A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions
This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset...
Saved in:
Published in | Cardiovascular engineering and technology Vol. 6; no. 4; pp. 412 - 429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1869-408X 1869-4098 1869-4098 |
DOI | 10.1007/s13239-015-0244-8 |
Cover
Loading…
Abstract | This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures. |
---|---|
AbstractList | This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures. This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures. |
Author | Liang, Zhong Wibowo, Stella Nathania Leow, Yue An Leo, Hwa Liang Nguyen, Hoang-Huy Nguyen, Vinh-Tan |
Author_xml | – sequence: 1 givenname: Vinh-Tan surname: Nguyen fullname: Nguyen, Vinh-Tan email: nguyenvt@ihpc.a-star.edu.sg organization: Institute of High Performance Computing – sequence: 2 givenname: Stella Nathania surname: Wibowo fullname: Wibowo, Stella Nathania organization: Division of Bioengineering, National University of Singapore – sequence: 3 givenname: Yue An surname: Leow fullname: Leow, Yue An organization: Division of Bioengineering, National University of Singapore – sequence: 4 givenname: Hoang-Huy surname: Nguyen fullname: Nguyen, Hoang-Huy organization: Institute of High Performance Computing – sequence: 5 givenname: Zhong surname: Liang fullname: Liang, Zhong organization: Department of Cardiology Research, National Heart Centre of Singapore – sequence: 6 givenname: Hwa Liang surname: Leo fullname: Leo, Hwa Liang organization: Division of Bioengineering, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26577476$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGUqkmTPEA2Fcts3GLABi9HM_mpNFUqJam6QwxcKiJsJmBHmrcPI0-z6CJsQJfvnCud8wUdD3EAhC5r8q0mRHzPNaOsq0jdVIRyXskjdFrLtqs46eTx-1v-OUEXOT-TchjtCKef0QltGyG4aE_R6wL_0qOHYawetmC88wYvY7-dxjKNgw74Jkze4tVu0H35-xktBOxiwnfQR3uYLgq4yz7j6PAa3Ih_F8PkTQC88jqPMRRotctuGszeNp-jT06HDBeH-ww93Vw_Lu-q9f3tj-ViXRnG-VhtGrsRlnO54YbalplOEEmtcKIxDLhxLRXSdA3QgtBWS8po24FuuHWUdy07Q1ez7zbFlwnyqHqfDYSgB4hTVrVgDaOiYbKgXw_otOnBqm3yvU479S-rAtQzYFLMOYF7R2qi9pWouRJVKlH7StTeVPynMX5Odkzahw-VdFbmsmX4C0k9xymVnPMHojfQu5_e |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2019_06_008 crossref_primary_10_1016_j_micron_2019_102801 crossref_primary_10_1371_journal_pone_0162986 crossref_primary_10_1002_dvdy_24497 crossref_primary_10_1007_s13239_016_0269_7 crossref_primary_10_1016_j_rineng_2024_103644 crossref_primary_10_1007_s40430_024_04875_1 crossref_primary_10_1007_s10494_018_0003_7 crossref_primary_10_1016_j_compbiomed_2019_04_020 crossref_primary_10_1136_wjps_2023_000741 crossref_primary_10_1186_s12938_016_0224_8 crossref_primary_10_3390_fluids8020071 crossref_primary_10_1016_j_ahj_2016_07_003 crossref_primary_10_1007_s13239_022_00613_7 |
Cites_doi | 10.1093/ehjci/jes159 10.1017/S0022112097008410 10.1186/1532-429X-12-9 10.1080/10976640701544530 10.1529/biophysj.103.035840 10.1016/S0140-6736(01)05620-3 10.1007/s11517-008-0359-2 10.1016/j.medengphy.2008.11.010 10.1243/09544119JEIM310 10.1161/CIRCULATIONAHA.107.188965 10.1186/s12968-014-0078-9 10.1007/s10439-008-9627-4 10.1073/pnas.0600520103 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z 10.1161/hc1102.105289 10.1161/CIRCULATIONAHA.109.883777 10.1080/10255842.2011.645811 10.1299/jsmec.46.1321 10.1114/1.1533073 10.1007/s12410-011-9070-z 10.1016/S1388-9842(02)00020-X 10.2514/6.1981-1259 10.1016/B978-1-4160-6643-9.00026-6 10.1080/10255842.2011.601279 10.1109/ISBI.2011.5872730 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2015 |
Copyright_xml | – notice: Biomedical Engineering Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s13239-015-0244-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology |
EISSN | 1869-4098 |
EndPage | 429 |
ExternalDocumentID | 26577476 10_1007_s13239_015_0244_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -EM 06C 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 53G 67N 8TC 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CAG COF CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD EN4 F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J PT4 QOS R89 R9I RLLFE ROL RSV S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c344t-b5db7d448b4c2d63c97082d7f75c3e4cf6278c95e248b26a823269ea54df24963 |
IEDL.DBID | U2A |
ISSN | 1869-408X 1869-4098 |
IngestDate | Fri Jul 11 11:17:50 EDT 2025 Mon Jul 21 05:15:52 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 03:09:07 EDT 2025 Fri Feb 21 02:38:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Geometry reconstruction Diastolic dysfunction Computational fluid dynamics Patient-specific Left ventricles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-b5db7d448b4c2d63c97082d7f75c3e4cf6278c95e248b26a823269ea54df24963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26577476 |
PQID | 1735327538 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1735327538 pubmed_primary_26577476 crossref_primary_10_1007_s13239_015_0244_8 crossref_citationtrail_10_1007_s13239_015_0244_8 springer_journals_10_1007_s13239_015_0244_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151200 2015-12-00 2015-Dec 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 20151200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Cardiovascular engineering and technology |
PublicationTitleAbbrev | Cardiovasc Eng Tech |
PublicationTitleAlternate | Cardiovasc Eng Technol |
PublicationYear | 2015 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Mavriplis, Venkatakrishnan (CR15) 1996; 23 van Kraaij, van Pol, Ruiters, de Swart, Lips, Lencer, Doevendans (CR12) 2002; 4 Gharib, Rambod, Kheradvar, Sahn, Dabiri (CR7) 2006; 103 Davies, Hobbs, Davis, Kenkre, Roalfe, Hare, Wosornu, Lancashire (CR2) 2001; 358 Tsanas, Goulermas, Vartela, Tsiapras, Theodorakis, Fisher, Sfirakis (CR22) 2009; 31 Eriksson, Bolger, Ebbers, Carlhll (CR4) 2013; 14 Long, Merrifield, Xu, Kilner, Firmin, Yang (CR14) 2008; 222 Eriksson, Carlhall (CR5) 2010; 12 CR13 Elbaz, Calkoen, Westenberg, Lelieveldt, Roest, van der Geest (CR3) 2014; 16 CR11 Saber, Wood, Gosman, Merrifield, Yang, Charrier, Gatehouse, Firmin (CR17) 2003; 31 Westerhof, Lankhaar, Westerhof (CR25) 2009; 47 Gaasch, Little (CR6) 2007; 116 Schocken, Benjamin, Fonarow, Krumholz, Levy, Mensah, Narula, Shor, Young, Hong (CR19) 2008; 117 Zile, Brutsaert (CR26) 2002; 105 Bolger, Heiberg, Karlsson, Wigstrm, Engvall, Sigfridsson, Wranne (CR1) 2007; 9 CR9 Silberman, Fan, Liu, Jiao, Xiao, Lovelock, Boulden, Widder, Fredd, Bernstein, Wolska, Dikalov, Harrison, Dudley (CR21) 2010; 121 Iwase, Liu, Fujimoto, Himeno (CR10) 2003; 46 Wantanabe, Sugiura, Kafuku, Hisada (CR23) 2004; 87 Schenkel, Malve, Reik, Markl, Jung, Oertel (CR18) 2008; 37 Westenberg (CR24) 2011; 4 Gharib, Rambod, Shariff (CR8) 1998; 360 Nguyen, Chong, Nguyen, Zhong, Leo (CR16) 2013; 16 Sengupta, Pedrizzetti, Kilner, Kheradvar, Ebbers, Tonti, Fraser, Narula (CR20) 2012; 5 V-T Nguyen (244_CR16) 2013; 16 A Tsanas (244_CR22) 2009; 31 M Gharib (244_CR7) 2006; 103 Q Long (244_CR14) 2008; 222 J Eriksson (244_CR5) 2010; 12 NR Saber (244_CR17) 2003; 31 N Westerhof (244_CR25) 2009; 47 MR Zile (244_CR26) 2002; 105 AF Bolger (244_CR1) 2007; 9 MSM Elbaz (244_CR3) 2014; 16 GA Silberman (244_CR21) 2010; 121 H Wantanabe (244_CR23) 2004; 87 J Eriksson (244_CR4) 2013; 14 MK Davies (244_CR2) 2001; 358 T Schenkel (244_CR18) 2008; 37 JJM Westenberg (244_CR24) 2011; 4 244_CR9 244_CR11 244_CR13 H Iwase (244_CR10) 2003; 46 PP Sengupta (244_CR20) 2012; 5 DD Schocken (244_CR19) 2008; 117 M Gharib (244_CR8) 1998; 360 DJ Mavriplis (244_CR15) 1996; 23 DJ Kraaij van (244_CR12) 2002; 4 WH Gaasch (244_CR6) 2007; 116 |
References_xml | – volume: 14 start-page: 417 issue: 5 year: 2013 end-page: 424 ident: CR4 article-title: Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy publication-title: Eur. Heart J. Cardiovasc. Imag. doi: 10.1093/ehjci/jes159 – volume: 116 start-page: 591 issue: 6 year: 2007 end-page: 593 ident: CR6 article-title: Assessment of left ventricular diastolic function and recognition of diastolic heart failure publication-title: J. Am. Heart Assoc. – volume: 360 start-page: 121 year: 1998 end-page: 140 ident: CR8 article-title: A universal time scale for vortex ring formation publication-title: J. Fluid Mech. doi: 10.1017/S0022112097008410 – volume: 12 start-page: 10 issue: 1 year: 2010 ident: CR5 article-title: Semi-automatic quantification of 4D left ventricular blood flow publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-12-9 – volume: 9 start-page: 741 issue: 5 year: 2007 end-page: 747 ident: CR1 article-title: Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1080/10976640701544530 – volume: 87 start-page: 2074 issue: 2004 year: 2004 end-page: 2085 ident: CR23 article-title: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method publication-title: Biophys. J. doi: 10.1529/biophysj.103.035840 – volume: 358 start-page: 439 year: 2001 end-page: 444 ident: CR2 article-title: Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study publication-title: The Lancet doi: 10.1016/S0140-6736(01)05620-3 – volume: 47 start-page: 131 issue: 2009 year: 2009 end-page: 141 ident: CR25 article-title: The arterial Windkessel publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0359-2 – volume: 31 start-page: 581 year: 2009 end-page: 588 ident: CR22 article-title: The Windkessel model revisited: a qualitative analysis of the circulatory system publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.11.010 – volume: 222 start-page: 475 year: 2008 end-page: 485 ident: CR14 article-title: Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging publication-title: J. Eng. Med. doi: 10.1243/09544119JEIM310 – volume: 117 start-page: 2544 issue: 19 year: 2008 end-page: 2565 ident: CR19 article-title: Prevention of heart failure a scientific statement from the American Heart Association Councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.188965 – volume: 16 start-page: 78 issue: 1 year: 2014 ident: CR3 article-title: Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-014-0078-9 – volume: 37 start-page: 503 issue: 3 year: 2008 end-page: 515 ident: CR18 article-title: MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9627-4 – volume: 103 start-page: 6305 issue: 16 year: 2006 end-page: 6308 ident: CR7 article-title: Optimal vortex formation as an index of cardiac health publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0600520103 – volume: 23 start-page: 527 year: 1996 end-page: 544 ident: CR15 article-title: A 3D agglomeration multigrid solver for the Reynoldsaveraged NavierStokes equations on unstructured meshes publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z – volume: 105 start-page: 1387 issue: 11 year: 2002 end-page: 1393 ident: CR26 article-title: New concepts in diastolic dysfunction and diastolic heart failure: part I publication-title: Circulation doi: 10.1161/hc1102.105289 – volume: 121 start-page: 519 year: 2010 end-page: 528 ident: CR21 article-title: Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.883777 – volume: 16 start-page: 26 year: 2013 ident: CR16 article-title: A semi-automated method for patient-specific computational flow modeling of left ventricles publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.645811 – ident: CR13 – volume: 5 start-page: 305 issue: 3 year: 2012 end-page: 316 ident: CR20 article-title: Emerging trends in CV flow visualisation publication-title: JACC: Cardiovasc. Imaging – ident: CR11 – ident: CR9 – volume: 46 start-page: 1321 year: 2003 end-page: 1329 ident: CR10 article-title: Computational modeling of left ventricle dynamics and flow based on ultrasonographic data publication-title: JSME Int. J. doi: 10.1299/jsmec.46.1321 – volume: 31 start-page: 42 issue: 2003 year: 2003 end-page: 52 ident: CR17 article-title: Progress towards patient-specic computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1533073 – volume: 4 start-page: 149 issue: 2011 year: 2011 end-page: 158 ident: CR24 article-title: CMR for Assessment of Diastolic Function publication-title: Curr. Cardiovasc. Imag. Reports doi: 10.1007/s12410-011-9070-z – volume: 4 start-page: 419 issue: 2002 year: 2002 end-page: 430 ident: CR12 article-title: Diagnosing diastolic heart failure publication-title: Eur. J. Heart Fail. doi: 10.1016/S1388-9842(02)00020-X – ident: 244_CR11 doi: 10.2514/6.1981-1259 – volume: 37 start-page: 503 issue: 3 year: 2008 ident: 244_CR18 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9627-4 – volume: 105 start-page: 1387 issue: 11 year: 2002 ident: 244_CR26 publication-title: Circulation doi: 10.1161/hc1102.105289 – volume: 12 start-page: 10 issue: 1 year: 2010 ident: 244_CR5 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-12-9 – volume: 87 start-page: 2074 issue: 2004 year: 2004 ident: 244_CR23 publication-title: Biophys. J. doi: 10.1529/biophysj.103.035840 – volume: 360 start-page: 121 year: 1998 ident: 244_CR8 publication-title: J. Fluid Mech. doi: 10.1017/S0022112097008410 – volume: 358 start-page: 439 year: 2001 ident: 244_CR2 publication-title: The Lancet doi: 10.1016/S0140-6736(01)05620-3 – volume: 222 start-page: 475 year: 2008 ident: 244_CR14 publication-title: J. Eng. Med. doi: 10.1243/09544119JEIM310 – volume: 4 start-page: 149 issue: 2011 year: 2011 ident: 244_CR24 publication-title: Curr. Cardiovasc. Imag. Reports doi: 10.1007/s12410-011-9070-z – volume: 31 start-page: 581 year: 2009 ident: 244_CR22 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.11.010 – volume: 4 start-page: 419 issue: 2002 year: 2002 ident: 244_CR12 publication-title: Eur. J. Heart Fail. doi: 10.1016/S1388-9842(02)00020-X – ident: 244_CR9 doi: 10.1016/B978-1-4160-6643-9.00026-6 – volume: 116 start-page: 591 issue: 6 year: 2007 ident: 244_CR6 publication-title: J. Am. Heart Assoc. – volume: 23 start-page: 527 year: 1996 ident: 244_CR15 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z – volume: 16 start-page: 26 year: 2013 ident: 244_CR16 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.601279 – volume: 117 start-page: 2544 issue: 19 year: 2008 ident: 244_CR19 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.188965 – volume: 16 start-page: 78 issue: 1 year: 2014 ident: 244_CR3 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-014-0078-9 – ident: 244_CR13 doi: 10.1109/ISBI.2011.5872730 – volume: 121 start-page: 519 year: 2010 ident: 244_CR21 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.883777 – volume: 47 start-page: 131 issue: 2009 year: 2009 ident: 244_CR25 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0359-2 – volume: 46 start-page: 1321 year: 2003 ident: 244_CR10 publication-title: JSME Int. J. doi: 10.1299/jsmec.46.1321 – volume: 31 start-page: 42 issue: 2003 year: 2003 ident: 244_CR17 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1533073 – volume: 5 start-page: 305 issue: 3 year: 2012 ident: 244_CR20 publication-title: JACC: Cardiovasc. Imaging – volume: 14 start-page: 417 issue: 5 year: 2013 ident: 244_CR4 publication-title: Eur. Heart J. Cardiovasc. Imag. doi: 10.1093/ehjci/jes159 – volume: 9 start-page: 741 issue: 5 year: 2007 ident: 244_CR1 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1080/10976640701544530 – volume: 103 start-page: 6305 issue: 16 year: 2006 ident: 244_CR7 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0600520103 |
SSID | ssj0000329042 |
Score | 2.0679858 |
Snippet | This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific... This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 412 |
SubjectTerms | Adult Algorithms Biomedical Engineering and Bioengineering Biomedicine Blood Flow Velocity - physiology Cardiology Computer Simulation Computer-Aided Design Engineering Female Heart - physiopathology Heart Failure - physiopathology Heart Failure, Diastolic - physiopathology Heart Ventricles - physiopathology Hemodynamics - physiology Humans Hydrodynamics Magnetic Resonance Imaging - methods Male Middle Aged Models, Cardiovascular |
Title | A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions |
URI | https://link.springer.com/article/10.1007/s13239-015-0244-8 https://www.ncbi.nlm.nih.gov/pubmed/26577476 https://www.proquest.com/docview/1735327538 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS-RAFH64XPQwuM3Y40INiAclEGtLcgy2baMzg4dpaU-hqlIFDW1a7O4B__28qiTtiAt4DS-VkPcq9b31AziSwgkllIxUpkTEOToomdJZZI0qjdNCW-m7kX_9lv0BvxqKYdPHPW2r3duUZPhTPze7Mcp8bY_vKOY8SpdhVXjXHY14QPNFYCVmNIsDaY5nW0L_KB222cy3Vnl5Hr0Cma8SpOHc6W3AlwYwkrzW8CYs2WoLtvMKneX7J3JMQglniI1vwfp_0wW34W9ObuqpqVFgmXcjQ2oShyYASHrj-agk3ZqUnnhatDFBEEv69n5SNlfbqSVk4shP62bk1seD_buQ7kghdByjUPdp6g_IYMM7MOhd_DnvRw3NQmQY57NIi1InJbppmhtaSmayBHFBmbhEGGa5cZImqcmEpShCpUoRhMnMKsFLh86bZF9hpZpUdheIPdN-8qfQiCJ4bDNlJHVW2Dj1_bMJ7UDcfuzCNDPIPRXGuHienuz1U6B-Cq-fIu3AyeKWh3oAx0fCP1oNFrhNfO5DVXYynxZnCROM4ruhzLdatYvlqBQIghPZgdNW10Wzk6fvP-v7p6T3YI16owuFMPuwMnuc2wOEMzN9CKv55d31xWEw438LtuyY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i5YHxgGAdW7kaCfEAipT5luSxoqsKtBUPLeqbZTu2VKlLJ9oi9d9z7CQd0wYSr9GJY-X48p3rB_BeCi-00DLRhRYJ52igFNoUibO6tN4I42SoRp5M5WjOvy7Eoqnj3rTZ7m1IMp7UN8VujLKQ2xMqijlP8iN4iFggD3lcc9o_OFZSRos0kuYEtiW0j_JFG828b5Tb99EdkHknQBrvneFTeNIARtKvNfwMHrjqBLr9Co3lqz35QGIKZ_SNn8DjP7oLduFXn3yvu6YmkWXeLy2pSRwaByAZrnbLkgxqUnoSaNFWBEEsGbmrddk8bbuWkLUnY-e35EfwB4e5kMFSI3RcodBgvwkXZFzDpzAfXs4-j5KGZiGxjPNtYkRpshLNNMMtLSWzRYa4oMx8Jixz3HpJs9wWwlEUoVLnCMJk4bTgpUfjTbLn0KnWlTsH4i5M6PwpDKIInrpCW0m9Ey7NQ_1sRnuQtj9b2aYHeaDCWKmb7slBPwr1o4J-VN6Dj4dXrusGHP8SftdqUOE2CbEPXbn1bqMuMiYYxbmhzFmt2sNwVAoEwZnswadW16rZyZu_f-vFf0m_hUej2WSsxl-m317CMQ0LMCbFvILO9ufOvUZoszVv4lL-DevK7fc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD5YC6U-SKutrrZ2BOlDSzA7tySPS7fL2lrxoVv2bZgrLKxZcbOC_94zuawttgVfw8kk5JzJfOf6AZxIEYQWWia60CLhHB2UQpsi8VY7G4wwXsZu5B8Xcjzh36Zi2vKcLrtq9y4l2fQ0xClNZXV67cLpQ-MboyzW-cTuYs6T_Bk8x79xP5r1hA7WQZaU0SKtCXQi8xL6Svm0y2z-bZU_z6ZHgPNRsrQ-g0avYLsFj2TQaPs1bPhyB3YHJTrOV3fkI6nLOes4-Q5s_TZpcBduB-SymaCa1IzzYWZJQ-jQBgPJaL6aOTJsCOpJpEibEwS0ZOyvFq692k0wIYtAzn2oyK8YG47vQoYzjTByjkLDu2U8LGt7fgOT0defX8ZJS7mQWMZ5lRjhTObQZTPcUieZLTLECC4LmbDMcxskzXJbCE9RhEqdIyCThdeCu4COnGRvYbNclH4fiO-bOAVUGEQUPPWFtpIGL3yax17ajPYg7T62su088kiLMVcPk5SjfhTqR0X9qLwHn9a3XDfDOP4nfNxpUOGWiXkQXfrFaqn6GROM4ruhzF6j2vVyVAoExJnswedO16rd1ct_P-vgSdIf4MXlcKTOzy6-H8JLGu2vro95B5vVzcq_R5RTmaPaku8BtY3yMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Patient-Specific+Computational+Fluid+Dynamic+Model+for+Hemodynamic+Analysis+of+Left+Ventricle+Diastolic+Dysfunctions&rft.jtitle=Cardiovascular+engineering+and+technology&rft.au=Nguyen%2C+Vinh-Tan&rft.au=Wibowo%2C+Stella+Nathania&rft.au=Leow%2C+Yue+An&rft.au=Nguyen%2C+Hoang-Huy&rft.date=2015-12-01&rft.issn=1869-408X&rft.eissn=1869-4098&rft.volume=6&rft.issue=4&rft.spage=412&rft.epage=429&rft_id=info:doi/10.1007%2Fs13239-015-0244-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13239_015_0244_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-408X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-408X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-408X&client=summon |