SAFECAR: A Brain–Computer Interface and intelligent framework to detect drivers’ distractions

As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been p...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 203; p. 117402
Main Authors Martínez Beltrán, Enrique Tomás, Quiles Pérez, Mario, López Bernal, Sergio, Martínez Pérez, Gregorio, Huertas Celdrán, Alberto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.117402

Cover

Loading…
Abstract As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been proposed as a promising way to detect distractions. However, existing solutions are not well suited for driving scenarios. They do not consider complementary data sources, such as contextual data, nor guarantee realistic scenarios with real-time communications between components. This work proposes an automatic framework for detecting distractions using BCIs and a realistic driving simulator. The framework employs different supervised Machine Learning (ML)-based models on classifying the different types of distractions using Electroencephalography (EEG) and contextual driving data collected by car sensors, such as line crossings or objects detection. This framework has been evaluated using a driving scenario without distractions and a similar one where visual and cognitive distractions are generated for ten subjects. The proposed framework achieved 83.9% F1-score with a binary model and 73% with a multiclass model using EEG, improving 7% in binary classification and 8% in multi-class classification by incorporating contextual driving into the training dataset. Finally, the results were confirmed by a neurophysiological study, which revealed significantly higher voltage in selective attention and multitasking. •Intelligent framework based on BCI and EEG for detecting drivers’ distractions.•Realistic driving scenario with a steering wheel, pedals, and immersive simulator.•Promising performance of ML models when detecting different driving distractions.•Increment of the distractions detection accuracy when including contextual data.
AbstractList As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been proposed as a promising way to detect distractions. However, existing solutions are not well suited for driving scenarios. They do not consider complementary data sources, such as contextual data, nor guarantee realistic scenarios with real-time communications between components. This work proposes an automatic framework for detecting distractions using BCIs and a realistic driving simulator. The framework employs different supervised Machine Learning (ML)-based models on classifying the different types of distractions using Electroencephalography (EEG) and contextual driving data collected by car sensors, such as line crossings or objects detection. This framework has been evaluated using a driving scenario without distractions and a similar one where visual and cognitive distractions are generated for ten subjects. The proposed framework achieved 83.9% F1-score with a binary model and 73% with a multiclass model using EEG, improving 7% in binary classification and 8% in multi-class classification by incorporating contextual driving into the training dataset. Finally, the results were confirmed by a neurophysiological study, which revealed significantly higher voltage in selective attention and multitasking. •Intelligent framework based on BCI and EEG for detecting drivers’ distractions.•Realistic driving scenario with a steering wheel, pedals, and immersive simulator.•Promising performance of ML models when detecting different driving distractions.•Increment of the distractions detection accuracy when including contextual data.
ArticleNumber 117402
Author Huertas Celdrán, Alberto
Quiles Pérez, Mario
Martínez Pérez, Gregorio
Martínez Beltrán, Enrique Tomás
López Bernal, Sergio
Author_xml – sequence: 1
  givenname: Enrique Tomás
  orcidid: 0000-0002-5169-2815
  surname: Martínez Beltrán
  fullname: Martínez Beltrán, Enrique Tomás
  email: enriquetomas@um.es
  organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain
– sequence: 2
  givenname: Mario
  orcidid: 0000-0002-3513-3749
  surname: Quiles Pérez
  fullname: Quiles Pérez, Mario
  email: mqp@um.es
  organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain
– sequence: 3
  givenname: Sergio
  orcidid: 0000-0003-1869-1965
  surname: López Bernal
  fullname: López Bernal, Sergio
  email: slopez@um.es
  organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain
– sequence: 4
  givenname: Gregorio
  orcidid: 0000-0001-5532-6604
  surname: Martínez Pérez
  fullname: Martínez Pérez, Gregorio
  email: gregorio@um.es
  organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain
– sequence: 5
  givenname: Alberto
  orcidid: 0000-0001-7125-1710
  surname: Huertas Celdrán
  fullname: Huertas Celdrán, Alberto
  email: huertas@ifi.uzh.ch
  organization: Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, CH—8050 Zürich, Switzerland
BookMark eNp9kM1OAjEQxxuDiYC-gKe-wGK_dgvGCxJQEhITP85N252aIuyStkK88Q6efD2exN3gyQOXmUwmv8l_fj3UqeoKELqmZEAJLW6WA4g7PWCEsQGlUhB2hrp0KHlWyBHvoC4Z5TITzeYC9WJcEkIlIbKL9Mt4Np2Mn2_xGN8H7avD_ntSrzefCQKeV0112gLWVYl9M61W_h2qhF3Qa9jV4QOnGpeQwCZcBr-FEA_7H1z6mIK2yddVvETnTq8iXP31PnqbTV8nj9ni6WE-GS8yy4VImc0dK4a5kE4amRMihDOOsFwIKJiT2picGcM5H4mRZFzQ0ggOrshNbii4kvcRO961oY4xgFOb4Nc6fClKVCtJLVUrSbWS1FFSAw3_QdYn3eZu8vvVafTuiELz1NZDUNF6qCyUPjQ6VFn7U_gvOVGHEg
CitedBy_id crossref_primary_10_1109_TSMC_2023_3282635
crossref_primary_10_34133_cbsystems_0130
crossref_primary_10_1007_s12559_023_10233_5
crossref_primary_10_1007_s00521_023_08343_0
crossref_primary_10_1007_s11633_024_1492_6
crossref_primary_10_3389_fnrgo_2023_1171910
crossref_primary_10_3390_mti7040037
crossref_primary_10_1016_j_neucom_2025_129537
crossref_primary_10_1109_TITS_2024_3416382
crossref_primary_10_1109_COMST_2023_3315746
crossref_primary_10_1016_j_eswa_2023_120279
crossref_primary_10_3390_brainsci14030193
crossref_primary_10_1016_j_eswa_2023_121253
crossref_primary_10_1109_ACCESS_2023_3245122
Cites_doi 10.1093/schbul/sbx073
10.1109/ACCESS.2017.2750743
10.1016/j.trf.2014.08.001
10.1016/j.aap.2019.105296
10.3233/JIFS-189786
10.1038/s41598-021-81208-5
10.1016/j.neuroimage.2020.117680
10.1016/j.asoc.2020.106657
10.1016/j.eswa.2017.01.040
10.1007/s11571-019-09541-0
10.1155/2013/297587
10.1109/TITS.2010.2092770
10.1016/j.neuron.2019.11.001
10.1088/1741-2552/aa5d5f
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117402
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117402
S0957417422007461
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c344t-c5f268547f7b750044fbf02544e62f7abb52bb33394972341db43ef65b5b1efd3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:01 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Fri Feb 23 02:39:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalographic signal
Cognitive state
Machine Learning
Brain–Computer Interfaces
Distraction detection
Framework
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-c5f268547f7b750044fbf02544e62f7abb52bb33394972341db43ef65b5b1efd3
ORCID 0000-0002-3513-3749
0000-0001-5532-6604
0000-0002-5169-2815
0000-0003-1869-1965
0000-0001-7125-1710
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417422007461
ParticipantIDs crossref_primary_10_1016_j_eswa_2022_117402
crossref_citationtrail_10_1016_j_eswa_2022_117402
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kronbichler, Tschernegg, Martin, Schurz, Kronbichler (b14) 2017; 43
Prabhakar, Madhu, Biswas (b25) 2018
Wali, Murugappan, Ahmmad (b28) 2013; 2013
Alzubi, Jain, Alzubi, Thareja, Upadhyay (b3) 2022; 42
Omerustaoglu, Sakar, Kar (b24) 2020; 96
Oberoi (b23) 2020; V9
Yang, Guan, Ma, Li (b32) 2019; 133
Cheng, Young, Lin (b8) 2018
Zero, E., Bersani, C., & Sacile, R. (2021). EEG based BCI system for driver’s arm movements identification. In
Yan, Chen, Zhang, Guan, Wu, Yan (b31) 2021
Quiles Pérez, Martínez Beltrán, López Bernal, Huertas Celdrán, Martínez Pérez (b26) 2021; 2021
Klem, Lüders, Jasper, Elger (b13) 1999; 52
lan Chen, Zhao, fei Ye, Zhang, zhong Zou (b16) 2017; 85
Miao, Yin, Allison, Zhang, Chen, Dong, Wang, Hu, Chchocki, Jin (b22) 2020; 14
Waka Kotahi (b27) 2019
Almahasneh, Chooi, Kamel, Malik (b2) 2014; 26
(pp. 1–16).
Lin, Chen, Ko, Wang (b18) 2011
Bitbrain (b7) 2021
Bagherzadeh, Baldauf, Pantazis, Desimone (b4) 2020; 105
Bajwa, Fazeen, Dantu (b5) 2019
Li, Dahmani, Wang, Ren, Stocklein, Lin, Luan, Zhang, Lu, Galiè, Han, Pascual-Leone, Wang, Fox, Liu (b17) 2021; 227
Yusoff, Ahmad, Guillet, Malik, Saad, Mérienne (b33) 2017; 5
Dong, Hu, Uchimura, Murayama (b9) 2011; 12
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In
(b29) 2021
.
Xie, Li, Xu (b30) 2021
Abouelnaga, Eraqi, Moustafa (b1) 2018
Baker, Bruno, Piccirilli, Gundran, Harbott, Sirkin, Marzelli, Hosseini, Reiss (b6) 2021; 11
Kawakita, Itoh, Oguri (b12) 2010
Martínez Beltrán, Quiles Pérez, López Bernal, Huertas Celdrán, Martínez Pérez (b21) 2021
Kumar, Selvaraj, Krishnakumar, Sahayadhas (b15) 2020
Ma, Li, Deng, Yang, Lv, Li, Li, Zhang, Liu, Yao, Xu (b20) 2017; 14
Hart, Staveland (b11) 1988; vol. 52
López Bernal, Huertas Celdrán, Martí nez Pérez, Barros, Balasubramaniam (b19) 2021; 54
Kawakita (10.1016/j.eswa.2022.117402_b12) 2010
Kronbichler (10.1016/j.eswa.2022.117402_b14) 2017; 43
Li (10.1016/j.eswa.2022.117402_b17) 2021; 227
10.1016/j.eswa.2022.117402_b34
Baker (10.1016/j.eswa.2022.117402_b6) 2021; 11
10.1016/j.eswa.2022.117402_b10
Hart (10.1016/j.eswa.2022.117402_b11) 1988; vol. 52
Prabhakar (10.1016/j.eswa.2022.117402_b25) 2018
Martínez Beltrán (10.1016/j.eswa.2022.117402_b21) 2021
Waka Kotahi (10.1016/j.eswa.2022.117402_b27) 2019
(10.1016/j.eswa.2022.117402_b29) 2021
Omerustaoglu (10.1016/j.eswa.2022.117402_b24) 2020; 96
Alzubi (10.1016/j.eswa.2022.117402_b3) 2022; 42
López Bernal (10.1016/j.eswa.2022.117402_b19) 2021; 54
Almahasneh (10.1016/j.eswa.2022.117402_b2) 2014; 26
Quiles Pérez (10.1016/j.eswa.2022.117402_b26) 2021; 2021
Yan (10.1016/j.eswa.2022.117402_b31) 2021
Yusoff (10.1016/j.eswa.2022.117402_b33) 2017; 5
Bitbrain (10.1016/j.eswa.2022.117402_b7) 2021
Ma (10.1016/j.eswa.2022.117402_b20) 2017; 14
Klem (10.1016/j.eswa.2022.117402_b13) 1999; 52
Kumar (10.1016/j.eswa.2022.117402_b15) 2020
Yang (10.1016/j.eswa.2022.117402_b32) 2019; 133
Cheng (10.1016/j.eswa.2022.117402_b8) 2018
Bagherzadeh (10.1016/j.eswa.2022.117402_b4) 2020; 105
Abouelnaga (10.1016/j.eswa.2022.117402_b1) 2018
Dong (10.1016/j.eswa.2022.117402_b9) 2011; 12
lan Chen (10.1016/j.eswa.2022.117402_b16) 2017; 85
Xie (10.1016/j.eswa.2022.117402_b30) 2021
Lin (10.1016/j.eswa.2022.117402_b18) 2011
Bajwa (10.1016/j.eswa.2022.117402_b5) 2019
Miao (10.1016/j.eswa.2022.117402_b22) 2020; 14
Oberoi (10.1016/j.eswa.2022.117402_b23) 2020; V9
Wali (10.1016/j.eswa.2022.117402_b28) 2013; 2013
References_xml – volume: 227
  year: 2021
  ident: b17
  article-title: Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks
  publication-title: NeuroImage
– volume: V9
  year: 2020
  ident: b23
  article-title: Driver distraction detection using transfer learning
  publication-title: International Journal of Engineering Research and Technology
– reference: Zero, E., Bersani, C., & Sacile, R. (2021). EEG based BCI system for driver’s arm movements identification. In
– volume: 5
  start-page: 22844
  year: 2017
  end-page: 22854
  ident: b33
  article-title: Selection of measurement method for detection of driver visual cognitive distraction: A review
  publication-title: IEEE Access
– volume: 42
  start-page: 1253
  year: 2022
  end-page: 1265
  ident: b3
  article-title: Distracted driver detection using compressed energy efficient convolutional neural network
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 2021
  year: 2021
  ident: b26
  article-title: Breaching subjects’ thoughts privacy: A study with visual stimuli and brain-computer interfaces
  publication-title: Journal of Healthcare Engineering
– start-page: 1
  year: 2021
  end-page: 3
  ident: b31
  article-title: Distraction detection of driver based on EEG signals in a simulated driving with alternative secondary task
  publication-title: 2021 IEEE 2nd international conference on human-machine systems (ICHMS)
– volume: 14
  start-page: 21
  year: 2020
  end-page: 33
  ident: b22
  article-title: An ERP-based BCI with peripheral stimuli: validation with als patients
  publication-title: Cognitive Neurodynamics
– start-page: 5
  year: 2018
  ident: b25
  article-title: Comparing pupil dilation, head movement, and EEG for distraction detection of drivers
  publication-title: Proceedings of the 32nd international BCS human computer interaction conference
– volume: 43
  start-page: 1240
  year: 2017
  end-page: 1250
  ident: b14
  article-title: Abnormal brain activation during theory of mind tasks in schizophrenia: A meta-analysis
  publication-title: Schizophrenia Bulletin
– year: 2019
  ident: b5
  article-title: Detecting driver distraction using stimuli-response EEG analysis
– reference: (pp. 1–16).
– volume: vol. 52
  start-page: 139
  year: 1988
  end-page: 183
  ident: b11
  article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research
  publication-title: Human mental workload
– volume: 26
  start-page: 218
  year: 2014
  end-page: 226
  ident: b2
  article-title: Deep in thought while driving: An EEG study on drivers’ cognitive distraction
  publication-title: Transportation Research Part F: Traffic Psychology and Behaviour
– volume: 133
  year: 2019
  ident: b32
  article-title: Comparison among driving state prediction models for car-following condition based on EEG and driving features
  publication-title: Accident Analysis and Prevention
– year: 2021
  ident: b21
  article-title: Noise-based cyberattacks generating fake P300 waves in brain–computer interfaces
  publication-title: Cluster Computing
– start-page: 1497
  year: 2011
  end-page: 1500
  ident: b18
  article-title: EEG-based brain dynamics of driving distraction
  publication-title: The 2011 international joint conference on neural networks
– volume: 11
  start-page: 1998
  year: 2021
  ident: b6
  article-title: Evaluation of smartphone interactions on drivers’ brain function and vehicle control in an immersive simulated environment
  publication-title: Scientific Reports
– volume: 52
  start-page: 3
  year: 1999
  end-page: 6
  ident: b13
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology.
  publication-title: Electroencephalography and Clinical Neurophysiology. Supplement
– volume: 2013
  year: 2013
  ident: b28
  article-title: Wavelet packet transform based driver distraction level classification using EEG
  publication-title: Mathematical Problems in Engineering
– volume: 105
  start-page: 577
  year: 2020
  end-page: 587.e5
  ident: b4
  article-title: Alpha synchrony and the neurofeedback control of spatial attention
  publication-title: Neuron
– year: 2021
  ident: b30
  article-title: Real-time driving distraction recognition through a wrist-mounted accelerometer
  publication-title: Human Factors
– start-page: 765
  year: 2010
  end-page: 769
  ident: b12
  article-title: Estimation of driver’s mental workload using visual information and heart rate variability
  publication-title: 13th international IEEE conference on intelligent transportation systems
– year: 2021
  ident: b7
  article-title: Advanced neurotechnology
– year: 2021
  ident: b29
  article-title: World health organization
– reference: .
– year: 2019
  ident: b27
  article-title: Driver distraction
– reference: Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In
– start-page: 1
  year: 2018
  end-page: 5
  ident: b8
  article-title: Image-based EEG signal processing for driving fatigue prediction
  publication-title: 2018 international automatic control conference (CACS)
– volume: 14
  year: 2017
  ident: b20
  article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential
  publication-title: Journal of Neural Engineering
– volume: 85
  start-page: 279
  year: 2017
  end-page: 291
  ident: b16
  article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers
  publication-title: Expert Systems with Applications
– volume: 96
  year: 2020
  ident: b24
  article-title: Distracted driver detection by combining in-vehicle and image data using deep learning
  publication-title: Applied Soft Computing
– start-page: 635
  year: 2020
  end-page: 639
  ident: b15
  article-title: Detecting distraction in drivers using electroencephalogram (EEG) signals
  publication-title: 2020 fourth international conference on computing methodologies and communication (ICCMC)
– year: 2018
  ident: b1
  article-title: Real-time distracted driver posture classification
– volume: 12
  start-page: 596
  year: 2011
  end-page: 614
  ident: b9
  article-title: Driver inattention monitoring system for intelligent vehicles: A review
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 54
  year: 2021
  ident: b19
  article-title: Security in brain-computer interfaces: State-of-the-art, opportunities, and future challenges
  publication-title: ACM Computing Surveys
– volume: 43
  start-page: 1240
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2022.117402_b14
  article-title: Abnormal brain activation during theory of mind tasks in schizophrenia: A meta-analysis
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbx073
– year: 2018
  ident: 10.1016/j.eswa.2022.117402_b1
– start-page: 635
  year: 2020
  ident: 10.1016/j.eswa.2022.117402_b15
  article-title: Detecting distraction in drivers using electroencephalogram (EEG) signals
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.117402_b31
  article-title: Distraction detection of driver based on EEG signals in a simulated driving with alternative secondary task
– volume: 5
  start-page: 22844
  year: 2017
  ident: 10.1016/j.eswa.2022.117402_b33
  article-title: Selection of measurement method for detection of driver visual cognitive distraction: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2750743
– ident: 10.1016/j.eswa.2022.117402_b34
– volume: 26
  start-page: 218
  year: 2014
  ident: 10.1016/j.eswa.2022.117402_b2
  article-title: Deep in thought while driving: An EEG study on drivers’ cognitive distraction
  publication-title: Transportation Research Part F: Traffic Psychology and Behaviour
  doi: 10.1016/j.trf.2014.08.001
– start-page: 5
  year: 2018
  ident: 10.1016/j.eswa.2022.117402_b25
  article-title: Comparing pupil dilation, head movement, and EEG for distraction detection of drivers
– year: 2019
  ident: 10.1016/j.eswa.2022.117402_b5
– year: 2021
  ident: 10.1016/j.eswa.2022.117402_b7
– year: 2019
  ident: 10.1016/j.eswa.2022.117402_b27
– year: 2021
  ident: 10.1016/j.eswa.2022.117402_b30
  article-title: Real-time driving distraction recognition through a wrist-mounted accelerometer
  publication-title: Human Factors
– volume: 2021
  year: 2021
  ident: 10.1016/j.eswa.2022.117402_b26
  article-title: Breaching subjects’ thoughts privacy: A study with visual stimuli and brain-computer interfaces
  publication-title: Journal of Healthcare Engineering
– volume: 133
  year: 2019
  ident: 10.1016/j.eswa.2022.117402_b32
  article-title: Comparison among driving state prediction models for car-following condition based on EEG and driving features
  publication-title: Accident Analysis and Prevention
  doi: 10.1016/j.aap.2019.105296
– volume: 54
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.117402_b19
  article-title: Security in brain-computer interfaces: State-of-the-art, opportunities, and future challenges
  publication-title: ACM Computing Surveys
– start-page: 765
  year: 2010
  ident: 10.1016/j.eswa.2022.117402_b12
  article-title: Estimation of driver’s mental workload using visual information and heart rate variability
– volume: 42
  start-page: 1253
  year: 2022
  ident: 10.1016/j.eswa.2022.117402_b3
  article-title: Distracted driver detection using compressed energy efficient convolutional neural network
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-189786
– volume: V9
  year: 2020
  ident: 10.1016/j.eswa.2022.117402_b23
  article-title: Driver distraction detection using transfer learning
  publication-title: International Journal of Engineering Research and Technology
– volume: 11
  start-page: 1998
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.117402_b6
  article-title: Evaluation of smartphone interactions on drivers’ brain function and vehicle control in an immersive simulated environment
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-81208-5
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2022.117402_b17
  article-title: Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117680
– ident: 10.1016/j.eswa.2022.117402_b10
– volume: 96
  year: 2020
  ident: 10.1016/j.eswa.2022.117402_b24
  article-title: Distracted driver detection by combining in-vehicle and image data using deep learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106657
– start-page: 1497
  year: 2011
  ident: 10.1016/j.eswa.2022.117402_b18
  article-title: EEG-based brain dynamics of driving distraction
– year: 2021
  ident: 10.1016/j.eswa.2022.117402_b21
  article-title: Noise-based cyberattacks generating fake P300 waves in brain–computer interfaces
  publication-title: Cluster Computing
– volume: 85
  start-page: 279
  year: 2017
  ident: 10.1016/j.eswa.2022.117402_b16
  article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.040
– volume: 14
  start-page: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.117402_b22
  article-title: An ERP-based BCI with peripheral stimuli: validation with als patients
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-019-09541-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.117402_b8
  article-title: Image-based EEG signal processing for driving fatigue prediction
– volume: vol. 52
  start-page: 139
  year: 1988
  ident: 10.1016/j.eswa.2022.117402_b11
  article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research
– volume: 52
  start-page: 3
  year: 1999
  ident: 10.1016/j.eswa.2022.117402_b13
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology.
  publication-title: Electroencephalography and Clinical Neurophysiology. Supplement
– volume: 2013
  year: 2013
  ident: 10.1016/j.eswa.2022.117402_b28
  article-title: Wavelet packet transform based driver distraction level classification using EEG
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/297587
– year: 2021
  ident: 10.1016/j.eswa.2022.117402_b29
– volume: 12
  start-page: 596
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2022.117402_b9
  article-title: Driver inattention monitoring system for intelligent vehicles: A review
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2010.2092770
– volume: 105
  start-page: 577
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.117402_b4
  article-title: Alpha synchrony and the neurofeedback control of spatial attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.11.001
– volume: 14
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2022.117402_b20
  article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aa5d5f
SSID ssj0017007
Score 2.456394
Snippet As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117402
SubjectTerms Brain–Computer Interfaces
Cognitive state
Distraction detection
Electroencephalographic signal
Framework
Machine Learning
Title SAFECAR: A Brain–Computer Interface and intelligent framework to detect drivers’ distractions
URI https://dx.doi.org/10.1016/j.eswa.2022.117402
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu7DwRpRH5YENhTZ-JA1bqFoVEB0olbpFudiWilBatUFsqP-Bib_XX4KdOBUIqQNjIp9knX0P2999h9Al4UIGIBKHAEhHW6LngPS1M6Q-0EQZxjVzof848Pojdj_m4wrqlLUwBlZpfX_h03Nvbf80rTabs8mkOdTJgQ6H-mhH8qYZ-ghUIzTweBXVwruH_mD9mOC3iqppPd4xArZ2poB5ycW7oR8ixDxfMnu78ic-_Yg5vT20Y5NFHBbz2UcVmR6g3bIRA7Z2eYjiYdjrdsKnGxziW9PzYbX8XI_K7_xUnEgcpwJP1hScGVYlMAtnUyykeU7AYp4DNVbLLyxyTt287mFxhEa97nOn79jeCU5CGcuchCvitTnzlQ86KWgxpkDlfGTSI8qPAbheHUppwEzfMeYKYFQqjwMHVypBj1E1nabyBOGYGjt1tTtSMYPAa0PgUheCRJ9v2-CTOnJLjUWJJRY3_S1eoxJB9hIZLUdGy1Gh5Tq6WsvMClqNjaN5uRDRr80Rab-_Qe70n3JnaNt8FZi9c1TN5m_yQuceGTTQ1vWH27A77But4NkU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMsDCG1GeHthQKIntuGELVasCbQfaSt2i3MSWilBatUFsqP_AxO_1S7ATJwIhdWBNbMm6tu_L556L0JXDYuFBHFkOgLDUTXQtEFwpQ8KBRFIzrumEfq_vdkb0cczGFdQsamE0rNLo_lynZ9rafKkbadZnk0l9oJwDZQ5VaOdkTTNUCLRBGeEa13fzUeI8NP8czwn3uKWHm8qZHOQlFu-afMhx9OMlNbmVP9bph8Vp76Jt4ypiP1_NHqqIZB_tFG0YsLmVBygc-O1W03--wz6-1x0fVsvPclSW8ZNhJHCYxHhSEnCmWBawLJxOcSz0YwKO5xlMY7X8wnHGqJtVPSwO0ajdGjY7lumcYEWE0tSKmHTcBqNcclAuwS2lEmTGRiZcR_IQgKm9IYR4VHcdo3YMlAjpMmBgCxmTI1RNpok4Rjgk-pbaShnJkILnNsCziQ1epKLbBnCnhuxCYkFkaMV1d4vXoMCPvQRayoGWcpBLuYauyzmznFRj7WhWbETw62gESuuvmXfyz3mXaLMz7HWD7kP_6RRt6T85eu8MVdP5mzhXXkgKF9kp-waA0dnf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAFECAR%3A+A+Brain%E2%80%93Computer+Interface+and+intelligent+framework+to+detect+drivers%E2%80%99+distractions&rft.jtitle=Expert+systems+with+applications&rft.au=Mart%C3%ADnez+Beltr%C3%A1n%2C+Enrique+Tom%C3%A1s&rft.au=Quiles+P%C3%A9rez%2C+Mario&rft.au=L%C3%B3pez+Bernal%2C+Sergio&rft.au=Mart%C3%ADnez+P%C3%A9rez%2C+Gregorio&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=203&rft_id=info:doi/10.1016%2Fj.eswa.2022.117402&rft.externalDocID=S0957417422007461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon