A microcrystal method for the measurement of birefringence

Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 22; no. 11; pp. 1956 - 1961
Main Authors Cao, Liling, Peng, Guang, Liao, Wenbin, Yan, Tao, Long, Xifa, Ye, Ning
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al 2 O 3 , SiO 2 , KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23-38 μm, 38-53 μm, 53-90 μm, and 90-150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38-53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals. A scientifically valid test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic microcrystals.
AbstractList Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al2O3, SiO2, KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23–38 μm, 38–53 μm, 53–90 μm, and 90–150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38–53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals.
Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al 2 O 3 , SiO 2 , KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23–38 μm, 38–53 μm, 53–90 μm, and 90–150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38–53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals.
Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic micro-crystals. In this process, an innovative automatic mesh sieve was designed and applied to sieve the crystal particles of Al 2 O 3 , SiO 2 , KDP, LBO and BBO. Each crystal was accurately divided into four thickness ranges of 23-38 μm, 38-53 μm, 53-90 μm, and 90-150 μm experimentally, and the polarization interference method was employed to measure the birefringence of the samples. Results showed that, when the thickness of the crystal particle was taken as the intermediate value of the mesh width in the range of 38-53 μm, the experimental value of the birefringence of the crystal particles on a small scale was closest to that of the large crystals. A scientifically valid test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for screening anisotropic microcrystals.
Author Cao, Liling
Long, Xifa
Liao, Wenbin
Peng, Guang
Yan, Tao
Ye, Ning
AuthorAffiliation Chinese Academy of Sciences
University of the Chinese Academy of Sciences
Key Laboratory of Optoelectronic Materials Chemistry and Physics
Fujian Institute of Research on the Structure of Matter
AuthorAffiliation_xml – name: Key Laboratory of Optoelectronic Materials Chemistry and Physics
– name: University of the Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Liling
  surname: Cao
  fullname: Cao, Liling
– sequence: 2
  givenname: Guang
  surname: Peng
  fullname: Peng, Guang
– sequence: 3
  givenname: Wenbin
  surname: Liao
  fullname: Liao, Wenbin
– sequence: 4
  givenname: Tao
  surname: Yan
  fullname: Yan, Tao
– sequence: 5
  givenname: Xifa
  surname: Long
  fullname: Long, Xifa
– sequence: 6
  givenname: Ning
  surname: Ye
  fullname: Ye, Ning
BookMark eNp9kM1LAzEQxYNUsK1evAsr3oTVZJNudr2VpX5gwYueQzaZ2K3dpCbpof-90YqKiKeZgd-befNGaGCdBYSOCb4gmNaXqlaASU3Zyx4aElaWeYUpHfzoD9AohCXGhBGCh-hqmvWd8k75bYhylfUQF05nxvksLiCNMmw89GBj5kzWdh6M7-wzWAWHaN_IVYCjzzpGT9ezx-Y2nz_c3DXTea4oYzFvq8rIklWcGGJ41SrNWVtqrAtStxNeMKWhoFBJKMrkSkFpkkTVqWUMa0rH6Gy3d-3d6wZCFEu38TadFAXlnE4wm_BEne-o9EwIyaZY-66XfisIFu_ZiKZuZh_Z3CcY_4JVF2XsnI1edqu_Jac7iQ_qa_V33GKtTWJO_mPoGygcfPs
CitedBy_id crossref_primary_10_1039_D3QI01251D
crossref_primary_10_1039_D3CC05205B
crossref_primary_10_1021_acs_inorgchem_3c02175
crossref_primary_10_1021_acs_jpclett_3c03419
crossref_primary_10_1039_D4SC01716A
crossref_primary_10_1002_ange_202208811
crossref_primary_10_1021_acs_chemmater_2c01831
crossref_primary_10_1039_D1DT02122B
crossref_primary_10_1002_adom_202001734
crossref_primary_10_1016_j_jssc_2024_125031
crossref_primary_10_1039_D4TC02926G
crossref_primary_10_1039_D0QI00924E
crossref_primary_10_1021_acs_inorgchem_3c00203
crossref_primary_10_1039_D4QI01220H
crossref_primary_10_1021_acs_inorgchem_3c04404
crossref_primary_10_1016_j_cclet_2024_110173
crossref_primary_10_1007_s10904_023_02926_z
crossref_primary_10_1002_anie_202411503
crossref_primary_10_1039_D3QI02465B
crossref_primary_10_1021_acs_inorgchem_4c01681
crossref_primary_10_1002_anie_202203984
crossref_primary_10_1039_D2QI00399F
crossref_primary_10_1039_D4QI00513A
crossref_primary_10_1002_ange_202111604
crossref_primary_10_1002_ange_202318976
crossref_primary_10_1039_D1NJ00754H
crossref_primary_10_1039_D4QI02245A
crossref_primary_10_1039_D0CC02532A
crossref_primary_10_1021_acs_inorgchem_4c03372
crossref_primary_10_1039_D3DT03173J
crossref_primary_10_1021_acs_inorgchem_1c00506
crossref_primary_10_1039_D0TC02311F
crossref_primary_10_1039_D1DT00793A
crossref_primary_10_1002_ange_202217039
crossref_primary_10_1002_anie_202107613
crossref_primary_10_1016_j_jallcom_2024_177718
crossref_primary_10_1002_adom_202402170
crossref_primary_10_1016_j_jssc_2024_125086
crossref_primary_10_1039_D3DT04343F
crossref_primary_10_1039_D2TC04112J
crossref_primary_10_1021_jacs_3c09566
crossref_primary_10_1021_acs_inorgchem_4c02801
crossref_primary_10_1039_D3NJ04480G
crossref_primary_10_1002_smll_202302797
crossref_primary_10_1021_acs_cgd_1c00024
crossref_primary_10_1021_acs_inorgchem_4c01835
crossref_primary_10_1002_ange_202203984
crossref_primary_10_1021_acs_inorgchem_3c03325
crossref_primary_10_1002_anie_202014279
crossref_primary_10_1002_smll_202302819
crossref_primary_10_1021_acs_inorgchem_4c00221
crossref_primary_10_1039_D0CC06851A
crossref_primary_10_1039_D1TC04846E
crossref_primary_10_1021_acs_cgd_5c00075
crossref_primary_10_1021_acs_inorgchem_2c04129
crossref_primary_10_1002_anie_202318976
crossref_primary_10_1021_acs_inorgchem_2c00924
crossref_primary_10_1021_acs_jpclett_5c00022
crossref_primary_10_1039_D3QM00225J
crossref_primary_10_1002_adom_202403372
crossref_primary_10_1002_advs_202003594
crossref_primary_10_1002_adom_202300256
crossref_primary_10_1002_ange_202107613
crossref_primary_10_1021_acs_inorgchem_4c03783
crossref_primary_10_1016_j_jscs_2023_101789
crossref_primary_10_1002_zaac_202400026
crossref_primary_10_1002_anie_202217039
crossref_primary_10_1016_j_jallcom_2022_163727
crossref_primary_10_1002_adom_202400780
crossref_primary_10_1021_acs_inorgchem_4c00938
crossref_primary_10_1002_anie_202302025
crossref_primary_10_1039_D2QI01561G
crossref_primary_10_1039_D3TC01570J
crossref_primary_10_1021_acs_inorgchem_2c03068
crossref_primary_10_1039_D2QI01860H
crossref_primary_10_1002_ange_202014279
crossref_primary_10_1039_D3DT03257D
crossref_primary_10_1002_anie_202208811
crossref_primary_10_1021_acsami_2c03438
crossref_primary_10_1002_anie_202111604
crossref_primary_10_1039_D4DT01026D
crossref_primary_10_1021_acs_inorgchem_4c03395
crossref_primary_10_1002_ange_202411503
crossref_primary_10_1039_D0TC05942K
crossref_primary_10_1002_advs_202306670
crossref_primary_10_1016_j_ceramint_2023_01_141
crossref_primary_10_1021_acs_inorgchem_5c00117
crossref_primary_10_1002_ange_202302025
crossref_primary_10_1016_j_molstruc_2024_139550
Cites_doi 10.1016/B978-012544415-6.50124-2
10.1364/JOSA.54.001215
10.1016/S0030-4018(99)00091-7
10.1063/1.339536
10.1063/1.1661080
10.1364/JOSAB.6.000616
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/c9ce01934k
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 1961
ExternalDocumentID 10_1039_C9CE01934K
c9ce01934k
GroupedDBID 0-7
0R
1TJ
29F
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
6J9
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c344t-b88fa64871f1f78bcd74b6d0d219b5724cde23e8ae26014ce6fb88c914c440d33
ISSN 1466-8033
IngestDate Mon Jun 30 05:30:03 EDT 2025
Tue Jul 01 02:21:10 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Sat Jan 08 03:39:56 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-b88fa64871f1f78bcd74b6d0d219b5724cde23e8ae26014ce6fb88c914c440d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3679-4047
0000-0003-2960-9461
PQID 2377350457
PQPubID 2047491
PageCount 6
ParticipantIDs crossref_primary_10_1039_C9CE01934K
rsc_primary_c9ce01934k
proquest_journals_2377350457
crossref_citationtrail_10_1039_C9CE01934K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-21
PublicationDateYYYYMMDD 2020-03-21
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Herbert Smith (C9CE01934K-(cit9)/*[position()=1]) 1906; 14
Jenkins (C9CE01934K-(cit4)/*[position()=1]) 1957
Darper (C9CE01934K-(cit6)/*[position()=1]) 1970; vol. 1
Xie (C9CE01934K-(cit10)/*[position()=1]) 1990; 1230
Wolf (C9CE01934K-(cit5)/*[position()=1]) 1963
Tropf (C9CE01934K-(cit11)/*[position()=1]) 1997
Eimerl (C9CE01934K-(cit15)/*[position()=1]) 1987; 62
Tropf (C9CE01934K-(cit2)/*[position()=1]) 1995
Bortfeld (C9CE01934K-(cit7)/*[position()=1]) 1972; 43
Hardy (C9CE01934K-(cit3)/*[position()=1]) 1932
Chen (C9CE01934K-(cit14)/*[position()=1]) 1989; 6
Li (C9CE01934K-(cit16)/*[position()=1]) 1997
Meyrowitz (C9CE01934K-(cit8)/*[position()=1]) 1955; 40
Zernike, Jr. (C9CE01934K-(cit13)/*[position()=1]) 1964; 54
Ballard (C9CE01934K-(cit1)/*[position()=1]) 1982
Ghosh (C9CE01934K-(cit12)/*[position()=1]) 1999; 163
Wang (C9CE01934K-(cit17)/*[position()=1]) 2009
References_xml – issn: 1995
  publication-title: Properties of Crystals and Glasses in Handbook of Optics
  doi: Tropf Thomas Harris
– issn: 1970
  issue: vol. 1
  end-page: 770
  publication-title: Optical Instruments and techniques
  doi: Darper Boulton
– issn: 1982
  publication-title: American Institute of Physics Handbook
  doi: Ballard Browder Ebersole
– issn: 1997
  end-page: 653
  publication-title: Handbook of optical caonstants of solids
  doi: Tropf
– issn: 2009
  publication-title: Crystal optical
  doi: Wang
– issn: 1957
  publication-title: Fundamentals of Optics
  doi: Jenkins White
– issn: 1963
  publication-title: American Institute of Physics Handbook
  doi: Wolf Stanley Carthyk
– issn: 1997
  publication-title: Crystal optical
  doi: Li
– issn: 1932
  publication-title: The Principal of Optics
  doi: Hardy Perrin
– volume-title: The Principal of Optics
  year: 1932
  ident: C9CE01934K-(cit3)/*[position()=1]
– volume-title: American Institute of Physics Handbook
  year: 1963
  ident: C9CE01934K-(cit5)/*[position()=1]
– volume-title: Crystal optical
  year: 1997
  ident: C9CE01934K-(cit16)/*[position()=1]
– volume-title: Crystal optical
  year: 2009
  ident: C9CE01934K-(cit17)/*[position()=1]
– start-page: 653
  volume-title: Handbook of optical caonstants of solids
  year: 1997
  ident: C9CE01934K-(cit11)/*[position()=1]
  doi: 10.1016/B978-012544415-6.50124-2
– volume: 54
  start-page: 1215
  year: 1964
  ident: C9CE01934K-(cit13)/*[position()=1]
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.54.001215
– volume: 1230
  start-page: 443
  year: 1990
  ident: C9CE01934K-(cit10)/*[position()=1]
  publication-title: SPIE
– volume: 14
  start-page: 191
  year: 1906
  ident: C9CE01934K-(cit9)/*[position()=1]
  publication-title: Mineral. Mag.
– volume: 163
  start-page: 95
  year: 1999
  ident: C9CE01934K-(cit12)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(99)00091-7
– volume: 62
  start-page: 1968
  year: 1987
  ident: C9CE01934K-(cit15)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.339536
– volume: 43
  start-page: 5110
  year: 1972
  ident: C9CE01934K-(cit7)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661080
– volume: 40
  start-page: 398
  year: 1955
  ident: C9CE01934K-(cit8)/*[position()=1]
  publication-title: Journal of Earth and Planetary Materials
– volume-title: American Institute of Physics Handbook
  year: 1982
  ident: C9CE01934K-(cit1)/*[position()=1]
– volume-title: Properties of Crystals and Glasses in Handbook of Optics
  year: 1995
  ident: C9CE01934K-(cit2)/*[position()=1]
– volume-title: Fundamentals of Optics
  year: 1957
  ident: C9CE01934K-(cit4)/*[position()=1]
– volume: vol. 1
  start-page: 770
  volume-title: Optical Instruments and techniques
  year: 1970
  ident: C9CE01934K-(cit6)/*[position()=1]
– volume: 6
  start-page: 616
  year: 1989
  ident: C9CE01934K-(cit14)/*[position()=1]
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAB.6.000616
SSID ssj0014110
Score 2.5644596
Snippet Based on the interference principle, a special test process to measure polycrystalline birefringence was proposed and confirmed as an effective method for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1956
SubjectTerms Aluminum oxide
Birefringence
Crystals
Interference
Microcrystals
Silicon dioxide
Thickness
Title A microcrystal method for the measurement of birefringence
URI https://www.proquest.com/docview/2377350457
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6V5VIOqLRFLAVkqb1UKJC1vXlwW60W0RY4LQJOke3YaAVk0ZIe4Nd3HCdxkBapcIks25ODv_E8bM8MwA-WaMWFZgEbKhFwE-kgVcIEqElQu6OXK7iNRj47j04u-O-r4ZUvD1ZFl5TyQD0vjSt5D6rYh7jaKNk3INv-FDuwjfjiFxHG739hPNq_t-_p1OLpsayiQGw16Pbh4L0__rMmoUThZqpTvAbnJkGBJZ8UNzZWxF9JzJ3Hfteotkp8OsGAbOU7T2du6qUu5KzltOu66rGYd48V0IcMWeBilQ-0E4U8sqmKXZqKRlZS2uWJQUfy2bjDjhbFjT1YKqFDZhOcqlRpNC4Zv_V6qH0d6AdXYJWi-U97sDqaTH-dtvdDyEhhk2yWpYee4qV54X2GlUVT0KUyHKafYL22-MnIwbcBH3TxGdY6eSC_wNGIdIEkDkiCQBIEknSAJHNDXgD5FS6OJ9PxSVAXtQgU47wMZJIYEaGbODADEydS5TGXUR7muDHkMKZc5ZoynQhtk71xpSODJCrFJudhztgm9Ip5obeAoK6iVAiNFpjh1EhJc4PuH88FYxHuuD78bNYiU3XGd1t45C6rXh6wNBun40m1bn_68L2d--DynCydtdMsaVbvg8eMsjhmQ3QN4j5s4jK39B6VPmwvH8gecrP9GtU3-Og5cwd65eKv3kUTsJR7NT_8A0XWXeo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+microcrystal+method+for+the+measurement+of+birefringence&rft.jtitle=CrystEngComm&rft.au=Cao%2C+Liling&rft.au=Peng%2C+Guang&rft.au=Liao%2C+Wenbin&rft.au=Yan%2C+Tao&rft.date=2020-03-21&rft.eissn=1466-8033&rft.volume=22&rft.issue=11&rft.spage=1956&rft.epage=1961&rft_id=info:doi/10.1039%2Fc9ce01934k&rft.externalDocID=c9ce01934k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon