An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation

A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in dev...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 68; p. 102574
Main Authors Gaur, Pramod, McCreadie, Karl, Pachori, Ram Bilas, Wang, Hui, Prasad, Girijesh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in developing a BCI is handling the high dimensionality of the data recorded from multichannel EEG signals which are highly subject-specific. Designing a portable BCI whilst minimizing EEG channel number is a challenge. To this end, this paper presents a method to reduce the channel count with the goal of reducing computational complexity whilst maintaining a sufficient level of accuracy, by utilising an automatic subject-specific channel selection method created using the Pearson correlation coefficient. This method computes the correlation between EEG signals and helps to select highly correlated EEG channels for a particular subject without compromising classification accuracy (CA). Common spatial patterns (CSP) are used to analyse imagined left and right hand movements and the method is evaluated on both BCI Competition III Dataset IIIa and right hand and foot imagined tasks on BCI Competition III Dataset IVa. For both datasets, a minimum number of EEG channels are identified with an average channel reduction of 65.45% whilst demonstrating an increase of >5% in CA using channel Cz as a reference.
AbstractList A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in developing a BCI is handling the high dimensionality of the data recorded from multichannel EEG signals which are highly subject-specific. Designing a portable BCI whilst minimizing EEG channel number is a challenge. To this end, this paper presents a method to reduce the channel count with the goal of reducing computational complexity whilst maintaining a sufficient level of accuracy, by utilising an automatic subject-specific channel selection method created using the Pearson correlation coefficient. This method computes the correlation between EEG signals and helps to select highly correlated EEG channels for a particular subject without compromising classification accuracy (CA). Common spatial patterns (CSP) are used to analyse imagined left and right hand movements and the method is evaluated on both BCI Competition III Dataset IIIa and right hand and foot imagined tasks on BCI Competition III Dataset IVa. For both datasets, a minimum number of EEG channels are identified with an average channel reduction of 65.45% whilst demonstrating an increase of >5% in CA using channel Cz as a reference.
ArticleNumber 102574
Author Pachori, Ram Bilas
Prasad, Girijesh
McCreadie, Karl
Wang, Hui
Gaur, Pramod
Author_xml – sequence: 1
  givenname: Pramod
  surname: Gaur
  fullname: Gaur, Pramod
  email: pgaur@dubai.bits-pilani.ac.in
  organization: Department of Computer Science, BITS Pilani, Dubai Campus, Dubai, United Arab Emirates
– sequence: 2
  givenname: Karl
  surname: McCreadie
  fullname: McCreadie, Karl
  organization: Intelligent Systems Research Centre, Ulster University, United Kingdom
– sequence: 3
  givenname: Ram Bilas
  surname: Pachori
  fullname: Pachori, Ram Bilas
  organization: Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, India
– sequence: 4
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: School of Computing, Ulster University, United Kingdom
– sequence: 5
  givenname: Girijesh
  surname: Prasad
  fullname: Prasad, Girijesh
  organization: Intelligent Systems Research Centre, Ulster University, United Kingdom
BookMark eNp9kLFOwzAQhi1UJNrCCzD5BVLsxEkciaVUpVSqxAKz5diX1lFqV3aK1IVnx2lhYeh0vv_uO_n_J2hknQWEHimZUUKLp3ZWh4OapSSlUUjzkt2gMS1ZkXBK-OjvTSp2hyYhtIQwXlI2Rt9zi-Wxd3vZG4XDsW5B9TgcQJkmCmonrYUOB-iibpzFe-h3TuPGeQw2TpWxW7x3fezNXm7Bn7DqZAgDLs-EsXi5XCUvizU-hmFbOe-hOw_v0W0juwAPv3WKPl-XH4u3ZPO-Wi_mm0RljPVJrThjWjYsL3RKoxdWQE4o1RUrs6rhJc_KptGSsLpimnPQuWJxVVa0LrOizqaIX-4q70Lw0Ahl-vMPei9NJygRQ46iFUOOYshRXHKMaPoPPfjo1J-uQ88XCKKpLwNeBGXAKtDGxyCFduYa_gNRk5B6
CitedBy_id crossref_primary_10_1007_s11760_025_03851_z
crossref_primary_10_3390_brainsci13091340
crossref_primary_10_1016_j_bspc_2023_104750
crossref_primary_10_3390_jpm13010046
crossref_primary_10_1016_j_bspc_2024_106930
crossref_primary_10_3390_s22155771
crossref_primary_10_1016_j_jenvman_2023_118283
crossref_primary_10_1016_j_brainres_2024_149039
crossref_primary_10_3389_fnins_2023_1251968
crossref_primary_10_1088_1741_2552_acae07
crossref_primary_10_3390_app13074438
crossref_primary_10_1007_s13042_024_02455_2
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_1016_j_bspc_2022_103618
crossref_primary_10_1016_j_eswa_2024_126362
crossref_primary_10_53941_ijndi_2023_100008
crossref_primary_10_1155_2021_2146369
crossref_primary_10_1007_s11517_024_03069_0
crossref_primary_10_1002_ima_22643
crossref_primary_10_1177_01423312241263140
crossref_primary_10_3390_s24051678
crossref_primary_10_1109_TBME_2024_3486119
crossref_primary_10_3934_mbe_2021213
crossref_primary_10_1016_j_bspc_2021_103404
crossref_primary_10_1088_1741_2552_ad504a
crossref_primary_10_3390_signals4010004
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_2139_ssrn_3985896
crossref_primary_10_1088_2057_1976_acde82
crossref_primary_10_3389_fnhum_2022_1029784
crossref_primary_10_3390_s24010149
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1016_j_measen_2022_100616
crossref_primary_10_1016_j_heliyon_2022_e11102
crossref_primary_10_3390_s22062092
crossref_primary_10_1016_j_aej_2025_02_001
crossref_primary_10_16984_saufenbilder_1206968
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_1016_j_bspc_2025_107552
crossref_primary_10_1142_S0219467823500535
crossref_primary_10_2139_ssrn_3993055
crossref_primary_10_3390_computers12070145
crossref_primary_10_1016_j_bspc_2023_104684
crossref_primary_10_3390_s25010120
crossref_primary_10_3390_bioengineering9120726
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1016_j_bspc_2023_105139
crossref_primary_10_1016_j_bspc_2024_106685
crossref_primary_10_1002_ima_22821
crossref_primary_10_1016_j_bspc_2022_103645
crossref_primary_10_1109_JSEN_2024_3510059
crossref_primary_10_1109_ACCESS_2023_3275022
crossref_primary_10_1016_j_engappai_2023_106122
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_32604_cmc_2022_021119
crossref_primary_10_1007_s44196_024_00660_z
crossref_primary_10_1007_s00521_024_10789_9
Cites_doi 10.1016/j.jneumeth.2018.04.013
10.1142/S0129065719500254
10.1155/2019/8068357
10.1109/MSP.2008.4408441
10.1007/s10462-019-09694-8
10.1109/TNSRE.2006.875642
10.1088/1741-2552/abbd21
10.1371/journal.pone.0000637
10.1016/j.eswa.2017.11.007
10.1109/TBME.2011.2131142
10.1109/86.895946
10.1109/JPROC.2015.2407272
10.1088/1741-2560/4/2/R01
10.1016/0013-4694(91)90040-B
10.1109/TBME.2010.2082539
10.1186/s13634-015-0251-9
10.1016/j.artmed.2012.02.001
10.1109/TBME.2014.2312397
10.1109/JSEN.2019.2912790
10.1109/TNSRE.2019.2922713
10.1109/ACCESS.2020.3003056
10.1016/j.neucom.2014.12.114
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102574
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102574
S1746809421001713
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-bc844daf456d2117446e5011d94739f87837ffda04b94d88ed5c46d2a91b736b3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:09 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:43:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Channel selection
Linear discriminant analysis
Motor-imagery
Brain–computer interface
Common spatial patterns
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-bc844daf456d2117446e5011d94739f87837ffda04b94d88ed5c46d2a91b736b3
OpenAccessLink https://pure.ulster.ac.uk/ws/files/89945605/Final_version_BSPC.pdf
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_102574
crossref_primary_10_1016_j_bspc_2021_102574
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wolpaw, Wolpaw (bib0010) 2012
Yuan, He (bib0015) 2014; 61
Lotte, Guan (bib0130) 2011; 58
He, Baxter, Edelman, Cline, Wenjing (bib0020) 2015; 103
Alotaiby, El-Samie, Alshebeili, Ahmad (bib0095) 2015; 2015
Roy, Rathee, Chowdhury, McCreadie, Prasad (bib0120) 2020; 17
Park, Chung (bib0115) 2019; 27
Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib0140) 2008; 25
Gaur, McCreadie, Pachori, Wang, Prasad (bib0090) 2019; 29
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0135) 2006; 14
Gaur, Pachori, Wang, Prasad (bib0035) 2018; 95
He, Yu, Gu, Li (bib0065) 2009
Yang, Singh, Hines, Schlaghecken, Iliescu, Leeson, Stocks (bib0080) 2012; 55
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0145) 2007; 4
Belwafi, Romain, Gannouni, Ghaffari, Djemal, Ouni (bib0110) 2018; 305
Gaur, Pachori, Wang, Prasad (bib0050) 2019
Baig, Aslam, Shum (bib0100) 2020; 53
Gaur, Pachori, Wang, Prasad (bib0040) 2015
Gaur, Pachori, Wang, Prasad (bib0085) 2016
Gaur, Pachori, Wang, Prasad (bib0045) 2016
Popescu, Fazli, Badower, Blankertz, Müller (bib0030) 2007; 2
Wang, Gao, Gao (bib0070) 2006
Ramoser, Muller-Gerking, Pfurtscheller (bib0060) 2000; 8
Wolpaw, McFarland, Neat, Forneris (bib0005) 1991; 78
Arvaneh, Guan, Ang, Quek (bib0025) 2011; 58
Yang, Kyrgyzov, Wiart, Bloch (bib0075) 2013
Feng, Jin, Daly, Zhou, Niu, Wang, Cichocki (bib0105) 2019
Park, Chung (bib0125) 2020; 8
Ye, Xiong (bib0150) 2007
Gandhi, Prasad, Coyle, Behera, McGinnity (bib0055) 2015; 170
Baig (10.1016/j.bspc.2021.102574_bib0100) 2020; 53
Park (10.1016/j.bspc.2021.102574_bib0115) 2019; 27
Wang (10.1016/j.bspc.2021.102574_bib0070) 2006
Alotaiby (10.1016/j.bspc.2021.102574_bib0095) 2015; 2015
Lotte (10.1016/j.bspc.2021.102574_bib0145) 2007; 4
Gandhi (10.1016/j.bspc.2021.102574_bib0055) 2015; 170
Blankertz (10.1016/j.bspc.2021.102574_bib0135) 2006; 14
Yang (10.1016/j.bspc.2021.102574_bib0075) 2013
Gaur (10.1016/j.bspc.2021.102574_bib0050) 2019
Gaur (10.1016/j.bspc.2021.102574_bib0090) 2019; 29
Park (10.1016/j.bspc.2021.102574_bib0125) 2020; 8
Gaur (10.1016/j.bspc.2021.102574_bib0045) 2016
Ramoser (10.1016/j.bspc.2021.102574_bib0060) 2000; 8
Gaur (10.1016/j.bspc.2021.102574_bib0085) 2016
Gaur (10.1016/j.bspc.2021.102574_bib0040) 2015
Yang (10.1016/j.bspc.2021.102574_bib0080) 2012; 55
Belwafi (10.1016/j.bspc.2021.102574_bib0110) 2018; 305
He (10.1016/j.bspc.2021.102574_bib0065) 2009
Ye (10.1016/j.bspc.2021.102574_bib0150) 2007
Blankertz (10.1016/j.bspc.2021.102574_bib0140) 2008; 25
He (10.1016/j.bspc.2021.102574_bib0020) 2015; 103
Lotte (10.1016/j.bspc.2021.102574_bib0130) 2011; 58
Yuan (10.1016/j.bspc.2021.102574_bib0015) 2014; 61
Roy (10.1016/j.bspc.2021.102574_bib0120) 2020; 17
Feng (10.1016/j.bspc.2021.102574_bib0105) 2019
Wolpaw (10.1016/j.bspc.2021.102574_bib0010) 2012
Gaur (10.1016/j.bspc.2021.102574_bib0035) 2018; 95
Wolpaw (10.1016/j.bspc.2021.102574_bib0005) 1991; 78
Popescu (10.1016/j.bspc.2021.102574_bib0030) 2007; 2
Arvaneh (10.1016/j.bspc.2021.102574_bib0025) 2011; 58
References_xml – volume: 4
  start-page: R1
  year: 2007
  ident: bib0145
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 58
  start-page: 1865
  year: 2011
  end-page: 1873
  ident: bib0025
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2012
  ident: bib0010
  article-title: Brain–Computer Interfaces: Principles and Practice
– year: 2016
  ident: bib0085
  article-title: Enhanced motor imagery classification in EEG-BCI using multivariate EMD based filtering and CSP features
  publication-title: International Brain–Computer Interface (BCI) Meeting
– volume: 78
  start-page: 252
  year: 1991
  end-page: 259
  ident: bib0005
  article-title: An EEG-based brain–computer interface for cursor control
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 5392
  year: 2006
  end-page: 5395
  ident: bib0070
  article-title: Common spatial pattern method for channel selection in motor imagery based brain–computer interface
  publication-title: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib0060
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0135
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 55
  start-page: 117
  year: 2012
  end-page: 126
  ident: bib0080
  article-title: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach
  publication-title: Artif. Intell. Med.
– volume: 103
  start-page: 907
  year: 2015
  end-page: 925
  ident: bib0020
  article-title: Noninvasive brain–computer interfaces based on sensorimotor rhythms
  publication-title: Proc. IEEE
– volume: 58
  start-page: 355
  year: 2011
  end-page: 362
  ident: bib0130
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2019
  ident: bib0105
  article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system
  publication-title: Comput. Intell. Neurosci.
– volume: 53
  start-page: 1207
  year: 2020
  end-page: 1232
  ident: bib0100
  article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey
  publication-title: Artif. Intell. Rev.
– volume: 8
  start-page: 111514
  year: 2020
  end-page: 111521
  ident: bib0125
  article-title: Optimal channel selection using correlation coefficient for CSP based EEG classification
  publication-title: IEEE Access
– volume: 170
  start-page: 161
  year: 2015
  end-page: 167
  ident: bib0055
  article-title: Evaluating quantum neural network filtered motor imagery brain–computer interface using multiple classification techniques
  publication-title: Neurocomputing
– volume: 29
  start-page: 1950025
  year: 2019
  ident: bib0090
  article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface
  publication-title: Int. J. Neural Syst.
– start-page: 1
  year: 2016
  end-page: 7
  ident: bib0045
  article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI
  publication-title: Signals and Systems Conference (ISSC), 2016 27th Irish
– start-page: 1277
  year: 2013
  end-page: 1280
  ident: bib0075
  article-title: Subject-specific channel selection for classification of motor imagery electroencephalographic data
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
– start-page: 644
  year: 2007
  end-page: 651
  ident: bib0150
  article-title: SVM versus least squares SVM
  publication-title: Artificial Intelligence and Statistics
– volume: 95
  start-page: 201
  year: 2018
  end-page: 211
  ident: bib0035
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
– start-page: 2353
  year: 2009
  end-page: 2356
  ident: bib0065
  article-title: Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals
  publication-title: 2009 Chinese Control and Decision Conference
– year: 2019
  ident: bib0050
  article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG based motor imagery-brain computer interface
  publication-title: IEEE Sens. J.
– volume: 17
  start-page: 056037
  year: 2020
  ident: bib0120
  article-title: Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data
  publication-title: J. Neural Eng.
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib0040
  article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain–computer interface
  publication-title: 2015 International Joint Conference on Neural Networks (IJCNN)
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bib0140
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 61
  start-page: 1425
  year: 2014
  end-page: 1435
  ident: bib0015
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2
  start-page: e637
  year: 2007
  ident: bib0030
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PLoS ONE
– volume: 2015
  start-page: 66
  year: 2015
  ident: bib0095
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 305
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0110
  article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems
  publication-title: J. Neurosci. Methods
– volume: 27
  start-page: 1378
  year: 2019
  end-page: 1388
  ident: bib0115
  article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2012
  ident: 10.1016/j.bspc.2021.102574_bib0010
– volume: 305
  start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.102574_bib0110
  article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.04.013
– volume: 29
  start-page: 1950025
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2021.102574_bib0090
  article-title: Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065719500254
– year: 2019
  ident: 10.1016/j.bspc.2021.102574_bib0105
  article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/8068357
– start-page: 1277
  year: 2013
  ident: 10.1016/j.bspc.2021.102574_bib0075
  article-title: Subject-specific channel selection for classification of motor imagery electroencephalographic data
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.bspc.2021.102574_bib0140
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 53
  start-page: 1207
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2021.102574_bib0100
  article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09694-8
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2021.102574_bib0135
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 17
  start-page: 056037
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2021.102574_bib0120
  article-title: Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abbd21
– volume: 2
  start-page: e637
  issue: 7
  year: 2007
  ident: 10.1016/j.bspc.2021.102574_bib0030
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000637
– start-page: 644
  year: 2007
  ident: 10.1016/j.bspc.2021.102574_bib0150
  article-title: SVM versus least squares SVM
– start-page: 5392
  year: 2006
  ident: 10.1016/j.bspc.2021.102574_bib0070
  article-title: Common spatial pattern method for channel selection in motor imagery based brain–computer interface
– volume: 95
  start-page: 201
  year: 2018
  ident: 10.1016/j.bspc.2021.102574_bib0035
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.007
– volume: 58
  start-page: 1865
  issue: 6
  year: 2011
  ident: 10.1016/j.bspc.2021.102574_bib0025
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2131142
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.bspc.2021.102574_bib0060
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 103
  start-page: 907
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2021.102574_bib0020
  article-title: Noninvasive brain–computer interfaces based on sensorimotor rhythms
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2407272
– volume: 4
  start-page: R1
  issue: 2
  year: 2007
  ident: 10.1016/j.bspc.2021.102574_bib0145
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102574_bib0045
  article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI
– start-page: 2353
  year: 2009
  ident: 10.1016/j.bspc.2021.102574_bib0065
  article-title: Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102574_bib0040
  article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain–computer interface
– volume: 78
  start-page: 252
  issue: 3
  year: 1991
  ident: 10.1016/j.bspc.2021.102574_bib0005
  article-title: An EEG-based brain–computer interface for cursor control
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(91)90040-B
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2021.102574_bib0130
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 2015
  start-page: 66
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102574_bib0095
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-015-0251-9
– volume: 55
  start-page: 117
  issue: 2
  year: 2012
  ident: 10.1016/j.bspc.2021.102574_bib0080
  article-title: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2012.02.001
– volume: 61
  start-page: 1425
  issue: 5
  year: 2014
  ident: 10.1016/j.bspc.2021.102574_bib0015
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2312397
– year: 2019
  ident: 10.1016/j.bspc.2021.102574_bib0050
  article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG based motor imagery-brain computer interface
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2912790
– year: 2016
  ident: 10.1016/j.bspc.2021.102574_bib0085
  article-title: Enhanced motor imagery classification in EEG-BCI using multivariate EMD based filtering and CSP features
  publication-title: International Brain–Computer Interface (BCI) Meeting
– volume: 27
  start-page: 1378
  issue: 7
  year: 2019
  ident: 10.1016/j.bspc.2021.102574_bib0115
  article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2922713
– volume: 8
  start-page: 111514
  year: 2020
  ident: 10.1016/j.bspc.2021.102574_bib0125
  article-title: Optimal channel selection using correlation coefficient for CSP based EEG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003056
– volume: 170
  start-page: 161
  year: 2015
  ident: 10.1016/j.bspc.2021.102574_bib0055
  article-title: Evaluating quantum neural network filtered motor imagery brain–computer interface using multiple classification techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.114
SSID ssj0048714
Score 2.5129879
Snippet A motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102574
SubjectTerms Brain–computer interface
Channel selection
Common spatial patterns
Linear discriminant analysis
Motor-imagery
Title An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation
URI https://dx.doi.org/10.1016/j.bspc.2021.102574
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IxPsgdvpmLbbbc9IgFBIxcl4dbso0UMLkTKwQu_3ZluSzAxHDy22Wmamdmdb9qZbwi5UZrFOmCeI5iOHBYIjlsKfFlo_EsGHhRio_DLIOwN2dMoGNVIu-qFwbLK8uy3Z3pxWpd3mqU2m_PJpPkKWDqMIDvx3IL0BRk_GePo5XerdZkH4PGC3xsXO7i6bJyxNV5yMUcaQ89FBoOAs7-D00bA6R6Q_RIp0pZ9mUNSS80R2dvgDzwmq5ahYpnPCtpVulhK_KhCsXkSC4AoNvWadEoXxawbMAC186IpAFWamnek2jBjCsaC68knsll8U4VwGsULk9GJoZ3Oo_PQ7lMskR9TheM8bAHdCRl2O2_tnlMOVHCUz1juSBUxpkUGoElD4schFUwD2OA6ZtyPs4hDtpplWtwzGYPpolQHisFSEbuS-6H0T0ndzEx6RiigjEhDJNNSZcyV8NA41oJnIvMkYCL_nLiVJhNVso3j0ItpUpWVfSSo_QS1n1jtn5Pbtczccm1sXR1UBkp-eUwCwWCL3MU_5S7JLl7ZUt0rUs-_luk1AJJcNgqPa5CdVv-5N_gBdHPgeg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdvpmLb7euIBAUFLkLCrdlHizW4ECkHL_x2Z_ogmBgOHikzTTMzu_NtO_MNIbdSsUA5zDI4U77BHO7hkoJY5gq_kkEEudgo3Ou77SF7GTmjCmmWvTBYVlns_fmenu3WxZV6Yc36LEnqb4ClXR9OJ5aZkb7YW2SbwfLFMQb3y1WdBwDyjOAbpQ0ULzpn8iIvMZ8hj6FlIoWB47G_s9Naxnk6IPsFVKSN_GkOSSXSR2RvjUDwmCwbmvJFOs14V-l8IfCtCsXuSawAotjVq6MJnWfDbsADNB8YTQGp0ki_I9eGHlPwFvxOPpHO4ptKxNOonvmMJpq2Ws_GY7NDsUZ-TCXO88gr6E7I8Kk1aLaNYqKCIW3GUkNInzHFY0BNCk5-HpwFIwdWuAqYZwex78FxNY4Vf2AiAN_5kXIkA1EemMKzXWGfkqqe6uiMUIAZvoJUpoSMmSngpkGguBfz2BIAiuwaMUtLhrKgG8epF5OwrCv7CNH6IVo_zK1fI3crnVlOtrFR2ikdFP4KmRCywQa983_q3ZCd9qDXDbud_usF2cV_8rrdS1JNvxbRFaCTVFxn0fcDrXniCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+subject+specific+channel+selection+method+for+enhancing+motor+imagery+classification+in+EEG-BCI+using+correlation&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gaur%2C+Pramod&rft.au=McCreadie%2C+Karl&rft.au=Pachori%2C+Ram+Bilas&rft.au=Wang%2C+Hui&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102574&rft_id=info:doi/10.1016%2Fj.bspc.2021.102574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon