2019; 28 Moscato, Picariello, Sperlí (b27) 2021; 165 Aldasoro, Gambacorta, Giudici, Leach (b3) 2022; 60 Diebold, Mariano (b12) 1995; 13 Naim (b28) 2022; 1 DeLong (10.1016/j.eswa.2023.121220_b11) 1988; 44 Frost (10.1016/j.eswa.2023.121220_b15) 2019; 34 Babaei (10.1016/j.eswa.2023.121220_b5) 2023 European Commission (10.1016/j.eswa.2023.121220_b13) 2022 Ganesh (10.1016/j.eswa.2023.121220_b16) 2022 Giudici (10.1016/j.eswa.2023.121220_b20) 2023; 56 Moscato (10.1016/j.eswa.2023.121220_b27) 2021; 165 Bussmann (10.1016/j.eswa.2023.121220_b8) 2020; 57 Bank for International Settlements (10.1016/j.eswa.2023.121220_b21) 2011 McCall (10.1016/j.eswa.2023.121220_b25) 2017 Deeckel (10.1016/j.eswa.2023.121220_b10) 2018; Vol. 11051 Artzner (10.1016/j.eswa.2023.121220_b4) 2001; 9 Kuiper (10.1016/j.eswa.2023.121220_b22) 2021 Giudici (10.1016/j.eswa.2023.121220_b17) 2019; 28 Naim (10.1016/j.eswa.2023.121220_b28) 2022; 1 Tripathi (10.1016/j.eswa.2023.121220_b32) 2022; 123 Achakzai (10.1016/j.eswa.2023.121220_b1) 2022; 48 Chen (10.1016/j.eswa.2023.121220_b9) 2018; 57 Giudici (10.1016/j.eswa.2023.121220_b19) 2021; 38 Bücker (10.1016/j.eswa.2023.121220_b7) 2022; 73 Diebold (10.1016/j.eswa.2023.121220_b12) 1995; 13 Giudici (10.1016/j.eswa.2023.121220_b18) 2021; 299 United States National Institute of Standards and Technologies (10.1016/j.eswa.2023.121220_b33) 2022 Sachan (10.1016/j.eswa.2023.121220_b29) 2020; 144 Shapley (10.1016/j.eswa.2023.121220_b30) 1953; 2 Melancon (10.1016/j.eswa.2023.121220_b26) 2021; 51 Liu (10.1016/j.eswa.2023.121220_b23) 2022; 189 Finlay (10.1016/j.eswa.2023.121220_b14) 2011; 210 Lundberg (10.1016/j.eswa.2023.121220_b24) 2017 10.1016/j.eswa.2023.121220_b34 Sundra (10.1016/j.eswa.2023.121220_b31) 2023; 35 Aldasoro (10.1016/j.eswa.2023.121220_b3) 2022; 60 Adrian (10.1016/j.eswa.2023.121220_b2) 2016; 166 Bracke (10.1016/j.eswa.2023.121220_b6) 2019 |
References_xml | – reference: (pp. 1291–1300). – year: 2021 ident: b22 article-title: Exploring explainable AI in the financial sector: Perspectives of banks and supervisory authorities publication-title: Artificial intelligence and machine learning – volume: 210 start-page: 368 year: 2011 end-page: 378 ident: b14 article-title: Multiple classifier architectures and their application to credit risk assessment publication-title: European Journal of Operational Research – volume: 34 start-page: 761 year: 2019 end-page: 799 ident: b15 article-title: BigTech and the changing structure of financial intermediation publication-title: Economic Policy – year: 2011 ident: b21 article-title: Basel III: A global regulatory framework for more resilient banks and banking systems – year: 2023 ident: b5 article-title: Explainable fintech lending publication-title: Journal of Economics and Business – volume: 57 start-page: 2013 year: 2020 end-page: 2016 ident: b8 article-title: Explainable machine learning in credit risk management publication-title: Computational Economics – volume: 38 start-page: 1318 year: 2021 end-page: 1326 ident: b19 article-title: Explainable AI in cyber risk management publication-title: Quality and Reliability Engineering International – year: 2022 ident: b33 article-title: AI risk management framework – year: 2022 ident: b13 article-title: Artificial intelligence act – volume: 56 year: 2023 ident: b20 article-title: S.A.F.E. artificial intelligence in finance publication-title: Finance Research Letter – volume: 48 year: 2022 ident: b1 article-title: Using machine learning meta-classifiers to detect financial frauds publication-title: Finance Research Letters – start-page: 4768 year: 2017 end-page: 4777 ident: b24 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of neural information processing systems 2017 – year: 2019 ident: b6 article-title: Machine learning explainability in finance: an application to default risk analysis – volume: 1 start-page: 55 year: 2022 end-page: 66 ident: b28 article-title: Role of artificial intelligence in business risk management publication-title: American Journal of Business Management, Economics and Banking – volume: 2 start-page: 307 year: 1953 end-page: 317 ident: b30 article-title: A value for n-person games publication-title: Contribution to Theory of Games – volume: 299 start-page: 443 year: 2021 end-page: 457 ident: b18 article-title: Crypto price discovery through correlation networks publication-title: Annals of Operations Research – volume: 51 start-page: 200 year: 2021 end-page: 212 ident: b26 article-title: A machine learning-based system for predicting service-level failures in supply chains publication-title: INFORMS Journal on Applied Analytics – volume: 57 start-page: 245 year: 2018 end-page: 285 ident: b9 article-title: Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review publication-title: Knowldege in Information Systems – volume: 123 start-page: 785 year: 2022 end-page: 812 ident: b32 article-title: Credit scoring models using ensemble learning and classification approaches: A comprehensive survey publication-title: Wireless Personal Communications – reference: Zhang, K., Xu, J., Renqiang, M., Jiang, G., & Pelechrinis, K. (2016). Automated IT system failure prediction: A deep learning approach. In – start-page: 169 year: 2022 ident: b16 article-title: Future of artificial intelligence and its influence on supply chain risk management – A systematic review publication-title: Computers & Industrial Engineering – volume: 144 year: 2020 ident: b29 article-title: An explainable AI decision-support-system to automate loan underwriting publication-title: Expert Systems with Applications – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: b11 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 166 start-page: 1705 year: 2016 end-page: 1741 ident: b2 article-title: CoVaR publication-title: American Economic Review – start-page: 411 year: 2017 end-page: 416 ident: b25 article-title: Predicting service levels using neural networks publication-title: International conference on innovative techniques and applications of artificial intelligence – volume: 165 year: 2021 ident: b27 article-title: A benchmark of machine learning approaches for credit score prediction publication-title: Expert Systems with Applications – volume: Vol. 11051 year: 2018 ident: b10 article-title: Image anomaly detection with generative adversarial networks publication-title: Machine learning and knowledge discovery in databases – volume: 28 start-page: 309 year: 2019 end-page: 318 ident: b17 article-title: What determines bitcoin exchange prices? A network VAR approach publication-title: Finance Research Letters – volume: 60 year: 2022 ident: b3 article-title: The drivers of cyber risk publication-title: Journal of financial stability – volume: 189 year: 2022 ident: b23 article-title: Credit scoring based on tree-enhanced gradient boosting decision trees publication-title: Expert Systems with Applications – volume: 73 start-page: 70 year: 2022 end-page: 90 ident: b7 article-title: Transparency, auditability, and explainability of machine learning models in credit scoring publication-title: Journal of the Operational Research Society – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b12 article-title: Comparing predictive accuracy publication-title: Journal of Business & Economic Statistics – volume: 9 start-page: 203 year: 2001 end-page: 228 ident: b4 article-title: Coherent measures of risk publication-title: Mathematical Finance – volume: 35 start-page: 1228 year: 2023 end-page: 1231 ident: b31 article-title: Critical evaluation of applying machine learning approaches for better handling bank risk management in the post-modern era publication-title: Scandinavian Journal of Information Systems – volume: 166 start-page: 1705 issue: 7 year: 2016 ident: 10.1016/j.eswa.2023.121220_b2 article-title: CoVaR publication-title: American Economic Review doi: 10.1257/aer.20120555 – year: 2022 ident: 10.1016/j.eswa.2023.121220_b13 – ident: 10.1016/j.eswa.2023.121220_b34 doi: 10.1109/BigData.2016.7840733 – volume: 56 issue: 104088 year: 2023 ident: 10.1016/j.eswa.2023.121220_b20 article-title: S.A.F.E. artificial intelligence in finance publication-title: Finance Research Letter – volume: 48 year: 2022 ident: 10.1016/j.eswa.2023.121220_b1 article-title: Using machine learning meta-classifiers to detect financial frauds publication-title: Finance Research Letters doi: 10.1016/j.frl.2022.102915 – volume: 57 start-page: 2013 year: 2020 ident: 10.1016/j.eswa.2023.121220_b8 article-title: Explainable machine learning in credit risk management publication-title: Computational Economics – volume: 144 year: 2020 ident: 10.1016/j.eswa.2023.121220_b29 article-title: An explainable AI decision-support-system to automate loan underwriting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113100 – year: 2011 ident: 10.1016/j.eswa.2023.121220_b21 – volume: 73 start-page: 70 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.121220_b7 article-title: Transparency, auditability, and explainability of machine learning models in credit scoring publication-title: Journal of the Operational Research Society doi: 10.1080/01605682.2021.1922098 – volume: 34 start-page: 761 issue: 100 year: 2019 ident: 10.1016/j.eswa.2023.121220_b15 article-title: BigTech and the changing structure of financial intermediation publication-title: Economic Policy doi: 10.1093/epolic/eiaa003 – volume: 123 start-page: 785 year: 2022 ident: 10.1016/j.eswa.2023.121220_b32 article-title: Credit scoring models using ensemble learning and classification approaches: A comprehensive survey publication-title: Wireless Personal Communications doi: 10.1007/s11277-021-09158-9 – volume: 51 start-page: 200 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121220_b26 article-title: A machine learning-based system for predicting service-level failures in supply chains publication-title: INFORMS Journal on Applied Analytics doi: 10.1287/inte.2020.1055 – year: 2022 ident: 10.1016/j.eswa.2023.121220_b33 – volume: 60 year: 2022 ident: 10.1016/j.eswa.2023.121220_b3 article-title: The drivers of cyber risk publication-title: Journal of financial stability doi: 10.1016/j.jfs.2022.100989 – volume: 35 start-page: 1228 issue: 1 year: 2023 ident: 10.1016/j.eswa.2023.121220_b31 article-title: Critical evaluation of applying machine learning approaches for better handling bank risk management in the post-modern era publication-title: Scandinavian Journal of Information Systems – volume: 57 start-page: 245 year: 2018 ident: 10.1016/j.eswa.2023.121220_b9 article-title: Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review publication-title: Knowldege in Information Systems doi: 10.1007/s10115-017-1144-z – volume: 28 start-page: 309 year: 2019 ident: 10.1016/j.eswa.2023.121220_b17 article-title: What determines bitcoin exchange prices? A network VAR approach publication-title: Finance Research Letters doi: 10.1016/j.frl.2018.05.013 – volume: 299 start-page: 443 issue: 1–2 year: 2021 ident: 10.1016/j.eswa.2023.121220_b18 article-title: Crypto price discovery through correlation networks publication-title: Annals of Operations Research doi: 10.1007/s10479-019-03282-3 – year: 2023 ident: 10.1016/j.eswa.2023.121220_b5 article-title: Explainable fintech lending publication-title: Journal of Economics and Business doi: 10.1016/j.jeconbus.2023.106126 – volume: 189 year: 2022 ident: 10.1016/j.eswa.2023.121220_b23 article-title: Credit scoring based on tree-enhanced gradient boosting decision trees publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116034 – volume: 210 start-page: 368 issue: 2 year: 2011 ident: 10.1016/j.eswa.2023.121220_b14 article-title: Multiple classifier architectures and their application to credit risk assessment publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.09.029 – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.eswa.2023.121220_b12 article-title: Comparing predictive accuracy publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.1995.10524599 – year: 2021 ident: 10.1016/j.eswa.2023.121220_b22 article-title: Exploring explainable AI in the financial sector: Perspectives of banks and supervisory authorities – volume: 9 start-page: 203 issue: 3 year: 2001 ident: 10.1016/j.eswa.2023.121220_b4 article-title: Coherent measures of risk publication-title: Mathematical Finance doi: 10.1111/1467-9965.00068 – start-page: 169 year: 2022 ident: 10.1016/j.eswa.2023.121220_b16 article-title: Future of artificial intelligence and its influence on supply chain risk management – A systematic review publication-title: Computers & Industrial Engineering – start-page: 411 year: 2017 ident: 10.1016/j.eswa.2023.121220_b25 article-title: Predicting service levels using neural networks – year: 2019 ident: 10.1016/j.eswa.2023.121220_b6 – start-page: 4768 year: 2017 ident: 10.1016/j.eswa.2023.121220_b24 article-title: A unified approach to interpreting model predictions – volume: 165 year: 2021 ident: 10.1016/j.eswa.2023.121220_b27 article-title: A benchmark of machine learning approaches for credit score prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113986 – volume: 2 start-page: 307 year: 1953 ident: 10.1016/j.eswa.2023.121220_b30 article-title: A value for n-person games publication-title: Contribution to Theory of Games – volume: 38 start-page: 1318 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121220_b19 article-title: Explainable AI in cyber risk management publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.2939 – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 10.1016/j.eswa.2023.121220_b11 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 1 start-page: 55 year: 2022 ident: 10.1016/j.eswa.2023.121220_b28 article-title: Role of artificial intelligence in business risk management publication-title: American Journal of Business Management, Economics and Banking – volume: Vol. 11051 year: 2018 ident: 10.1016/j.eswa.2023.121220_b10 article-title: Image anomaly detection with generative adversarial networks |
SSID | ssj0017007 |
Score | 2.6183808 |
Snippet | Financial institutions are increasingly leveraging on advanced technologies, facilitated by the availability of Machine Learning methods that are being... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121220 |
SubjectTerms | Accuracy Explainability Fairness Financial risk management Machine learning Sustainability |
Title | Artificial Intelligence risk measurement |
URI | https://dx.doi.org/10.1016/j.eswa.2023.121220 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLT7LHjwIEtvdTTbJsRRLq9iLFnpbdtMEKlqLVrz5251psrWC9OBxlxnYnUnmkcx8A3ChElOoWEomS0xXOSqWldaWDGN3axNRjFVJDc73g6w35LcjMapBp-qFobLKYPu9TV9Y6_CmGaTZnE0mzQcMDtAd0k0j5TEJ5e2cS1rl11_LMg-Cn5Meb08yog6NM77Gy75_EvZQkhLIQkIzv_9yTisOp7sDWyFSjNr-Y3ahZqd7sF1NYYjCptyHS6LwOBBRfwVgM6Kq8ejl5wzwAIbdm8dOj4X5B8yknM-ZyTKrnRKGWylbRsjCtow0IlbSxdpplxZGGIcmwukCbRbGyc4pozOnMKjTJj2E-vR1ao8gSjPMswTuzlJpVILSwsS2lY4LHbvSSnsMcfXjuQng4DSj4jmvqsCechJWTsLKvbCO4WrJM_PQGGupRSXP_JeCc7Tda_hO_sl3Cpv4xP1pyRnU528f9hzjh3nZWCyQBmy0-3e9wTe6hsMw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5Ke9CLb7E-9-BBkNB9ZZMcS7Fs7eNiC72F3TSBitaiFf--E5OtFcSD190Z2J1J5pHMfANwzWNV8IgxwkpMV1NULCm1LgnG7lrHtJjx0jY4D0dZPknvp3Rag07VC2PLKr3tdzb9y1r7Jy0vzdZyPm89YHCA7tDeNNo8Jsa8vWHRqWgdGu1ePx-tLxNY6LqmkZ5YBt8748q89NuHhR-KE4uzENux37_5pw2f092DHR8sBm33PftQ04sD2K0GMQR-Xx7CjaVwUBBBbwNjM7CF48Hz9zHgEUy6d-NOTvwIBKKSNF0RlWVaGE5VqhkLFWWFDhVTNOLMRMIIkxSKKoNWwogCzRaGysZwJTLDMa4TKjmG-uJloU8gSDJMtShu0JIL1AMXVEU6TGaFiEypmW5CVP24VB4f3I6peJJVIdijtMKSVljSCasJt2uepUPH-JOaVvKUP3Qs0Xz_wXf6T74r2MrHw4Ec9Eb9M9jGN6k7PDmH-ur1XV9gOLEqL_1y-QSGtsXh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+risk+measurement&rft.jtitle=Expert+systems+with+applications&rft.au=Giudici%2C+Paolo&rft.au=Centurelli%2C+Mattia&rft.au=Turchetta%2C+Stefano&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=235&rft_id=info:doi/10.1016%2Fj.eswa.2023.121220&rft.externalDocID=S0957417423017220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |