A microcrystal method for the measurement of birefringence
Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles...
Saved in:
Published in | CrystEngComm Vol. 22; no. 11; pp. 1956 - 1961 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al
2
O
3
, SiO
2
, KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23-38 μm, 38-53 μm, 53-90 μm, and 90-150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38-53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals.
A scientifically valid test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic microcrystals. |
---|---|
AbstractList | Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al2O3, SiO2, KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23–38 μm, 38–53 μm, 53–90 μm, and 90–150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38–53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals. Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al 2 O 3 , SiO 2 , KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23–38 μm, 38–53 μm, 53–90 μm, and 90–150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38–53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals. Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al 2 O 3 , SiO 2 , KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23-38 μm, 38-53 μm, 53-90 μm, and 90-150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38-53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals. A scientifically valid test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic microcrystals. |
Author | Cao, Liling Long, Xifa Liao, Wenbin Peng, Guang Yan, Tao Ye, Ning |
AuthorAffiliation | Chinese Academy of Sciences University of the Chinese Academy of Sciences Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter |
AuthorAffiliation_xml | – name: Key Laboratory of Optoelectronic Materials Chemistry and Physics – name: University of the Chinese Academy of Sciences – name: Chinese Academy of Sciences – name: Fujian Institute of Research on the Structure of Matter |
Author_xml | – sequence: 1 givenname: Liling surname: Cao fullname: Cao, Liling – sequence: 2 givenname: Guang surname: Peng fullname: Peng, Guang – sequence: 3 givenname: Wenbin surname: Liao fullname: Liao, Wenbin – sequence: 4 givenname: Tao surname: Yan fullname: Yan, Tao – sequence: 5 givenname: Xifa surname: Long fullname: Long, Xifa – sequence: 6 givenname: Ning surname: Ye fullname: Ye, Ning |
BookMark | eNp9kM1LAzEQxYNUsK1evAsr3oTVZJNudr2VpX5gwYueQzaZ2K3dpCbpof-90YqKiKeZgd-befNGaGCdBYSOCb4gmNaXqlaASU3Zyx4aElaWeYUpHfzoD9AohCXGhBGCh-hqmvWd8k75bYhylfUQF05nxvksLiCNMmw89GBj5kzWdh6M7-wzWAWHaN_IVYCjzzpGT9ezx-Y2nz_c3DXTea4oYzFvq8rIklWcGGJ41SrNWVtqrAtStxNeMKWhoFBJKMrkSkFpkkTVqWUMa0rH6Gy3d-3d6wZCFEu38TadFAXlnE4wm_BEne-o9EwIyaZY-66XfisIFu_ZiKZuZh_Z3CcY_4JVF2XsnI1edqu_Jac7iQ_qa_V33GKtTWJO_mPoGygcfPs |
CitedBy_id | crossref_primary_10_1039_D3QI01251D crossref_primary_10_1039_D3CC05205B crossref_primary_10_1021_acs_inorgchem_3c02175 crossref_primary_10_1021_acs_jpclett_3c03419 crossref_primary_10_1039_D4SC01716A crossref_primary_10_1002_ange_202208811 crossref_primary_10_1021_acs_chemmater_2c01831 crossref_primary_10_1039_D1DT02122B crossref_primary_10_1002_adom_202001734 crossref_primary_10_1016_j_jssc_2024_125031 crossref_primary_10_1039_D4TC02926G crossref_primary_10_1039_D0QI00924E crossref_primary_10_1021_acs_inorgchem_3c00203 crossref_primary_10_1039_D4QI01220H crossref_primary_10_1021_acs_inorgchem_3c04404 crossref_primary_10_1016_j_cclet_2024_110173 crossref_primary_10_1007_s10904_023_02926_z crossref_primary_10_1002_anie_202411503 crossref_primary_10_1039_D3QI02465B crossref_primary_10_1021_acs_inorgchem_4c01681 crossref_primary_10_1002_anie_202203984 crossref_primary_10_1039_D2QI00399F crossref_primary_10_1039_D4QI00513A crossref_primary_10_1002_ange_202111604 crossref_primary_10_1002_ange_202318976 crossref_primary_10_1039_D1NJ00754H crossref_primary_10_1039_D4QI02245A crossref_primary_10_1039_D0CC02532A crossref_primary_10_1021_acs_inorgchem_4c03372 crossref_primary_10_1039_D3DT03173J crossref_primary_10_1021_acs_inorgchem_1c00506 crossref_primary_10_1039_D0TC02311F crossref_primary_10_1039_D1DT00793A crossref_primary_10_1002_ange_202217039 crossref_primary_10_1002_anie_202107613 crossref_primary_10_1016_j_jallcom_2024_177718 crossref_primary_10_1002_adom_202402170 crossref_primary_10_1016_j_jssc_2024_125086 crossref_primary_10_1039_D3DT04343F crossref_primary_10_1039_D2TC04112J crossref_primary_10_1021_jacs_3c09566 crossref_primary_10_1021_acs_inorgchem_4c02801 crossref_primary_10_1039_D3NJ04480G crossref_primary_10_1002_smll_202302797 crossref_primary_10_1021_acs_cgd_1c00024 crossref_primary_10_1021_acs_inorgchem_4c01835 crossref_primary_10_1002_ange_202203984 crossref_primary_10_1021_acs_inorgchem_3c03325 crossref_primary_10_1002_anie_202014279 crossref_primary_10_1002_smll_202302819 crossref_primary_10_1021_acs_inorgchem_4c00221 crossref_primary_10_1039_D0CC06851A crossref_primary_10_1039_D1TC04846E crossref_primary_10_1021_acs_cgd_5c00075 crossref_primary_10_1021_acs_inorgchem_2c04129 crossref_primary_10_1002_anie_202318976 crossref_primary_10_1021_acs_inorgchem_2c00924 crossref_primary_10_1021_acs_jpclett_5c00022 crossref_primary_10_1039_D3QM00225J crossref_primary_10_1002_adom_202403372 crossref_primary_10_1002_advs_202003594 crossref_primary_10_1002_adom_202300256 crossref_primary_10_1002_ange_202107613 crossref_primary_10_1021_acs_inorgchem_4c03783 crossref_primary_10_1016_j_jscs_2023_101789 crossref_primary_10_1002_zaac_202400026 crossref_primary_10_1002_anie_202217039 crossref_primary_10_1016_j_jallcom_2022_163727 crossref_primary_10_1002_adom_202400780 crossref_primary_10_1021_acs_inorgchem_4c00938 crossref_primary_10_1002_anie_202302025 crossref_primary_10_1039_D2QI01561G crossref_primary_10_1039_D3TC01570J crossref_primary_10_1021_acs_inorgchem_2c03068 crossref_primary_10_1039_D2QI01860H crossref_primary_10_1002_ange_202014279 crossref_primary_10_1039_D3DT03257D crossref_primary_10_1002_anie_202208811 crossref_primary_10_1021_acsami_2c03438 crossref_primary_10_1002_anie_202111604 crossref_primary_10_1039_D4DT01026D crossref_primary_10_1021_acs_inorgchem_4c03395 crossref_primary_10_1002_ange_202411503 crossref_primary_10_1039_D0TC05942K crossref_primary_10_1002_advs_202306670 crossref_primary_10_1016_j_ceramint_2023_01_141 crossref_primary_10_1021_acs_inorgchem_5c00117 crossref_primary_10_1002_ange_202302025 crossref_primary_10_1016_j_molstruc_2024_139550 |
Cites_doi | 10.1016/B978-012544415-6.50124-2 10.1364/JOSA.54.001215 10.1016/S0030-4018(99)00091-7 10.1063/1.339536 10.1063/1.1661080 10.1364/JOSAB.6.000616 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/c9ce01934k |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 1961 |
ExternalDocumentID | 10_1039_C9CE01934K c9ce01934k |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABPTK ABRYZ ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 E3Z EBS ECGLT EE0 EF- GNO HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 6J9 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c344t-b88fa64871f1f78bcd74b6d0d219b5724cde23e8ae26014ce6fb88c914c440d33 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 05:30:03 EDT 2025 Tue Jul 01 02:21:10 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Sat Jan 08 03:39:56 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-b88fa64871f1f78bcd74b6d0d219b5724cde23e8ae26014ce6fb88c914c440d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3679-4047 0000-0003-2960-9461 |
PQID | 2377350457 |
PQPubID | 2047491 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1039_C9CE01934K rsc_primary_c9ce01934k proquest_journals_2377350457 crossref_citationtrail_10_1039_C9CE01934K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-21 |
PublicationDateYYYYMMDD | 2020-03-21 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Herbert Smith (C9CE01934K-(cit9)/*[position()=1]) 1906; 14 Jenkins (C9CE01934K-(cit4)/*[position()=1]) 1957 Darper (C9CE01934K-(cit6)/*[position()=1]) 1970; vol. 1 Xie (C9CE01934K-(cit10)/*[position()=1]) 1990; 1230 Wolf (C9CE01934K-(cit5)/*[position()=1]) 1963 Tropf (C9CE01934K-(cit11)/*[position()=1]) 1997 Eimerl (C9CE01934K-(cit15)/*[position()=1]) 1987; 62 Tropf (C9CE01934K-(cit2)/*[position()=1]) 1995 Bortfeld (C9CE01934K-(cit7)/*[position()=1]) 1972; 43 Hardy (C9CE01934K-(cit3)/*[position()=1]) 1932 Chen (C9CE01934K-(cit14)/*[position()=1]) 1989; 6 Li (C9CE01934K-(cit16)/*[position()=1]) 1997 Meyrowitz (C9CE01934K-(cit8)/*[position()=1]) 1955; 40 Zernike, Jr. (C9CE01934K-(cit13)/*[position()=1]) 1964; 54 Ballard (C9CE01934K-(cit1)/*[position()=1]) 1982 Ghosh (C9CE01934K-(cit12)/*[position()=1]) 1999; 163 Wang (C9CE01934K-(cit17)/*[position()=1]) 2009 |
References_xml | – issn: 1995 publication-title: Properties of Crystals and Glasses in Handbook of Optics doi: Tropf Thomas Harris – issn: 1970 issue: vol. 1 end-page: 770 publication-title: Optical Instruments and techniques doi: Darper Boulton – issn: 1982 publication-title: American Institute of Physics Handbook doi: Ballard Browder Ebersole – issn: 1997 end-page: 653 publication-title: Handbook of optical caonstants of solids doi: Tropf – issn: 2009 publication-title: Crystal optical doi: Wang – issn: 1957 publication-title: Fundamentals of Optics doi: Jenkins White – issn: 1963 publication-title: American Institute of Physics Handbook doi: Wolf Stanley Carthyk – issn: 1997 publication-title: Crystal optical doi: Li – issn: 1932 publication-title: The Principal of Optics doi: Hardy Perrin – volume-title: The Principal of Optics year: 1932 ident: C9CE01934K-(cit3)/*[position()=1] – volume-title: American Institute of Physics Handbook year: 1963 ident: C9CE01934K-(cit5)/*[position()=1] – volume-title: Crystal optical year: 1997 ident: C9CE01934K-(cit16)/*[position()=1] – volume-title: Crystal optical year: 2009 ident: C9CE01934K-(cit17)/*[position()=1] – start-page: 653 volume-title: Handbook of optical caonstants of solids year: 1997 ident: C9CE01934K-(cit11)/*[position()=1] doi: 10.1016/B978-012544415-6.50124-2 – volume: 54 start-page: 1215 year: 1964 ident: C9CE01934K-(cit13)/*[position()=1] publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.54.001215 – volume: 1230 start-page: 443 year: 1990 ident: C9CE01934K-(cit10)/*[position()=1] publication-title: SPIE – volume: 14 start-page: 191 year: 1906 ident: C9CE01934K-(cit9)/*[position()=1] publication-title: Mineral. Mag. – volume: 163 start-page: 95 year: 1999 ident: C9CE01934K-(cit12)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/S0030-4018(99)00091-7 – volume: 62 start-page: 1968 year: 1987 ident: C9CE01934K-(cit15)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.339536 – volume: 43 start-page: 5110 year: 1972 ident: C9CE01934K-(cit7)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1661080 – volume: 40 start-page: 398 year: 1955 ident: C9CE01934K-(cit8)/*[position()=1] publication-title: Journal of Earth and Planetary Materials – volume-title: American Institute of Physics Handbook year: 1982 ident: C9CE01934K-(cit1)/*[position()=1] – volume-title: Properties of Crystals and Glasses in Handbook of Optics year: 1995 ident: C9CE01934K-(cit2)/*[position()=1] – volume-title: Fundamentals of Optics year: 1957 ident: C9CE01934K-(cit4)/*[position()=1] – volume: vol. 1 start-page: 770 volume-title: Optical Instruments and techniques year: 1970 ident: C9CE01934K-(cit6)/*[position()=1] – volume: 6 start-page: 616 year: 1989 ident: C9CE01934K-(cit14)/*[position()=1] publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAB.6.000616 |
SSID | ssj0014110 |
Score | 2.5644596 |
Snippet | Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1956 |
SubjectTerms | Aluminum oxide Birefringence Crystals Interference Microcrystals Silicon dioxide Thickness |
Title | A microcrystal method for the measurement of birefringence |
URI | https://www.proquest.com/docview/2377350457 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6V5VIOqLRFLAVkqb1UKJC1vXlwW60W0RY4LQJOke3YaAVk0ZIe4Nd3HCdxkBapcIks25ODv_E8bM8MwA-WaMWFZgEbKhFwE-kgVcIEqElQu6OXK7iNRj47j04u-O-r4ZUvD1ZFl5TyQD0vjSt5D6rYh7jaKNk3INv-FDuwjfjiFxHG739hPNq_t-_p1OLpsayiQGw16Pbh4L0__rMmoUThZqpTvAbnJkGBJZ8UNzZWxF9JzJ3Hfteotkp8OsGAbOU7T2du6qUu5KzltOu66rGYd48V0IcMWeBilQ-0E4U8sqmKXZqKRlZS2uWJQUfy2bjDjhbFjT1YKqFDZhOcqlRpNC4Zv_V6qH0d6AdXYJWi-U97sDqaTH-dtvdDyEhhk2yWpYee4qV54X2GlUVT0KUyHKafYL22-MnIwbcBH3TxGdY6eSC_wNGIdIEkDkiCQBIEknSAJHNDXgD5FS6OJ9PxSVAXtQgU47wMZJIYEaGbODADEydS5TGXUR7muDHkMKZc5ZoynQhtk71xpSODJCrFJudhztgm9Ip5obeAoK6iVAiNFpjh1EhJc4PuH88FYxHuuD78bNYiU3XGd1t45C6rXh6wNBun40m1bn_68L2d--DynCydtdMsaVbvg8eMsjhmQ3QN4j5s4jK39B6VPmwvH8gecrP9GtU3-Og5cwd65eKv3kUTsJR7NT_8A0XWXeo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+microcrystal+method+for+the+measurement+of+birefringence&rft.jtitle=CrystEngComm&rft.au=Cao%2C+Liling&rft.au=Peng%2C+Guang&rft.au=Liao%2C+Wenbin&rft.au=Yan%2C+Tao&rft.date=2020-03-21&rft.eissn=1466-8033&rft.volume=22&rft.issue=11&rft.spage=1956&rft.epage=1961&rft_id=info:doi/10.1039%2Fc9ce01934k&rft.externalDocID=c9ce01934k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |