A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions

This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular engineering and technology Vol. 6; no. 4; pp. 412 - 429
Main Authors Nguyen, Vinh-Tan, Wibowo, Stella Nathania, Leow, Yue An, Nguyen, Hoang-Huy, Liang, Zhong, Leo, Hwa Liang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2015
Subjects
Online AccessGet full text
ISSN1869-408X
1869-4098
1869-4098
DOI10.1007/s13239-015-0244-8

Cover

Loading…
Abstract This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.
AbstractList This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.
This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific time-dependent hemodynamic characteristics from reconstructed MRI scans of LV. These types of blood flow visualization can be of great asset to the medical field helping medical practitioners better predict the existence of any abnormalities in the patient, hence offer an appropriate treatment. The methodology employed in this work processed geometries obtained from MRI scans of patient-specific LV throughout a cardiac cycle using computer-aided design tool. It then used unstructured mesh generation techniques to generate surface and volume meshes for flow simulations; thus provided flow visualization and characteristics in patient-specific LV. The resulting CFD model provides three dimensional velocity streamlines on the geometries at specific times in a cardiac cycle, and they are compared with existing literature findings, such as data from echocardiography particle image velocimetry. As an important flow characteristic, vortex formation of the blood flow of healthy as well as diseased subjects having a LV dysfunction condition are also obtained from simulations and further investigated for potential diagnosis. The current work established a pipeline for a non-invasive diagnostic tool for diastolic dysfunction by generating patient-specific LV models and CFD models in the spatiotemporal dimensions. The proposed framework was applied for analysis of a group of normal subjects and patients with cardiac diseases. Results obtained using the numerical tool showed distinct differences in flow characteristics in the LV between patient with diastolic dysfunction and healthy subjects. In particular, vortex structures do not develop during cardiac cycles for patients while it was clearly seen in the normal subjects. The current LV CFD model has proven to be a promising technology to aid in the diagnosis of LV conditions leading to heart failures.
Author Liang, Zhong
Wibowo, Stella Nathania
Leow, Yue An
Leo, Hwa Liang
Nguyen, Hoang-Huy
Nguyen, Vinh-Tan
Author_xml – sequence: 1
  givenname: Vinh-Tan
  surname: Nguyen
  fullname: Nguyen, Vinh-Tan
  email: nguyenvt@ihpc.a-star.edu.sg
  organization: Institute of High Performance Computing
– sequence: 2
  givenname: Stella Nathania
  surname: Wibowo
  fullname: Wibowo, Stella Nathania
  organization: Division of Bioengineering, National University of Singapore
– sequence: 3
  givenname: Yue An
  surname: Leow
  fullname: Leow, Yue An
  organization: Division of Bioengineering, National University of Singapore
– sequence: 4
  givenname: Hoang-Huy
  surname: Nguyen
  fullname: Nguyen, Hoang-Huy
  organization: Institute of High Performance Computing
– sequence: 5
  givenname: Zhong
  surname: Liang
  fullname: Liang, Zhong
  organization: Department of Cardiology Research, National Heart Centre of Singapore
– sequence: 6
  givenname: Hwa Liang
  surname: Leo
  fullname: Leo, Hwa Liang
  organization: Division of Bioengineering, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26577476$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGUqkmTPEA2Fcts3GLABi9HM_mpNFUqJam6QwxcKiJsJmBHmrcPI0-z6CJsQJfvnCud8wUdD3EAhC5r8q0mRHzPNaOsq0jdVIRyXskjdFrLtqs46eTx-1v-OUEXOT-TchjtCKef0QltGyG4aE_R6wL_0qOHYawetmC88wYvY7-dxjKNgw74Jkze4tVu0H35-xktBOxiwnfQR3uYLgq4yz7j6PAa3Ih_F8PkTQC88jqPMRRotctuGszeNp-jT06HDBeH-ww93Vw_Lu-q9f3tj-ViXRnG-VhtGrsRlnO54YbalplOEEmtcKIxDLhxLRXSdA3QgtBWS8po24FuuHWUdy07Q1ez7zbFlwnyqHqfDYSgB4hTVrVgDaOiYbKgXw_otOnBqm3yvU479S-rAtQzYFLMOYF7R2qi9pWouRJVKlH7StTeVPynMX5Odkzahw-VdFbmsmX4C0k9xymVnPMHojfQu5_e
CitedBy_id crossref_primary_10_1016_j_jbiomech_2019_06_008
crossref_primary_10_1016_j_micron_2019_102801
crossref_primary_10_1371_journal_pone_0162986
crossref_primary_10_1002_dvdy_24497
crossref_primary_10_1007_s13239_016_0269_7
crossref_primary_10_1016_j_rineng_2024_103644
crossref_primary_10_1007_s40430_024_04875_1
crossref_primary_10_1007_s10494_018_0003_7
crossref_primary_10_1016_j_compbiomed_2019_04_020
crossref_primary_10_1136_wjps_2023_000741
crossref_primary_10_1186_s12938_016_0224_8
crossref_primary_10_3390_fluids8020071
crossref_primary_10_1016_j_ahj_2016_07_003
crossref_primary_10_1007_s13239_022_00613_7
Cites_doi 10.1093/ehjci/jes159
10.1017/S0022112097008410
10.1186/1532-429X-12-9
10.1080/10976640701544530
10.1529/biophysj.103.035840
10.1016/S0140-6736(01)05620-3
10.1007/s11517-008-0359-2
10.1016/j.medengphy.2008.11.010
10.1243/09544119JEIM310
10.1161/CIRCULATIONAHA.107.188965
10.1186/s12968-014-0078-9
10.1007/s10439-008-9627-4
10.1073/pnas.0600520103
10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z
10.1161/hc1102.105289
10.1161/CIRCULATIONAHA.109.883777
10.1080/10255842.2011.645811
10.1299/jsmec.46.1321
10.1114/1.1533073
10.1007/s12410-011-9070-z
10.1016/S1388-9842(02)00020-X
10.2514/6.1981-1259
10.1016/B978-1-4160-6643-9.00026-6
10.1080/10255842.2011.601279
10.1109/ISBI.2011.5872730
ContentType Journal Article
Copyright Biomedical Engineering Society 2015
Copyright_xml – notice: Biomedical Engineering Society 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s13239-015-0244-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
EISSN 1869-4098
EndPage 429
ExternalDocumentID 26577476
10_1007_s13239_015_0244_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-EM
06C
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
53G
67N
8TC
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3A
S3B
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c344t-b5db7d448b4c2d63c97082d7f75c3e4cf6278c95e248b26a823269ea54df24963
IEDL.DBID U2A
ISSN 1869-408X
1869-4098
IngestDate Fri Jul 11 11:17:50 EDT 2025
Mon Jul 21 05:15:52 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 03:09:07 EDT 2025
Fri Feb 21 02:38:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Geometry reconstruction
Diastolic dysfunction
Computational fluid dynamics
Patient-specific
Left ventricles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-b5db7d448b4c2d63c97082d7f75c3e4cf6278c95e248b26a823269ea54df24963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26577476
PQID 1735327538
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_1735327538
pubmed_primary_26577476
crossref_primary_10_1007_s13239_015_0244_8
crossref_citationtrail_10_1007_s13239_015_0244_8
springer_journals_10_1007_s13239_015_0244_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151200
2015-12-00
2015-Dec
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Cardiovascular engineering and technology
PublicationTitleAbbrev Cardiovasc Eng Tech
PublicationTitleAlternate Cardiovasc Eng Technol
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Mavriplis, Venkatakrishnan (CR15) 1996; 23
van Kraaij, van Pol, Ruiters, de Swart, Lips, Lencer, Doevendans (CR12) 2002; 4
Gharib, Rambod, Kheradvar, Sahn, Dabiri (CR7) 2006; 103
Davies, Hobbs, Davis, Kenkre, Roalfe, Hare, Wosornu, Lancashire (CR2) 2001; 358
Tsanas, Goulermas, Vartela, Tsiapras, Theodorakis, Fisher, Sfirakis (CR22) 2009; 31
Eriksson, Bolger, Ebbers, Carlhll (CR4) 2013; 14
Long, Merrifield, Xu, Kilner, Firmin, Yang (CR14) 2008; 222
Eriksson, Carlhall (CR5) 2010; 12
CR13
Elbaz, Calkoen, Westenberg, Lelieveldt, Roest, van der Geest (CR3) 2014; 16
CR11
Saber, Wood, Gosman, Merrifield, Yang, Charrier, Gatehouse, Firmin (CR17) 2003; 31
Westerhof, Lankhaar, Westerhof (CR25) 2009; 47
Gaasch, Little (CR6) 2007; 116
Schocken, Benjamin, Fonarow, Krumholz, Levy, Mensah, Narula, Shor, Young, Hong (CR19) 2008; 117
Zile, Brutsaert (CR26) 2002; 105
Bolger, Heiberg, Karlsson, Wigstrm, Engvall, Sigfridsson, Wranne (CR1) 2007; 9
CR9
Silberman, Fan, Liu, Jiao, Xiao, Lovelock, Boulden, Widder, Fredd, Bernstein, Wolska, Dikalov, Harrison, Dudley (CR21) 2010; 121
Iwase, Liu, Fujimoto, Himeno (CR10) 2003; 46
Wantanabe, Sugiura, Kafuku, Hisada (CR23) 2004; 87
Schenkel, Malve, Reik, Markl, Jung, Oertel (CR18) 2008; 37
Westenberg (CR24) 2011; 4
Gharib, Rambod, Shariff (CR8) 1998; 360
Nguyen, Chong, Nguyen, Zhong, Leo (CR16) 2013; 16
Sengupta, Pedrizzetti, Kilner, Kheradvar, Ebbers, Tonti, Fraser, Narula (CR20) 2012; 5
V-T Nguyen (244_CR16) 2013; 16
A Tsanas (244_CR22) 2009; 31
M Gharib (244_CR7) 2006; 103
Q Long (244_CR14) 2008; 222
J Eriksson (244_CR5) 2010; 12
NR Saber (244_CR17) 2003; 31
N Westerhof (244_CR25) 2009; 47
MR Zile (244_CR26) 2002; 105
AF Bolger (244_CR1) 2007; 9
MSM Elbaz (244_CR3) 2014; 16
GA Silberman (244_CR21) 2010; 121
H Wantanabe (244_CR23) 2004; 87
J Eriksson (244_CR4) 2013; 14
MK Davies (244_CR2) 2001; 358
T Schenkel (244_CR18) 2008; 37
JJM Westenberg (244_CR24) 2011; 4
244_CR9
244_CR11
244_CR13
H Iwase (244_CR10) 2003; 46
PP Sengupta (244_CR20) 2012; 5
DD Schocken (244_CR19) 2008; 117
M Gharib (244_CR8) 1998; 360
DJ Mavriplis (244_CR15) 1996; 23
DJ Kraaij van (244_CR12) 2002; 4
WH Gaasch (244_CR6) 2007; 116
References_xml – volume: 14
  start-page: 417
  issue: 5
  year: 2013
  end-page: 424
  ident: CR4
  article-title: Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy
  publication-title: Eur. Heart J. Cardiovasc. Imag.
  doi: 10.1093/ehjci/jes159
– volume: 116
  start-page: 591
  issue: 6
  year: 2007
  end-page: 593
  ident: CR6
  article-title: Assessment of left ventricular diastolic function and recognition of diastolic heart failure
  publication-title: J. Am. Heart Assoc.
– volume: 360
  start-page: 121
  year: 1998
  end-page: 140
  ident: CR8
  article-title: A universal time scale for vortex ring formation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097008410
– volume: 12
  start-page: 10
  issue: 1
  year: 2010
  ident: CR5
  article-title: Semi-automatic quantification of 4D left ventricular blood flow
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-12-9
– volume: 9
  start-page: 741
  issue: 5
  year: 2007
  end-page: 747
  ident: CR1
  article-title: Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1080/10976640701544530
– volume: 87
  start-page: 2074
  issue: 2004
  year: 2004
  end-page: 2085
  ident: CR23
  article-title: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.035840
– volume: 358
  start-page: 439
  year: 2001
  end-page: 444
  ident: CR2
  article-title: Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(01)05620-3
– volume: 47
  start-page: 131
  issue: 2009
  year: 2009
  end-page: 141
  ident: CR25
  article-title: The arterial Windkessel
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0359-2
– volume: 31
  start-page: 581
  year: 2009
  end-page: 588
  ident: CR22
  article-title: The Windkessel model revisited: a qualitative analysis of the circulatory system
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.11.010
– volume: 222
  start-page: 475
  year: 2008
  end-page: 485
  ident: CR14
  article-title: Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging
  publication-title: J. Eng. Med.
  doi: 10.1243/09544119JEIM310
– volume: 117
  start-page: 2544
  issue: 19
  year: 2008
  end-page: 2565
  ident: CR19
  article-title: Prevention of heart failure a scientific statement from the American Heart Association Councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.188965
– volume: 16
  start-page: 78
  issue: 1
  year: 2014
  ident: CR3
  article-title: Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-014-0078-9
– volume: 37
  start-page: 503
  issue: 3
  year: 2008
  end-page: 515
  ident: CR18
  article-title: MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9627-4
– volume: 103
  start-page: 6305
  issue: 16
  year: 2006
  end-page: 6308
  ident: CR7
  article-title: Optimal vortex formation as an index of cardiac health
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0600520103
– volume: 23
  start-page: 527
  year: 1996
  end-page: 544
  ident: CR15
  article-title: A 3D agglomeration multigrid solver for the Reynoldsaveraged NavierStokes equations on unstructured meshes
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z
– volume: 105
  start-page: 1387
  issue: 11
  year: 2002
  end-page: 1393
  ident: CR26
  article-title: New concepts in diastolic dysfunction and diastolic heart failure: part I
  publication-title: Circulation
  doi: 10.1161/hc1102.105289
– volume: 121
  start-page: 519
  year: 2010
  end-page: 528
  ident: CR21
  article-title: Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.883777
– volume: 16
  start-page: 26
  year: 2013
  ident: CR16
  article-title: A semi-automated method for patient-specific computational flow modeling of left ventricles
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.645811
– ident: CR13
– volume: 5
  start-page: 305
  issue: 3
  year: 2012
  end-page: 316
  ident: CR20
  article-title: Emerging trends in CV flow visualisation
  publication-title: JACC: Cardiovasc. Imaging
– ident: CR11
– ident: CR9
– volume: 46
  start-page: 1321
  year: 2003
  end-page: 1329
  ident: CR10
  article-title: Computational modeling of left ventricle dynamics and flow based on ultrasonographic data
  publication-title: JSME Int. J.
  doi: 10.1299/jsmec.46.1321
– volume: 31
  start-page: 42
  issue: 2003
  year: 2003
  end-page: 52
  ident: CR17
  article-title: Progress towards patient-specic computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1533073
– volume: 4
  start-page: 149
  issue: 2011
  year: 2011
  end-page: 158
  ident: CR24
  article-title: CMR for Assessment of Diastolic Function
  publication-title: Curr. Cardiovasc. Imag. Reports
  doi: 10.1007/s12410-011-9070-z
– volume: 4
  start-page: 419
  issue: 2002
  year: 2002
  end-page: 430
  ident: CR12
  article-title: Diagnosing diastolic heart failure
  publication-title: Eur. J. Heart Fail.
  doi: 10.1016/S1388-9842(02)00020-X
– ident: 244_CR11
  doi: 10.2514/6.1981-1259
– volume: 37
  start-page: 503
  issue: 3
  year: 2008
  ident: 244_CR18
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9627-4
– volume: 105
  start-page: 1387
  issue: 11
  year: 2002
  ident: 244_CR26
  publication-title: Circulation
  doi: 10.1161/hc1102.105289
– volume: 12
  start-page: 10
  issue: 1
  year: 2010
  ident: 244_CR5
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-12-9
– volume: 87
  start-page: 2074
  issue: 2004
  year: 2004
  ident: 244_CR23
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.035840
– volume: 360
  start-page: 121
  year: 1998
  ident: 244_CR8
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097008410
– volume: 358
  start-page: 439
  year: 2001
  ident: 244_CR2
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(01)05620-3
– volume: 222
  start-page: 475
  year: 2008
  ident: 244_CR14
  publication-title: J. Eng. Med.
  doi: 10.1243/09544119JEIM310
– volume: 4
  start-page: 149
  issue: 2011
  year: 2011
  ident: 244_CR24
  publication-title: Curr. Cardiovasc. Imag. Reports
  doi: 10.1007/s12410-011-9070-z
– volume: 31
  start-page: 581
  year: 2009
  ident: 244_CR22
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.11.010
– volume: 4
  start-page: 419
  issue: 2002
  year: 2002
  ident: 244_CR12
  publication-title: Eur. J. Heart Fail.
  doi: 10.1016/S1388-9842(02)00020-X
– ident: 244_CR9
  doi: 10.1016/B978-1-4160-6643-9.00026-6
– volume: 116
  start-page: 591
  issue: 6
  year: 2007
  ident: 244_CR6
  publication-title: J. Am. Heart Assoc.
– volume: 23
  start-page: 527
  year: 1996
  ident: 244_CR15
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19960930)23:6<527::AID-FLD429>3.0.CO;2-Z
– volume: 16
  start-page: 26
  year: 2013
  ident: 244_CR16
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.601279
– volume: 117
  start-page: 2544
  issue: 19
  year: 2008
  ident: 244_CR19
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.188965
– volume: 16
  start-page: 78
  issue: 1
  year: 2014
  ident: 244_CR3
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-014-0078-9
– ident: 244_CR13
  doi: 10.1109/ISBI.2011.5872730
– volume: 121
  start-page: 519
  year: 2010
  ident: 244_CR21
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.883777
– volume: 47
  start-page: 131
  issue: 2009
  year: 2009
  ident: 244_CR25
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0359-2
– volume: 46
  start-page: 1321
  year: 2003
  ident: 244_CR10
  publication-title: JSME Int. J.
  doi: 10.1299/jsmec.46.1321
– volume: 31
  start-page: 42
  issue: 2003
  year: 2003
  ident: 244_CR17
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1533073
– volume: 5
  start-page: 305
  issue: 3
  year: 2012
  ident: 244_CR20
  publication-title: JACC: Cardiovasc. Imaging
– volume: 14
  start-page: 417
  issue: 5
  year: 2013
  ident: 244_CR4
  publication-title: Eur. Heart J. Cardiovasc. Imag.
  doi: 10.1093/ehjci/jes159
– volume: 9
  start-page: 741
  issue: 5
  year: 2007
  ident: 244_CR1
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1080/10976640701544530
– volume: 103
  start-page: 6305
  issue: 16
  year: 2006
  ident: 244_CR7
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0600520103
SSID ssj0000329042
Score 2.0679858
Snippet This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart’s left ventricles (LV), providing patient-specific...
This work presents a computational fluid dynamic (CFD) model to simulate blood flows through the human heart's left ventricles (LV), providing patient-specific...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 412
SubjectTerms Adult
Algorithms
Biomedical Engineering and Bioengineering
Biomedicine
Blood Flow Velocity - physiology
Cardiology
Computer Simulation
Computer-Aided Design
Engineering
Female
Heart - physiopathology
Heart Failure - physiopathology
Heart Failure, Diastolic - physiopathology
Heart Ventricles - physiopathology
Hemodynamics - physiology
Humans
Hydrodynamics
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Cardiovascular
Title A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions
URI https://link.springer.com/article/10.1007/s13239-015-0244-8
https://www.ncbi.nlm.nih.gov/pubmed/26577476
https://www.proquest.com/docview/1735327538
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS-RAFH64XPQwuM3Y40INiAclEGtLcgy2baMzg4dpaU-hqlIFDW1a7O4B__28qiTtiAt4DS-VkPcq9b31AziSwgkllIxUpkTEOToomdJZZI0qjdNCW-m7kX_9lv0BvxqKYdPHPW2r3duUZPhTPze7Mcp8bY_vKOY8SpdhVXjXHY14QPNFYCVmNIsDaY5nW0L_KB222cy3Vnl5Hr0Cma8SpOHc6W3AlwYwkrzW8CYs2WoLtvMKneX7J3JMQglniI1vwfp_0wW34W9ObuqpqVFgmXcjQ2oShyYASHrj-agk3ZqUnnhatDFBEEv69n5SNlfbqSVk4shP62bk1seD_buQ7kghdByjUPdp6g_IYMM7MOhd_DnvRw3NQmQY57NIi1InJbppmhtaSmayBHFBmbhEGGa5cZImqcmEpShCpUoRhMnMKsFLh86bZF9hpZpUdheIPdN-8qfQiCJ4bDNlJHVW2Dj1_bMJ7UDcfuzCNDPIPRXGuHienuz1U6B-Cq-fIu3AyeKWh3oAx0fCP1oNFrhNfO5DVXYynxZnCROM4ruhzLdatYvlqBQIghPZgdNW10Wzk6fvP-v7p6T3YI16owuFMPuwMnuc2wOEMzN9CKv55d31xWEw438LtuyY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i5YHxgGAdW7kaCfEAipT5luSxoqsKtBUPLeqbZTu2VKlLJ9oi9d9z7CQd0wYSr9GJY-X48p3rB_BeCi-00DLRhRYJ52igFNoUibO6tN4I42SoRp5M5WjOvy7Eoqnj3rTZ7m1IMp7UN8VujLKQ2xMqijlP8iN4iFggD3lcc9o_OFZSRos0kuYEtiW0j_JFG828b5Tb99EdkHknQBrvneFTeNIARtKvNfwMHrjqBLr9Co3lqz35QGIKZ_SNn8DjP7oLduFXn3yvu6YmkWXeLy2pSRwaByAZrnbLkgxqUnoSaNFWBEEsGbmrddk8bbuWkLUnY-e35EfwB4e5kMFSI3RcodBgvwkXZFzDpzAfXs4-j5KGZiGxjPNtYkRpshLNNMMtLSWzRYa4oMx8Jixz3HpJs9wWwlEUoVLnCMJk4bTgpUfjTbLn0KnWlTsH4i5M6PwpDKIInrpCW0m9Ey7NQ_1sRnuQtj9b2aYHeaDCWKmb7slBPwr1o4J-VN6Dj4dXrusGHP8SftdqUOE2CbEPXbn1bqMuMiYYxbmhzFmt2sNwVAoEwZnswadW16rZyZu_f-vFf0m_hUej2WSsxl-m317CMQ0LMCbFvILO9ufOvUZoszVv4lL-DevK7fc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD5YC6U-SKutrrZ2BOlDSzA7tySPS7fL2lrxoVv2bZgrLKxZcbOC_94zuawttgVfw8kk5JzJfOf6AZxIEYQWWia60CLhHB2UQpsi8VY7G4wwXsZu5B8Xcjzh36Zi2vKcLrtq9y4l2fQ0xClNZXV67cLpQ-MboyzW-cTuYs6T_Bk8x79xP5r1hA7WQZaU0SKtCXQi8xL6Svm0y2z-bZU_z6ZHgPNRsrQ-g0avYLsFj2TQaPs1bPhyB3YHJTrOV3fkI6nLOes4-Q5s_TZpcBduB-SymaCa1IzzYWZJQ-jQBgPJaL6aOTJsCOpJpEibEwS0ZOyvFq692k0wIYtAzn2oyK8YG47vQoYzjTByjkLDu2U8LGt7fgOT0defX8ZJS7mQWMZ5lRjhTObQZTPcUieZLTLECC4LmbDMcxskzXJbCE9RhEqdIyCThdeCu4COnGRvYbNclH4fiO-bOAVUGEQUPPWFtpIGL3yax17ajPYg7T62su088kiLMVcPk5SjfhTqR0X9qLwHn9a3XDfDOP4nfNxpUOGWiXkQXfrFaqn6GROM4ruhzF6j2vVyVAoExJnswedO16rd1ct_P-vgSdIf4MXlcKTOzy6-H8JLGu2vro95B5vVzcq_R5RTmaPaku8BtY3yMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Patient-Specific+Computational+Fluid+Dynamic+Model+for+Hemodynamic+Analysis+of+Left+Ventricle+Diastolic+Dysfunctions&rft.jtitle=Cardiovascular+engineering+and+technology&rft.au=Nguyen%2C+Vinh-Tan&rft.au=Wibowo%2C+Stella+Nathania&rft.au=Leow%2C+Yue+An&rft.au=Nguyen%2C+Hoang-Huy&rft.date=2015-12-01&rft.issn=1869-408X&rft.eissn=1869-4098&rft.volume=6&rft.issue=4&rft.spage=412&rft.epage=429&rft_id=info:doi/10.1007%2Fs13239-015-0244-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13239_015_0244_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-408X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-408X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-408X&client=summon