Temporal convolutional autoencoder for unsupervised anomaly detection in time series
Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem e...
Saved in:
Published in | Applied soft computing Vol. 112; p. 107751 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark.
•Novel Temporal Convolutional Network Auto-Encoder for time series anomaly detection.•Unsupervised learning of time series representations.•High performance on real-world anomaly detection task containing electrocardiograms.•The presented algorithm is also computationally very efficient. |
---|---|
AbstractList | Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark.
•Novel Temporal Convolutional Network Auto-Encoder for time series anomaly detection.•Unsupervised learning of time series representations.•High performance on real-world anomaly detection task containing electrocardiograms.•The presented algorithm is also computationally very efficient. |
ArticleNumber | 107751 |
Author | Thill, Markus Konen, Wolfgang Bäck, Thomas Wang, Hao |
Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-6429-180X surname: Thill fullname: Thill, Markus email: markus.thill@th-koeln.de organization: TH Köln – University of Applied Sciences, 51643 Gummersbach, Germany – sequence: 2 givenname: Wolfgang surname: Konen fullname: Konen, Wolfgang email: wolfgang.konen@th-koeln.de organization: TH Köln – University of Applied Sciences, 51643 Gummersbach, Germany – sequence: 3 givenname: Hao surname: Wang fullname: Wang, Hao email: h.wang@liacs.leidenuniv.nl organization: Leiden University, LIACS, 2333 CA Leiden, The Netherlands – sequence: 4 givenname: Thomas orcidid: 0000-0001-6768-1478 surname: Bäck fullname: Bäck, Thomas email: t.h.w.baeck@liacs.leidenuniv.nl organization: Leiden University, LIACS, 2333 CA Leiden, The Netherlands |
BookMark | eNp9kMFqwzAMhs3oYG23F9jJL5AuduLYgV1G2dZBYZfubBxbAZfELrZT6NvPoTvt0JOkHz4hfSu0cN4BQs-k3JCSNC_HjYpeb2hJSQ44Z-QOLYngtGgbQRa5Z40o6rZuHtAqxmOZoZaKJTocYDz5oAasvTv7YUrWuzypKXlw2hsIuPcBTy5OJwhnG8Fg5fyohgs2kEDPALYOJzsCjhAsxEd036shwtNfXaOfj_fDdlfsvz-_tm_7Qld1nQrNGO0YMVVpgPeUdQ0opkXbaypy2gteEZXPNKJuBCNdbQRwZTitOtWzqqrWSFz36uBjDNBLbZOaD0pB2UGSUs525FHOduRsR17tZJT-Q0_BjipcbkOvVwjyU2cLQUZtsyUwNmQR0nh7C_8FSYCCfA |
CitedBy_id | crossref_primary_10_3390_technologies13020042 crossref_primary_10_3390_s22228764 crossref_primary_10_1016_j_is_2024_102457 crossref_primary_10_3233_JID_220003 crossref_primary_10_1016_j_jksuci_2024_102232 crossref_primary_10_1016_j_cose_2024_103877 crossref_primary_10_3390_en16197008 crossref_primary_10_1109_TAI_2024_3381102 crossref_primary_10_1177_09544070241227089 crossref_primary_10_3389_fphys_2022_961724 crossref_primary_10_3390_machines10090734 crossref_primary_10_1145_3653677 crossref_primary_10_3390_s24072353 crossref_primary_10_1007_s40747_024_01659_x crossref_primary_10_1016_j_psep_2022_05_039 crossref_primary_10_7717_peerj_cs_2479 crossref_primary_10_3390_app14177717 crossref_primary_10_3390_bios14040183 crossref_primary_10_2514_1_J063815 crossref_primary_10_1109_TIM_2023_3236354 crossref_primary_10_1016_j_engappai_2023_107716 crossref_primary_10_5334_dsj_2024_010 crossref_primary_10_1088_1361_6501_ac9545 crossref_primary_10_26599_TST_2023_9010095 crossref_primary_10_1016_j_nucengdes_2024_113493 crossref_primary_10_1186_s13677_024_00682_0 crossref_primary_10_1142_S0218126625501701 crossref_primary_10_1016_j_asoc_2023_111148 crossref_primary_10_3390_en16124585 crossref_primary_10_1109_JBHI_2023_3320585 crossref_primary_10_1016_j_measurement_2022_110791 crossref_primary_10_4108_eetsis_v10i3_3219 crossref_primary_10_1007_s41666_024_00160_x crossref_primary_10_1016_j_asoc_2023_110467 crossref_primary_10_1089_big_2021_0471 crossref_primary_10_1007_s11760_023_02578_z crossref_primary_10_1016_j_eswa_2024_125088 crossref_primary_10_1016_j_isatra_2023_09_002 crossref_primary_10_3390_app12125855 crossref_primary_10_1016_j_ifacol_2023_10_058 crossref_primary_10_1007_s11431_024_2679_4 crossref_primary_10_1016_j_aei_2023_101907 crossref_primary_10_1016_j_procs_2023_08_183 crossref_primary_10_3390_electronics13122348 crossref_primary_10_1016_j_rcim_2022_102441 crossref_primary_10_1109_JSEN_2023_3327138 crossref_primary_10_3390_s23062951 crossref_primary_10_1016_j_sigpro_2024_109874 crossref_primary_10_1007_s10489_024_05395_0 crossref_primary_10_2139_ssrn_4069225 crossref_primary_10_1109_TGRS_2024_3452937 crossref_primary_10_1177_09544089241258027 crossref_primary_10_25077_jnte_v12n3_1117_2023 crossref_primary_10_1016_j_engappai_2024_109323 crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_1088_1742_6596_2875_1_012024 crossref_primary_10_1109_TII_2024_3393491 crossref_primary_10_1016_j_ecolind_2023_110782 crossref_primary_10_1016_j_ins_2023_119975 crossref_primary_10_3390_s23125544 crossref_primary_10_1007_s42452_024_05704_9 crossref_primary_10_1016_j_isatra_2023_12_031 crossref_primary_10_1016_j_ins_2023_119610 crossref_primary_10_1016_j_heliyon_2023_e23597 crossref_primary_10_3390_e24060759 crossref_primary_10_1109_TWC_2022_3216004 crossref_primary_10_1371_journal_pone_0303890 crossref_primary_10_1016_j_compositesb_2024_111802 crossref_primary_10_1016_j_comnet_2025_111147 crossref_primary_10_1016_j_dsp_2022_103704 crossref_primary_10_1109_TCE_2023_3306428 crossref_primary_10_26443_seismica_v3i1_1166 crossref_primary_10_3390_app121910078 crossref_primary_10_1007_s10489_022_04324_3 crossref_primary_10_1109_TIM_2024_3507042 crossref_primary_10_1007_s10845_024_02507_y crossref_primary_10_1115_1_4063720 crossref_primary_10_1016_j_aei_2023_102139 crossref_primary_10_1016_j_asoc_2024_111671 crossref_primary_10_1016_j_cose_2024_103840 crossref_primary_10_1007_s40747_025_01839_3 crossref_primary_10_1016_j_jnlest_2024_100285 crossref_primary_10_1016_j_segan_2024_101497 crossref_primary_10_3847_1538_4357_acba0a crossref_primary_10_1016_j_segan_2024_101374 crossref_primary_10_1007_s10844_025_00918_8 crossref_primary_10_1016_j_asoc_2023_110935 crossref_primary_10_3390_math11030620 crossref_primary_10_1016_j_dsp_2024_104813 crossref_primary_10_1016_j_engappai_2023_106312 crossref_primary_10_1016_j_neunet_2025_107153 crossref_primary_10_1007_s11760_023_02737_2 crossref_primary_10_1109_JIOT_2023_3296538 crossref_primary_10_1016_j_patrec_2023_05_012 crossref_primary_10_3390_fractalfract8100604 crossref_primary_10_1016_j_ins_2025_122114 crossref_primary_10_32604_cmes_2024_049208 crossref_primary_10_3103_S0146411622030117 crossref_primary_10_3390_s24113584 |
Cites_doi | 10.1016/j.jnca.2015.11.016 10.1161/01.CIR.101.23.e215 10.1155/2015/453214 10.1109/CVPR.2016.90 10.1088/1749-4699/8/1/014008 10.1016/j.apenergy.2021.116601 10.1007/s11633-017-1054-2 10.3390/aerospace6110117 10.1016/j.aeue.2014.12.013 10.1609/aaai.v33i01.33011409 10.1109/51.932724 10.1109/CVPR.2017.243 10.1145/342009.335388 10.1109/ACCESS.2018.2886457 10.1186/s40537-020-00320-x 10.1109/ACCESS.2019.2944689 10.1016/j.knosys.2019.104923 10.1007/s10916-016-0467-8 10.1007/s10115-017-1027-3 10.1109/TBME.1985.325532 10.1016/j.measurement.2017.05.022 10.1371/journal.pone.0152173 10.1016/j.knosys.2013.09.015 10.3115/v1/P14-1062 10.1007/s10115-006-0034-6 10.1109/10.846677 10.1039/b922045c 10.1007/s40745-015-0040-1 10.1007/s11265-014-0913-0 10.1016/j.future.2015.01.001 10.1145/1541880.1541882 10.1145/3178876.3185996 10.1016/j.cmpb.2015.12.008 10.1038/s41591-018-0268-3 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107751 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107751 S1568494621006724 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-c552b51d30de7f25b6ea5c89fc281d3f8731a692d846851b4d8e7ad723baf5333 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:11 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 23 02:46:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Autoencoder Anomaly detection TCN Mahalanobis distance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-c552b51d30de7f25b6ea5c89fc281d3f8731a692d846851b4d8e7ad723baf5333 |
ORCID | 0000-0001-6768-1478 0000-0002-6429-180X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494621006724 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107751 crossref_primary_10_1016_j_asoc_2021_107751 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | An, Cho (b16) 2015; 2 Ahmad (b76) 2017 Liu, Ting, Zhou (b7) 2008 Aleroud, Karabatis (b29) 2017; 52 Adler, Elad, Hel-Or, Rivlin (b39) 2015; 79 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b42) 2000; 101 Keogh, Lin, Fu (b25) 2005 Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (b33) 2019; 25 Abadi, Agarwal, Barham (b78) 2015 Chakraborty, Kamiyama, Takahashi, Kinoshita (b40) 2018 Tuncer, Dogan, Pławiak, Acharya (b34) 2019; 186 Munir, Siddiqui, Dengel, Ahmed (b12) 2019; 7 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Malhotra, Vig, Shroff, Agarwal (b10) 2015 Lavin, S. Ahmad (b70) 2015 M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. Ahmed, Mahmood, Islam (b31) 2016; 55 H. Xu, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications, in: Proc. of the 2018 World Wide Web Conf., 2018, pp. 187–196. N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, in: Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Maryland, 2014, pp. 655–665 Thill, Däubener, Konen, Bäck (b11) 2019; vol. 2473 Roy (b15) 2018 Wilcoxon (b80) 1992 Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (b83) 2000; 47 Moody, Mark (b43) 1992 Celebi, Aydin (b2) 2016 Keogh, Lin, Lee, Van Herle (b26) 2007; 11 Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b73) 2000 Zhao, Wang, Duan, Huang, Cao, Tong, Xu, Bai, Tong, Zhang (b24) 2020 Xu, Tian (b3) 2015; 2 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, 2010, pp. 249–256. Zhang, Chen, Liang (b82) 2010; 135 Li, Chen, Jin, Shi, Goh, Ng (b21) 2019 Alickovic, Subasi (b37) 2016; 40 C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1409–1416. Thill, Konen, Bäck (b65) 2017 G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b60) 2014; 15 Luz, Schwartz, Cámara-Chávez, Menotti (b32) 2016; 127 Fischer, Gierke, Kellermeier, Kesar, Stebner, Thevessen (b67) 2019 Lin, Chen, Yan (b62) 2013 Bai, Kolter, Koltun (b49) 2018 . Salimans, Kingma (b58) 2016 Holschneider, Kronland-Martinet, Morlet, Tchamitchian (b46) 1990 Wen, Shi, Li, He, Chen (b74) 2018; 19 van den Oord (b47) 2016 Basora, Olive, Dubot (b6) 2019; 6 Tsipouras, Fotiadis, Sideris (b84) 2002 Li, Bräysy, Jiang, Wu, Wang (b27) 2013; 54 Bergstra, Komer, Eliasmith, Yamins, Cox (b69) 2015; 8 Thill, Konen, Bäck (b53) 2020 Chandola, Banerjee, Kumar (b1) 2009; 41 Yu, Koltun (b48) 2016 Dauphin, Fan, Auli, Grangier (b55) 2017 Sivaraks, Ratanamahatana (b41) 2015 Pedregosa, Varoquaux, Gramfort, Weiss, Dubourg, Vanderplas, Passos, Brucher, Perrot, Duchesnay (b72) 2011; 12 Pan, Tompkins (b66) 1985; 32 Sahoo, Kanungo, Behera, Sabut (b35) 2017; 108 Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (b14) 2016 Farha, Gall (b54) 2019 Ahmed, Mahmood, Hu (b28) 2016; 60 Chauhan, Vig (b38) 2015 V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. of the 27th Int. Conf. on Machine Learning (ICML), 2010, pp. 807–814. Hawkins, He, Williams, Baxter (b13) 2002 Szegedy (b63) 2014 Taylor (b68) 2018 Haykin (b71) 2013 Pereira, Silveira (b17) 2018 Moody, Mark (b44) 2001; 20 Sölch, Bayer, Ludersdorfer, van der Smagt (b18) 2016 Jiang, Hong, Zhou, He, Cheng (b20) 2019; 7 Li, Xu, Taylor, Studer, Goldstein (b81) 2018 Choromanska, Henaff, Mathieu, Arous, LeCun (b51) 2015; vol. 38 Goldstein, Uchida (b4) 2016; 11 He, Zhao (b50) 2019 Li, Chen, Goh, Ng (b22) 2018 Poggio, Mhaskar, Rosasco, Miranda, Liao (b52) 2017; 14 Thomas, Das, Ari (b36) 2015; 69 Thudumu, Branch, Jin, Singh (b5) 2020; 7 Nolle, Badura, Catlett, Bowser, Sketch (b45) 1986; 13 Paszke (b75) 2019 Chollet (b77) 2015 Gehring, Auli, Grangier, Yarats, Dauphin (b56) 2017 Himeur, Ghanem, Alsalemi, Bensaali, Amira (b30) 2021; 287 Thill, Konen, Bäck (b9) 2017 Chandola (10.1016/j.asoc.2021.107751_b1) 2009; 41 Roy (10.1016/j.asoc.2021.107751_b15) 2018 Salimans (10.1016/j.asoc.2021.107751_b58) 2016 Schölkopf (10.1016/j.asoc.2021.107751_b73) 2000 Hannun (10.1016/j.asoc.2021.107751_b33) 2019; 25 Celebi (10.1016/j.asoc.2021.107751_b2) 2016 Li (10.1016/j.asoc.2021.107751_b22) 2018 Holschneider (10.1016/j.asoc.2021.107751_b46) 1990 Thudumu (10.1016/j.asoc.2021.107751_b5) 2020; 7 Luz (10.1016/j.asoc.2021.107751_b32) 2016; 127 Yu (10.1016/j.asoc.2021.107751_b48) 2016 Dauphin (10.1016/j.asoc.2021.107751_b55) 2017 Szegedy (10.1016/j.asoc.2021.107751_b63) 2014 An (10.1016/j.asoc.2021.107751_b16) 2015; 2 Thill (10.1016/j.asoc.2021.107751_b53) 2020 Chollet (10.1016/j.asoc.2021.107751_b77) 2015 Li (10.1016/j.asoc.2021.107751_b81) 2018 Taylor (10.1016/j.asoc.2021.107751_b68) 2018 Chakraborty (10.1016/j.asoc.2021.107751_b40) 2018 Moody (10.1016/j.asoc.2021.107751_b44) 2001; 20 Liu (10.1016/j.asoc.2021.107751_b7) 2008 Goldberger (10.1016/j.asoc.2021.107751_b42) 2000; 101 Adler (10.1016/j.asoc.2021.107751_b39) 2015; 79 Nolle (10.1016/j.asoc.2021.107751_b45) 1986; 13 Haykin (10.1016/j.asoc.2021.107751_b71) 2013 van den Oord (10.1016/j.asoc.2021.107751_b47) 2016 Paszke (10.1016/j.asoc.2021.107751_b75) 2019 Hawkins (10.1016/j.asoc.2021.107751_b13) 2002 Ahmed (10.1016/j.asoc.2021.107751_b28) 2016; 60 Munir (10.1016/j.asoc.2021.107751_b12) 2019; 7 Thomas (10.1016/j.asoc.2021.107751_b36) 2015; 69 Chauhan (10.1016/j.asoc.2021.107751_b38) 2015 10.1016/j.asoc.2021.107751_b59 Lavin (10.1016/j.asoc.2021.107751_b70) 2015 He (10.1016/j.asoc.2021.107751_b50) 2019 10.1016/j.asoc.2021.107751_b57 10.1016/j.asoc.2021.107751_b19 Aleroud (10.1016/j.asoc.2021.107751_b29) 2017; 52 Thill (10.1016/j.asoc.2021.107751_b65) 2017 Jiang (10.1016/j.asoc.2021.107751_b20) 2019; 7 Sölch (10.1016/j.asoc.2021.107751_b18) 2016 Goldstein (10.1016/j.asoc.2021.107751_b4) 2016; 11 Pan (10.1016/j.asoc.2021.107751_b66) 1985; 32 Pedregosa (10.1016/j.asoc.2021.107751_b72) 2011; 12 Ahmed (10.1016/j.asoc.2021.107751_b31) 2016; 55 Moody (10.1016/j.asoc.2021.107751_b43) 1992 Keogh (10.1016/j.asoc.2021.107751_b25) 2005 Bai (10.1016/j.asoc.2021.107751_b49) 2018 Thill (10.1016/j.asoc.2021.107751_b9) 2017 Gehring (10.1016/j.asoc.2021.107751_b56) 2017 Sahoo (10.1016/j.asoc.2021.107751_b35) 2017; 108 10.1016/j.asoc.2021.107751_b61 Li (10.1016/j.asoc.2021.107751_b27) 2013; 54 Li (10.1016/j.asoc.2021.107751_b21) 2019 Basora (10.1016/j.asoc.2021.107751_b6) 2019; 6 Tsipouras (10.1016/j.asoc.2021.107751_b84) 2002 10.1016/j.asoc.2021.107751_b64 Choromanska (10.1016/j.asoc.2021.107751_b51) 2015; vol. 38 Himeur (10.1016/j.asoc.2021.107751_b30) 2021; 287 10.1016/j.asoc.2021.107751_b23 Wilcoxon (10.1016/j.asoc.2021.107751_b80) 1992 Sivaraks (10.1016/j.asoc.2021.107751_b41) 2015 Poggio (10.1016/j.asoc.2021.107751_b52) 2017; 14 Thill (10.1016/j.asoc.2021.107751_b11) 2019; vol. 2473 Abadi (10.1016/j.asoc.2021.107751_b78) 2015 10.1016/j.asoc.2021.107751_b8 Zhang (10.1016/j.asoc.2021.107751_b82) 2010; 135 Bergstra (10.1016/j.asoc.2021.107751_b69) 2015; 8 Ahmad (10.1016/j.asoc.2021.107751_b76) 2017 Malhotra (10.1016/j.asoc.2021.107751_b10) 2015 Malhotra (10.1016/j.asoc.2021.107751_b14) 2016 Lin (10.1016/j.asoc.2021.107751_b62) 2013 Fischer (10.1016/j.asoc.2021.107751_b67) 2019 Zhao (10.1016/j.asoc.2021.107751_b24) 2020 Pereira (10.1016/j.asoc.2021.107751_b17) 2018 Lagerholm (10.1016/j.asoc.2021.107751_b83) 2000; 47 Keogh (10.1016/j.asoc.2021.107751_b26) 2007; 11 Farha (10.1016/j.asoc.2021.107751_b54) 2019 Wen (10.1016/j.asoc.2021.107751_b74) 2018; 19 10.1016/j.asoc.2021.107751_b79 Xu (10.1016/j.asoc.2021.107751_b3) 2015; 2 Alickovic (10.1016/j.asoc.2021.107751_b37) 2016; 40 Srivastava (10.1016/j.asoc.2021.107751_b60) 2014; 15 Tuncer (10.1016/j.asoc.2021.107751_b34) 2019; 186 |
References_xml | – volume: 6 start-page: 117 year: 2019 ident: b6 article-title: Recent advances in anomaly detection methods applied to aviation publication-title: Aerospace – start-page: 170 year: 2002 end-page: 180 ident: b13 article-title: Outlier detection using replicator neural networks publication-title: International Conf. on Data Warehousing and Knowledge Discovery – reference: N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, in: Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Maryland, 2014, pp. 655–665, – volume: 41 start-page: 15:1 year: 2009 end-page: 15:58 ident: b1 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. – reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, 2010, pp. 249–256. – start-page: 196 year: 1992 end-page: 202 ident: b80 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in Statistics – year: 2018 ident: b68 article-title: numenta/nupic: 1.0.5 – start-page: 485 year: 2002 end-page: 488 ident: b84 article-title: Arrhythmia classification using the RR-interval duration signal publication-title: Computers in Cardiology – start-page: 38 year: 2015 end-page: 44 ident: b70 article-title: Evaluating real-time anomaly detection algorithms – the Numenta Anomaly Benchmark publication-title: IEEE Conf. on Machine Learning and Applications (ICMLA) – reference: C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1409–1416. – volume: 11 year: 2016 ident: b4 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS One – volume: 47 start-page: 838 year: 2000 end-page: 848 ident: b83 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. – start-page: 147 year: 2018 end-page: 157 ident: b40 article-title: An efficient anomaly detection in quasi-periodic time series data—A case study with ECG publication-title: Time Series Analysis and Forecasting – year: 2015 ident: b41 article-title: Robust and accurate anomaly detection in ECG artifacts using time series motif discovery publication-title: Comput. Math. Methods Med. – volume: 69 start-page: 715 year: 2015 end-page: 721 ident: b36 article-title: Automatic ECG arrhythmia classification using dual tree complex wavelet based features publication-title: AEU - Int. J. Electron. Commun. – year: 2013 ident: b62 article-title: Network in network – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b72 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 1 year: 2017 end-page: 8 ident: b9 article-title: Online anomaly detection on the webscope S5 dataset: A comparative study publication-title: Evolving and Adaptive Intelligent Systems, EAIS, Ljubljana, Slovenia – year: 2018 ident: b49 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – start-page: 703 year: 2019 end-page: 716 ident: b21 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks publication-title: International Conf. on Artificial Neural Networks – start-page: 6389 year: 2018 end-page: 6399 ident: b81 article-title: Visualizing the loss landscape of neural nets publication-title: Advances in Neural Information Processing Systems – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – year: 2014 ident: b63 article-title: Going Deeper with convolutions – year: 2013 ident: b71 article-title: Adaptive Filtering Theory – volume: 14 start-page: 503 year: 2017 end-page: 519 ident: b52 article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review publication-title: Int. J. Autom. Comput. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: b66 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng – volume: 60 start-page: 19 year: 2016 end-page: 31 ident: b28 article-title: A survey of network anomaly detection techniques publication-title: J. Netw. Comput. Appl. – year: 2017 ident: b56 article-title: Convolutional sequence to sequence learning – year: 2020 ident: b53 article-title: Time series encodings with temporal convolutional networks publication-title: Bioinspired Optimization Methods and their Applications – year: 2017 ident: b76 article-title: Running swarms – volume: 11 start-page: 1 year: 2007 end-page: 27 ident: b26 article-title: Finding the most unusual time series subsequence: algorithms and applications publication-title: Knowl. Inf. Syst. – start-page: 8 year: 2005 end-page: pp ident: b25 article-title: HOT SAX: Efficiently finding the most unusual time series subsequence publication-title: Fifth IEEE International Conference on Data Mining (ICDM’05) – volume: 79 start-page: 179 year: 2015 end-page: 188 ident: b39 article-title: Sparse coding with anomaly detection publication-title: J. Signal Process. Syst. – volume: 54 start-page: 243 year: 2013 end-page: 254 ident: b27 article-title: Finding time series discord based on bit representation clustering publication-title: Knowl.-Based Syst. – start-page: 933 year: 2017 end-page: 941 ident: b55 article-title: Language modeling with gated convolutional networks publication-title: Proc. of the 34th International Conf. on Machine Learning - Volume 70 – start-page: 413 year: 2008 end-page: 422 ident: b7 article-title: Isolation forest publication-title: Eighth IEEE International Conference on Data Mining – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b42 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation – year: 2016 ident: b18 article-title: Variational inference for on-line anomaly detection in high-dimensional time series – year: 2016 ident: b47 article-title: WaveNet: A generative model for raw audio – start-page: 901 year: 2016 end-page: 909 ident: b58 article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 1275 year: 2018 end-page: 1282 ident: b17 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention publication-title: 17th IEEE International Conf. on Machine Learning and Applications, ICMLA, Orlando, FL – volume: 52 start-page: 563 year: 2017 end-page: 619 ident: b29 article-title: Contextual information fusion for intrusion detection: a survey and taxonomy publication-title: Knowl. Inf. Syst. – year: 2019 ident: b67 article-title: Anomaly Detection on Time Series: An Evaluation of Deep Learning Methods – volume: 8 year: 2015 ident: b69 article-title: Hyperopt: a Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. – reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. – start-page: 11 year: 2017 end-page: 23 ident: b65 article-title: Time series anomaly detection with discrete wavelet transforms and maximum likelihood estimation publication-title: Intern. Conference on Time Series (ITISE), Vol. 2 – volume: 108 start-page: 55 year: 2017 end-page: 66 ident: b35 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement – volume: 7 start-page: 1991 year: 2019 end-page: 2005 ident: b12 article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access – volume: 135 start-page: 1138 year: 2010 end-page: 1146 ident: b82 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst – volume: 13 start-page: 515 year: 1986 end-page: 518 ident: b45 article-title: CREI-GARD, a new concept in computerized arrhythmia monitoring systems publication-title: Comput. Cardiol. – year: 2019 ident: b50 article-title: Temporal convolutional networks for anomaly detection in time series publication-title: Journal of Physics: Conference Series, Vol. 1213 – volume: 55 start-page: 278 year: 2016 end-page: 288 ident: b31 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener. Comput. Syst. – year: 2016 ident: b2 article-title: Unsupervised Learning Algorithms – volume: vol. 2473 start-page: 17 year: 2019 end-page: 25 ident: b11 article-title: Anomaly detection in electrocardiogram readings with stacked LSTM networks publication-title: Proc. of the 19th Conf. Information Technologies - Applications and Theory (ITAT) – volume: 40 start-page: 108 year: 2016 ident: b37 article-title: Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier publication-title: J. Med. Syst. – year: 2015 ident: b77 article-title: Keras – volume: vol. 38 start-page: 192 year: 2015 end-page: 204 ident: b51 article-title: The loss surfaces of multilayer networks publication-title: Proc. of the 18th Int. Conf. on Artificial Intelligence and Statistics, AISTATS, – reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. – start-page: 1 year: 2015 end-page: 7 ident: b38 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) – volume: 19 start-page: 797 year: 2018 end-page: 801 ident: b74 article-title: ThunderSVM: A fast SVM library on GPUs and CPUs publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 8024 year: 2019 end-page: 8035 ident: b75 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems 32 – volume: 2 start-page: 165 year: 2015 end-page: 193 ident: b3 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. – start-page: 89 year: 2015 end-page: 94 ident: b10 article-title: Long short term memory networks for anomaly detection in time series publication-title: 23rd European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 22-24, 2015 – year: 2016 ident: b14 article-title: LSTM-based encoder-decoder for multi-sensor Anomaly Detection – reference: H. Xu, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications, in: Proc. of the 2018 World Wide Web Conf., 2018, pp. 187–196. – volume: 7 start-page: 143608 year: 2019 end-page: 143619 ident: b20 article-title: A GAN-based anomaly detection approach for imbalanced industrial time series publication-title: IEEE Access – start-page: 1 year: 2016 end-page: 13 ident: b48 article-title: Multi-scale context aggregation by dilated convolutions publication-title: 4th International Conf. on Learning Representations, ICLR – volume: 25 start-page: 65 year: 2019 ident: b33 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. – reference: . – start-page: 286 year: 1990 end-page: 297 ident: b46 article-title: A real-time algorithm for signal analysis with the help of the wavelet transform publication-title: Wavelets – start-page: 3575 year: 2019 end-page: 3584 ident: b54 article-title: MS-TCN: multi-stage temporal convolutional network for action segmentation publication-title: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) – start-page: 841 year: 2020 end-page: 850 ident: b24 article-title: Multivariate time-series anomaly detection via graph attention network publication-title: 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b60 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2018 ident: b15 article-title: A stacked autoencoder neural network based automated feature extraction method for anomaly detection in on-line condition monitoring – year: 2015 ident: b78 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – year: 1992 ident: b43 article-title: PhysioNet: The MIT-BIH Arrhythmia Database – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b44 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. – start-page: 582 year: 2000 end-page: 588 ident: b73 article-title: Support vector method for novelty detection publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: b22 article-title: Anomaly detection with generative adversarial networks for multivariate time series – volume: 127 start-page: 144 year: 2016 end-page: 164 ident: b32 article-title: ECG-based heartbeat classification for arrhythmia detection: A survey publication-title: Comput. Methods Programs Biomed. – volume: 7 start-page: 1 year: 2020 end-page: 30 ident: b5 article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data publication-title: J. Big Data – volume: 2 start-page: 1 year: 2015 end-page: 18 ident: b16 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 186 year: 2019 ident: b34 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowl.-Based Syst. – reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proc. of the 27th Int. Conf. on Machine Learning (ICML), 2010, pp. 807–814. – volume: 287 year: 2021 ident: b30 article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives publication-title: Appl. Energy – start-page: 582 year: 2000 ident: 10.1016/j.asoc.2021.107751_b73 article-title: Support vector method for novelty detection – start-page: 8 year: 2005 ident: 10.1016/j.asoc.2021.107751_b25 article-title: HOT SAX: Efficiently finding the most unusual time series subsequence – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.asoc.2021.107751_b16 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – year: 2017 ident: 10.1016/j.asoc.2021.107751_b56 – volume: 13 start-page: 515 year: 1986 ident: 10.1016/j.asoc.2021.107751_b45 article-title: CREI-GARD, a new concept in computerized arrhythmia monitoring systems publication-title: Comput. Cardiol. – volume: 60 start-page: 19 year: 2016 ident: 10.1016/j.asoc.2021.107751_b28 article-title: A survey of network anomaly detection techniques publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2015.11.016 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.asoc.2021.107751_b42 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – year: 2015 ident: 10.1016/j.asoc.2021.107751_b41 article-title: Robust and accurate anomaly detection in ECG artifacts using time series motif discovery publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/453214 – ident: 10.1016/j.asoc.2021.107751_b61 doi: 10.1109/CVPR.2016.90 – start-page: 170 year: 2002 ident: 10.1016/j.asoc.2021.107751_b13 article-title: Outlier detection using replicator neural networks – year: 2014 ident: 10.1016/j.asoc.2021.107751_b63 – start-page: 933 year: 2017 ident: 10.1016/j.asoc.2021.107751_b55 article-title: Language modeling with gated convolutional networks – volume: 8 issue: 1 year: 2015 ident: 10.1016/j.asoc.2021.107751_b69 article-title: Hyperopt: a Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – year: 2016 ident: 10.1016/j.asoc.2021.107751_b2 – ident: 10.1016/j.asoc.2021.107751_b79 – volume: 287 year: 2021 ident: 10.1016/j.asoc.2021.107751_b30 article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116601 – volume: 14 start-page: 503 issue: 5 year: 2017 ident: 10.1016/j.asoc.2021.107751_b52 article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-017-1054-2 – start-page: 703 year: 2019 ident: 10.1016/j.asoc.2021.107751_b21 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks – year: 2018 ident: 10.1016/j.asoc.2021.107751_b49 – start-page: 3575 year: 2019 ident: 10.1016/j.asoc.2021.107751_b54 article-title: MS-TCN: multi-stage temporal convolutional network for action segmentation – year: 2018 ident: 10.1016/j.asoc.2021.107751_b68 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2021.107751_b48 article-title: Multi-scale context aggregation by dilated convolutions – start-page: 901 year: 2016 ident: 10.1016/j.asoc.2021.107751_b58 article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks – volume: 6 start-page: 117 issue: 11 year: 2019 ident: 10.1016/j.asoc.2021.107751_b6 article-title: Recent advances in anomaly detection methods applied to aviation publication-title: Aerospace doi: 10.3390/aerospace6110117 – year: 2016 ident: 10.1016/j.asoc.2021.107751_b18 – start-page: 6389 year: 2018 ident: 10.1016/j.asoc.2021.107751_b81 article-title: Visualizing the loss landscape of neural nets – start-page: 89 year: 2015 ident: 10.1016/j.asoc.2021.107751_b10 article-title: Long short term memory networks for anomaly detection in time series – year: 2016 ident: 10.1016/j.asoc.2021.107751_b14 – volume: 69 start-page: 715 issue: 4 year: 2015 ident: 10.1016/j.asoc.2021.107751_b36 article-title: Automatic ECG arrhythmia classification using dual tree complex wavelet based features publication-title: AEU - Int. J. Electron. Commun. doi: 10.1016/j.aeue.2014.12.013 – year: 2019 ident: 10.1016/j.asoc.2021.107751_b67 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.asoc.2021.107751_b60 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2018 ident: 10.1016/j.asoc.2021.107751_b22 – ident: 10.1016/j.asoc.2021.107751_b59 – year: 2018 ident: 10.1016/j.asoc.2021.107751_b15 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.asoc.2021.107751_b72 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 1 year: 2015 ident: 10.1016/j.asoc.2021.107751_b38 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks – ident: 10.1016/j.asoc.2021.107751_b23 doi: 10.1609/aaai.v33i01.33011409 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.asoc.2021.107751_b44 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – year: 2016 ident: 10.1016/j.asoc.2021.107751_b47 – ident: 10.1016/j.asoc.2021.107751_b64 doi: 10.1109/CVPR.2017.243 – start-page: 485 year: 2002 ident: 10.1016/j.asoc.2021.107751_b84 article-title: Arrhythmia classification using the RR-interval duration signal – year: 2015 ident: 10.1016/j.asoc.2021.107751_b77 – volume: vol. 2473 start-page: 17 year: 2019 ident: 10.1016/j.asoc.2021.107751_b11 article-title: Anomaly detection in electrocardiogram readings with stacked LSTM networks – ident: 10.1016/j.asoc.2021.107751_b8 doi: 10.1145/342009.335388 – volume: 7 start-page: 1991 year: 2019 ident: 10.1016/j.asoc.2021.107751_b12 article-title: DeepAnT: A deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886457 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.asoc.2021.107751_b5 article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data publication-title: J. Big Data doi: 10.1186/s40537-020-00320-x – volume: 7 start-page: 143608 year: 2019 ident: 10.1016/j.asoc.2021.107751_b20 article-title: A GAN-based anomaly detection approach for imbalanced industrial time series publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944689 – volume: 19 start-page: 797 year: 2018 ident: 10.1016/j.asoc.2021.107751_b74 article-title: ThunderSVM: A fast SVM library on GPUs and CPUs publication-title: J. Mach. Learn. Res. (JMLR) – year: 1992 ident: 10.1016/j.asoc.2021.107751_b43 – start-page: 196 year: 1992 ident: 10.1016/j.asoc.2021.107751_b80 article-title: Individual comparisons by ranking methods – start-page: 413 year: 2008 ident: 10.1016/j.asoc.2021.107751_b7 article-title: Isolation forest – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2021.107751_b9 article-title: Online anomaly detection on the webscope S5 dataset: A comparative study – volume: 186 year: 2019 ident: 10.1016/j.asoc.2021.107751_b34 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104923 – volume: 40 start-page: 108 issue: 4 year: 2016 ident: 10.1016/j.asoc.2021.107751_b37 article-title: Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0467-8 – year: 2017 ident: 10.1016/j.asoc.2021.107751_b76 – volume: 52 start-page: 563 issue: 3 year: 2017 ident: 10.1016/j.asoc.2021.107751_b29 article-title: Contextual information fusion for intrusion detection: a survey and taxonomy publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-017-1027-3 – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.asoc.2021.107751_b66 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.1985.325532 – year: 2013 ident: 10.1016/j.asoc.2021.107751_b71 – start-page: 8024 year: 2019 ident: 10.1016/j.asoc.2021.107751_b75 article-title: PyTorch: An imperative style, high-performance deep learning library – volume: 108 start-page: 55 year: 2017 ident: 10.1016/j.asoc.2021.107751_b35 article-title: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities publication-title: Measurement doi: 10.1016/j.measurement.2017.05.022 – volume: vol. 38 start-page: 192 year: 2015 ident: 10.1016/j.asoc.2021.107751_b51 article-title: The loss surfaces of multilayer networks – volume: 11 issue: 4 year: 2016 ident: 10.1016/j.asoc.2021.107751_b4 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS One doi: 10.1371/journal.pone.0152173 – volume: 54 start-page: 243 year: 2013 ident: 10.1016/j.asoc.2021.107751_b27 article-title: Finding time series discord based on bit representation clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.09.015 – ident: 10.1016/j.asoc.2021.107751_b57 doi: 10.3115/v1/P14-1062 – year: 2013 ident: 10.1016/j.asoc.2021.107751_b62 – volume: 11 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.asoc.2021.107751_b26 article-title: Finding the most unusual time series subsequence: algorithms and applications publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-006-0034-6 – volume: 47 start-page: 838 issue: 7 year: 2000 ident: 10.1016/j.asoc.2021.107751_b83 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846677 – start-page: 286 year: 1990 ident: 10.1016/j.asoc.2021.107751_b46 article-title: A real-time algorithm for signal analysis with the help of the wavelet transform – start-page: 1275 year: 2018 ident: 10.1016/j.asoc.2021.107751_b17 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention – start-page: 147 year: 2018 ident: 10.1016/j.asoc.2021.107751_b40 article-title: An efficient anomaly detection in quasi-periodic time series data—A case study with ECG – start-page: 841 year: 2020 ident: 10.1016/j.asoc.2021.107751_b24 article-title: Multivariate time-series anomaly detection via graph attention network – year: 2019 ident: 10.1016/j.asoc.2021.107751_b50 article-title: Temporal convolutional networks for anomaly detection in time series – volume: 135 start-page: 1138 year: 2010 ident: 10.1016/j.asoc.2021.107751_b82 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst doi: 10.1039/b922045c – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 10.1016/j.asoc.2021.107751_b3 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 79 start-page: 179 issue: 2 year: 2015 ident: 10.1016/j.asoc.2021.107751_b39 article-title: Sparse coding with anomaly detection publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-014-0913-0 – year: 2020 ident: 10.1016/j.asoc.2021.107751_b53 article-title: Time series encodings with temporal convolutional networks – volume: 55 start-page: 278 year: 2016 ident: 10.1016/j.asoc.2021.107751_b31 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2015.01.001 – start-page: 38 year: 2015 ident: 10.1016/j.asoc.2021.107751_b70 article-title: Evaluating real-time anomaly detection algorithms – the Numenta Anomaly Benchmark – volume: 41 start-page: 15:1 issue: 3 year: 2009 ident: 10.1016/j.asoc.2021.107751_b1 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – ident: 10.1016/j.asoc.2021.107751_b19 doi: 10.1145/3178876.3185996 – volume: 127 start-page: 144 year: 2016 ident: 10.1016/j.asoc.2021.107751_b32 article-title: ECG-based heartbeat classification for arrhythmia detection: A survey publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.12.008 – start-page: 11 year: 2017 ident: 10.1016/j.asoc.2021.107751_b65 article-title: Time series anomaly detection with discrete wavelet transforms and maximum likelihood estimation – volume: 25 start-page: 65 issue: 1 year: 2019 ident: 10.1016/j.asoc.2021.107751_b33 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – year: 2015 ident: 10.1016/j.asoc.2021.107751_b78 |
SSID | ssj0016928 |
Score | 2.6174667 |
Snippet | Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107751 |
SubjectTerms | Anomaly detection Autoencoder Deep learning Mahalanobis distance TCN |
Title | Temporal convolutional autoencoder for unsupervised anomaly detection in time series |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107751 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbxDbZ3Wz2KEWpryJawVvYzW6gUtNi04MXf7szyaYoSA-ewi6zED4ms9-QmfkIOYuUZlLFNsgl5Ca8Z2yglGBBEjJhITZoWcn5PAzjwQu_fRWvLdJvemGwrNLH_jqmV9Ha73Q9mt3ZeNx9hswj4YrHkLTg_0ScCcq5RC-_-FqWeYSxqvRV0ThAa984U9d4aUAAcsQohA0pRfj35fTjwrneJpueKdLL-mV2SMsVu2SrUWGg_qPcI6NRPV1qQrGC3HsSrPSinOKUSgvGwEzpopgvZhgZ5s5SXUzf9eSTWldWtVgFHRcUdeYpuqSb75OX66tRfxB4rYQgY5yXQSZEZERoWc86mUfCxE6LLFF5FgEjZXkiWagBCwt8A0iW4TZxUlsZMaNzoHzsgKwV08IdEmqyxGRCSmOMwoRKucz2It1ziXTWKt0mYQNSmvlB4qhnMUmbirG3FIFNEdi0BrZNzpdnZvUYjZXWosE-_eUMKcT5FeeO_nnumGzgqm4xPCFr5cfCnQLXKE2ncqYOWb_sP90_4vPmbjD8BvCJ1hE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l9EAvQAuIQGn3UE7IJN6H13vooWqLQnlcCBI3s-tdS0HBiYgjxIU_xR9k1l4jkBCHSjl6vWPZn8ffzMjzAPhBlWZSJTYqJMYmvG9spJRgURozYZEbtKzH-ZyeJYML_u9SXHbgsa2F8WmVgfsbTq_ZOqz0Apq96WjUO8fII-WKJxi0-P-JPGRWHrv7O4zbZj-P_uBL3qP08O_w9yAKowWinHFeRbkQ1IjYsr51sqDCJE6LPFVFTtGBY0UqWawTRS2aZ_RJDLepk9pKyowu0ENieN0P8JEjXfixCQcPz3klMUrV9Xd4d5G_vVCp0ySVaYQcg1Ia44KUIn7bGr6wcIdrsBJcU_KrefrP0HHlF1htxz6QwALrMBw27azGxKesB9XFIz2vJr4tpsXN6AqTeTmbTz0VzZwlupzc6PE9sa6qk79KMiqJH2xP_DfgZhtwsRAEN2GpnJRuC4jJU5MLKY0xykdwyuW2T3XfpdJZq3QX4hakLA-dy_0AjXHWpqhdZx7YzAObNcB2Yf9ZZtr07Xh3t2ixz15pX4aG5R257f-U-w7Lg-HpSXZydHa8A5_8maa-8SssVbdzt4uOTmW-1YpF4GrRmvwEU7EQAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+convolutional+autoencoder+for+unsupervised+anomaly+detection+in+time+series&rft.jtitle=Applied+soft+computing&rft.au=Thill%2C+Markus&rft.au=Konen%2C+Wolfgang&rft.au=Wang%2C+Hao&rft.au=B%C3%A4ck%2C+Thomas&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=112&rft_id=info:doi/10.1016%2Fj.asoc.2021.107751&rft.externalDocID=S1568494621006724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |