Temporal convolutional autoencoder for unsupervised anomaly detection in time series

Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem e...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 112; p. 107751
Main Authors Thill, Markus, Konen, Wolfgang, Wang, Hao, Bäck, Thomas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark. •Novel Temporal Convolutional Network Auto-Encoder for time series anomaly detection.•Unsupervised learning of time series representations.•High performance on real-world anomaly detection task containing electrocardiograms.•The presented algorithm is also computationally very efficient.
AbstractList Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark. •Novel Temporal Convolutional Network Auto-Encoder for time series anomaly detection.•Unsupervised learning of time series representations.•High performance on real-world anomaly detection task containing electrocardiograms.•The presented algorithm is also computationally very efficient.
ArticleNumber 107751
Author Thill, Markus
Konen, Wolfgang
Bäck, Thomas
Wang, Hao
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0002-6429-180X
  surname: Thill
  fullname: Thill, Markus
  email: markus.thill@th-koeln.de
  organization: TH Köln – University of Applied Sciences, 51643 Gummersbach, Germany
– sequence: 2
  givenname: Wolfgang
  surname: Konen
  fullname: Konen, Wolfgang
  email: wolfgang.konen@th-koeln.de
  organization: TH Köln – University of Applied Sciences, 51643 Gummersbach, Germany
– sequence: 3
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: h.wang@liacs.leidenuniv.nl
  organization: Leiden University, LIACS, 2333 CA Leiden, The Netherlands
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0001-6768-1478
  surname: Bäck
  fullname: Bäck, Thomas
  email: t.h.w.baeck@liacs.leidenuniv.nl
  organization: Leiden University, LIACS, 2333 CA Leiden, The Netherlands
BookMark eNp9kMFqwzAMhs3oYG23F9jJL5AuduLYgV1G2dZBYZfubBxbAZfELrZT6NvPoTvt0JOkHz4hfSu0cN4BQs-k3JCSNC_HjYpeb2hJSQ44Z-QOLYngtGgbQRa5Z40o6rZuHtAqxmOZoZaKJTocYDz5oAasvTv7YUrWuzypKXlw2hsIuPcBTy5OJwhnG8Fg5fyohgs2kEDPALYOJzsCjhAsxEd036shwtNfXaOfj_fDdlfsvz-_tm_7Qld1nQrNGO0YMVVpgPeUdQ0opkXbaypy2gteEZXPNKJuBCNdbQRwZTitOtWzqqrWSFz36uBjDNBLbZOaD0pB2UGSUs525FHOduRsR17tZJT-Q0_BjipcbkOvVwjyU2cLQUZtsyUwNmQR0nh7C_8FSYCCfA
CitedBy_id crossref_primary_10_3390_technologies13020042
crossref_primary_10_3390_s22228764
crossref_primary_10_1016_j_is_2024_102457
crossref_primary_10_3233_JID_220003
crossref_primary_10_1016_j_jksuci_2024_102232
crossref_primary_10_1016_j_cose_2024_103877
crossref_primary_10_3390_en16197008
crossref_primary_10_1109_TAI_2024_3381102
crossref_primary_10_1177_09544070241227089
crossref_primary_10_3389_fphys_2022_961724
crossref_primary_10_3390_machines10090734
crossref_primary_10_1145_3653677
crossref_primary_10_3390_s24072353
crossref_primary_10_1007_s40747_024_01659_x
crossref_primary_10_1016_j_psep_2022_05_039
crossref_primary_10_7717_peerj_cs_2479
crossref_primary_10_3390_app14177717
crossref_primary_10_3390_bios14040183
crossref_primary_10_2514_1_J063815
crossref_primary_10_1109_TIM_2023_3236354
crossref_primary_10_1016_j_engappai_2023_107716
crossref_primary_10_5334_dsj_2024_010
crossref_primary_10_1088_1361_6501_ac9545
crossref_primary_10_26599_TST_2023_9010095
crossref_primary_10_1016_j_nucengdes_2024_113493
crossref_primary_10_1186_s13677_024_00682_0
crossref_primary_10_1142_S0218126625501701
crossref_primary_10_1016_j_asoc_2023_111148
crossref_primary_10_3390_en16124585
crossref_primary_10_1109_JBHI_2023_3320585
crossref_primary_10_1016_j_measurement_2022_110791
crossref_primary_10_4108_eetsis_v10i3_3219
crossref_primary_10_1007_s41666_024_00160_x
crossref_primary_10_1016_j_asoc_2023_110467
crossref_primary_10_1089_big_2021_0471
crossref_primary_10_1007_s11760_023_02578_z
crossref_primary_10_1016_j_eswa_2024_125088
crossref_primary_10_1016_j_isatra_2023_09_002
crossref_primary_10_3390_app12125855
crossref_primary_10_1016_j_ifacol_2023_10_058
crossref_primary_10_1007_s11431_024_2679_4
crossref_primary_10_1016_j_aei_2023_101907
crossref_primary_10_1016_j_procs_2023_08_183
crossref_primary_10_3390_electronics13122348
crossref_primary_10_1016_j_rcim_2022_102441
crossref_primary_10_1109_JSEN_2023_3327138
crossref_primary_10_3390_s23062951
crossref_primary_10_1016_j_sigpro_2024_109874
crossref_primary_10_1007_s10489_024_05395_0
crossref_primary_10_2139_ssrn_4069225
crossref_primary_10_1109_TGRS_2024_3452937
crossref_primary_10_1177_09544089241258027
crossref_primary_10_25077_jnte_v12n3_1117_2023
crossref_primary_10_1016_j_engappai_2024_109323
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1088_1742_6596_2875_1_012024
crossref_primary_10_1109_TII_2024_3393491
crossref_primary_10_1016_j_ecolind_2023_110782
crossref_primary_10_1016_j_ins_2023_119975
crossref_primary_10_3390_s23125544
crossref_primary_10_1007_s42452_024_05704_9
crossref_primary_10_1016_j_isatra_2023_12_031
crossref_primary_10_1016_j_ins_2023_119610
crossref_primary_10_1016_j_heliyon_2023_e23597
crossref_primary_10_3390_e24060759
crossref_primary_10_1109_TWC_2022_3216004
crossref_primary_10_1371_journal_pone_0303890
crossref_primary_10_1016_j_compositesb_2024_111802
crossref_primary_10_1016_j_comnet_2025_111147
crossref_primary_10_1016_j_dsp_2022_103704
crossref_primary_10_1109_TCE_2023_3306428
crossref_primary_10_26443_seismica_v3i1_1166
crossref_primary_10_3390_app121910078
crossref_primary_10_1007_s10489_022_04324_3
crossref_primary_10_1109_TIM_2024_3507042
crossref_primary_10_1007_s10845_024_02507_y
crossref_primary_10_1115_1_4063720
crossref_primary_10_1016_j_aei_2023_102139
crossref_primary_10_1016_j_asoc_2024_111671
crossref_primary_10_1016_j_cose_2024_103840
crossref_primary_10_1007_s40747_025_01839_3
crossref_primary_10_1016_j_jnlest_2024_100285
crossref_primary_10_1016_j_segan_2024_101497
crossref_primary_10_3847_1538_4357_acba0a
crossref_primary_10_1016_j_segan_2024_101374
crossref_primary_10_1007_s10844_025_00918_8
crossref_primary_10_1016_j_asoc_2023_110935
crossref_primary_10_3390_math11030620
crossref_primary_10_1016_j_dsp_2024_104813
crossref_primary_10_1016_j_engappai_2023_106312
crossref_primary_10_1016_j_neunet_2025_107153
crossref_primary_10_1007_s11760_023_02737_2
crossref_primary_10_1109_JIOT_2023_3296538
crossref_primary_10_1016_j_patrec_2023_05_012
crossref_primary_10_3390_fractalfract8100604
crossref_primary_10_1016_j_ins_2025_122114
crossref_primary_10_32604_cmes_2024_049208
crossref_primary_10_3103_S0146411622030117
crossref_primary_10_3390_s24113584
Cites_doi 10.1016/j.jnca.2015.11.016
10.1161/01.CIR.101.23.e215
10.1155/2015/453214
10.1109/CVPR.2016.90
10.1088/1749-4699/8/1/014008
10.1016/j.apenergy.2021.116601
10.1007/s11633-017-1054-2
10.3390/aerospace6110117
10.1016/j.aeue.2014.12.013
10.1609/aaai.v33i01.33011409
10.1109/51.932724
10.1109/CVPR.2017.243
10.1145/342009.335388
10.1109/ACCESS.2018.2886457
10.1186/s40537-020-00320-x
10.1109/ACCESS.2019.2944689
10.1016/j.knosys.2019.104923
10.1007/s10916-016-0467-8
10.1007/s10115-017-1027-3
10.1109/TBME.1985.325532
10.1016/j.measurement.2017.05.022
10.1371/journal.pone.0152173
10.1016/j.knosys.2013.09.015
10.3115/v1/P14-1062
10.1007/s10115-006-0034-6
10.1109/10.846677
10.1039/b922045c
10.1007/s40745-015-0040-1
10.1007/s11265-014-0913-0
10.1016/j.future.2015.01.001
10.1145/1541880.1541882
10.1145/3178876.3185996
10.1016/j.cmpb.2015.12.008
10.1038/s41591-018-0268-3
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107751
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107751
S1568494621006724
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-c552b51d30de7f25b6ea5c89fc281d3f8731a692d846851b4d8e7ad723baf5333
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:11 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 23 02:46:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Autoencoder
Anomaly detection
TCN
Mahalanobis distance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-c552b51d30de7f25b6ea5c89fc281d3f8731a692d846851b4d8e7ad723baf5333
ORCID 0000-0001-6768-1478
0000-0002-6429-180X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1568494621006724
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107751
crossref_primary_10_1016_j_asoc_2021_107751
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References An, Cho (b16) 2015; 2
Ahmad (b76) 2017
Liu, Ting, Zhou (b7) 2008
Aleroud, Karabatis (b29) 2017; 52
Adler, Elad, Hel-Or, Rivlin (b39) 2015; 79
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b42) 2000; 101
Keogh, Lin, Fu (b25) 2005
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (b33) 2019; 25
Abadi, Agarwal, Barham (b78) 2015
Chakraborty, Kamiyama, Takahashi, Kinoshita (b40) 2018
Tuncer, Dogan, Pławiak, Acharya (b34) 2019; 186
Munir, Siddiqui, Dengel, Ahmed (b12) 2019; 7
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Malhotra, Vig, Shroff, Agarwal (b10) 2015
Lavin, S. Ahmad (b70) 2015
M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
Ahmed, Mahmood, Islam (b31) 2016; 55
H. Xu, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications, in: Proc. of the 2018 World Wide Web Conf., 2018, pp. 187–196.
N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, in: Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Maryland, 2014, pp. 655–665
Thill, Däubener, Konen, Bäck (b11) 2019; vol. 2473
Roy (b15) 2018
Wilcoxon (b80) 1992
Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (b83) 2000; 47
Moody, Mark (b43) 1992
Celebi, Aydin (b2) 2016
Keogh, Lin, Lee, Van Herle (b26) 2007; 11
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b73) 2000
Zhao, Wang, Duan, Huang, Cao, Tong, Xu, Bai, Tong, Zhang (b24) 2020
Xu, Tian (b3) 2015; 2
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, 2010, pp. 249–256.
Zhang, Chen, Liang (b82) 2010; 135
Li, Chen, Jin, Shi, Goh, Ng (b21) 2019
Alickovic, Subasi (b37) 2016; 40
C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1409–1416.
Thill, Konen, Bäck (b65) 2017
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b60) 2014; 15
Luz, Schwartz, Cámara-Chávez, Menotti (b32) 2016; 127
Fischer, Gierke, Kellermeier, Kesar, Stebner, Thevessen (b67) 2019
Lin, Chen, Yan (b62) 2013
Bai, Kolter, Koltun (b49) 2018
.
Salimans, Kingma (b58) 2016
Holschneider, Kronland-Martinet, Morlet, Tchamitchian (b46) 1990
Wen, Shi, Li, He, Chen (b74) 2018; 19
van den Oord (b47) 2016
Basora, Olive, Dubot (b6) 2019; 6
Tsipouras, Fotiadis, Sideris (b84) 2002
Li, Bräysy, Jiang, Wu, Wang (b27) 2013; 54
Bergstra, Komer, Eliasmith, Yamins, Cox (b69) 2015; 8
Thill, Konen, Bäck (b53) 2020
Chandola, Banerjee, Kumar (b1) 2009; 41
Yu, Koltun (b48) 2016
Dauphin, Fan, Auli, Grangier (b55) 2017
Sivaraks, Ratanamahatana (b41) 2015
Pedregosa, Varoquaux, Gramfort, Weiss, Dubourg, Vanderplas, Passos, Brucher, Perrot, Duchesnay (b72) 2011; 12
Pan, Tompkins (b66) 1985; 32
Sahoo, Kanungo, Behera, Sabut (b35) 2017; 108
Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (b14) 2016
Farha, Gall (b54) 2019
Ahmed, Mahmood, Hu (b28) 2016; 60
Chauhan, Vig (b38) 2015
V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. of the 27th Int. Conf. on Machine Learning (ICML), 2010, pp. 807–814.
Hawkins, He, Williams, Baxter (b13) 2002
Szegedy (b63) 2014
Taylor (b68) 2018
Haykin (b71) 2013
Pereira, Silveira (b17) 2018
Moody, Mark (b44) 2001; 20
Sölch, Bayer, Ludersdorfer, van der Smagt (b18) 2016
Jiang, Hong, Zhou, He, Cheng (b20) 2019; 7
Li, Xu, Taylor, Studer, Goldstein (b81) 2018
Choromanska, Henaff, Mathieu, Arous, LeCun (b51) 2015; vol. 38
Goldstein, Uchida (b4) 2016; 11
He, Zhao (b50) 2019
Li, Chen, Goh, Ng (b22) 2018
Poggio, Mhaskar, Rosasco, Miranda, Liao (b52) 2017; 14
Thomas, Das, Ari (b36) 2015; 69
Thudumu, Branch, Jin, Singh (b5) 2020; 7
Nolle, Badura, Catlett, Bowser, Sketch (b45) 1986; 13
Paszke (b75) 2019
Chollet (b77) 2015
Gehring, Auli, Grangier, Yarats, Dauphin (b56) 2017
Himeur, Ghanem, Alsalemi, Bensaali, Amira (b30) 2021; 287
Thill, Konen, Bäck (b9) 2017
Chandola (10.1016/j.asoc.2021.107751_b1) 2009; 41
Roy (10.1016/j.asoc.2021.107751_b15) 2018
Salimans (10.1016/j.asoc.2021.107751_b58) 2016
Schölkopf (10.1016/j.asoc.2021.107751_b73) 2000
Hannun (10.1016/j.asoc.2021.107751_b33) 2019; 25
Celebi (10.1016/j.asoc.2021.107751_b2) 2016
Li (10.1016/j.asoc.2021.107751_b22) 2018
Holschneider (10.1016/j.asoc.2021.107751_b46) 1990
Thudumu (10.1016/j.asoc.2021.107751_b5) 2020; 7
Luz (10.1016/j.asoc.2021.107751_b32) 2016; 127
Yu (10.1016/j.asoc.2021.107751_b48) 2016
Dauphin (10.1016/j.asoc.2021.107751_b55) 2017
Szegedy (10.1016/j.asoc.2021.107751_b63) 2014
An (10.1016/j.asoc.2021.107751_b16) 2015; 2
Thill (10.1016/j.asoc.2021.107751_b53) 2020
Chollet (10.1016/j.asoc.2021.107751_b77) 2015
Li (10.1016/j.asoc.2021.107751_b81) 2018
Taylor (10.1016/j.asoc.2021.107751_b68) 2018
Chakraborty (10.1016/j.asoc.2021.107751_b40) 2018
Moody (10.1016/j.asoc.2021.107751_b44) 2001; 20
Liu (10.1016/j.asoc.2021.107751_b7) 2008
Goldberger (10.1016/j.asoc.2021.107751_b42) 2000; 101
Adler (10.1016/j.asoc.2021.107751_b39) 2015; 79
Nolle (10.1016/j.asoc.2021.107751_b45) 1986; 13
Haykin (10.1016/j.asoc.2021.107751_b71) 2013
van den Oord (10.1016/j.asoc.2021.107751_b47) 2016
Paszke (10.1016/j.asoc.2021.107751_b75) 2019
Hawkins (10.1016/j.asoc.2021.107751_b13) 2002
Ahmed (10.1016/j.asoc.2021.107751_b28) 2016; 60
Munir (10.1016/j.asoc.2021.107751_b12) 2019; 7
Thomas (10.1016/j.asoc.2021.107751_b36) 2015; 69
Chauhan (10.1016/j.asoc.2021.107751_b38) 2015
10.1016/j.asoc.2021.107751_b59
Lavin (10.1016/j.asoc.2021.107751_b70) 2015
He (10.1016/j.asoc.2021.107751_b50) 2019
10.1016/j.asoc.2021.107751_b57
10.1016/j.asoc.2021.107751_b19
Aleroud (10.1016/j.asoc.2021.107751_b29) 2017; 52
Thill (10.1016/j.asoc.2021.107751_b65) 2017
Jiang (10.1016/j.asoc.2021.107751_b20) 2019; 7
Sölch (10.1016/j.asoc.2021.107751_b18) 2016
Goldstein (10.1016/j.asoc.2021.107751_b4) 2016; 11
Pan (10.1016/j.asoc.2021.107751_b66) 1985; 32
Pedregosa (10.1016/j.asoc.2021.107751_b72) 2011; 12
Ahmed (10.1016/j.asoc.2021.107751_b31) 2016; 55
Moody (10.1016/j.asoc.2021.107751_b43) 1992
Keogh (10.1016/j.asoc.2021.107751_b25) 2005
Bai (10.1016/j.asoc.2021.107751_b49) 2018
Thill (10.1016/j.asoc.2021.107751_b9) 2017
Gehring (10.1016/j.asoc.2021.107751_b56) 2017
Sahoo (10.1016/j.asoc.2021.107751_b35) 2017; 108
10.1016/j.asoc.2021.107751_b61
Li (10.1016/j.asoc.2021.107751_b27) 2013; 54
Li (10.1016/j.asoc.2021.107751_b21) 2019
Basora (10.1016/j.asoc.2021.107751_b6) 2019; 6
Tsipouras (10.1016/j.asoc.2021.107751_b84) 2002
10.1016/j.asoc.2021.107751_b64
Choromanska (10.1016/j.asoc.2021.107751_b51) 2015; vol. 38
Himeur (10.1016/j.asoc.2021.107751_b30) 2021; 287
10.1016/j.asoc.2021.107751_b23
Wilcoxon (10.1016/j.asoc.2021.107751_b80) 1992
Sivaraks (10.1016/j.asoc.2021.107751_b41) 2015
Poggio (10.1016/j.asoc.2021.107751_b52) 2017; 14
Thill (10.1016/j.asoc.2021.107751_b11) 2019; vol. 2473
Abadi (10.1016/j.asoc.2021.107751_b78) 2015
10.1016/j.asoc.2021.107751_b8
Zhang (10.1016/j.asoc.2021.107751_b82) 2010; 135
Bergstra (10.1016/j.asoc.2021.107751_b69) 2015; 8
Ahmad (10.1016/j.asoc.2021.107751_b76) 2017
Malhotra (10.1016/j.asoc.2021.107751_b10) 2015
Malhotra (10.1016/j.asoc.2021.107751_b14) 2016
Lin (10.1016/j.asoc.2021.107751_b62) 2013
Fischer (10.1016/j.asoc.2021.107751_b67) 2019
Zhao (10.1016/j.asoc.2021.107751_b24) 2020
Pereira (10.1016/j.asoc.2021.107751_b17) 2018
Lagerholm (10.1016/j.asoc.2021.107751_b83) 2000; 47
Keogh (10.1016/j.asoc.2021.107751_b26) 2007; 11
Farha (10.1016/j.asoc.2021.107751_b54) 2019
Wen (10.1016/j.asoc.2021.107751_b74) 2018; 19
10.1016/j.asoc.2021.107751_b79
Xu (10.1016/j.asoc.2021.107751_b3) 2015; 2
Alickovic (10.1016/j.asoc.2021.107751_b37) 2016; 40
Srivastava (10.1016/j.asoc.2021.107751_b60) 2014; 15
Tuncer (10.1016/j.asoc.2021.107751_b34) 2019; 186
References_xml – volume: 6
  start-page: 117
  year: 2019
  ident: b6
  article-title: Recent advances in anomaly detection methods applied to aviation
  publication-title: Aerospace
– start-page: 170
  year: 2002
  end-page: 180
  ident: b13
  article-title: Outlier detection using replicator neural networks
  publication-title: International Conf. on Data Warehousing and Knowledge Discovery
– reference: N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, in: Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Maryland, 2014, pp. 655–665,
– volume: 41
  start-page: 15:1
  year: 2009
  end-page: 15:58
  ident: b1
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
– reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, 2010, pp. 249–256.
– start-page: 196
  year: 1992
  end-page: 202
  ident: b80
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in Statistics
– year: 2018
  ident: b68
  article-title: numenta/nupic: 1.0.5
– start-page: 485
  year: 2002
  end-page: 488
  ident: b84
  article-title: Arrhythmia classification using the RR-interval duration signal
  publication-title: Computers in Cardiology
– start-page: 38
  year: 2015
  end-page: 44
  ident: b70
  article-title: Evaluating real-time anomaly detection algorithms – the Numenta Anomaly Benchmark
  publication-title: IEEE Conf. on Machine Learning and Applications (ICMLA)
– reference: C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1409–1416.
– volume: 11
  year: 2016
  ident: b4
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PLoS One
– volume: 47
  start-page: 838
  year: 2000
  end-page: 848
  ident: b83
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 147
  year: 2018
  end-page: 157
  ident: b40
  article-title: An efficient anomaly detection in quasi-periodic time series data—A case study with ECG
  publication-title: Time Series Analysis and Forecasting
– year: 2015
  ident: b41
  article-title: Robust and accurate anomaly detection in ECG artifacts using time series motif discovery
  publication-title: Comput. Math. Methods Med.
– volume: 69
  start-page: 715
  year: 2015
  end-page: 721
  ident: b36
  article-title: Automatic ECG arrhythmia classification using dual tree complex wavelet based features
  publication-title: AEU - Int. J. Electron. Commun.
– year: 2013
  ident: b62
  article-title: Network in network
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b72
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 1
  year: 2017
  end-page: 8
  ident: b9
  article-title: Online anomaly detection on the webscope S5 dataset: A comparative study
  publication-title: Evolving and Adaptive Intelligent Systems, EAIS, Ljubljana, Slovenia
– year: 2018
  ident: b49
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– start-page: 703
  year: 2019
  end-page: 716
  ident: b21
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: International Conf. on Artificial Neural Networks
– start-page: 6389
  year: 2018
  end-page: 6399
  ident: b81
  article-title: Visualizing the loss landscape of neural nets
  publication-title: Advances in Neural Information Processing Systems
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– year: 2014
  ident: b63
  article-title: Going Deeper with convolutions
– year: 2013
  ident: b71
  article-title: Adaptive Filtering Theory
– volume: 14
  start-page: 503
  year: 2017
  end-page: 519
  ident: b52
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
  publication-title: Int. J. Autom. Comput.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: b66
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng
– volume: 60
  start-page: 19
  year: 2016
  end-page: 31
  ident: b28
  article-title: A survey of network anomaly detection techniques
  publication-title: J. Netw. Comput. Appl.
– year: 2017
  ident: b56
  article-title: Convolutional sequence to sequence learning
– year: 2020
  ident: b53
  article-title: Time series encodings with temporal convolutional networks
  publication-title: Bioinspired Optimization Methods and their Applications
– year: 2017
  ident: b76
  article-title: Running swarms
– volume: 11
  start-page: 1
  year: 2007
  end-page: 27
  ident: b26
  article-title: Finding the most unusual time series subsequence: algorithms and applications
  publication-title: Knowl. Inf. Syst.
– start-page: 8
  year: 2005
  end-page: pp
  ident: b25
  article-title: HOT SAX: Efficiently finding the most unusual time series subsequence
  publication-title: Fifth IEEE International Conference on Data Mining (ICDM’05)
– volume: 79
  start-page: 179
  year: 2015
  end-page: 188
  ident: b39
  article-title: Sparse coding with anomaly detection
  publication-title: J. Signal Process. Syst.
– volume: 54
  start-page: 243
  year: 2013
  end-page: 254
  ident: b27
  article-title: Finding time series discord based on bit representation clustering
  publication-title: Knowl.-Based Syst.
– start-page: 933
  year: 2017
  end-page: 941
  ident: b55
  article-title: Language modeling with gated convolutional networks
  publication-title: Proc. of the 34th International Conf. on Machine Learning - Volume 70
– start-page: 413
  year: 2008
  end-page: 422
  ident: b7
  article-title: Isolation forest
  publication-title: Eighth IEEE International Conference on Data Mining
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b42
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– year: 2016
  ident: b18
  article-title: Variational inference for on-line anomaly detection in high-dimensional time series
– year: 2016
  ident: b47
  article-title: WaveNet: A generative model for raw audio
– start-page: 901
  year: 2016
  end-page: 909
  ident: b58
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1275
  year: 2018
  end-page: 1282
  ident: b17
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
  publication-title: 17th IEEE International Conf. on Machine Learning and Applications, ICMLA, Orlando, FL
– volume: 52
  start-page: 563
  year: 2017
  end-page: 619
  ident: b29
  article-title: Contextual information fusion for intrusion detection: a survey and taxonomy
  publication-title: Knowl. Inf. Syst.
– year: 2019
  ident: b67
  article-title: Anomaly Detection on Time Series: An Evaluation of Deep Learning Methods
– volume: 8
  year: 2015
  ident: b69
  article-title: Hyperopt: a Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– start-page: 11
  year: 2017
  end-page: 23
  ident: b65
  article-title: Time series anomaly detection with discrete wavelet transforms and maximum likelihood estimation
  publication-title: Intern. Conference on Time Series (ITISE), Vol. 2
– volume: 108
  start-page: 55
  year: 2017
  end-page: 66
  ident: b35
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
– volume: 7
  start-page: 1991
  year: 2019
  end-page: 2005
  ident: b12
  article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
– volume: 135
  start-page: 1138
  year: 2010
  end-page: 1146
  ident: b82
  article-title: Baseline correction using adaptive iteratively reweighted penalized least squares
  publication-title: Analyst
– volume: 13
  start-page: 515
  year: 1986
  end-page: 518
  ident: b45
  article-title: CREI-GARD, a new concept in computerized arrhythmia monitoring systems
  publication-title: Comput. Cardiol.
– year: 2019
  ident: b50
  article-title: Temporal convolutional networks for anomaly detection in time series
  publication-title: Journal of Physics: Conference Series, Vol. 1213
– volume: 55
  start-page: 278
  year: 2016
  end-page: 288
  ident: b31
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener. Comput. Syst.
– year: 2016
  ident: b2
  article-title: Unsupervised Learning Algorithms
– volume: vol. 2473
  start-page: 17
  year: 2019
  end-page: 25
  ident: b11
  article-title: Anomaly detection in electrocardiogram readings with stacked LSTM networks
  publication-title: Proc. of the 19th Conf. Information Technologies - Applications and Theory (ITAT)
– volume: 40
  start-page: 108
  year: 2016
  ident: b37
  article-title: Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier
  publication-title: J. Med. Syst.
– year: 2015
  ident: b77
  article-title: Keras
– volume: vol. 38
  start-page: 192
  year: 2015
  end-page: 204
  ident: b51
  article-title: The loss surfaces of multilayer networks
  publication-title: Proc. of the 18th Int. Conf. on Artificial Intelligence and Statistics, AISTATS,
– reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
– start-page: 1
  year: 2015
  end-page: 7
  ident: b38
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
  publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 19
  start-page: 797
  year: 2018
  end-page: 801
  ident: b74
  article-title: ThunderSVM: A fast SVM library on GPUs and CPUs
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b75
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems 32
– volume: 2
  start-page: 165
  year: 2015
  end-page: 193
  ident: b3
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
– start-page: 89
  year: 2015
  end-page: 94
  ident: b10
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: 23rd European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 22-24, 2015
– year: 2016
  ident: b14
  article-title: LSTM-based encoder-decoder for multi-sensor Anomaly Detection
– reference: H. Xu, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications, in: Proc. of the 2018 World Wide Web Conf., 2018, pp. 187–196.
– volume: 7
  start-page: 143608
  year: 2019
  end-page: 143619
  ident: b20
  article-title: A GAN-based anomaly detection approach for imbalanced industrial time series
  publication-title: IEEE Access
– start-page: 1
  year: 2016
  end-page: 13
  ident: b48
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: 4th International Conf. on Learning Representations, ICLR
– volume: 25
  start-page: 65
  year: 2019
  ident: b33
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
– reference: .
– start-page: 286
  year: 1990
  end-page: 297
  ident: b46
  article-title: A real-time algorithm for signal analysis with the help of the wavelet transform
  publication-title: Wavelets
– start-page: 3575
  year: 2019
  end-page: 3584
  ident: b54
  article-title: MS-TCN: multi-stage temporal convolutional network for action segmentation
  publication-title: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
– start-page: 841
  year: 2020
  end-page: 850
  ident: b24
  article-title: Multivariate time-series anomaly detection via graph attention network
  publication-title: 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b60
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: b15
  article-title: A stacked autoencoder neural network based automated feature extraction method for anomaly detection in on-line condition monitoring
– year: 2015
  ident: b78
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– year: 1992
  ident: b43
  article-title: PhysioNet: The MIT-BIH Arrhythmia Database
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b44
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol. Mag.
– start-page: 582
  year: 2000
  end-page: 588
  ident: b73
  article-title: Support vector method for novelty detection
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: b22
  article-title: Anomaly detection with generative adversarial networks for multivariate time series
– volume: 127
  start-page: 144
  year: 2016
  end-page: 164
  ident: b32
  article-title: ECG-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 30
  ident: b5
  article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data
  publication-title: J. Big Data
– volume: 2
  start-page: 1
  year: 2015
  end-page: 18
  ident: b16
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 186
  year: 2019
  ident: b34
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowl.-Based Syst.
– reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. of the 27th Int. Conf. on Machine Learning (ICML), 2010, pp. 807–814.
– volume: 287
  year: 2021
  ident: b30
  article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives
  publication-title: Appl. Energy
– start-page: 582
  year: 2000
  ident: 10.1016/j.asoc.2021.107751_b73
  article-title: Support vector method for novelty detection
– start-page: 8
  year: 2005
  ident: 10.1016/j.asoc.2021.107751_b25
  article-title: HOT SAX: Efficiently finding the most unusual time series subsequence
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b16
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– year: 2017
  ident: 10.1016/j.asoc.2021.107751_b56
– volume: 13
  start-page: 515
  year: 1986
  ident: 10.1016/j.asoc.2021.107751_b45
  article-title: CREI-GARD, a new concept in computerized arrhythmia monitoring systems
  publication-title: Comput. Cardiol.
– volume: 60
  start-page: 19
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b28
  article-title: A survey of network anomaly detection techniques
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2015.11.016
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.asoc.2021.107751_b42
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– year: 2015
  ident: 10.1016/j.asoc.2021.107751_b41
  article-title: Robust and accurate anomaly detection in ECG artifacts using time series motif discovery
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/453214
– ident: 10.1016/j.asoc.2021.107751_b61
  doi: 10.1109/CVPR.2016.90
– start-page: 170
  year: 2002
  ident: 10.1016/j.asoc.2021.107751_b13
  article-title: Outlier detection using replicator neural networks
– year: 2014
  ident: 10.1016/j.asoc.2021.107751_b63
– start-page: 933
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b55
  article-title: Language modeling with gated convolutional networks
– volume: 8
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b69
  article-title: Hyperopt: a Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– year: 2016
  ident: 10.1016/j.asoc.2021.107751_b2
– ident: 10.1016/j.asoc.2021.107751_b79
– volume: 287
  year: 2021
  ident: 10.1016/j.asoc.2021.107751_b30
  article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116601
– volume: 14
  start-page: 503
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b52
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1054-2
– start-page: 703
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b21
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– year: 2018
  ident: 10.1016/j.asoc.2021.107751_b49
– start-page: 3575
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b54
  article-title: MS-TCN: multi-stage temporal convolutional network for action segmentation
– year: 2018
  ident: 10.1016/j.asoc.2021.107751_b68
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b48
  article-title: Multi-scale context aggregation by dilated convolutions
– start-page: 901
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b58
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
– volume: 6
  start-page: 117
  issue: 11
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b6
  article-title: Recent advances in anomaly detection methods applied to aviation
  publication-title: Aerospace
  doi: 10.3390/aerospace6110117
– year: 2016
  ident: 10.1016/j.asoc.2021.107751_b18
– start-page: 6389
  year: 2018
  ident: 10.1016/j.asoc.2021.107751_b81
  article-title: Visualizing the loss landscape of neural nets
– start-page: 89
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b10
  article-title: Long short term memory networks for anomaly detection in time series
– year: 2016
  ident: 10.1016/j.asoc.2021.107751_b14
– volume: 69
  start-page: 715
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b36
  article-title: Automatic ECG arrhythmia classification using dual tree complex wavelet based features
  publication-title: AEU - Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2014.12.013
– year: 2019
  ident: 10.1016/j.asoc.2021.107751_b67
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2021.107751_b60
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: 10.1016/j.asoc.2021.107751_b22
– ident: 10.1016/j.asoc.2021.107751_b59
– year: 2018
  ident: 10.1016/j.asoc.2021.107751_b15
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.asoc.2021.107751_b72
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b38
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
– ident: 10.1016/j.asoc.2021.107751_b23
  doi: 10.1609/aaai.v33i01.33011409
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2021.107751_b44
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– year: 2016
  ident: 10.1016/j.asoc.2021.107751_b47
– ident: 10.1016/j.asoc.2021.107751_b64
  doi: 10.1109/CVPR.2017.243
– start-page: 485
  year: 2002
  ident: 10.1016/j.asoc.2021.107751_b84
  article-title: Arrhythmia classification using the RR-interval duration signal
– year: 2015
  ident: 10.1016/j.asoc.2021.107751_b77
– volume: vol. 2473
  start-page: 17
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b11
  article-title: Anomaly detection in electrocardiogram readings with stacked LSTM networks
– ident: 10.1016/j.asoc.2021.107751_b8
  doi: 10.1145/342009.335388
– volume: 7
  start-page: 1991
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b12
  article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107751_b5
  article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00320-x
– volume: 7
  start-page: 143608
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b20
  article-title: A GAN-based anomaly detection approach for imbalanced industrial time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944689
– volume: 19
  start-page: 797
  year: 2018
  ident: 10.1016/j.asoc.2021.107751_b74
  article-title: ThunderSVM: A fast SVM library on GPUs and CPUs
  publication-title: J. Mach. Learn. Res. (JMLR)
– year: 1992
  ident: 10.1016/j.asoc.2021.107751_b43
– start-page: 196
  year: 1992
  ident: 10.1016/j.asoc.2021.107751_b80
  article-title: Individual comparisons by ranking methods
– start-page: 413
  year: 2008
  ident: 10.1016/j.asoc.2021.107751_b7
  article-title: Isolation forest
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b9
  article-title: Online anomaly detection on the webscope S5 dataset: A comparative study
– volume: 186
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b34
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104923
– volume: 40
  start-page: 108
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b37
  article-title: Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0467-8
– year: 2017
  ident: 10.1016/j.asoc.2021.107751_b76
– volume: 52
  start-page: 563
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b29
  article-title: Contextual information fusion for intrusion detection: a survey and taxonomy
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1027-3
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.asoc.2021.107751_b66
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.1985.325532
– year: 2013
  ident: 10.1016/j.asoc.2021.107751_b71
– start-page: 8024
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b75
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume: 108
  start-page: 55
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b35
  article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.022
– volume: vol. 38
  start-page: 192
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b51
  article-title: The loss surfaces of multilayer networks
– volume: 11
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b4
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152173
– volume: 54
  start-page: 243
  year: 2013
  ident: 10.1016/j.asoc.2021.107751_b27
  article-title: Finding time series discord based on bit representation clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.09.015
– ident: 10.1016/j.asoc.2021.107751_b57
  doi: 10.3115/v1/P14-1062
– year: 2013
  ident: 10.1016/j.asoc.2021.107751_b62
– volume: 11
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2021.107751_b26
  article-title: Finding the most unusual time series subsequence: algorithms and applications
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-006-0034-6
– volume: 47
  start-page: 838
  issue: 7
  year: 2000
  ident: 10.1016/j.asoc.2021.107751_b83
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846677
– start-page: 286
  year: 1990
  ident: 10.1016/j.asoc.2021.107751_b46
  article-title: A real-time algorithm for signal analysis with the help of the wavelet transform
– start-page: 1275
  year: 2018
  ident: 10.1016/j.asoc.2021.107751_b17
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
– start-page: 147
  year: 2018
  ident: 10.1016/j.asoc.2021.107751_b40
  article-title: An efficient anomaly detection in quasi-periodic time series data—A case study with ECG
– start-page: 841
  year: 2020
  ident: 10.1016/j.asoc.2021.107751_b24
  article-title: Multivariate time-series anomaly detection via graph attention network
– year: 2019
  ident: 10.1016/j.asoc.2021.107751_b50
  article-title: Temporal convolutional networks for anomaly detection in time series
– volume: 135
  start-page: 1138
  year: 2010
  ident: 10.1016/j.asoc.2021.107751_b82
  article-title: Baseline correction using adaptive iteratively reweighted penalized least squares
  publication-title: Analyst
  doi: 10.1039/b922045c
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b3
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 79
  start-page: 179
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b39
  article-title: Sparse coding with anomaly detection
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-014-0913-0
– year: 2020
  ident: 10.1016/j.asoc.2021.107751_b53
  article-title: Time series encodings with temporal convolutional networks
– volume: 55
  start-page: 278
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b31
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.01.001
– start-page: 38
  year: 2015
  ident: 10.1016/j.asoc.2021.107751_b70
  article-title: Evaluating real-time anomaly detection algorithms – the Numenta Anomaly Benchmark
– volume: 41
  start-page: 15:1
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2021.107751_b1
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– ident: 10.1016/j.asoc.2021.107751_b19
  doi: 10.1145/3178876.3185996
– volume: 127
  start-page: 144
  year: 2016
  ident: 10.1016/j.asoc.2021.107751_b32
  article-title: ECG-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.12.008
– start-page: 11
  year: 2017
  ident: 10.1016/j.asoc.2021.107751_b65
  article-title: Time series anomaly detection with discrete wavelet transforms and maximum likelihood estimation
– volume: 25
  start-page: 65
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107751_b33
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– year: 2015
  ident: 10.1016/j.asoc.2021.107751_b78
SSID ssj0016928
Score 2.6174667
Snippet Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107751
SubjectTerms Anomaly detection
Autoencoder
Deep learning
Mahalanobis distance
TCN
Title Temporal convolutional autoencoder for unsupervised anomaly detection in time series
URI https://dx.doi.org/10.1016/j.asoc.2021.107751
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbxDbZ3Wz2KEWpryJawVvYzW6gUtNi04MXf7szyaYoSA-ewi6zED4ms9-QmfkIOYuUZlLFNsgl5Ca8Z2yglGBBEjJhITZoWcn5PAzjwQu_fRWvLdJvemGwrNLH_jqmV9Ha73Q9mt3ZeNx9hswj4YrHkLTg_0ScCcq5RC-_-FqWeYSxqvRV0ThAa984U9d4aUAAcsQohA0pRfj35fTjwrneJpueKdLL-mV2SMsVu2SrUWGg_qPcI6NRPV1qQrGC3HsSrPSinOKUSgvGwEzpopgvZhgZ5s5SXUzf9eSTWldWtVgFHRcUdeYpuqSb75OX66tRfxB4rYQgY5yXQSZEZERoWc86mUfCxE6LLFF5FgEjZXkiWagBCwt8A0iW4TZxUlsZMaNzoHzsgKwV08IdEmqyxGRCSmOMwoRKucz2It1ziXTWKt0mYQNSmvlB4qhnMUmbirG3FIFNEdi0BrZNzpdnZvUYjZXWosE-_eUMKcT5FeeO_nnumGzgqm4xPCFr5cfCnQLXKE2ncqYOWb_sP90_4vPmbjD8BvCJ1hE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l9EAvQAuIQGn3UE7IJN6H13vooWqLQnlcCBI3s-tdS0HBiYgjxIU_xR9k1l4jkBCHSjl6vWPZn8ffzMjzAPhBlWZSJTYqJMYmvG9spJRgURozYZEbtKzH-ZyeJYML_u9SXHbgsa2F8WmVgfsbTq_ZOqz0Apq96WjUO8fII-WKJxi0-P-JPGRWHrv7O4zbZj-P_uBL3qP08O_w9yAKowWinHFeRbkQ1IjYsr51sqDCJE6LPFVFTtGBY0UqWawTRS2aZ_RJDLepk9pKyowu0ENieN0P8JEjXfixCQcPz3klMUrV9Xd4d5G_vVCp0ySVaYQcg1Ia44KUIn7bGr6wcIdrsBJcU_KrefrP0HHlF1htxz6QwALrMBw27azGxKesB9XFIz2vJr4tpsXN6AqTeTmbTz0VzZwlupzc6PE9sa6qk79KMiqJH2xP_DfgZhtwsRAEN2GpnJRuC4jJU5MLKY0xykdwyuW2T3XfpdJZq3QX4hakLA-dy_0AjXHWpqhdZx7YzAObNcB2Yf9ZZtr07Xh3t2ixz15pX4aG5R257f-U-w7Lg-HpSXZydHa8A5_8maa-8SssVbdzt4uOTmW-1YpF4GrRmvwEU7EQAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+convolutional+autoencoder+for+unsupervised+anomaly+detection+in+time+series&rft.jtitle=Applied+soft+computing&rft.au=Thill%2C+Markus&rft.au=Konen%2C+Wolfgang&rft.au=Wang%2C+Hao&rft.au=B%C3%A4ck%2C+Thomas&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=112&rft_id=info:doi/10.1016%2Fj.asoc.2021.107751&rft.externalDocID=S1568494621006724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon