SAFECAR: A Brain–Computer Interface and intelligent framework to detect drivers’ distractions
As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been p...
Saved in:
Published in | Expert systems with applications Vol. 203; p. 117402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2022.117402 |
Cover
Loading…
Abstract | As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been proposed as a promising way to detect distractions. However, existing solutions are not well suited for driving scenarios. They do not consider complementary data sources, such as contextual data, nor guarantee realistic scenarios with real-time communications between components. This work proposes an automatic framework for detecting distractions using BCIs and a realistic driving simulator. The framework employs different supervised Machine Learning (ML)-based models on classifying the different types of distractions using Electroencephalography (EEG) and contextual driving data collected by car sensors, such as line crossings or objects detection. This framework has been evaluated using a driving scenario without distractions and a similar one where visual and cognitive distractions are generated for ten subjects. The proposed framework achieved 83.9% F1-score with a binary model and 73% with a multiclass model using EEG, improving 7% in binary classification and 8% in multi-class classification by incorporating contextual driving into the training dataset. Finally, the results were confirmed by a neurophysiological study, which revealed significantly higher voltage in selective attention and multitasking.
•Intelligent framework based on BCI and EEG for detecting drivers’ distractions.•Realistic driving scenario with a steering wheel, pedals, and immersive simulator.•Promising performance of ML models when detecting different driving distractions.•Increment of the distractions detection accuracy when including contextual data. |
---|---|
AbstractList | As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes an increase in distraction and, consequently, fatal accidents while driving. The use of EEG-based Brain–Computer Interfaces (BCIs) has been proposed as a promising way to detect distractions. However, existing solutions are not well suited for driving scenarios. They do not consider complementary data sources, such as contextual data, nor guarantee realistic scenarios with real-time communications between components. This work proposes an automatic framework for detecting distractions using BCIs and a realistic driving simulator. The framework employs different supervised Machine Learning (ML)-based models on classifying the different types of distractions using Electroencephalography (EEG) and contextual driving data collected by car sensors, such as line crossings or objects detection. This framework has been evaluated using a driving scenario without distractions and a similar one where visual and cognitive distractions are generated for ten subjects. The proposed framework achieved 83.9% F1-score with a binary model and 73% with a multiclass model using EEG, improving 7% in binary classification and 8% in multi-class classification by incorporating contextual driving into the training dataset. Finally, the results were confirmed by a neurophysiological study, which revealed significantly higher voltage in selective attention and multitasking.
•Intelligent framework based on BCI and EEG for detecting drivers’ distractions.•Realistic driving scenario with a steering wheel, pedals, and immersive simulator.•Promising performance of ML models when detecting different driving distractions.•Increment of the distractions detection accuracy when including contextual data. |
ArticleNumber | 117402 |
Author | Huertas Celdrán, Alberto Quiles Pérez, Mario Martínez Pérez, Gregorio Martínez Beltrán, Enrique Tomás López Bernal, Sergio |
Author_xml | – sequence: 1 givenname: Enrique Tomás orcidid: 0000-0002-5169-2815 surname: Martínez Beltrán fullname: Martínez Beltrán, Enrique Tomás email: enriquetomas@um.es organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain – sequence: 2 givenname: Mario orcidid: 0000-0002-3513-3749 surname: Quiles Pérez fullname: Quiles Pérez, Mario email: mqp@um.es organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain – sequence: 3 givenname: Sergio orcidid: 0000-0003-1869-1965 surname: López Bernal fullname: López Bernal, Sergio email: slopez@um.es organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain – sequence: 4 givenname: Gregorio orcidid: 0000-0001-5532-6604 surname: Martínez Pérez fullname: Martínez Pérez, Gregorio email: gregorio@um.es organization: Department of Information and Communications Engineering, University of Murcia, Murcia, 30100, Spain – sequence: 5 givenname: Alberto orcidid: 0000-0001-7125-1710 surname: Huertas Celdrán fullname: Huertas Celdrán, Alberto email: huertas@ifi.uzh.ch organization: Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, CH—8050 Zürich, Switzerland |
BookMark | eNp9kM1OAjEQxxuDiYC-gKe-wGK_dgvGCxJQEhITP85N252aIuyStkK88Q6efD2exN3gyQOXmUwmv8l_fj3UqeoKELqmZEAJLW6WA4g7PWCEsQGlUhB2hrp0KHlWyBHvoC4Z5TITzeYC9WJcEkIlIbKL9Mt4Np2Mn2_xGN8H7avD_ntSrzefCQKeV0112gLWVYl9M61W_h2qhF3Qa9jV4QOnGpeQwCZcBr-FEA_7H1z6mIK2yddVvETnTq8iXP31PnqbTV8nj9ni6WE-GS8yy4VImc0dK4a5kE4amRMihDOOsFwIKJiT2picGcM5H4mRZFzQ0ggOrshNbii4kvcRO961oY4xgFOb4Nc6fClKVCtJLVUrSbWS1FFSAw3_QdYn3eZu8vvVafTuiELz1NZDUNF6qCyUPjQ6VFn7U_gvOVGHEg |
CitedBy_id | crossref_primary_10_1109_TSMC_2023_3282635 crossref_primary_10_34133_cbsystems_0130 crossref_primary_10_1007_s12559_023_10233_5 crossref_primary_10_1007_s00521_023_08343_0 crossref_primary_10_1007_s11633_024_1492_6 crossref_primary_10_3389_fnrgo_2023_1171910 crossref_primary_10_3390_mti7040037 crossref_primary_10_1016_j_neucom_2025_129537 crossref_primary_10_1109_TITS_2024_3416382 crossref_primary_10_1109_COMST_2023_3315746 crossref_primary_10_1016_j_eswa_2023_120279 crossref_primary_10_3390_brainsci14030193 crossref_primary_10_1016_j_eswa_2023_121253 crossref_primary_10_1109_ACCESS_2023_3245122 |
Cites_doi | 10.1093/schbul/sbx073 10.1109/ACCESS.2017.2750743 10.1016/j.trf.2014.08.001 10.1016/j.aap.2019.105296 10.3233/JIFS-189786 10.1038/s41598-021-81208-5 10.1016/j.neuroimage.2020.117680 10.1016/j.asoc.2020.106657 10.1016/j.eswa.2017.01.040 10.1007/s11571-019-09541-0 10.1155/2013/297587 10.1109/TITS.2010.2092770 10.1016/j.neuron.2019.11.001 10.1088/1741-2552/aa5d5f |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.117402 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_117402 S0957417422007461 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c344t-c5f268547f7b750044fbf02544e62f7abb52bb33394972341db43ef65b5b1efd3 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:01 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalographic signal Cognitive state Machine Learning Brain–Computer Interfaces Distraction detection Framework |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-c5f268547f7b750044fbf02544e62f7abb52bb33394972341db43ef65b5b1efd3 |
ORCID | 0000-0002-3513-3749 0000-0001-5532-6604 0000-0002-5169-2815 0000-0003-1869-1965 0000-0001-7125-1710 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417422007461 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2022_117402 crossref_citationtrail_10_1016_j_eswa_2022_117402 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kronbichler, Tschernegg, Martin, Schurz, Kronbichler (b14) 2017; 43 Prabhakar, Madhu, Biswas (b25) 2018 Wali, Murugappan, Ahmmad (b28) 2013; 2013 Alzubi, Jain, Alzubi, Thareja, Upadhyay (b3) 2022; 42 Omerustaoglu, Sakar, Kar (b24) 2020; 96 Oberoi (b23) 2020; V9 Yang, Guan, Ma, Li (b32) 2019; 133 Cheng, Young, Lin (b8) 2018 Zero, E., Bersani, C., & Sacile, R. (2021). EEG based BCI system for driver’s arm movements identification. In Yan, Chen, Zhang, Guan, Wu, Yan (b31) 2021 Quiles Pérez, Martínez Beltrán, López Bernal, Huertas Celdrán, Martínez Pérez (b26) 2021; 2021 Klem, Lüders, Jasper, Elger (b13) 1999; 52 lan Chen, Zhao, fei Ye, Zhang, zhong Zou (b16) 2017; 85 Miao, Yin, Allison, Zhang, Chen, Dong, Wang, Hu, Chchocki, Jin (b22) 2020; 14 Waka Kotahi (b27) 2019 Almahasneh, Chooi, Kamel, Malik (b2) 2014; 26 (pp. 1–16). Lin, Chen, Ko, Wang (b18) 2011 Bitbrain (b7) 2021 Bagherzadeh, Baldauf, Pantazis, Desimone (b4) 2020; 105 Bajwa, Fazeen, Dantu (b5) 2019 Li, Dahmani, Wang, Ren, Stocklein, Lin, Luan, Zhang, Lu, Galiè, Han, Pascual-Leone, Wang, Fox, Liu (b17) 2021; 227 Yusoff, Ahmad, Guillet, Malik, Saad, Mérienne (b33) 2017; 5 Dong, Hu, Uchimura, Murayama (b9) 2011; 12 Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In (b29) 2021 . Xie, Li, Xu (b30) 2021 Abouelnaga, Eraqi, Moustafa (b1) 2018 Baker, Bruno, Piccirilli, Gundran, Harbott, Sirkin, Marzelli, Hosseini, Reiss (b6) 2021; 11 Kawakita, Itoh, Oguri (b12) 2010 Martínez Beltrán, Quiles Pérez, López Bernal, Huertas Celdrán, Martínez Pérez (b21) 2021 Kumar, Selvaraj, Krishnakumar, Sahayadhas (b15) 2020 Ma, Li, Deng, Yang, Lv, Li, Li, Zhang, Liu, Yao, Xu (b20) 2017; 14 Hart, Staveland (b11) 1988; vol. 52 López Bernal, Huertas Celdrán, Martí nez Pérez, Barros, Balasubramaniam (b19) 2021; 54 Kawakita (10.1016/j.eswa.2022.117402_b12) 2010 Kronbichler (10.1016/j.eswa.2022.117402_b14) 2017; 43 Li (10.1016/j.eswa.2022.117402_b17) 2021; 227 10.1016/j.eswa.2022.117402_b34 Baker (10.1016/j.eswa.2022.117402_b6) 2021; 11 10.1016/j.eswa.2022.117402_b10 Hart (10.1016/j.eswa.2022.117402_b11) 1988; vol. 52 Prabhakar (10.1016/j.eswa.2022.117402_b25) 2018 Martínez Beltrán (10.1016/j.eswa.2022.117402_b21) 2021 Waka Kotahi (10.1016/j.eswa.2022.117402_b27) 2019 (10.1016/j.eswa.2022.117402_b29) 2021 Omerustaoglu (10.1016/j.eswa.2022.117402_b24) 2020; 96 Alzubi (10.1016/j.eswa.2022.117402_b3) 2022; 42 López Bernal (10.1016/j.eswa.2022.117402_b19) 2021; 54 Almahasneh (10.1016/j.eswa.2022.117402_b2) 2014; 26 Quiles Pérez (10.1016/j.eswa.2022.117402_b26) 2021; 2021 Yan (10.1016/j.eswa.2022.117402_b31) 2021 Yusoff (10.1016/j.eswa.2022.117402_b33) 2017; 5 Bitbrain (10.1016/j.eswa.2022.117402_b7) 2021 Ma (10.1016/j.eswa.2022.117402_b20) 2017; 14 Klem (10.1016/j.eswa.2022.117402_b13) 1999; 52 Kumar (10.1016/j.eswa.2022.117402_b15) 2020 Yang (10.1016/j.eswa.2022.117402_b32) 2019; 133 Cheng (10.1016/j.eswa.2022.117402_b8) 2018 Bagherzadeh (10.1016/j.eswa.2022.117402_b4) 2020; 105 Abouelnaga (10.1016/j.eswa.2022.117402_b1) 2018 Dong (10.1016/j.eswa.2022.117402_b9) 2011; 12 lan Chen (10.1016/j.eswa.2022.117402_b16) 2017; 85 Xie (10.1016/j.eswa.2022.117402_b30) 2021 Lin (10.1016/j.eswa.2022.117402_b18) 2011 Bajwa (10.1016/j.eswa.2022.117402_b5) 2019 Miao (10.1016/j.eswa.2022.117402_b22) 2020; 14 Oberoi (10.1016/j.eswa.2022.117402_b23) 2020; V9 Wali (10.1016/j.eswa.2022.117402_b28) 2013; 2013 |
References_xml | – volume: 227 year: 2021 ident: b17 article-title: Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks publication-title: NeuroImage – volume: V9 year: 2020 ident: b23 article-title: Driver distraction detection using transfer learning publication-title: International Journal of Engineering Research and Technology – reference: Zero, E., Bersani, C., & Sacile, R. (2021). EEG based BCI system for driver’s arm movements identification. In – volume: 5 start-page: 22844 year: 2017 end-page: 22854 ident: b33 article-title: Selection of measurement method for detection of driver visual cognitive distraction: A review publication-title: IEEE Access – volume: 42 start-page: 1253 year: 2022 end-page: 1265 ident: b3 article-title: Distracted driver detection using compressed energy efficient convolutional neural network publication-title: Journal of Intelligent & Fuzzy Systems – volume: 2021 year: 2021 ident: b26 article-title: Breaching subjects’ thoughts privacy: A study with visual stimuli and brain-computer interfaces publication-title: Journal of Healthcare Engineering – start-page: 1 year: 2021 end-page: 3 ident: b31 article-title: Distraction detection of driver based on EEG signals in a simulated driving with alternative secondary task publication-title: 2021 IEEE 2nd international conference on human-machine systems (ICHMS) – volume: 14 start-page: 21 year: 2020 end-page: 33 ident: b22 article-title: An ERP-based BCI with peripheral stimuli: validation with als patients publication-title: Cognitive Neurodynamics – start-page: 5 year: 2018 ident: b25 article-title: Comparing pupil dilation, head movement, and EEG for distraction detection of drivers publication-title: Proceedings of the 32nd international BCS human computer interaction conference – volume: 43 start-page: 1240 year: 2017 end-page: 1250 ident: b14 article-title: Abnormal brain activation during theory of mind tasks in schizophrenia: A meta-analysis publication-title: Schizophrenia Bulletin – year: 2019 ident: b5 article-title: Detecting driver distraction using stimuli-response EEG analysis – reference: (pp. 1–16). – volume: vol. 52 start-page: 139 year: 1988 end-page: 183 ident: b11 article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research publication-title: Human mental workload – volume: 26 start-page: 218 year: 2014 end-page: 226 ident: b2 article-title: Deep in thought while driving: An EEG study on drivers’ cognitive distraction publication-title: Transportation Research Part F: Traffic Psychology and Behaviour – volume: 133 year: 2019 ident: b32 article-title: Comparison among driving state prediction models for car-following condition based on EEG and driving features publication-title: Accident Analysis and Prevention – year: 2021 ident: b21 article-title: Noise-based cyberattacks generating fake P300 waves in brain–computer interfaces publication-title: Cluster Computing – start-page: 1497 year: 2011 end-page: 1500 ident: b18 article-title: EEG-based brain dynamics of driving distraction publication-title: The 2011 international joint conference on neural networks – volume: 11 start-page: 1998 year: 2021 ident: b6 article-title: Evaluation of smartphone interactions on drivers’ brain function and vehicle control in an immersive simulated environment publication-title: Scientific Reports – volume: 52 start-page: 3 year: 1999 end-page: 6 ident: b13 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. publication-title: Electroencephalography and Clinical Neurophysiology. Supplement – volume: 2013 year: 2013 ident: b28 article-title: Wavelet packet transform based driver distraction level classification using EEG publication-title: Mathematical Problems in Engineering – volume: 105 start-page: 577 year: 2020 end-page: 587.e5 ident: b4 article-title: Alpha synchrony and the neurofeedback control of spatial attention publication-title: Neuron – year: 2021 ident: b30 article-title: Real-time driving distraction recognition through a wrist-mounted accelerometer publication-title: Human Factors – start-page: 765 year: 2010 end-page: 769 ident: b12 article-title: Estimation of driver’s mental workload using visual information and heart rate variability publication-title: 13th international IEEE conference on intelligent transportation systems – year: 2021 ident: b7 article-title: Advanced neurotechnology – year: 2021 ident: b29 article-title: World health organization – reference: . – year: 2019 ident: b27 article-title: Driver distraction – reference: Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In – start-page: 1 year: 2018 end-page: 5 ident: b8 article-title: Image-based EEG signal processing for driving fatigue prediction publication-title: 2018 international automatic control conference (CACS) – volume: 14 year: 2017 ident: b20 article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential publication-title: Journal of Neural Engineering – volume: 85 start-page: 279 year: 2017 end-page: 291 ident: b16 article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers publication-title: Expert Systems with Applications – volume: 96 year: 2020 ident: b24 article-title: Distracted driver detection by combining in-vehicle and image data using deep learning publication-title: Applied Soft Computing – start-page: 635 year: 2020 end-page: 639 ident: b15 article-title: Detecting distraction in drivers using electroencephalogram (EEG) signals publication-title: 2020 fourth international conference on computing methodologies and communication (ICCMC) – year: 2018 ident: b1 article-title: Real-time distracted driver posture classification – volume: 12 start-page: 596 year: 2011 end-page: 614 ident: b9 article-title: Driver inattention monitoring system for intelligent vehicles: A review publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 54 year: 2021 ident: b19 article-title: Security in brain-computer interfaces: State-of-the-art, opportunities, and future challenges publication-title: ACM Computing Surveys – volume: 43 start-page: 1240 issue: 6 year: 2017 ident: 10.1016/j.eswa.2022.117402_b14 article-title: Abnormal brain activation during theory of mind tasks in schizophrenia: A meta-analysis publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbx073 – year: 2018 ident: 10.1016/j.eswa.2022.117402_b1 – start-page: 635 year: 2020 ident: 10.1016/j.eswa.2022.117402_b15 article-title: Detecting distraction in drivers using electroencephalogram (EEG) signals – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.117402_b31 article-title: Distraction detection of driver based on EEG signals in a simulated driving with alternative secondary task – volume: 5 start-page: 22844 year: 2017 ident: 10.1016/j.eswa.2022.117402_b33 article-title: Selection of measurement method for detection of driver visual cognitive distraction: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2750743 – ident: 10.1016/j.eswa.2022.117402_b34 – volume: 26 start-page: 218 year: 2014 ident: 10.1016/j.eswa.2022.117402_b2 article-title: Deep in thought while driving: An EEG study on drivers’ cognitive distraction publication-title: Transportation Research Part F: Traffic Psychology and Behaviour doi: 10.1016/j.trf.2014.08.001 – start-page: 5 year: 2018 ident: 10.1016/j.eswa.2022.117402_b25 article-title: Comparing pupil dilation, head movement, and EEG for distraction detection of drivers – year: 2019 ident: 10.1016/j.eswa.2022.117402_b5 – year: 2021 ident: 10.1016/j.eswa.2022.117402_b7 – year: 2019 ident: 10.1016/j.eswa.2022.117402_b27 – year: 2021 ident: 10.1016/j.eswa.2022.117402_b30 article-title: Real-time driving distraction recognition through a wrist-mounted accelerometer publication-title: Human Factors – volume: 2021 year: 2021 ident: 10.1016/j.eswa.2022.117402_b26 article-title: Breaching subjects’ thoughts privacy: A study with visual stimuli and brain-computer interfaces publication-title: Journal of Healthcare Engineering – volume: 133 year: 2019 ident: 10.1016/j.eswa.2022.117402_b32 article-title: Comparison among driving state prediction models for car-following condition based on EEG and driving features publication-title: Accident Analysis and Prevention doi: 10.1016/j.aap.2019.105296 – volume: 54 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.117402_b19 article-title: Security in brain-computer interfaces: State-of-the-art, opportunities, and future challenges publication-title: ACM Computing Surveys – start-page: 765 year: 2010 ident: 10.1016/j.eswa.2022.117402_b12 article-title: Estimation of driver’s mental workload using visual information and heart rate variability – volume: 42 start-page: 1253 year: 2022 ident: 10.1016/j.eswa.2022.117402_b3 article-title: Distracted driver detection using compressed energy efficient convolutional neural network publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-189786 – volume: V9 year: 2020 ident: 10.1016/j.eswa.2022.117402_b23 article-title: Driver distraction detection using transfer learning publication-title: International Journal of Engineering Research and Technology – volume: 11 start-page: 1998 issue: 1 year: 2021 ident: 10.1016/j.eswa.2022.117402_b6 article-title: Evaluation of smartphone interactions on drivers’ brain function and vehicle control in an immersive simulated environment publication-title: Scientific Reports doi: 10.1038/s41598-021-81208-5 – volume: 227 year: 2021 ident: 10.1016/j.eswa.2022.117402_b17 article-title: Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117680 – ident: 10.1016/j.eswa.2022.117402_b10 – volume: 96 year: 2020 ident: 10.1016/j.eswa.2022.117402_b24 article-title: Distracted driver detection by combining in-vehicle and image data using deep learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106657 – start-page: 1497 year: 2011 ident: 10.1016/j.eswa.2022.117402_b18 article-title: EEG-based brain dynamics of driving distraction – year: 2021 ident: 10.1016/j.eswa.2022.117402_b21 article-title: Noise-based cyberattacks generating fake P300 waves in brain–computer interfaces publication-title: Cluster Computing – volume: 85 start-page: 279 year: 2017 ident: 10.1016/j.eswa.2022.117402_b16 article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.040 – volume: 14 start-page: 21 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.117402_b22 article-title: An ERP-based BCI with peripheral stimuli: validation with als patients publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-019-09541-0 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2022.117402_b8 article-title: Image-based EEG signal processing for driving fatigue prediction – volume: vol. 52 start-page: 139 year: 1988 ident: 10.1016/j.eswa.2022.117402_b11 article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research – volume: 52 start-page: 3 year: 1999 ident: 10.1016/j.eswa.2022.117402_b13 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology. publication-title: Electroencephalography and Clinical Neurophysiology. Supplement – volume: 2013 year: 2013 ident: 10.1016/j.eswa.2022.117402_b28 article-title: Wavelet packet transform based driver distraction level classification using EEG publication-title: Mathematical Problems in Engineering doi: 10.1155/2013/297587 – year: 2021 ident: 10.1016/j.eswa.2022.117402_b29 – volume: 12 start-page: 596 issue: 2 year: 2011 ident: 10.1016/j.eswa.2022.117402_b9 article-title: Driver inattention monitoring system for intelligent vehicles: A review publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2010.2092770 – volume: 105 start-page: 577 issue: 3 year: 2020 ident: 10.1016/j.eswa.2022.117402_b4 article-title: Alpha synchrony and the neurofeedback control of spatial attention publication-title: Neuron doi: 10.1016/j.neuron.2019.11.001 – volume: 14 issue: 2 year: 2017 ident: 10.1016/j.eswa.2022.117402_b20 article-title: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aa5d5f |
SSID | ssj0017007 |
Score | 2.456394 |
Snippet | As recently reported by the World Health Organization (WHO), the high use of intelligent devices such as smartphones, multimedia systems, or billboards causes... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117402 |
SubjectTerms | Brain–Computer Interfaces Cognitive state Distraction detection Electroencephalographic signal Framework Machine Learning |
Title | SAFECAR: A Brain–Computer Interface and intelligent framework to detect drivers’ distractions |
URI | https://dx.doi.org/10.1016/j.eswa.2022.117402 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu7DwRpRH5YENhTZ-JA1bqFoVEB0olbpFudiWilBatUFsqP-Bib_XX4KdOBUIqQNjIp9knX0P2999h9Al4UIGIBKHAEhHW6LngPS1M6Q-0EQZxjVzof848Pojdj_m4wrqlLUwBlZpfX_h03Nvbf80rTabs8mkOdTJgQ6H-mhH8qYZ-ghUIzTweBXVwruH_mD9mOC3iqppPd4xArZ2poB5ycW7oR8ixDxfMnu78ic-_Yg5vT20Y5NFHBbz2UcVmR6g3bIRA7Z2eYjiYdjrdsKnGxziW9PzYbX8XI_K7_xUnEgcpwJP1hScGVYlMAtnUyykeU7AYp4DNVbLLyxyTt287mFxhEa97nOn79jeCU5CGcuchCvitTnzlQ86KWgxpkDlfGTSI8qPAbheHUppwEzfMeYKYFQqjwMHVypBj1E1nabyBOGYGjt1tTtSMYPAa0PgUheCRJ9v2-CTOnJLjUWJJRY3_S1eoxJB9hIZLUdGy1Gh5Tq6WsvMClqNjaN5uRDRr80Rab-_Qe70n3JnaNt8FZi9c1TN5m_yQuceGTTQ1vWH27A77But4NkU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMsDCG1GeHthQKIntuGELVasCbQfaSt2i3MSWilBatUFsqP_AxO_1S7ATJwIhdWBNbMm6tu_L556L0JXDYuFBHFkOgLDUTXQtEFwpQ8KBRFIzrumEfq_vdkb0cczGFdQsamE0rNLo_lynZ9rafKkbadZnk0l9oJwDZQ5VaOdkTTNUCLRBGeEa13fzUeI8NP8czwn3uKWHm8qZHOQlFu-afMhx9OMlNbmVP9bph8Vp76Jt4ypiP1_NHqqIZB_tFG0YsLmVBygc-O1W03--wz6-1x0fVsvPclSW8ZNhJHCYxHhSEnCmWBawLJxOcSz0YwKO5xlMY7X8wnHGqJtVPSwO0ajdGjY7lumcYEWE0tSKmHTcBqNcclAuwS2lEmTGRiZcR_IQgKm9IYR4VHcdo3YMlAjpMmBgCxmTI1RNpok4Rjgk-pbaShnJkILnNsCziQ1epKLbBnCnhuxCYkFkaMV1d4vXoMCPvQRayoGWcpBLuYauyzmznFRj7WhWbETw62gESuuvmXfyz3mXaLMz7HWD7kP_6RRt6T85eu8MVdP5mzhXXkgKF9kp-waA0dnf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAFECAR%3A+A+Brain%E2%80%93Computer+Interface+and+intelligent+framework+to+detect+drivers%E2%80%99+distractions&rft.jtitle=Expert+systems+with+applications&rft.au=Mart%C3%ADnez+Beltr%C3%A1n%2C+Enrique+Tom%C3%A1s&rft.au=Quiles+P%C3%A9rez%2C+Mario&rft.au=L%C3%B3pez+Bernal%2C+Sergio&rft.au=Mart%C3%ADnez+P%C3%A9rez%2C+Gregorio&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=203&rft_id=info:doi/10.1016%2Fj.eswa.2022.117402&rft.externalDocID=S0957417422007461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |