An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation
A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in dev...
Saved in:
Published in | Biomedical signal processing and control Vol. 68; p. 102574 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in developing a BCI is handling the high dimensionality of the data recorded from multichannel EEG signals which are highly subject-specific. Designing a portable BCI whilst minimizing EEG channel number is a challenge. To this end, this paper presents a method to reduce the channel count with the goal of reducing computational complexity whilst maintaining a sufficient level of accuracy, by utilising an automatic subject-specific channel selection method created using the Pearson correlation coefficient. This method computes the correlation between EEG signals and helps to select highly correlated EEG channels for a particular subject without compromising classification accuracy (CA). Common spatial patterns (CSP) are used to analyse imagined left and right hand movements and the method is evaluated on both BCI Competition III Dataset IIIa and right hand and foot imagined tasks on BCI Competition III Dataset IVa. For both datasets, a minimum number of EEG channels are identified with an average channel reduction of 65.45% whilst demonstrating an increase of >5% in CA using channel Cz as a reference. |
---|---|
AbstractList | A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in developing a BCI is handling the high dimensionality of the data recorded from multichannel EEG signals which are highly subject-specific. Designing a portable BCI whilst minimizing EEG channel number is a challenge. To this end, this paper presents a method to reduce the channel count with the goal of reducing computational complexity whilst maintaining a sufficient level of accuracy, by utilising an automatic subject-specific channel selection method created using the Pearson correlation coefficient. This method computes the correlation between EEG signals and helps to select highly correlated EEG channels for a particular subject without compromising classification accuracy (CA). Common spatial patterns (CSP) are used to analyse imagined left and right hand movements and the method is evaluated on both BCI Competition III Dataset IIIa and right hand and foot imagined tasks on BCI Competition III Dataset IVa. For both datasets, a minimum number of EEG channels are identified with an average channel reduction of 65.45% whilst demonstrating an increase of >5% in CA using channel Cz as a reference. |
ArticleNumber | 102574 |
Author | Pachori, Ram Bilas Prasad, Girijesh McCreadie, Karl Wang, Hui Gaur, Pramod |
Author_xml | – sequence: 1 givenname: Pramod surname: Gaur fullname: Gaur, Pramod email: pgaur@dubai.bits-pilani.ac.in organization: Department of Computer Science, BITS Pilani, Dubai Campus, Dubai, United Arab Emirates – sequence: 2 givenname: Karl surname: McCreadie fullname: McCreadie, Karl organization: Intelligent Systems Research Centre, Ulster University, United Kingdom – sequence: 3 givenname: Ram Bilas surname: Pachori fullname: Pachori, Ram Bilas organization: Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, India – sequence: 4 givenname: Hui surname: Wang fullname: Wang, Hui organization: School of Computing, Ulster University, United Kingdom – sequence: 5 givenname: Girijesh surname: Prasad fullname: Prasad, Girijesh organization: Intelligent Systems Research Centre, Ulster University, United Kingdom |
BookMark | eNp9kLFOwzAQhi1UJNrCCzD5BVLsxEkciaVUpVSqxAKz5diX1lFqV3aK1IVnx2lhYeh0vv_uO_n_J2hknQWEHimZUUKLp3ZWh4OapSSlUUjzkt2gMS1ZkXBK-OjvTSp2hyYhtIQwXlI2Rt9zi-Wxd3vZG4XDsW5B9TgcQJkmCmonrYUOB-iibpzFe-h3TuPGeQw2TpWxW7x3fezNXm7Bn7DqZAgDLs-EsXi5XCUvizU-hmFbOe-hOw_v0W0juwAPv3WKPl-XH4u3ZPO-Wi_mm0RljPVJrThjWjYsL3RKoxdWQE4o1RUrs6rhJc_KptGSsLpimnPQuWJxVVa0LrOizqaIX-4q70Lw0Ahl-vMPei9NJygRQ46iFUOOYshRXHKMaPoPPfjo1J-uQ88XCKKpLwNeBGXAKtDGxyCFduYa_gNRk5B6 |
CitedBy_id | crossref_primary_10_1007_s11760_025_03851_z crossref_primary_10_3390_brainsci13091340 crossref_primary_10_1016_j_bspc_2023_104750 crossref_primary_10_3390_jpm13010046 crossref_primary_10_1016_j_bspc_2024_106930 crossref_primary_10_3390_s22155771 crossref_primary_10_1016_j_jenvman_2023_118283 crossref_primary_10_1016_j_brainres_2024_149039 crossref_primary_10_3389_fnins_2023_1251968 crossref_primary_10_1088_1741_2552_acae07 crossref_primary_10_3390_app13074438 crossref_primary_10_1007_s13042_024_02455_2 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_1016_j_bspc_2022_103618 crossref_primary_10_1016_j_eswa_2024_126362 crossref_primary_10_53941_ijndi_2023_100008 crossref_primary_10_1155_2021_2146369 crossref_primary_10_1007_s11517_024_03069_0 crossref_primary_10_1002_ima_22643 crossref_primary_10_1177_01423312241263140 crossref_primary_10_3390_s24051678 crossref_primary_10_1109_TBME_2024_3486119 crossref_primary_10_3934_mbe_2021213 crossref_primary_10_1016_j_bspc_2021_103404 crossref_primary_10_1088_1741_2552_ad504a crossref_primary_10_3390_signals4010004 crossref_primary_10_1016_j_bspc_2023_105867 crossref_primary_10_2139_ssrn_3985896 crossref_primary_10_1088_2057_1976_acde82 crossref_primary_10_3389_fnhum_2022_1029784 crossref_primary_10_3390_s24010149 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_1016_j_measen_2022_100616 crossref_primary_10_1016_j_heliyon_2022_e11102 crossref_primary_10_3390_s22062092 crossref_primary_10_1016_j_aej_2025_02_001 crossref_primary_10_16984_saufenbilder_1206968 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_1016_j_bspc_2025_107552 crossref_primary_10_1142_S0219467823500535 crossref_primary_10_2139_ssrn_3993055 crossref_primary_10_3390_computers12070145 crossref_primary_10_1016_j_bspc_2023_104684 crossref_primary_10_3390_s25010120 crossref_primary_10_3390_bioengineering9120726 crossref_primary_10_1016_j_bbe_2021_06_007 crossref_primary_10_1016_j_bspc_2023_105139 crossref_primary_10_1016_j_bspc_2024_106685 crossref_primary_10_1002_ima_22821 crossref_primary_10_1016_j_bspc_2022_103645 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1109_ACCESS_2023_3275022 crossref_primary_10_1016_j_engappai_2023_106122 crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_32604_cmc_2022_021119 crossref_primary_10_1007_s44196_024_00660_z crossref_primary_10_1007_s00521_024_10789_9 |
Cites_doi | 10.1016/j.jneumeth.2018.04.013 10.1142/S0129065719500254 10.1155/2019/8068357 10.1109/MSP.2008.4408441 10.1007/s10462-019-09694-8 10.1109/TNSRE.2006.875642 10.1088/1741-2552/abbd21 10.1371/journal.pone.0000637 10.1016/j.eswa.2017.11.007 10.1109/TBME.2011.2131142 10.1109/86.895946 10.1109/JPROC.2015.2407272 10.1088/1741-2560/4/2/R01 10.1016/0013-4694(91)90040-B 10.1109/TBME.2010.2082539 10.1186/s13634-015-0251-9 10.1016/j.artmed.2012.02.001 10.1109/TBME.2014.2312397 10.1109/JSEN.2019.2912790 10.1109/TNSRE.2019.2922713 10.1109/ACCESS.2020.3003056 10.1016/j.neucom.2014.12.114 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.102574 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_102574 S1746809421001713 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-bc844daf456d2117446e5011d94739f87837ffda04b94d88ed5c46d2a91b736b3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:09 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:43:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Channel selection Linear discriminant analysis Motor-imagery Brain–computer interface Common spatial patterns |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-bc844daf456d2117446e5011d94739f87837ffda04b94d88ed5c46d2a91b736b3 |
OpenAccessLink | https://pure.ulster.ac.uk/ws/files/89945605/Final_version_BSPC.pdf |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_102574 crossref_primary_10_1016_j_bspc_2021_102574 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wolpaw, Wolpaw (bib0010) 2012 Yuan, He (bib0015) 2014; 61 Lotte, Guan (bib0130) 2011; 58 He, Baxter, Edelman, Cline, Wenjing (bib0020) 2015; 103 Alotaiby, El-Samie, Alshebeili, Ahmad (bib0095) 2015; 2015 Roy, Rathee, Chowdhury, McCreadie, Prasad (bib0120) 2020; 17 Park, Chung (bib0115) 2019; 27 Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib0140) 2008; 25 Gaur, McCreadie, Pachori, Wang, Prasad (bib0090) 2019; 29 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0135) 2006; 14 Gaur, Pachori, Wang, Prasad (bib0035) 2018; 95 He, Yu, Gu, Li (bib0065) 2009 Yang, Singh, Hines, Schlaghecken, Iliescu, Leeson, Stocks (bib0080) 2012; 55 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0145) 2007; 4 Belwafi, Romain, Gannouni, Ghaffari, Djemal, Ouni (bib0110) 2018; 305 Gaur, Pachori, Wang, Prasad (bib0050) 2019 Baig, Aslam, Shum (bib0100) 2020; 53 Gaur, Pachori, Wang, Prasad (bib0040) 2015 Gaur, Pachori, Wang, Prasad (bib0085) 2016 Gaur, Pachori, Wang, Prasad (bib0045) 2016 Popescu, Fazli, Badower, Blankertz, Müller (bib0030) 2007; 2 Wang, Gao, Gao (bib0070) 2006 Ramoser, Muller-Gerking, Pfurtscheller (bib0060) 2000; 8 Wolpaw, McFarland, Neat, Forneris (bib0005) 1991; 78 Arvaneh, Guan, Ang, Quek (bib0025) 2011; 58 Yang, Kyrgyzov, Wiart, Bloch (bib0075) 2013 Feng, Jin, Daly, Zhou, Niu, Wang, Cichocki (bib0105) 2019 Park, Chung (bib0125) 2020; 8 Ye, Xiong (bib0150) 2007 Gandhi, Prasad, Coyle, Behera, McGinnity (bib0055) 2015; 170 Baig (10.1016/j.bspc.2021.102574_bib0100) 2020; 53 Park (10.1016/j.bspc.2021.102574_bib0115) 2019; 27 Wang (10.1016/j.bspc.2021.102574_bib0070) 2006 Alotaiby (10.1016/j.bspc.2021.102574_bib0095) 2015; 2015 Lotte (10.1016/j.bspc.2021.102574_bib0145) 2007; 4 Gandhi (10.1016/j.bspc.2021.102574_bib0055) 2015; 170 Blankertz (10.1016/j.bspc.2021.102574_bib0135) 2006; 14 Yang (10.1016/j.bspc.2021.102574_bib0075) 2013 Gaur (10.1016/j.bspc.2021.102574_bib0050) 2019 Gaur (10.1016/j.bspc.2021.102574_bib0090) 2019; 29 Park (10.1016/j.bspc.2021.102574_bib0125) 2020; 8 Gaur (10.1016/j.bspc.2021.102574_bib0045) 2016 Ramoser (10.1016/j.bspc.2021.102574_bib0060) 2000; 8 Gaur (10.1016/j.bspc.2021.102574_bib0085) 2016 Gaur (10.1016/j.bspc.2021.102574_bib0040) 2015 Yang (10.1016/j.bspc.2021.102574_bib0080) 2012; 55 Belwafi (10.1016/j.bspc.2021.102574_bib0110) 2018; 305 He (10.1016/j.bspc.2021.102574_bib0065) 2009 Ye (10.1016/j.bspc.2021.102574_bib0150) 2007 Blankertz (10.1016/j.bspc.2021.102574_bib0140) 2008; 25 He (10.1016/j.bspc.2021.102574_bib0020) 2015; 103 Lotte (10.1016/j.bspc.2021.102574_bib0130) 2011; 58 Yuan (10.1016/j.bspc.2021.102574_bib0015) 2014; 61 Roy (10.1016/j.bspc.2021.102574_bib0120) 2020; 17 Feng (10.1016/j.bspc.2021.102574_bib0105) 2019 Wolpaw (10.1016/j.bspc.2021.102574_bib0010) 2012 Gaur (10.1016/j.bspc.2021.102574_bib0035) 2018; 95 Wolpaw (10.1016/j.bspc.2021.102574_bib0005) 1991; 78 Popescu (10.1016/j.bspc.2021.102574_bib0030) 2007; 2 Arvaneh (10.1016/j.bspc.2021.102574_bib0025) 2011; 58 |
References_xml | – volume: 4 start-page: R1 year: 2007 ident: bib0145 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 58 start-page: 1865 year: 2011 end-page: 1873 ident: bib0025 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: IEEE Trans. Biomed. Eng. – year: 2012 ident: bib0010 article-title: Brain–Computer Interfaces: Principles and Practice – year: 2016 ident: bib0085 article-title: Enhanced motor imagery classification in EEG-BCI using multivariate EMD based filtering and CSP features publication-title: International Brain–Computer Interface (BCI) Meeting – volume: 78 start-page: 252 year: 1991 end-page: 259 ident: bib0005 article-title: An EEG-based brain–computer interface for cursor control publication-title: Electroencephalogr. Clin. Neurophysiol. – start-page: 5392 year: 2006 end-page: 5395 ident: bib0070 article-title: Common spatial pattern method for channel selection in motor imagery based brain–computer interface publication-title: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: bib0060 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib0135 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 55 start-page: 117 year: 2012 end-page: 126 ident: bib0080 article-title: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach publication-title: Artif. Intell. Med. – volume: 103 start-page: 907 year: 2015 end-page: 925 ident: bib0020 article-title: Noninvasive brain–computer interfaces based on sensorimotor rhythms publication-title: Proc. IEEE – volume: 58 start-page: 355 year: 2011 end-page: 362 ident: bib0130 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. – year: 2019 ident: bib0105 article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system publication-title: Comput. Intell. Neurosci. – volume: 53 start-page: 1207 year: 2020 end-page: 1232 ident: bib0100 article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey publication-title: Artif. Intell. Rev. – volume: 8 start-page: 111514 year: 2020 end-page: 111521 ident: bib0125 article-title: Optimal channel selection using correlation coefficient for CSP based EEG classification publication-title: IEEE Access – volume: 170 start-page: 161 year: 2015 end-page: 167 ident: bib0055 article-title: Evaluating quantum neural network filtered motor imagery brain–computer interface using multiple classification techniques publication-title: Neurocomputing – volume: 29 start-page: 1950025 year: 2019 ident: bib0090 article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface publication-title: Int. J. Neural Syst. – start-page: 1 year: 2016 end-page: 7 ident: bib0045 article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI publication-title: Signals and Systems Conference (ISSC), 2016 27th Irish – start-page: 1277 year: 2013 end-page: 1280 ident: bib0075 article-title: Subject-specific channel selection for classification of motor imagery electroencephalographic data publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 644 year: 2007 end-page: 651 ident: bib0150 article-title: SVM versus least squares SVM publication-title: Artificial Intelligence and Statistics – volume: 95 start-page: 201 year: 2018 end-page: 211 ident: bib0035 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. – start-page: 2353 year: 2009 end-page: 2356 ident: bib0065 article-title: Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals publication-title: 2009 Chinese Control and Decision Conference – year: 2019 ident: bib0050 article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG based motor imagery-brain computer interface publication-title: IEEE Sens. J. – volume: 17 start-page: 056037 year: 2020 ident: bib0120 article-title: Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data publication-title: J. Neural Eng. – start-page: 1 year: 2015 end-page: 7 ident: bib0040 article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain–computer interface publication-title: 2015 International Joint Conference on Neural Networks (IJCNN) – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bib0140 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – volume: 61 start-page: 1425 year: 2014 end-page: 1435 ident: bib0015 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. – volume: 2 start-page: e637 year: 2007 ident: bib0030 article-title: Single trial classification of motor imagination using 6 dry EEG electrodes publication-title: PLoS ONE – volume: 2015 start-page: 66 year: 2015 ident: bib0095 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. – volume: 305 start-page: 1 year: 2018 end-page: 16 ident: bib0110 article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems publication-title: J. Neurosci. Methods – volume: 27 start-page: 1378 year: 2019 end-page: 1388 ident: bib0115 article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2012 ident: 10.1016/j.bspc.2021.102574_bib0010 – volume: 305 start-page: 1 year: 2018 ident: 10.1016/j.bspc.2021.102574_bib0110 article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.04.013 – volume: 29 start-page: 1950025 issue: 10 year: 2019 ident: 10.1016/j.bspc.2021.102574_bib0090 article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065719500254 – year: 2019 ident: 10.1016/j.bspc.2021.102574_bib0105 article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/8068357 – start-page: 1277 year: 2013 ident: 10.1016/j.bspc.2021.102574_bib0075 article-title: Subject-specific channel selection for classification of motor imagery electroencephalographic data – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.bspc.2021.102574_bib0140 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 53 start-page: 1207 issue: 2 year: 2020 ident: 10.1016/j.bspc.2021.102574_bib0100 article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09694-8 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.bspc.2021.102574_bib0135 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 17 start-page: 056037 issue: 5 year: 2020 ident: 10.1016/j.bspc.2021.102574_bib0120 article-title: Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abbd21 – volume: 2 start-page: e637 issue: 7 year: 2007 ident: 10.1016/j.bspc.2021.102574_bib0030 article-title: Single trial classification of motor imagination using 6 dry EEG electrodes publication-title: PLoS ONE doi: 10.1371/journal.pone.0000637 – start-page: 644 year: 2007 ident: 10.1016/j.bspc.2021.102574_bib0150 article-title: SVM versus least squares SVM – start-page: 5392 year: 2006 ident: 10.1016/j.bspc.2021.102574_bib0070 article-title: Common spatial pattern method for channel selection in motor imagery based brain–computer interface – volume: 95 start-page: 201 year: 2018 ident: 10.1016/j.bspc.2021.102574_bib0035 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.007 – volume: 58 start-page: 1865 issue: 6 year: 2011 ident: 10.1016/j.bspc.2021.102574_bib0025 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2131142 – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 10.1016/j.bspc.2021.102574_bib0060 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 103 start-page: 907 issue: 6 year: 2015 ident: 10.1016/j.bspc.2021.102574_bib0020 article-title: Noninvasive brain–computer interfaces based on sensorimotor rhythms publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2407272 – volume: 4 start-page: R1 issue: 2 year: 2007 ident: 10.1016/j.bspc.2021.102574_bib0145 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – start-page: 1 year: 2016 ident: 10.1016/j.bspc.2021.102574_bib0045 article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI – start-page: 2353 year: 2009 ident: 10.1016/j.bspc.2021.102574_bib0065 article-title: Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2021.102574_bib0040 article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain–computer interface – volume: 78 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.bspc.2021.102574_bib0005 article-title: An EEG-based brain–computer interface for cursor control publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(91)90040-B – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 10.1016/j.bspc.2021.102574_bib0130 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 2015 start-page: 66 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.102574_bib0095 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-015-0251-9 – volume: 55 start-page: 117 issue: 2 year: 2012 ident: 10.1016/j.bspc.2021.102574_bib0080 article-title: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2012.02.001 – volume: 61 start-page: 1425 issue: 5 year: 2014 ident: 10.1016/j.bspc.2021.102574_bib0015 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2312397 – year: 2019 ident: 10.1016/j.bspc.2021.102574_bib0050 article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG based motor imagery-brain computer interface publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2912790 – year: 2016 ident: 10.1016/j.bspc.2021.102574_bib0085 article-title: Enhanced motor imagery classification in EEG-BCI using multivariate EMD based filtering and CSP features publication-title: International Brain–Computer Interface (BCI) Meeting – volume: 27 start-page: 1378 issue: 7 year: 2019 ident: 10.1016/j.bspc.2021.102574_bib0115 article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2922713 – volume: 8 start-page: 111514 year: 2020 ident: 10.1016/j.bspc.2021.102574_bib0125 article-title: Optimal channel selection using correlation coefficient for CSP based EEG classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003056 – volume: 170 start-page: 161 year: 2015 ident: 10.1016/j.bspc.2021.102574_bib0055 article-title: Evaluating quantum neural network filtered motor imagery brain–computer interface using multiple classification techniques publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.114 |
SSID | ssj0048714 |
Score | 2.5129879 |
Snippet | A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102574 |
SubjectTerms | Brain–computer interface Channel selection Common spatial patterns Linear discriminant analysis Motor-imagery |
Title | An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation |
URI | https://dx.doi.org/10.1016/j.bspc.2021.102574 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IxPsgdvpmLbbbc9IgFBIxcl4dbso0UMLkTKwQu_3ZluSzAxHDy22Wmamdmdb9qZbwi5UZrFOmCeI5iOHBYIjlsKfFlo_EsGHhRio_DLIOwN2dMoGNVIu-qFwbLK8uy3Z3pxWpd3mqU2m_PJpPkKWDqMIDvx3IL0BRk_GePo5XerdZkH4PGC3xsXO7i6bJyxNV5yMUcaQ89FBoOAs7-D00bA6R6Q_RIp0pZ9mUNSS80R2dvgDzwmq5ahYpnPCtpVulhK_KhCsXkSC4AoNvWadEoXxawbMAC186IpAFWamnek2jBjCsaC68knsll8U4VwGsULk9GJoZ3Oo_PQ7lMskR9TheM8bAHdCRl2O2_tnlMOVHCUz1juSBUxpkUGoElD4schFUwD2OA6ZtyPs4hDtpplWtwzGYPpolQHisFSEbuS-6H0T0ndzEx6RiigjEhDJNNSZcyV8NA41oJnIvMkYCL_nLiVJhNVso3j0ItpUpWVfSSo_QS1n1jtn5Pbtczccm1sXR1UBkp-eUwCwWCL3MU_5S7JLl7ZUt0rUs-_luk1AJJcNgqPa5CdVv-5N_gBdHPgeg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdvpmLb7euIBAUFLkLCrdlHizW4ECkHL_x2Z_ogmBgOHikzTTMzu_NtO_MNIbdSsUA5zDI4U77BHO7hkoJY5gq_kkEEudgo3Ou77SF7GTmjCmmWvTBYVlns_fmenu3WxZV6Yc36LEnqb4ClXR9OJ5aZkb7YW2SbwfLFMQb3y1WdBwDyjOAbpQ0ULzpn8iIvMZ8hj6FlIoWB47G_s9Naxnk6IPsFVKSN_GkOSSXSR2RvjUDwmCwbmvJFOs14V-l8IfCtCsXuSawAotjVq6MJnWfDbsADNB8YTQGp0ki_I9eGHlPwFvxOPpHO4ptKxNOonvmMJpq2Ws_GY7NDsUZ-TCXO88gr6E7I8Kk1aLaNYqKCIW3GUkNInzHFY0BNCk5-HpwFIwdWuAqYZwex78FxNY4Vf2AiAN_5kXIkA1EemMKzXWGfkqqe6uiMUIAZvoJUpoSMmSngpkGguBfz2BIAiuwaMUtLhrKgG8epF5OwrCv7CNH6IVo_zK1fI3crnVlOtrFR2ikdFP4KmRCywQa983_q3ZCd9qDXDbud_usF2cV_8rrdS1JNvxbRFaCTVFxn0fcDrXniCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+subject+specific+channel+selection+method+for+enhancing+motor+imagery+classification+in+EEG-BCI+using+correlation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gaur%2C+Pramod&rft.au=McCreadie%2C+Karl&rft.au=Pachori%2C+Ram+Bilas&rft.au=Wang%2C+Hui&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102574&rft_id=info:doi/10.1016%2Fj.bspc.2021.102574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |