Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries
Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in c...
Saved in:
Published in | Energy & environmental science Vol. 14; no. 8; pp. 4463 - 4473 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn
2+
electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn-sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries.
A dual-cation concentrated electrolyte has been developed to enable a stable Zn anode and a vanadium-oxide-based cathode for efficient aqueous Zn-ion batteries. |
---|---|
AbstractList | Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn
2+
electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn–sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries. Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn–sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries. Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn 2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn-sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries. A dual-cation concentrated electrolyte has been developed to enable a stable Zn anode and a vanadium-oxide-based cathode for efficient aqueous Zn-ion batteries. |
Author | Lei, Yongjiu Mohammed, Omar F Alshareef, Husam N Zheng, Xueli Emwas, Abdul-Hamid Yin, Jun Zhu, Yunpei Cui, Yi |
AuthorAffiliation | Advanced Membranes & Porous Materials Center King Abdullah University of Science and Technology (KAUST) Stanford University Materials Science and Engineering Core Labs Division of Physical Science and Engineering KAUST Catalysis Center Department of Materials Science and Engineering Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory |
AuthorAffiliation_xml | – name: KAUST Catalysis Center – name: Advanced Membranes & Porous Materials Center – name: Division of Physical Science and Engineering – name: Core Labs – name: Materials Science and Engineering – name: King Abdullah University of Science and Technology (KAUST) – name: Stanford Institute for Materials and Energy Sciences – name: Stanford University – name: SLAC National Accelerator Laboratory – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Yunpei surname: Zhu fullname: Zhu, Yunpei – sequence: 2 givenname: Jun surname: Yin fullname: Yin, Jun – sequence: 3 givenname: Xueli surname: Zheng fullname: Zheng, Xueli – sequence: 4 givenname: Abdul-Hamid surname: Emwas fullname: Emwas, Abdul-Hamid – sequence: 5 givenname: Yongjiu surname: Lei fullname: Lei, Yongjiu – sequence: 6 givenname: Omar F surname: Mohammed fullname: Mohammed, Omar F – sequence: 7 givenname: Yi surname: Cui fullname: Cui, Yi – sequence: 8 givenname: Husam N surname: Alshareef fullname: Alshareef, Husam N |
BackLink | https://www.osti.gov/servlets/purl/1820151$$D View this record in Osti.gov |
BookMark | eNptkUtLAzEUhYNUsK1u3AuD7oTR3MxMMllqrQ8ouNF1yGQSnTImNUkX9debdnyAmE0C9zuHc08maGSd1QgdA74AXPDLFrTGUDLS7KExsKrMK4bp6PtNOTlAkxCWGFOCGR-jxcxZpW30Muo2a9eyz5WMnbOZ7rWK3vWbqLOwm79sMuN8Jt_X2q1D9tFZlW_JRsaofafDIdo3sg_66Oueoufb-dPsPl883j3Mrha5Ksoy5k3NqalbgNbUDQNV8pIDY7KuWcWJMpQwXGGgTBletVRqSIcZAEMYtKUspuh08HUhdiKoLmr1qpy1KbGAmmCoIEFnA7TyLiUOUSzd2tuUS5CKYuA4uSYKD5TyLgSvjUhuuwLSyl0vAIttseIG5vNdsddJcv5HsvLdm_Sb_-GTAfZB_XC_v1R8Apq7g0c |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_09_020 crossref_primary_10_1016_j_ensm_2024_103851 crossref_primary_10_1016_j_jechem_2023_04_006 crossref_primary_10_5796_electrochemistry_24_00108 crossref_primary_10_1021_acsami_1c19438 crossref_primary_10_1002_aenm_202202419 crossref_primary_10_1039_D3EE00205E crossref_primary_10_1016_j_est_2024_112437 crossref_primary_10_1021_acsnano_2c05285 crossref_primary_10_1021_acsami_4c08820 crossref_primary_10_1039_D3EE04208A crossref_primary_10_1002_adfm_202111714 crossref_primary_10_1002_smll_202309556 crossref_primary_10_1016_j_nanoen_2024_109524 crossref_primary_10_1038_s41467_024_55657_1 crossref_primary_10_1002_aenm_202405253 crossref_primary_10_1038_s41893_022_01028_x crossref_primary_10_1002_batt_202400095 crossref_primary_10_1016_j_cej_2023_141334 crossref_primary_10_1016_j_ensm_2022_10_043 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1126_sciadv_adh1181 crossref_primary_10_1016_j_jechem_2023_12_019 crossref_primary_10_1021_acsnano_3c10394 crossref_primary_10_1016_j_ensm_2022_09_036 crossref_primary_10_1021_acs_jpcc_3c00810 crossref_primary_10_1016_j_jallcom_2024_174528 crossref_primary_10_1039_D1TA08620K crossref_primary_10_1016_j_ensm_2023_102921 crossref_primary_10_1039_D2EE01573K crossref_primary_10_2139_ssrn_4118512 crossref_primary_10_1002_inf2_12344 crossref_primary_10_1002_adfm_202315757 crossref_primary_10_1021_acsnano_3c03500 crossref_primary_10_1002_ange_202309957 crossref_primary_10_1002_ente_202401105 crossref_primary_10_1016_j_est_2023_108914 crossref_primary_10_1016_j_jallcom_2023_168829 crossref_primary_10_1016_j_nanoen_2023_108175 crossref_primary_10_1002_adfm_202311271 crossref_primary_10_1016_j_electacta_2024_145124 crossref_primary_10_1021_acs_iecr_2c02188 crossref_primary_10_1002_adfm_202316643 crossref_primary_10_1002_asia_202200289 crossref_primary_10_1002_adfm_202404146 crossref_primary_10_1016_j_mtchem_2024_102120 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1021_acsenergylett_2c01152 crossref_primary_10_1039_D3QM00104K crossref_primary_10_1002_aenm_202400398 crossref_primary_10_1021_acsanm_3c06229 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1002_smll_202405810 crossref_primary_10_1016_j_electacta_2023_141883 crossref_primary_10_1016_j_est_2024_112211 crossref_primary_10_1021_acsnano_3c06687 crossref_primary_10_1021_acsmaterialslett_3c01385 crossref_primary_10_34133_energymatadv_0141 crossref_primary_10_1002_adfm_202303763 crossref_primary_10_1016_j_ensm_2023_102932 crossref_primary_10_1016_j_ensm_2023_103108 crossref_primary_10_1016_j_cej_2024_152622 crossref_primary_10_1002_sus2_118 crossref_primary_10_1016_j_cclet_2022_06_052 crossref_primary_10_1002_ange_202412266 crossref_primary_10_1002_cssc_202200999 crossref_primary_10_1016_j_jpowsour_2025_236778 crossref_primary_10_1002_ange_202217945 crossref_primary_10_1002_cssc_202200075 crossref_primary_10_1016_j_cej_2023_143971 crossref_primary_10_1016_j_cej_2022_139574 crossref_primary_10_1002_ange_202316499 crossref_primary_10_1016_j_cej_2022_139335 crossref_primary_10_1088_2752_5724_ace3de crossref_primary_10_1016_j_electacta_2024_144149 crossref_primary_10_1021_acs_jpcb_4c04644 crossref_primary_10_1002_adma_202420079 crossref_primary_10_1002_anie_202319125 crossref_primary_10_1002_anie_202407639 crossref_primary_10_1002_batt_202200560 crossref_primary_10_1016_j_electacta_2025_145900 crossref_primary_10_1016_j_cej_2023_147763 crossref_primary_10_1002_adfm_202316788 crossref_primary_10_1002_adfm_202316427 crossref_primary_10_1016_j_est_2024_112992 crossref_primary_10_1002_batt_202400735 crossref_primary_10_1002_adma_202106937 crossref_primary_10_1021_acs_nanolett_2c00065 crossref_primary_10_1002_aenm_202304010 crossref_primary_10_1002_ange_202300418 crossref_primary_10_1002_anie_202307271 crossref_primary_10_1002_adfm_202207898 crossref_primary_10_1016_j_jcis_2024_07_253 crossref_primary_10_1039_D2SC04143J crossref_primary_10_1002_adfm_202402014 crossref_primary_10_1016_j_cej_2022_138265 crossref_primary_10_1016_j_cej_2023_143834 crossref_primary_10_1016_j_mattod_2021_11_021 crossref_primary_10_1002_smll_202400390 crossref_primary_10_1016_j_cej_2024_157842 crossref_primary_10_1039_D4EE04803B crossref_primary_10_1021_acs_energyfuels_4c02287 crossref_primary_10_1039_D1EE03691B crossref_primary_10_1016_j_ensm_2022_10_004 crossref_primary_10_1021_acsmaterialslett_4c00308 crossref_primary_10_1002_ange_202206471 crossref_primary_10_1016_j_mtener_2023_101339 crossref_primary_10_1002_cssc_202201373 crossref_primary_10_1016_j_nanoen_2024_109661 crossref_primary_10_1002_anie_202215385 crossref_primary_10_1039_D1EE03377H crossref_primary_10_1002_smtd_202300554 crossref_primary_10_1002_adfm_202419720 crossref_primary_10_20517_cs_2023_46 crossref_primary_10_1002_adma_202200131 crossref_primary_10_1002_cnl2_54 crossref_primary_10_1016_j_cej_2021_134076 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1016_j_jallcom_2023_172773 crossref_primary_10_1038_s43246_023_00367_2 crossref_primary_10_1039_D2SE00666A crossref_primary_10_2139_ssrn_4117015 crossref_primary_10_1016_j_cej_2024_153239 crossref_primary_10_1016_j_ensm_2024_103866 crossref_primary_10_1002_anie_202401987 crossref_primary_10_1016_j_ensm_2024_103989 crossref_primary_10_1016_j_jechem_2024_03_021 crossref_primary_10_1007_s10008_022_05244_5 crossref_primary_10_1007_s40843_022_2213_y crossref_primary_10_1038_s42004_024_01405_x crossref_primary_10_1002_batt_202200197 crossref_primary_10_1039_D4CS00343H crossref_primary_10_1039_D1TA10122F crossref_primary_10_1002_smll_202308472 crossref_primary_10_1021_acs_energyfuels_3c01058 crossref_primary_10_1016_j_ensm_2023_02_028 crossref_primary_10_1002_ange_202401987 crossref_primary_10_1007_s12274_022_4916_z crossref_primary_10_1016_j_apsusc_2022_155111 crossref_primary_10_1002_aenm_202402521 crossref_primary_10_1016_j_jpowsour_2024_235240 crossref_primary_10_1002_adfm_202417890 crossref_primary_10_1007_s42114_024_00960_0 crossref_primary_10_1016_j_enchem_2022_100097 crossref_primary_10_1016_j_ensm_2024_103616 crossref_primary_10_1039_D4EE03102D crossref_primary_10_1002_adfm_202209642 crossref_primary_10_1016_j_ensm_2024_103331 crossref_primary_10_1002_anie_202412266 crossref_primary_10_1007_s40843_023_2646_0 crossref_primary_10_1021_acsami_3c00168 crossref_primary_10_1021_acsenergylett_2c01535 crossref_primary_10_1002_adma_202300369 crossref_primary_10_1002_bte2_20220029 crossref_primary_10_1002_ange_202401555 crossref_primary_10_1016_j_ensm_2021_09_021 crossref_primary_10_1016_j_ensm_2022_07_017 crossref_primary_10_1002_adma_202203104 crossref_primary_10_1039_D4TA07230H crossref_primary_10_1002_smll_202203327 crossref_primary_10_1016_j_est_2024_111740 crossref_primary_10_1002_ange_202215385 crossref_primary_10_1007_s12274_022_4619_5 crossref_primary_10_1016_j_clay_2024_107661 crossref_primary_10_1002_anie_202407909 crossref_primary_10_1002_adma_202304040 crossref_primary_10_1002_ange_202418682 crossref_primary_10_1021_acsnano_1c11590 crossref_primary_10_1016_j_fmre_2023_02_018 crossref_primary_10_1039_D2TA05573B crossref_primary_10_2139_ssrn_4185641 crossref_primary_10_1002_eom2_12265 crossref_primary_10_1016_j_nanoen_2023_109099 crossref_primary_10_1021_acsnano_4c16521 crossref_primary_10_1002_smtd_202300546 crossref_primary_10_1002_adfm_202211736 crossref_primary_10_1002_adma_202110140 crossref_primary_10_1016_j_jechem_2024_04_016 crossref_primary_10_1039_D3EE00462G crossref_primary_10_1016_j_ensm_2022_12_030 crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1016_j_mser_2024_100865 crossref_primary_10_1002_adfm_202412255 crossref_primary_10_1002_anie_202300418 crossref_primary_10_1002_adma_202204320 crossref_primary_10_3390_batteries8110223 crossref_primary_10_1002_adfm_202310342 crossref_primary_10_1002_smll_202303286 crossref_primary_10_1016_j_esci_2022_03_002 crossref_primary_10_1002_smll_202411632 crossref_primary_10_1002_cssc_202400479 crossref_primary_10_1002_anie_202217945 crossref_primary_10_1039_D4TA02704C crossref_primary_10_3390_en17225768 crossref_primary_10_1039_D4RA08378D crossref_primary_10_1002_ange_202307271 crossref_primary_10_1016_j_carbon_2023_118334 crossref_primary_10_1002_smll_202308282 crossref_primary_10_1021_acsnano_4c04632 crossref_primary_10_1002_adfm_202305550 crossref_primary_10_1002_aenm_202400548 crossref_primary_10_1002_anie_202206471 crossref_primary_10_1016_j_jallcom_2023_169870 crossref_primary_10_1002_cssc_202300730 crossref_primary_10_1007_s12598_023_02541_4 crossref_primary_10_1016_j_cej_2022_136217 crossref_primary_10_1039_D2TA07524E crossref_primary_10_1002_ange_202407639 crossref_primary_10_1007_s12274_022_5325_z crossref_primary_10_1016_j_cej_2024_155615 crossref_primary_10_1002_smll_202410332 crossref_primary_10_1016_j_mattod_2023_12_002 crossref_primary_10_1002_aenm_202303549 crossref_primary_10_1016_j_matre_2025_100313 crossref_primary_10_1002_smtd_202401021 crossref_primary_10_1002_anie_202309957 crossref_primary_10_1016_j_corsci_2025_112762 crossref_primary_10_1002_anie_202416619 crossref_primary_10_1016_j_ensm_2023_01_020 crossref_primary_10_1002_ange_202319125 crossref_primary_10_1002_smll_202311205 crossref_primary_10_1016_S1003_6326_24_66598_2 crossref_primary_10_1002_batt_202400237 crossref_primary_10_1016_j_ensm_2023_01_027 crossref_primary_10_1016_j_joule_2024_12_003 crossref_primary_10_1016_j_ensm_2022_04_039 crossref_primary_10_1039_D4EE00535J crossref_primary_10_1016_j_jpowsour_2024_235799 crossref_primary_10_1016_j_mtener_2022_101130 crossref_primary_10_1016_j_est_2023_107655 crossref_primary_10_1016_j_cclet_2024_110422 crossref_primary_10_1016_j_ensm_2022_04_032 crossref_primary_10_1021_acsami_3c00521 crossref_primary_10_1016_j_cej_2023_144655 crossref_primary_10_1021_acsenergylett_3c00859 crossref_primary_10_1002_adfm_202112609 crossref_primary_10_1016_j_cej_2024_149944 crossref_primary_10_1016_j_cej_2024_156240 crossref_primary_10_1002_anie_202316499 crossref_primary_10_1002_aenm_202403322 crossref_primary_10_1002_ente_202201084 crossref_primary_10_1021_acssuschemeng_1c08646 crossref_primary_10_1016_j_est_2024_112596 crossref_primary_10_1002_aenm_202304094 crossref_primary_10_1002_cssc_202300311 crossref_primary_10_1021_acsami_3c16557 crossref_primary_10_1016_j_cej_2025_159911 crossref_primary_10_1016_j_ensm_2023_04_006 crossref_primary_10_1016_j_ensm_2021_11_030 crossref_primary_10_1021_acsaelm_2c01355 crossref_primary_10_1002_smll_202309519 crossref_primary_10_2139_ssrn_4051665 crossref_primary_10_1016_j_jpowsour_2023_233922 crossref_primary_10_1016_j_nanoen_2022_107145 crossref_primary_10_1039_D2TA01672A crossref_primary_10_1360_SSC_2024_0011 crossref_primary_10_1016_j_jpowsour_2024_236072 crossref_primary_10_1038_s41893_023_01172_y crossref_primary_10_1002_aenm_202102982 crossref_primary_10_1002_inf2_12306 crossref_primary_10_1016_j_ccr_2022_214642 crossref_primary_10_1002_adfm_202304791 crossref_primary_10_1016_j_jpowsour_2022_231452 crossref_primary_10_1002_ange_202416619 crossref_primary_10_1016_j_jelechem_2024_118797 crossref_primary_10_1016_j_cej_2025_159920 crossref_primary_10_1016_j_cej_2024_149390 crossref_primary_10_1002_anie_202401555 crossref_primary_10_1016_j_jcis_2024_09_018 crossref_primary_10_1016_j_jpowsour_2022_231215 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1016_j_cej_2023_142580 crossref_primary_10_1002_aenm_202304303 crossref_primary_10_1002_ange_202407909 crossref_primary_10_1002_aenm_202300782 crossref_primary_10_1149_1945_7111_aca2e7 crossref_primary_10_1016_j_ensm_2021_11_015 crossref_primary_10_1016_j_ensm_2024_103238 crossref_primary_10_1002_aenm_202302927 crossref_primary_10_1016_j_ensm_2022_02_019 crossref_primary_10_1002_aenm_202402011 crossref_primary_10_1002_smtd_202400127 crossref_primary_10_1016_j_ensm_2024_103471 crossref_primary_10_1021_acsaem_4c01941 crossref_primary_10_1016_j_ensm_2023_102856 crossref_primary_10_6023_A24010006 crossref_primary_10_1002_aenm_202203254 crossref_primary_10_1021_acs_nanolett_4c04123 crossref_primary_10_1016_j_device_2024_100641 crossref_primary_10_1038_s41893_022_01029_w crossref_primary_10_1016_j_cej_2022_137471 crossref_primary_10_1021_acsnano_4c15570 crossref_primary_10_1021_acsmaterialslett_4c01340 crossref_primary_10_1002_adma_202206754 crossref_primary_10_1002_aenm_202401706 crossref_primary_10_1002_smll_202410005 crossref_primary_10_1002_adfm_202203905 crossref_primary_10_1002_smll_202104640 crossref_primary_10_1039_D2TA09502E crossref_primary_10_1002_adfm_202315539 crossref_primary_10_1016_j_cej_2022_140764 crossref_primary_10_1002_anie_202418682 crossref_primary_10_1093_nsr_nwaf029 |
Cites_doi | 10.1039/C9CS00131J 10.1002/aenm.201901968 10.1002/aenm.202002128 10.1021/acsami.8b16284 10.1002/adma.202007470 10.1038/nenergy.2016.119 10.1039/C9EE02526J 10.1021/acs.nanolett.7b05403 10.1021/acsenergylett.0c00348 10.1038/nenergy.2016.129 10.1021/acsenergylett.8b01552 10.1038/s41563-018-0063-z 10.1038/s41560-019-0428-9 10.1038/s41524-018-0064-0 10.1021/acs.jpcb.9b11753 10.1139/v68-569 10.1039/D0EE02162H 10.1002/aenm.201900196 10.1021/jacs.7b06434 10.1021/jacs.7b04471 10.1021/ic00158a016 10.1002/aenm.201902430 10.1016/j.joule.2017.08.013 10.1016/j.elecom.2019.106488 10.1038/s41560-020-0655-0 10.1021/acs.nanolett.9b00697 10.1039/C8EE00833G 10.1002/aenm.202001599 10.1021/acs.accounts.0c00360 10.1016/j.joule.2020.05.018 10.1002/anie.202000162 10.1038/s41560-019-0336-z 10.1039/D0EE02620D 10.1039/C9EE00956F 10.1038/s41467-020-18284-0 10.1016/j.chempr.2020.02.001 10.1002/adma.201904427 10.1038/s41467-018-04060-8 10.1002/aenm.201900083 10.1038/s41560-018-0296-8 10.1021/acsami.9b10905 10.1038/nenergy.2017.119 10.1126/science.aab1595 10.1038/s41467-019-13436-3 10.1038/s41467-020-15478-4 10.1038/nmat4834 10.1016/j.mattod.2019.02.004 10.1038/s41560-019-0388-0 10.1002/anie.201711598 10.1038/nenergy.2016.39 10.1007/BF00646111 10.1039/C8CC07730D 10.1063/1.2925258 10.1002/aenm.201901480 10.1002/anie.202005378 10.1016/j.ensm.2020.10.019 10.1002/adfm.201802564 10.1002/adfm.201902653 10.1126/sciadv.aau8131 10.1021/acs.nanolett.7b04889 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI OIOZB OTOTI |
DOI | 10.1039/d1ee01472b |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 4473 |
ExternalDocumentID | 1820151 10_1039_D1EE01472B d1ee01472b |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI -JG OIOZB OTOTI |
ID | FETCH-LOGICAL-c344t-b896f8d11df8b71c4949177a887592cf627050167cf95d6ae11117f11f271d4a3 |
ISSN | 1754-5692 |
IngestDate | Thu May 18 22:29:34 EDT 2023 Mon Jun 30 12:02:26 EDT 2025 Tue Jul 01 01:45:49 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Mon Apr 11 02:56:18 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-b896f8d11df8b71c4949177a887592cf627050167cf95d6ae11117f11f271d4a3 |
Notes | 10.1039/d1ee01472b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 King Abdullah Univ. of Science and Technology (KAUST) USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-76SF00515 |
ORCID | 0000-0001-8500-1130 0000-0002-1749-1120 0000-0001-5029-2142 0000-0002-6800-2649 0000000185001130 0000000150292142 0000000217491120 0000000268002649 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1820151 |
PQID | 2560190111 |
PQPubID | 2047494 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2560190111 crossref_citationtrail_10_1039_D1EE01472B crossref_primary_10_1039_D1EE01472B rsc_primary_d1ee01472b osti_scitechconnect_1820151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210811 |
PublicationDateYYYYMMDD | 2021-08-11 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210811 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United States |
PublicationTitle | Energy & environmental science |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D1EE01472B-(cit26)/*[position()=1]) 2019; 29 Zhang (D1EE01472B-(cit22)/*[position()=1]) 2020; 13 Jiang (D1EE01472B-(cit25)/*[position()=1]) 2020; 32 McQuarrie (D1EE01472B-(cit39)/*[position()=1]) 1984 Soundharrajan (D1EE01472B-(cit50)/*[position()=1]) 2018; 18 Yi (D1EE01472B-(cit21)/*[position()=1]) 2020; 10 Liang (D1EE01472B-(cit34)/*[position()=1]) 2019; 19 Zhu (D1EE01472B-(cit51)/*[position()=1]) 2019; 9 Song (D1EE01472B-(cit27)/*[position()=1]) 2018; 28 Liang (D1EE01472B-(cit15)/*[position()=1]) 2020; 5 Chen (D1EE01472B-(cit30)/*[position()=1]) 2020; 5 Liang (D1EE01472B-(cit37)/*[position()=1]) 2017; 2 Bloor (D1EE01472B-(cit40)/*[position()=1]) 1968; 46 Hao (D1EE01472B-(cit1)/*[position()=1]) 2020; 13 You (D1EE01472B-(cit43)/*[position()=1]) 2017; 139 Hu (D1EE01472B-(cit49)/*[position()=1]) 2018; 18 Tang (D1EE01472B-(cit2)/*[position()=1]) 2019; 12 Qiu (D1EE01472B-(cit16)/*[position()=1]) 2019; 10 Zhang (D1EE01472B-(cit17)/*[position()=1]) 2020; 53 Weber (D1EE01472B-(cit3)/*[position()=1]) 2019; 4 Kaur (D1EE01472B-(cit48)/*[position()=1]) 2020; 124 Ko (D1EE01472B-(cit31)/*[position()=1]) 2019; 104 Bouchal (D1EE01472B-(cit61)/*[position()=1]) 2020; 59 Oberholzer (D1EE01472B-(cit56)/*[position()=1]) 2019; 11 Wang (D1EE01472B-(cit6)/*[position()=1]) 2020; 11 Zhang (D1EE01472B-(cit32)/*[position()=1]) 2018; 54 Zhao (D1EE01472B-(cit42)/*[position()=1]) 2018; 57 Zhang (D1EE01472B-(cit47)/*[position()=1]) 2020; 11 Lukatskaya (D1EE01472B-(cit13)/*[position()=1]) 2018; 11 Shin (D1EE01472B-(cit57)/*[position()=1]) 2019; 9 Auer (D1EE01472B-(cit38)/*[position()=1]) 2008; 128 Yang (D1EE01472B-(cit5)/*[position()=1]) 2020; 4 Sun (D1EE01472B-(cit59)/*[position()=1]) 2017; 139 Kundu (D1EE01472B-(cit58)/*[position()=1]) 2016; 1 Zhang (D1EE01472B-(cit7)/*[position()=1]) 2020; 59 Wan (D1EE01472B-(cit28)/*[position()=1]) 2018; 9 Liu (D1EE01472B-(cit10)/*[position()=1]) 2020; 49 Konarov (D1EE01472B-(cit8)/*[position()=1]) 2018; 3 Wang (D1EE01472B-(cit11)/*[position()=1]) 2018; 17 Sze (D1EE01472B-(cit35)/*[position()=1]) 1978; 7 Zhu (D1EE01472B-(cit55)/*[position()=1]) 2020; 10 Liu (D1EE01472B-(cit52)/*[position()=1]) 2019; 12 Dinh (D1EE01472B-(cit44)/*[position()=1]) 2019; 4 Barnum (D1EE01472B-(cit60)/*[position()=1]) 1983; 22 Cai (D1EE01472B-(cit19)/*[position()=1]) 2021; 33 Pan (D1EE01472B-(cit29)/*[position()=1]) 2016; 1 Wei (D1EE01472B-(cit54)/*[position()=1]) 2019; 9 Guo (D1EE01472B-(cit23)/*[position()=1]) 2021; 34 Suo (D1EE01472B-(cit41)/*[position()=1]) 2015; 350 Chu (D1EE01472B-(cit4)/*[position()=1]) 2017; 16 Wang (D1EE01472B-(cit45)/*[position()=1]) 2018; 4 Zhao (D1EE01472B-(cit46)/*[position()=1]) 2018; 4 Lee (D1EE01472B-(cit33)/*[position()=1]) 2019; 29 Yamada (D1EE01472B-(cit12)/*[position()=1]) 2016; 1 Cao (D1EE01472B-(cit9)/*[position()=1]) 2020; 10 Wang (D1EE01472B-(cit36)/*[position()=1]) 2019; 11 Chen (D1EE01472B-(cit20)/*[position()=1]) 2019; 9 Bin (D1EE01472B-(cit53)/*[position()=1]) 2020; 6 Zhang (D1EE01472B-(cit18)/*[position()=1]) 2017; 1 Yamada (D1EE01472B-(cit24)/*[position()=1]) 2019; 4 Jiang (D1EE01472B-(cit14)/*[position()=1]) 2019; 4 |
References_xml | – issn: 1984 publication-title: General chemistry doi: McQuarrie Rock Gallogly – volume: 49 start-page: 180 year: 2020 ident: D1EE01472B-(cit10)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00131J – volume: 9 start-page: 1901968 year: 2019 ident: D1EE01472B-(cit51)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901968 – volume: 10 start-page: 2002128 year: 2020 ident: D1EE01472B-(cit55)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002128 – volume: 11 start-page: 674 year: 2019 ident: D1EE01472B-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16284 – volume: 33 start-page: 2007470 year: 2021 ident: D1EE01472B-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.202007470 – volume: 1 start-page: 16119 year: 2016 ident: D1EE01472B-(cit58)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 12 start-page: 3288 year: 2019 ident: D1EE01472B-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 18 start-page: 2402 year: 2018 ident: D1EE01472B-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05403 – volume: 5 start-page: 968 year: 2020 ident: D1EE01472B-(cit30)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00348 – volume: 1 start-page: 16129 year: 2016 ident: D1EE01472B-(cit12)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.129 – volume: 3 start-page: 2620 issue: 10 year: 2018 ident: D1EE01472B-(cit8)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01552 – volume: 17 start-page: 543 year: 2018 ident: D1EE01472B-(cit11)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 4 start-page: 683 year: 2019 ident: D1EE01472B-(cit3)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0428-9 – volume: 4 start-page: 15 year: 2018 ident: D1EE01472B-(cit45)/*[position()=1] publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0064-0 – volume: 124 start-page: 2230 issue: 11 year: 2020 ident: D1EE01472B-(cit48)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b11753 – volume: 46 start-page: 3425 year: 1968 ident: D1EE01472B-(cit40)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v68-569 – volume: 13 start-page: 3917 year: 2020 ident: D1EE01472B-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02162H – volume: 9 start-page: 1900196 year: 2019 ident: D1EE01472B-(cit20)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900196 – volume: 139 start-page: 12283 year: 2017 ident: D1EE01472B-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06434 – volume: 139 start-page: 9775 year: 2017 ident: D1EE01472B-(cit59)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04471 – volume: 22 start-page: 2297 year: 1983 ident: D1EE01472B-(cit60)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00158a016 – volume: 10 start-page: 2003065 year: 2020 ident: D1EE01472B-(cit21)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902430 – volume: 1 start-page: 623 year: 2017 ident: D1EE01472B-(cit18)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.08.013 – volume-title: General chemistry year: 1984 ident: D1EE01472B-(cit39)/*[position()=1] – volume: 104 start-page: 106488 year: 2019 ident: D1EE01472B-(cit31)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.106488 – volume: 5 start-page: 646 year: 2020 ident: D1EE01472B-(cit15)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-020-0655-0 – volume: 19 start-page: 3199 year: 2019 ident: D1EE01472B-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00697 – volume: 11 start-page: 2876 year: 2018 ident: D1EE01472B-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00833G – volume: 10 start-page: 2001599 year: 2020 ident: D1EE01472B-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001599 – volume: 53 start-page: 1648 year: 2020 ident: D1EE01472B-(cit17)/*[position()=1] publication-title: Acc. Chem. Rev. doi: 10.1021/acs.accounts.0c00360 – volume: 4 start-page: 1557 year: 2020 ident: D1EE01472B-(cit5)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 59 start-page: 13180 year: 2020 ident: D1EE01472B-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000162 – volume: 4 start-page: 269 year: 2019 ident: D1EE01472B-(cit24)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0336-z – volume: 13 start-page: 4625 year: 2020 ident: D1EE01472B-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02620D – volume: 12 start-page: 2273 year: 2019 ident: D1EE01472B-(cit52)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00956F – volume: 11 start-page: 4463 year: 2020 ident: D1EE01472B-(cit47)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-18284-0 – volume: 6 start-page: 968 year: 2020 ident: D1EE01472B-(cit53)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.02.001 – volume: 32 start-page: 1904427 year: 2020 ident: D1EE01472B-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904427 – volume: 9 start-page: 1656 year: 2018 ident: D1EE01472B-(cit28)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 9 start-page: 1900083 year: 2019 ident: D1EE01472B-(cit57)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900083 – volume: 4 start-page: 107 year: 2019 ident: D1EE01472B-(cit44)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 11 start-page: 42000 year: 2019 ident: D1EE01472B-(cit36)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10905 – volume: 2 start-page: 17119 year: 2017 ident: D1EE01472B-(cit37)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.119 – volume: 350 start-page: 938 year: 2015 ident: D1EE01472B-(cit41)/*[position()=1] publication-title: Science doi: 10.1126/science.aab1595 – volume: 10 start-page: 5374 year: 2019 ident: D1EE01472B-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 11 start-page: 1634 year: 2020 ident: D1EE01472B-(cit6)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15478-4 – volume: 16 start-page: 16 year: 2017 ident: D1EE01472B-(cit4)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4834 – volume: 29 start-page: 26 year: 2019 ident: D1EE01472B-(cit33)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2019.02.004 – volume: 4 start-page: 495 year: 2019 ident: D1EE01472B-(cit14)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0388-0 – volume: 57 start-page: 992 year: 2018 ident: D1EE01472B-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711598 – volume: 1 start-page: 16039 year: 2016 ident: D1EE01472B-(cit29)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 7 start-page: 395 year: 1978 ident: D1EE01472B-(cit35)/*[position()=1] publication-title: J. Solution Chem. doi: 10.1007/BF00646111 – volume: 54 start-page: 14097 year: 2018 ident: D1EE01472B-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC07730D – volume: 128 start-page: 224511 year: 2008 ident: D1EE01472B-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2925258 – volume: 9 start-page: 1901480 year: 2019 ident: D1EE01472B-(cit54)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901480 – volume: 59 start-page: 15913 year: 2020 ident: D1EE01472B-(cit61)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005378 – volume: 34 start-page: 545 year: 2021 ident: D1EE01472B-(cit23)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.019 – volume: 28 start-page: 1802564 year: 2018 ident: D1EE01472B-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 29 start-page: 1902653 year: 2019 ident: D1EE01472B-(cit26)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902653 – volume: 4 start-page: eaau8131 year: 2018 ident: D1EE01472B-(cit46)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aau8131 – volume: 18 start-page: 1758 year: 2018 ident: D1EE01472B-(cit49)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04889 |
SSID | ssj0062079 |
Score | 2.7045186 |
Snippet | Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor... |
SourceID | osti proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4463 |
SubjectTerms | Anodes Anodic dissolution Cathodes Cathodic dissolution Cations Cycles Dissolution Electrolytes Electron states ENERGY STORAGE Performance degradation Rechargeable batteries Safety Sodium Sodium compounds Stability Storage batteries Vanadate Vanadates Water chemistry Zinc |
Title | Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries |
URI | https://www.proquest.com/docview/2560190111 https://www.osti.gov/servlets/purl/1820151 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtiaUGR4IIql9hx4uS4LQsrQJxaseISxY-IStu0KokQ_fWMX4lXFAm4RCvbG6083854rPm-QegVaWjDhRA4lRISlJYzXErCcFopUahcQsy01Rafi9UZ-7DO1xP3xLJLenEkb27llfyPVWEM7GpYsv9g2fGlMACfwb7wBAvD869sfGI4h53Vl1WHhlSF3QXcoW9us_nZGwFZqwbhCjMbCAOm6PXmvJPYrBRWXzNUEoYrekcINKiIiHCBPjlh4eu3wbrwobvS56P_8P29hm5app1HWQ96M65bXvxwZLKFUMMGr5oLX1zv7yCovVT1PtK5TZ4znBeuq92RjsZ4Wmz5WhZhqowcJ2SlWRSEGXMNTn5z8Glm9FEV0RpyO07FFMbG4sJpcgftUsge6AztLj4ev_8SQnRBUyvCOP7soFubVW-mb2-dVGaX4HG3spCd69Aixh5FTh-g-z6HSBYOEA_RHd09QvciZcnH6FMMjSSCRhJBIwnQSAAaiYdGEqCRjNB4gs7eLU9PVtg3zsAyY6zHoqyKtlSEqLYUnEijQEQ4byCg5BWVbUF5mhv-iWyrXBWNNnGTt4S0lBPFmmwPzbrLTj9FiZTg9M0BRpUwoZjIGmpe3WhVtZrTOXodNqmWXlXeNDfZ1La6Iavqt2S5tBt6PEcvx7VXTkvl1lX7Zq9rQLSRMZam3kv2tWk0AKfTOToIJqj9P_F7ba8VDIcapvfALOPbJ2M--9PEPro7IfoAzfrrQT-Hc2YvXnjU_AKGP37Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrated+dual-cation+electrolyte+strategy+for+aqueous+zinc-ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhu%2C+Yunpei&rft.au=Yin%2C+Jun&rft.au=Zheng%2C+Xueli&rft.au=Emwas%2C+Abdul-Hamid&rft.date=2021-08-11&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=8&rft.spage=4463&rft.epage=4473&rft_id=info:doi/10.1039%2Fd1ee01472b&rft.externalDocID=d1ee01472b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |