Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries

Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in c...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 8; pp. 4463 - 4473
Main Authors Zhu, Yunpei, Yin, Jun, Zheng, Xueli, Emwas, Abdul-Hamid, Lei, Yongjiu, Mohammed, Omar F, Cui, Yi, Alshareef, Husam N
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn 2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn-sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries. A dual-cation concentrated electrolyte has been developed to enable a stable Zn anode and a vanadium-oxide-based cathode for efficient aqueous Zn-ion batteries.
AbstractList Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn 2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn–sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries.
Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn–sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries.
Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor reversibility of Zn anodes and dissolution of oxide cathodes, aqueous Zn-ion batteries encounter rapid performance degradation when operating in conventional low-concentration electrolytes. Herein, we demonstrate that an aqueous Zn 2+ electrolyte using a supporting Na salt at a high concentration is efficient to address these issues without sacrificing the power densities, cycling stability, and safety of zinc-ion batteries. We show that the high-concentration solute minimizes the number of free water molecules and the changes in the electronic state of the electrolyte. A combination of experimental and theoretical investigations reveals that a unique interphase, formed on the Zn anode, enables reversible and uniform Zn plating. Utilizing a cathode of sodium vanadate synthesized through a scalable strategy, the Zn-sodium vanadate battery with the concentrated bi-cation electrolyte shows improved cycling stability, decent rate performance, and low self-discharge. This work provides new insights on electrolyte engineering to achieve high-performance aqueous batteries. A dual-cation concentrated electrolyte has been developed to enable a stable Zn anode and a vanadium-oxide-based cathode for efficient aqueous Zn-ion batteries.
Author Lei, Yongjiu
Mohammed, Omar F
Alshareef, Husam N
Zheng, Xueli
Emwas, Abdul-Hamid
Yin, Jun
Zhu, Yunpei
Cui, Yi
AuthorAffiliation Advanced Membranes & Porous Materials Center
King Abdullah University of Science and Technology (KAUST)
Stanford University
Materials Science and Engineering
Core Labs
Division of Physical Science and Engineering
KAUST Catalysis Center
Department of Materials Science and Engineering
Stanford Institute for Materials and Energy Sciences
SLAC National Accelerator Laboratory
AuthorAffiliation_xml – name: KAUST Catalysis Center
– name: Advanced Membranes & Porous Materials Center
– name: Division of Physical Science and Engineering
– name: Core Labs
– name: Materials Science and Engineering
– name: King Abdullah University of Science and Technology (KAUST)
– name: Stanford Institute for Materials and Energy Sciences
– name: Stanford University
– name: SLAC National Accelerator Laboratory
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Yunpei
  surname: Zhu
  fullname: Zhu, Yunpei
– sequence: 2
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
– sequence: 3
  givenname: Xueli
  surname: Zheng
  fullname: Zheng, Xueli
– sequence: 4
  givenname: Abdul-Hamid
  surname: Emwas
  fullname: Emwas, Abdul-Hamid
– sequence: 5
  givenname: Yongjiu
  surname: Lei
  fullname: Lei, Yongjiu
– sequence: 6
  givenname: Omar F
  surname: Mohammed
  fullname: Mohammed, Omar F
– sequence: 7
  givenname: Yi
  surname: Cui
  fullname: Cui, Yi
– sequence: 8
  givenname: Husam N
  surname: Alshareef
  fullname: Alshareef, Husam N
BackLink https://www.osti.gov/servlets/purl/1820151$$D View this record in Osti.gov
BookMark eNptkUtLAzEUhYNUsK1u3AuD7oTR3MxMMllqrQ8ouNF1yGQSnTImNUkX9debdnyAmE0C9zuHc08maGSd1QgdA74AXPDLFrTGUDLS7KExsKrMK4bp6PtNOTlAkxCWGFOCGR-jxcxZpW30Muo2a9eyz5WMnbOZ7rWK3vWbqLOwm79sMuN8Jt_X2q1D9tFZlW_JRsaofafDIdo3sg_66Oueoufb-dPsPl883j3Mrha5Ksoy5k3NqalbgNbUDQNV8pIDY7KuWcWJMpQwXGGgTBletVRqSIcZAEMYtKUspuh08HUhdiKoLmr1qpy1KbGAmmCoIEFnA7TyLiUOUSzd2tuUS5CKYuA4uSYKD5TyLgSvjUhuuwLSyl0vAIttseIG5vNdsddJcv5HsvLdm_Sb_-GTAfZB_XC_v1R8Apq7g0c
CitedBy_id crossref_primary_10_1016_j_ensm_2022_09_020
crossref_primary_10_1016_j_ensm_2024_103851
crossref_primary_10_1016_j_jechem_2023_04_006
crossref_primary_10_5796_electrochemistry_24_00108
crossref_primary_10_1021_acsami_1c19438
crossref_primary_10_1002_aenm_202202419
crossref_primary_10_1039_D3EE00205E
crossref_primary_10_1016_j_est_2024_112437
crossref_primary_10_1021_acsnano_2c05285
crossref_primary_10_1021_acsami_4c08820
crossref_primary_10_1039_D3EE04208A
crossref_primary_10_1002_adfm_202111714
crossref_primary_10_1002_smll_202309556
crossref_primary_10_1016_j_nanoen_2024_109524
crossref_primary_10_1038_s41467_024_55657_1
crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1038_s41893_022_01028_x
crossref_primary_10_1002_batt_202400095
crossref_primary_10_1016_j_cej_2023_141334
crossref_primary_10_1016_j_ensm_2022_10_043
crossref_primary_10_1039_D4EE04442H
crossref_primary_10_1126_sciadv_adh1181
crossref_primary_10_1016_j_jechem_2023_12_019
crossref_primary_10_1021_acsnano_3c10394
crossref_primary_10_1016_j_ensm_2022_09_036
crossref_primary_10_1021_acs_jpcc_3c00810
crossref_primary_10_1016_j_jallcom_2024_174528
crossref_primary_10_1039_D1TA08620K
crossref_primary_10_1016_j_ensm_2023_102921
crossref_primary_10_1039_D2EE01573K
crossref_primary_10_2139_ssrn_4118512
crossref_primary_10_1002_inf2_12344
crossref_primary_10_1002_adfm_202315757
crossref_primary_10_1021_acsnano_3c03500
crossref_primary_10_1002_ange_202309957
crossref_primary_10_1002_ente_202401105
crossref_primary_10_1016_j_est_2023_108914
crossref_primary_10_1016_j_jallcom_2023_168829
crossref_primary_10_1016_j_nanoen_2023_108175
crossref_primary_10_1002_adfm_202311271
crossref_primary_10_1016_j_electacta_2024_145124
crossref_primary_10_1021_acs_iecr_2c02188
crossref_primary_10_1002_adfm_202316643
crossref_primary_10_1002_asia_202200289
crossref_primary_10_1002_adfm_202404146
crossref_primary_10_1016_j_mtchem_2024_102120
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1021_acsenergylett_2c01152
crossref_primary_10_1039_D3QM00104K
crossref_primary_10_1002_aenm_202400398
crossref_primary_10_1021_acsanm_3c06229
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1002_smll_202405810
crossref_primary_10_1016_j_electacta_2023_141883
crossref_primary_10_1016_j_est_2024_112211
crossref_primary_10_1021_acsnano_3c06687
crossref_primary_10_1021_acsmaterialslett_3c01385
crossref_primary_10_34133_energymatadv_0141
crossref_primary_10_1002_adfm_202303763
crossref_primary_10_1016_j_ensm_2023_102932
crossref_primary_10_1016_j_ensm_2023_103108
crossref_primary_10_1016_j_cej_2024_152622
crossref_primary_10_1002_sus2_118
crossref_primary_10_1016_j_cclet_2022_06_052
crossref_primary_10_1002_ange_202412266
crossref_primary_10_1002_cssc_202200999
crossref_primary_10_1016_j_jpowsour_2025_236778
crossref_primary_10_1002_ange_202217945
crossref_primary_10_1002_cssc_202200075
crossref_primary_10_1016_j_cej_2023_143971
crossref_primary_10_1016_j_cej_2022_139574
crossref_primary_10_1002_ange_202316499
crossref_primary_10_1016_j_cej_2022_139335
crossref_primary_10_1088_2752_5724_ace3de
crossref_primary_10_1016_j_electacta_2024_144149
crossref_primary_10_1021_acs_jpcb_4c04644
crossref_primary_10_1002_adma_202420079
crossref_primary_10_1002_anie_202319125
crossref_primary_10_1002_anie_202407639
crossref_primary_10_1002_batt_202200560
crossref_primary_10_1016_j_electacta_2025_145900
crossref_primary_10_1016_j_cej_2023_147763
crossref_primary_10_1002_adfm_202316788
crossref_primary_10_1002_adfm_202316427
crossref_primary_10_1016_j_est_2024_112992
crossref_primary_10_1002_batt_202400735
crossref_primary_10_1002_adma_202106937
crossref_primary_10_1021_acs_nanolett_2c00065
crossref_primary_10_1002_aenm_202304010
crossref_primary_10_1002_ange_202300418
crossref_primary_10_1002_anie_202307271
crossref_primary_10_1002_adfm_202207898
crossref_primary_10_1016_j_jcis_2024_07_253
crossref_primary_10_1039_D2SC04143J
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1016_j_cej_2022_138265
crossref_primary_10_1016_j_cej_2023_143834
crossref_primary_10_1016_j_mattod_2021_11_021
crossref_primary_10_1002_smll_202400390
crossref_primary_10_1016_j_cej_2024_157842
crossref_primary_10_1039_D4EE04803B
crossref_primary_10_1021_acs_energyfuels_4c02287
crossref_primary_10_1039_D1EE03691B
crossref_primary_10_1016_j_ensm_2022_10_004
crossref_primary_10_1021_acsmaterialslett_4c00308
crossref_primary_10_1002_ange_202206471
crossref_primary_10_1016_j_mtener_2023_101339
crossref_primary_10_1002_cssc_202201373
crossref_primary_10_1016_j_nanoen_2024_109661
crossref_primary_10_1002_anie_202215385
crossref_primary_10_1039_D1EE03377H
crossref_primary_10_1002_smtd_202300554
crossref_primary_10_1002_adfm_202419720
crossref_primary_10_20517_cs_2023_46
crossref_primary_10_1002_adma_202200131
crossref_primary_10_1002_cnl2_54
crossref_primary_10_1016_j_cej_2021_134076
crossref_primary_10_1016_j_est_2024_112898
crossref_primary_10_1016_j_jallcom_2023_172773
crossref_primary_10_1038_s43246_023_00367_2
crossref_primary_10_1039_D2SE00666A
crossref_primary_10_2139_ssrn_4117015
crossref_primary_10_1016_j_cej_2024_153239
crossref_primary_10_1016_j_ensm_2024_103866
crossref_primary_10_1002_anie_202401987
crossref_primary_10_1016_j_ensm_2024_103989
crossref_primary_10_1016_j_jechem_2024_03_021
crossref_primary_10_1007_s10008_022_05244_5
crossref_primary_10_1007_s40843_022_2213_y
crossref_primary_10_1038_s42004_024_01405_x
crossref_primary_10_1002_batt_202200197
crossref_primary_10_1039_D4CS00343H
crossref_primary_10_1039_D1TA10122F
crossref_primary_10_1002_smll_202308472
crossref_primary_10_1021_acs_energyfuels_3c01058
crossref_primary_10_1016_j_ensm_2023_02_028
crossref_primary_10_1002_ange_202401987
crossref_primary_10_1007_s12274_022_4916_z
crossref_primary_10_1016_j_apsusc_2022_155111
crossref_primary_10_1002_aenm_202402521
crossref_primary_10_1016_j_jpowsour_2024_235240
crossref_primary_10_1002_adfm_202417890
crossref_primary_10_1007_s42114_024_00960_0
crossref_primary_10_1016_j_enchem_2022_100097
crossref_primary_10_1016_j_ensm_2024_103616
crossref_primary_10_1039_D4EE03102D
crossref_primary_10_1002_adfm_202209642
crossref_primary_10_1016_j_ensm_2024_103331
crossref_primary_10_1002_anie_202412266
crossref_primary_10_1007_s40843_023_2646_0
crossref_primary_10_1021_acsami_3c00168
crossref_primary_10_1021_acsenergylett_2c01535
crossref_primary_10_1002_adma_202300369
crossref_primary_10_1002_bte2_20220029
crossref_primary_10_1002_ange_202401555
crossref_primary_10_1016_j_ensm_2021_09_021
crossref_primary_10_1016_j_ensm_2022_07_017
crossref_primary_10_1002_adma_202203104
crossref_primary_10_1039_D4TA07230H
crossref_primary_10_1002_smll_202203327
crossref_primary_10_1016_j_est_2024_111740
crossref_primary_10_1002_ange_202215385
crossref_primary_10_1007_s12274_022_4619_5
crossref_primary_10_1016_j_clay_2024_107661
crossref_primary_10_1002_anie_202407909
crossref_primary_10_1002_adma_202304040
crossref_primary_10_1002_ange_202418682
crossref_primary_10_1021_acsnano_1c11590
crossref_primary_10_1016_j_fmre_2023_02_018
crossref_primary_10_1039_D2TA05573B
crossref_primary_10_2139_ssrn_4185641
crossref_primary_10_1002_eom2_12265
crossref_primary_10_1016_j_nanoen_2023_109099
crossref_primary_10_1021_acsnano_4c16521
crossref_primary_10_1002_smtd_202300546
crossref_primary_10_1002_adfm_202211736
crossref_primary_10_1002_adma_202110140
crossref_primary_10_1016_j_jechem_2024_04_016
crossref_primary_10_1039_D3EE00462G
crossref_primary_10_1016_j_ensm_2022_12_030
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1016_j_mser_2024_100865
crossref_primary_10_1002_adfm_202412255
crossref_primary_10_1002_anie_202300418
crossref_primary_10_1002_adma_202204320
crossref_primary_10_3390_batteries8110223
crossref_primary_10_1002_adfm_202310342
crossref_primary_10_1002_smll_202303286
crossref_primary_10_1016_j_esci_2022_03_002
crossref_primary_10_1002_smll_202411632
crossref_primary_10_1002_cssc_202400479
crossref_primary_10_1002_anie_202217945
crossref_primary_10_1039_D4TA02704C
crossref_primary_10_3390_en17225768
crossref_primary_10_1039_D4RA08378D
crossref_primary_10_1002_ange_202307271
crossref_primary_10_1016_j_carbon_2023_118334
crossref_primary_10_1002_smll_202308282
crossref_primary_10_1021_acsnano_4c04632
crossref_primary_10_1002_adfm_202305550
crossref_primary_10_1002_aenm_202400548
crossref_primary_10_1002_anie_202206471
crossref_primary_10_1016_j_jallcom_2023_169870
crossref_primary_10_1002_cssc_202300730
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1016_j_cej_2022_136217
crossref_primary_10_1039_D2TA07524E
crossref_primary_10_1002_ange_202407639
crossref_primary_10_1007_s12274_022_5325_z
crossref_primary_10_1016_j_cej_2024_155615
crossref_primary_10_1002_smll_202410332
crossref_primary_10_1016_j_mattod_2023_12_002
crossref_primary_10_1002_aenm_202303549
crossref_primary_10_1016_j_matre_2025_100313
crossref_primary_10_1002_smtd_202401021
crossref_primary_10_1002_anie_202309957
crossref_primary_10_1016_j_corsci_2025_112762
crossref_primary_10_1002_anie_202416619
crossref_primary_10_1016_j_ensm_2023_01_020
crossref_primary_10_1002_ange_202319125
crossref_primary_10_1002_smll_202311205
crossref_primary_10_1016_S1003_6326_24_66598_2
crossref_primary_10_1002_batt_202400237
crossref_primary_10_1016_j_ensm_2023_01_027
crossref_primary_10_1016_j_joule_2024_12_003
crossref_primary_10_1016_j_ensm_2022_04_039
crossref_primary_10_1039_D4EE00535J
crossref_primary_10_1016_j_jpowsour_2024_235799
crossref_primary_10_1016_j_mtener_2022_101130
crossref_primary_10_1016_j_est_2023_107655
crossref_primary_10_1016_j_cclet_2024_110422
crossref_primary_10_1016_j_ensm_2022_04_032
crossref_primary_10_1021_acsami_3c00521
crossref_primary_10_1016_j_cej_2023_144655
crossref_primary_10_1021_acsenergylett_3c00859
crossref_primary_10_1002_adfm_202112609
crossref_primary_10_1016_j_cej_2024_149944
crossref_primary_10_1016_j_cej_2024_156240
crossref_primary_10_1002_anie_202316499
crossref_primary_10_1002_aenm_202403322
crossref_primary_10_1002_ente_202201084
crossref_primary_10_1021_acssuschemeng_1c08646
crossref_primary_10_1016_j_est_2024_112596
crossref_primary_10_1002_aenm_202304094
crossref_primary_10_1002_cssc_202300311
crossref_primary_10_1021_acsami_3c16557
crossref_primary_10_1016_j_cej_2025_159911
crossref_primary_10_1016_j_ensm_2023_04_006
crossref_primary_10_1016_j_ensm_2021_11_030
crossref_primary_10_1021_acsaelm_2c01355
crossref_primary_10_1002_smll_202309519
crossref_primary_10_2139_ssrn_4051665
crossref_primary_10_1016_j_jpowsour_2023_233922
crossref_primary_10_1016_j_nanoen_2022_107145
crossref_primary_10_1039_D2TA01672A
crossref_primary_10_1360_SSC_2024_0011
crossref_primary_10_1016_j_jpowsour_2024_236072
crossref_primary_10_1038_s41893_023_01172_y
crossref_primary_10_1002_aenm_202102982
crossref_primary_10_1002_inf2_12306
crossref_primary_10_1016_j_ccr_2022_214642
crossref_primary_10_1002_adfm_202304791
crossref_primary_10_1016_j_jpowsour_2022_231452
crossref_primary_10_1002_ange_202416619
crossref_primary_10_1016_j_jelechem_2024_118797
crossref_primary_10_1016_j_cej_2025_159920
crossref_primary_10_1016_j_cej_2024_149390
crossref_primary_10_1002_anie_202401555
crossref_primary_10_1016_j_jcis_2024_09_018
crossref_primary_10_1016_j_jpowsour_2022_231215
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1016_j_cej_2023_142580
crossref_primary_10_1002_aenm_202304303
crossref_primary_10_1002_ange_202407909
crossref_primary_10_1002_aenm_202300782
crossref_primary_10_1149_1945_7111_aca2e7
crossref_primary_10_1016_j_ensm_2021_11_015
crossref_primary_10_1016_j_ensm_2024_103238
crossref_primary_10_1002_aenm_202302927
crossref_primary_10_1016_j_ensm_2022_02_019
crossref_primary_10_1002_aenm_202402011
crossref_primary_10_1002_smtd_202400127
crossref_primary_10_1016_j_ensm_2024_103471
crossref_primary_10_1021_acsaem_4c01941
crossref_primary_10_1016_j_ensm_2023_102856
crossref_primary_10_6023_A24010006
crossref_primary_10_1002_aenm_202203254
crossref_primary_10_1021_acs_nanolett_4c04123
crossref_primary_10_1016_j_device_2024_100641
crossref_primary_10_1038_s41893_022_01029_w
crossref_primary_10_1016_j_cej_2022_137471
crossref_primary_10_1021_acsnano_4c15570
crossref_primary_10_1021_acsmaterialslett_4c01340
crossref_primary_10_1002_adma_202206754
crossref_primary_10_1002_aenm_202401706
crossref_primary_10_1002_smll_202410005
crossref_primary_10_1002_adfm_202203905
crossref_primary_10_1002_smll_202104640
crossref_primary_10_1039_D2TA09502E
crossref_primary_10_1002_adfm_202315539
crossref_primary_10_1016_j_cej_2022_140764
crossref_primary_10_1002_anie_202418682
crossref_primary_10_1093_nsr_nwaf029
Cites_doi 10.1039/C9CS00131J
10.1002/aenm.201901968
10.1002/aenm.202002128
10.1021/acsami.8b16284
10.1002/adma.202007470
10.1038/nenergy.2016.119
10.1039/C9EE02526J
10.1021/acs.nanolett.7b05403
10.1021/acsenergylett.0c00348
10.1038/nenergy.2016.129
10.1021/acsenergylett.8b01552
10.1038/s41563-018-0063-z
10.1038/s41560-019-0428-9
10.1038/s41524-018-0064-0
10.1021/acs.jpcb.9b11753
10.1139/v68-569
10.1039/D0EE02162H
10.1002/aenm.201900196
10.1021/jacs.7b06434
10.1021/jacs.7b04471
10.1021/ic00158a016
10.1002/aenm.201902430
10.1016/j.joule.2017.08.013
10.1016/j.elecom.2019.106488
10.1038/s41560-020-0655-0
10.1021/acs.nanolett.9b00697
10.1039/C8EE00833G
10.1002/aenm.202001599
10.1021/acs.accounts.0c00360
10.1016/j.joule.2020.05.018
10.1002/anie.202000162
10.1038/s41560-019-0336-z
10.1039/D0EE02620D
10.1039/C9EE00956F
10.1038/s41467-020-18284-0
10.1016/j.chempr.2020.02.001
10.1002/adma.201904427
10.1038/s41467-018-04060-8
10.1002/aenm.201900083
10.1038/s41560-018-0296-8
10.1021/acsami.9b10905
10.1038/nenergy.2017.119
10.1126/science.aab1595
10.1038/s41467-019-13436-3
10.1038/s41467-020-15478-4
10.1038/nmat4834
10.1016/j.mattod.2019.02.004
10.1038/s41560-019-0388-0
10.1002/anie.201711598
10.1038/nenergy.2016.39
10.1007/BF00646111
10.1039/C8CC07730D
10.1063/1.2925258
10.1002/aenm.201901480
10.1002/anie.202005378
10.1016/j.ensm.2020.10.019
10.1002/adfm.201802564
10.1002/adfm.201902653
10.1126/sciadv.aau8131
10.1021/acs.nanolett.7b04889
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
OIOZB
OTOTI
DOI 10.1039/d1ee01472b
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 4473
ExternalDocumentID 1820151
10_1039_D1EE01472B
d1ee01472b
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
-JG
OIOZB
OTOTI
ID FETCH-LOGICAL-c344t-b896f8d11df8b71c4949177a887592cf627050167cf95d6ae11117f11f271d4a3
ISSN 1754-5692
IngestDate Thu May 18 22:29:34 EDT 2023
Mon Jun 30 12:02:26 EDT 2025
Tue Jul 01 01:45:49 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Mon Apr 11 02:56:18 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-b896f8d11df8b71c4949177a887592cf627050167cf95d6ae11117f11f271d4a3
Notes 10.1039/d1ee01472b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
King Abdullah Univ. of Science and Technology (KAUST)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515
ORCID 0000-0001-8500-1130
0000-0002-1749-1120
0000-0001-5029-2142
0000-0002-6800-2649
0000000185001130
0000000150292142
0000000217491120
0000000268002649
OpenAccessLink https://www.osti.gov/servlets/purl/1820151
PQID 2560190111
PQPubID 2047494
PageCount 11
ParticipantIDs proquest_journals_2560190111
crossref_citationtrail_10_1039_D1EE01472B
crossref_primary_10_1039_D1EE01472B
rsc_primary_d1ee01472b
osti_scitechconnect_1820151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210811
PublicationDateYYYYMMDD 2021-08-11
PublicationDate_xml – month: 8
  year: 2021
  text: 20210811
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D1EE01472B-(cit26)/*[position()=1]) 2019; 29
Zhang (D1EE01472B-(cit22)/*[position()=1]) 2020; 13
Jiang (D1EE01472B-(cit25)/*[position()=1]) 2020; 32
McQuarrie (D1EE01472B-(cit39)/*[position()=1]) 1984
Soundharrajan (D1EE01472B-(cit50)/*[position()=1]) 2018; 18
Yi (D1EE01472B-(cit21)/*[position()=1]) 2020; 10
Liang (D1EE01472B-(cit34)/*[position()=1]) 2019; 19
Zhu (D1EE01472B-(cit51)/*[position()=1]) 2019; 9
Song (D1EE01472B-(cit27)/*[position()=1]) 2018; 28
Liang (D1EE01472B-(cit15)/*[position()=1]) 2020; 5
Chen (D1EE01472B-(cit30)/*[position()=1]) 2020; 5
Liang (D1EE01472B-(cit37)/*[position()=1]) 2017; 2
Bloor (D1EE01472B-(cit40)/*[position()=1]) 1968; 46
Hao (D1EE01472B-(cit1)/*[position()=1]) 2020; 13
You (D1EE01472B-(cit43)/*[position()=1]) 2017; 139
Hu (D1EE01472B-(cit49)/*[position()=1]) 2018; 18
Tang (D1EE01472B-(cit2)/*[position()=1]) 2019; 12
Qiu (D1EE01472B-(cit16)/*[position()=1]) 2019; 10
Zhang (D1EE01472B-(cit17)/*[position()=1]) 2020; 53
Weber (D1EE01472B-(cit3)/*[position()=1]) 2019; 4
Kaur (D1EE01472B-(cit48)/*[position()=1]) 2020; 124
Ko (D1EE01472B-(cit31)/*[position()=1]) 2019; 104
Bouchal (D1EE01472B-(cit61)/*[position()=1]) 2020; 59
Oberholzer (D1EE01472B-(cit56)/*[position()=1]) 2019; 11
Wang (D1EE01472B-(cit6)/*[position()=1]) 2020; 11
Zhang (D1EE01472B-(cit32)/*[position()=1]) 2018; 54
Zhao (D1EE01472B-(cit42)/*[position()=1]) 2018; 57
Zhang (D1EE01472B-(cit47)/*[position()=1]) 2020; 11
Lukatskaya (D1EE01472B-(cit13)/*[position()=1]) 2018; 11
Shin (D1EE01472B-(cit57)/*[position()=1]) 2019; 9
Auer (D1EE01472B-(cit38)/*[position()=1]) 2008; 128
Yang (D1EE01472B-(cit5)/*[position()=1]) 2020; 4
Sun (D1EE01472B-(cit59)/*[position()=1]) 2017; 139
Kundu (D1EE01472B-(cit58)/*[position()=1]) 2016; 1
Zhang (D1EE01472B-(cit7)/*[position()=1]) 2020; 59
Wan (D1EE01472B-(cit28)/*[position()=1]) 2018; 9
Liu (D1EE01472B-(cit10)/*[position()=1]) 2020; 49
Konarov (D1EE01472B-(cit8)/*[position()=1]) 2018; 3
Wang (D1EE01472B-(cit11)/*[position()=1]) 2018; 17
Sze (D1EE01472B-(cit35)/*[position()=1]) 1978; 7
Zhu (D1EE01472B-(cit55)/*[position()=1]) 2020; 10
Liu (D1EE01472B-(cit52)/*[position()=1]) 2019; 12
Dinh (D1EE01472B-(cit44)/*[position()=1]) 2019; 4
Barnum (D1EE01472B-(cit60)/*[position()=1]) 1983; 22
Cai (D1EE01472B-(cit19)/*[position()=1]) 2021; 33
Pan (D1EE01472B-(cit29)/*[position()=1]) 2016; 1
Wei (D1EE01472B-(cit54)/*[position()=1]) 2019; 9
Guo (D1EE01472B-(cit23)/*[position()=1]) 2021; 34
Suo (D1EE01472B-(cit41)/*[position()=1]) 2015; 350
Chu (D1EE01472B-(cit4)/*[position()=1]) 2017; 16
Wang (D1EE01472B-(cit45)/*[position()=1]) 2018; 4
Zhao (D1EE01472B-(cit46)/*[position()=1]) 2018; 4
Lee (D1EE01472B-(cit33)/*[position()=1]) 2019; 29
Yamada (D1EE01472B-(cit12)/*[position()=1]) 2016; 1
Cao (D1EE01472B-(cit9)/*[position()=1]) 2020; 10
Wang (D1EE01472B-(cit36)/*[position()=1]) 2019; 11
Chen (D1EE01472B-(cit20)/*[position()=1]) 2019; 9
Bin (D1EE01472B-(cit53)/*[position()=1]) 2020; 6
Zhang (D1EE01472B-(cit18)/*[position()=1]) 2017; 1
Yamada (D1EE01472B-(cit24)/*[position()=1]) 2019; 4
Jiang (D1EE01472B-(cit14)/*[position()=1]) 2019; 4
References_xml – issn: 1984
  publication-title: General chemistry
  doi: McQuarrie Rock Gallogly
– volume: 49
  start-page: 180
  year: 2020
  ident: D1EE01472B-(cit10)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00131J
– volume: 9
  start-page: 1901968
  year: 2019
  ident: D1EE01472B-(cit51)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901968
– volume: 10
  start-page: 2002128
  year: 2020
  ident: D1EE01472B-(cit55)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002128
– volume: 11
  start-page: 674
  year: 2019
  ident: D1EE01472B-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16284
– volume: 33
  start-page: 2007470
  year: 2021
  ident: D1EE01472B-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007470
– volume: 1
  start-page: 16119
  year: 2016
  ident: D1EE01472B-(cit58)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 12
  start-page: 3288
  year: 2019
  ident: D1EE01472B-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 18
  start-page: 2402
  year: 2018
  ident: D1EE01472B-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05403
– volume: 5
  start-page: 968
  year: 2020
  ident: D1EE01472B-(cit30)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00348
– volume: 1
  start-page: 16129
  year: 2016
  ident: D1EE01472B-(cit12)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.129
– volume: 3
  start-page: 2620
  issue: 10
  year: 2018
  ident: D1EE01472B-(cit8)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01552
– volume: 17
  start-page: 543
  year: 2018
  ident: D1EE01472B-(cit11)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 4
  start-page: 683
  year: 2019
  ident: D1EE01472B-(cit3)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0428-9
– volume: 4
  start-page: 15
  year: 2018
  ident: D1EE01472B-(cit45)/*[position()=1]
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0064-0
– volume: 124
  start-page: 2230
  issue: 11
  year: 2020
  ident: D1EE01472B-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b11753
– volume: 46
  start-page: 3425
  year: 1968
  ident: D1EE01472B-(cit40)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v68-569
– volume: 13
  start-page: 3917
  year: 2020
  ident: D1EE01472B-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02162H
– volume: 9
  start-page: 1900196
  year: 2019
  ident: D1EE01472B-(cit20)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900196
– volume: 139
  start-page: 12283
  year: 2017
  ident: D1EE01472B-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06434
– volume: 139
  start-page: 9775
  year: 2017
  ident: D1EE01472B-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04471
– volume: 22
  start-page: 2297
  year: 1983
  ident: D1EE01472B-(cit60)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00158a016
– volume: 10
  start-page: 2003065
  year: 2020
  ident: D1EE01472B-(cit21)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902430
– volume: 1
  start-page: 623
  year: 2017
  ident: D1EE01472B-(cit18)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.013
– volume-title: General chemistry
  year: 1984
  ident: D1EE01472B-(cit39)/*[position()=1]
– volume: 104
  start-page: 106488
  year: 2019
  ident: D1EE01472B-(cit31)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.106488
– volume: 5
  start-page: 646
  year: 2020
  ident: D1EE01472B-(cit15)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0655-0
– volume: 19
  start-page: 3199
  year: 2019
  ident: D1EE01472B-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00697
– volume: 11
  start-page: 2876
  year: 2018
  ident: D1EE01472B-(cit13)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00833G
– volume: 10
  start-page: 2001599
  year: 2020
  ident: D1EE01472B-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001599
– volume: 53
  start-page: 1648
  year: 2020
  ident: D1EE01472B-(cit17)/*[position()=1]
  publication-title: Acc. Chem. Rev.
  doi: 10.1021/acs.accounts.0c00360
– volume: 4
  start-page: 1557
  year: 2020
  ident: D1EE01472B-(cit5)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.018
– volume: 59
  start-page: 13180
  year: 2020
  ident: D1EE01472B-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000162
– volume: 4
  start-page: 269
  year: 2019
  ident: D1EE01472B-(cit24)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0336-z
– volume: 13
  start-page: 4625
  year: 2020
  ident: D1EE01472B-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02620D
– volume: 12
  start-page: 2273
  year: 2019
  ident: D1EE01472B-(cit52)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00956F
– volume: 11
  start-page: 4463
  year: 2020
  ident: D1EE01472B-(cit47)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18284-0
– volume: 6
  start-page: 968
  year: 2020
  ident: D1EE01472B-(cit53)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.02.001
– volume: 32
  start-page: 1904427
  year: 2020
  ident: D1EE01472B-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904427
– volume: 9
  start-page: 1656
  year: 2018
  ident: D1EE01472B-(cit28)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 9
  start-page: 1900083
  year: 2019
  ident: D1EE01472B-(cit57)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900083
– volume: 4
  start-page: 107
  year: 2019
  ident: D1EE01472B-(cit44)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 11
  start-page: 42000
  year: 2019
  ident: D1EE01472B-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10905
– volume: 2
  start-page: 17119
  year: 2017
  ident: D1EE01472B-(cit37)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.119
– volume: 350
  start-page: 938
  year: 2015
  ident: D1EE01472B-(cit41)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 10
  start-page: 5374
  year: 2019
  ident: D1EE01472B-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13436-3
– volume: 11
  start-page: 1634
  year: 2020
  ident: D1EE01472B-(cit6)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15478-4
– volume: 16
  start-page: 16
  year: 2017
  ident: D1EE01472B-(cit4)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4834
– volume: 29
  start-page: 26
  year: 2019
  ident: D1EE01472B-(cit33)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.02.004
– volume: 4
  start-page: 495
  year: 2019
  ident: D1EE01472B-(cit14)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0388-0
– volume: 57
  start-page: 992
  year: 2018
  ident: D1EE01472B-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711598
– volume: 1
  start-page: 16039
  year: 2016
  ident: D1EE01472B-(cit29)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 7
  start-page: 395
  year: 1978
  ident: D1EE01472B-(cit35)/*[position()=1]
  publication-title: J. Solution Chem.
  doi: 10.1007/BF00646111
– volume: 54
  start-page: 14097
  year: 2018
  ident: D1EE01472B-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07730D
– volume: 128
  start-page: 224511
  year: 2008
  ident: D1EE01472B-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2925258
– volume: 9
  start-page: 1901480
  year: 2019
  ident: D1EE01472B-(cit54)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901480
– volume: 59
  start-page: 15913
  year: 2020
  ident: D1EE01472B-(cit61)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005378
– volume: 34
  start-page: 545
  year: 2021
  ident: D1EE01472B-(cit23)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.019
– volume: 28
  start-page: 1802564
  year: 2018
  ident: D1EE01472B-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 29
  start-page: 1902653
  year: 2019
  ident: D1EE01472B-(cit26)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902653
– volume: 4
  start-page: eaau8131
  year: 2018
  ident: D1EE01472B-(cit46)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau8131
– volume: 18
  start-page: 1758
  year: 2018
  ident: D1EE01472B-(cit49)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04889
SSID ssj0062079
Score 2.7045186
Snippet Rechargeable Zn-ion batteries are highly promising for stationary energy storage because of their low cost and intrinsic safety. However, due to the poor...
SourceID osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4463
SubjectTerms Anodes
Anodic dissolution
Cathodes
Cathodic dissolution
Cations
Cycles
Dissolution
Electrolytes
Electron states
ENERGY STORAGE
Performance degradation
Rechargeable batteries
Safety
Sodium
Sodium compounds
Stability
Storage batteries
Vanadate
Vanadates
Water chemistry
Zinc
Title Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries
URI https://www.proquest.com/docview/2560190111
https://www.osti.gov/servlets/purl/1820151
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtiaUGR4IIql9hx4uS4LQsrQJxaseISxY-IStu0KokQ_fWMX4lXFAm4RCvbG6083854rPm-QegVaWjDhRA4lRISlJYzXErCcFopUahcQsy01Rafi9UZ-7DO1xP3xLJLenEkb27llfyPVWEM7GpYsv9g2fGlMACfwb7wBAvD869sfGI4h53Vl1WHhlSF3QXcoW9us_nZGwFZqwbhCjMbCAOm6PXmvJPYrBRWXzNUEoYrekcINKiIiHCBPjlh4eu3wbrwobvS56P_8P29hm5app1HWQ96M65bXvxwZLKFUMMGr5oLX1zv7yCovVT1PtK5TZ4znBeuq92RjsZ4Wmz5WhZhqowcJ2SlWRSEGXMNTn5z8Glm9FEV0RpyO07FFMbG4sJpcgftUsge6AztLj4ev_8SQnRBUyvCOP7soFubVW-mb2-dVGaX4HG3spCd69Aixh5FTh-g-z6HSBYOEA_RHd09QvciZcnH6FMMjSSCRhJBIwnQSAAaiYdGEqCRjNB4gs7eLU9PVtg3zsAyY6zHoqyKtlSEqLYUnEijQEQ4byCg5BWVbUF5mhv-iWyrXBWNNnGTt4S0lBPFmmwPzbrLTj9FiZTg9M0BRpUwoZjIGmpe3WhVtZrTOXodNqmWXlXeNDfZ1La6Iavqt2S5tBt6PEcvx7VXTkvl1lX7Zq9rQLSRMZam3kv2tWk0AKfTOToIJqj9P_F7ba8VDIcapvfALOPbJ2M--9PEPro7IfoAzfrrQT-Hc2YvXnjU_AKGP37Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrated+dual-cation+electrolyte+strategy+for+aqueous+zinc-ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhu%2C+Yunpei&rft.au=Yin%2C+Jun&rft.au=Zheng%2C+Xueli&rft.au=Emwas%2C+Abdul-Hamid&rft.date=2021-08-11&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=8&rft.spage=4463&rft.epage=4473&rft_id=info:doi/10.1039%2Fd1ee01472b&rft.externalDocID=d1ee01472b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon