High Power Diode-Seeded Fiber Amplifiers at 2 μm-From Architectures to Applications

We review recent advances in the development of high power short- and ultrashort pulsed Thulium-doped fiber amplifier (TDFA) systems seeded by semiconductor laser diodes at wavelengths around 2 μm. The diode-seeding and the master oscillator power amplifier (MOPA) design allow for the construction o...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 20; no. 5; pp. 525 - 536
Main Authors Heidt, Alexander M., Zhihong Li, Richardson, David J.
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We review recent advances in the development of high power short- and ultrashort pulsed Thulium-doped fiber amplifier (TDFA) systems seeded by semiconductor laser diodes at wavelengths around 2 μm. The diode-seeding and the master oscillator power amplifier (MOPA) design allow for the construction of extremely versatile laser systems that can operate over wide ranges of peak power, pulse energy and repetition rate in the ultrashort picosecond to the long nanosecond pulsed regimes. We present a record peak power of 130 kW and pulse energy of 5 μJ in picosecond mode, while demonstrating user-defined pulse-shaping capabilities at millijoule pulse energy levels in the nanosecond regime from essentially the same amplifier system. The system architecture as well as important design and power scaling considerations are discussed in detail. Additionally, we highlight recent results in the application of these MOPA systems and their high performance TDFA stages in such diverse application areas as next generation telecommunication networks, mid-infrared supercontinuum generation and mid-infrared gas detection in hollow-core photonic bandgap fibers.
AbstractList We review recent advances in the development of high power short- and ultrashort pulsed Thulium-doped fiber amplifier (TDFA) systems seeded by semiconductor laser diodes at wavelengths around 2 μm. The diode-seeding and the master oscillator power amplifier (MOPA) design allow for the construction of extremely versatile laser systems that can operate over wide ranges of peak power, pulse energy and repetition rate in the ultrashort picosecond to the long nanosecond pulsed regimes. We present a record peak power of 130 kW and pulse energy of 5 μJ in picosecond mode, while demonstrating user-defined pulse-shaping capabilities at millijoule pulse energy levels in the nanosecond regime from essentially the same amplifier system. The system architecture as well as important design and power scaling considerations are discussed in detail. Additionally, we highlight recent results in the application of these MOPA systems and their high performance TDFA stages in such diverse application areas as next generation telecommunication networks, mid-infrared supercontinuum generation and mid-infrared gas detection in hollow-core photonic bandgap fibers.
We review recent advances in the development of high power short- and ultrashort pulsed Thulium-doped fiber amplifier (TDFA) systems seeded by semiconductor laser diodes at wavelengths around 2 mu m. The diode-seeding and the master oscillator power amplifier (MOPA) design allow for the construction of extremely versatile laser systems that can operate over wide ranges of peak power, pulse energy and repetition rate in the ultrashort picosecond to the long nanosecond pulsed regimes. We present a record peak power of 130 kW and pulse energy of 5 mu J in picosecond mode, while demonstrating user-defined pulse-shaping capabilities at millijoule pulse energy levels in the nanosecond regime from essentially the same amplifier system. The system architecture as well as important design and power scaling considerations are discussed in detail. Additionally, we highlight recent results in the application of these MOPA systems and their high performance TDFA stages in such diverse application areas as next generation telecommunication networks, mid-infrared supercontinuum generation and mid-infrared gas detection in hollow-core photonic bandgap fibers.
Author Heidt, Alexander M.
Richardson, David J.
Zhihong Li
Author_xml – sequence: 1
  givenname: Alexander M.
  surname: Heidt
  fullname: Heidt, Alexander M.
  email: a.heidt@soton.ac.uk
  organization: Optoelectron. Res. Centre, Univ. of Southampton, Southampton, UK
– sequence: 2
  surname: Zhihong Li
  fullname: Zhihong Li
  email: zl3g10@orc.soton.ac.uk
  organization: Optoelectron. Res. Centre, Univ. of Southampton, Southampton, UK
– sequence: 3
  givenname: David J.
  surname: Richardson
  fullname: Richardson, David J.
  email: djr@orc.soton.ac.uk
  organization: Optoelectron. Res. Centre, Univ. of Southampton, Southampton, UK
BookMark eNo9kM1Kw0AURgepYFt9Ad3M0k3q_GeyLLW1SkGlFdyFNHPHjiSZOpMivpvP4DOZ2uLqflzOd-GeAeo1vgGELikZUUqym4fl6nk6YoSKEeOUZZyfoD6VUidCCtbrMknThCnyeoYGMb4TQrTQpI9Wc_e2wU_-EwK-dd5AsgQwYPDMrbvVuN5WzjoIERctZvjnu05mwdd4HMqNa6FsdwEibj0ebzuyLFrnm3iOTm1RRbg4ziF6mU1Xk3myeLy7n4wXScmFaJO1MEyWLJVGZyqT0hqVaQKF5pam2nLOSqoFWE5kZokElUL3HDdWqswUheFDdH24uw3-YwexzWsXS6iqogG_izlVjBDFtVQdyg5oGXyMAWy-Da4uwldOSb5XmP8pzPcK86PCrnR1KDkA-C-oNFWCav4LbIdu2Q
CODEN IJSQEN
CitedBy_id crossref_primary_10_1016_j_optcom_2017_11_026
crossref_primary_10_1364_OL_41_003173
crossref_primary_10_1109_JLT_2023_3269985
crossref_primary_10_1109_JQE_2018_2888876
crossref_primary_10_1109_JPHOT_2020_3001595
crossref_primary_10_1364_OE_26_006490
crossref_primary_10_1007_s00340_018_6925_x
crossref_primary_10_1109_JSTQE_2016_2553447
crossref_primary_10_1002_adpr_202100256
crossref_primary_10_1109_LPT_2018_2833750
crossref_primary_10_1088_1612_202X_acf368
crossref_primary_10_12677_JSTA_2023_112014
crossref_primary_10_1364_OL_41_002197
crossref_primary_10_1364_OE_380189
crossref_primary_10_1109_LPT_2018_2799194
crossref_primary_10_1364_OE_24_013946
crossref_primary_10_1109_LPT_2015_2416346
crossref_primary_10_1364_OL_39_004259
crossref_primary_10_1016_j_yofte_2019_102113
crossref_primary_10_1016_j_optcom_2023_130019
crossref_primary_10_1109_JLT_2015_2508941
crossref_primary_10_1364_AO_57_005948
crossref_primary_10_1364_OSAC_2_000749
crossref_primary_10_1109_JLT_2015_2397700
crossref_primary_10_1016_j_infrared_2023_105080
crossref_primary_10_1364_OE_24_029126
crossref_primary_10_1364_OE_27_001276
crossref_primary_10_1364_OME_427456
crossref_primary_10_1109_JLT_2017_2729508
crossref_primary_10_3390_app7090892
crossref_primary_10_3390_ma13225177
crossref_primary_10_1364_PRJ_5_000710
Cites_doi 10.1364/OE.17.020927
10.1080/09500340.2010.543706
10.1126/science.285.5433.1537
10.1364/OL.38.000097
10.1016/j.yofte.2012.07.013
10.1364/OE.20.022442
10.1364/OE.21.028559
10.1126/science.1191708
10.1103/RevModPhys.78.1135
10.1364/OE.14.009576
10.1117/12.2005326
10.1364/OL.38.004686
10.1016/0022-3093(96)00329-8
10.1016/j.optcom.2011.08.024
10.1364/OL.39.001569
10.1364/OL.38.000691
10.1364/OE.18.014385
10.1109/3.7078
10.1364/AO.47.001269
10.1109/JLT.2003.822833
10.1109/JSTQE.2008.2010233
10.1007/3-540-46629-0_9
10.1364/OL.36.002483
10.1109/JLT.2009.2030693
10.1364/OL.37.000933
10.1038/nphoton.2012.149
10.1016/j.optcom.2003.09.091
10.1109/LPT.2005.860390
10.1364/JOSAB.27.000B63
10.1364/OL.39.000295
10.1364/OE.21.007851
10.1364/OE.21.019732
10.1364/OL.37.000512
10.3390/s91008230
10.1038/nphoton.2013.45
10.1109/JPHOT.2011.2105861
10.1109/LPT.2012.2185689
10.1364/OE.21.026450
10.1364/OE.18.005426
10.1089/end.2005.19.25
10.1109/MCOM.2012.6146483
10.1364/OL.31.002553
10.1364/OPEX.12.004080
10.1038/nphoton.2013.273
10.1364/OL.38.001615
10.1364/OE.21.024281
10.1063/1.3254214
10.1093/clinchem/29.1.5
10.1364/OE.15.008731
10.1364/OE.16.006194
10.1364/JOSAB.29.000635
10.1364/OE.16.017637
10.1364/OE.20.007046
10.1364/OE.21.001798
10.1364/ECEOC.2012.Th.3.A.5
10.1038/nature03349
10.1364/OFC.2013.PDP5A.3
10.1364/JOSAB.28.002486
10.1364/OE.17.023468
10.1016/j.jqsrt.2009.02.013
10.1364/OE.15.011219
10.1109/3.594865
10.1364/OE.21.009289
10.1364/OL.36.003912
10.1109/LPT.2006.873486
10.1109/MCOM.2010.5496875
10.1007/s00340-011-4741-7
10.1016/j.cccn.2004.04.023
10.1016/j.yofte.2012.07.014
10.1364/OPEX.13.000236
10.1016/j.crhy.2011.04.009
10.1063/1.1702744
10.1515/nanoph-2013-0042
10.1038/nphoton.2013.94
10.1364/OE.19.001854
10.1063/1.92351
10.1364/OL.38.004739
10.1364/OE.21.025883
10.1038/nphoton.2012.142
10.1364/OFC.2013.OM3I.5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
DOI 10.1109/JSTQE.2014.2312933
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Architecture
EISSN 1558-4542
EndPage 536
ExternalDocumentID 10_1109_JSTQE_2014_2312933
6776418
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
– fundername: EU People Program (Marie Curie Actions)
  grantid: 300859
– fundername: UK EPSRC
  grantid: EP/I01196X/1; EP/H02607X/1
– fundername: Royal Society through a Wolfson Research Merit Award
– fundername: EU 7th Framework Program
  grantid: 258033 (MODE-GAP)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFFNX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c344t-b4d25c275d896955fd6980ea83f178f332c184ef3059f05e67e2313df569daad3
IEDL.DBID RIE
ISSN 1077-260X
IngestDate Fri Aug 16 22:38:28 EDT 2024
Fri Aug 23 03:53:04 EDT 2024
Wed Jun 26 19:28:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-b4d25c275d896955fd6980ea83f178f332c184ef3059f05e67e2313df569daad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://eprints.soton.ac.uk/365309/1/__soton.ac.uk_ude_personalfiles_users_jcn_mydesktop_ABSTRACTS_NEW_int_uploads_6230.pdf
PQID 1620063856
PQPubID 23500
PageCount 12
ParticipantIDs crossref_primary_10_1109_JSTQE_2014_2312933
proquest_miscellaneous_1620063856
ieee_primary_6776418
PublicationCentury 2000
PublicationDate 2014-Sept.-Oct.
2014-9-00
20140901
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-Sept.-Oct.
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in quantum electronics
PublicationTitleAbbrev JSTQE
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
sleiffer (ref50) 2013
ref17
ref16
ref19
ref18
richardson (ref38) 2010; 330
mac suibhne (ref48) 2013
ref51
manolis (ref71) 1983; 29
ref46
ref45
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref80
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
cregan (ref43) 1999; 285
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1364/OE.17.020927
– ident: ref74
  doi: 10.1080/09500340.2010.543706
– volume: 285
  start-page: 1537
  year: 1999
  ident: ref43
  article-title: Single-mode photonic band gap guidance of light in air
  publication-title: Science
  doi: 10.1126/science.285.5433.1537
  contributor:
    fullname: cregan
– ident: ref11
  doi: 10.1364/OL.38.000097
– ident: ref54
  doi: 10.1016/j.yofte.2012.07.013
– ident: ref14
  doi: 10.1364/OE.20.022442
– ident: ref47
  doi: 10.1364/OE.21.028559
– volume: 330
  start-page: 327
  year: 2010
  ident: ref38
  article-title: Filling the light pipe
  publication-title: Science
  doi: 10.1126/science.1191708
  contributor:
    fullname: richardson
– ident: ref30
  doi: 10.1103/RevModPhys.78.1135
– ident: ref52
  doi: 10.1364/OE.14.009576
– ident: ref12
  doi: 10.1117/12.2005326
– ident: ref20
  doi: 10.1364/OL.38.004686
– ident: ref81
  doi: 10.1016/0022-3093(96)00329-8
– ident: ref64
  doi: 10.1016/j.optcom.2011.08.024
– ident: ref31
  doi: 10.1364/OL.39.001569
– ident: ref4
  doi: 10.1364/OL.38.000691
– ident: ref16
  doi: 10.1364/OE.18.014385
– ident: ref26
  doi: 10.1109/3.7078
– ident: ref79
  doi: 10.1364/AO.47.001269
– ident: ref73
  doi: 10.1109/JLT.2003.822833
– ident: ref61
  doi: 10.1109/JSTQE.2008.2010233
– ident: ref28
  doi: 10.1007/3-540-46629-0_9
– ident: ref13
  doi: 10.1364/OL.36.002483
– ident: ref37
  doi: 10.1109/JLT.2009.2030693
– ident: ref10
  doi: 10.1364/OL.37.000933
– ident: ref3
  doi: 10.1038/nphoton.2012.149
– year: 2013
  ident: ref50
  article-title: 30.7 Tb/s (96 320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber
  publication-title: Proc Opt Fiber Commun Conf
  contributor:
    fullname: sleiffer
– ident: ref63
  doi: 10.1016/j.optcom.2003.09.091
– ident: ref58
  doi: 10.1109/LPT.2005.860390
– ident: ref1
  doi: 10.1364/JOSAB.27.000B63
– ident: ref80
  doi: 10.1364/OL.39.000295
– ident: ref68
  doi: 10.1364/OE.21.007851
– ident: ref62
  doi: 10.1364/OE.21.019732
– ident: ref60
  doi: 10.1364/OL.37.000512
– ident: ref70
  doi: 10.3390/s91008230
– ident: ref41
  doi: 10.1038/nphoton.2013.45
– year: 2013
  ident: ref48
  article-title: WDM transmission at 2?m over low-loss hollow core photonic bandgap fiber
  publication-title: Proc Opt Fiber Commun Conf Expo
  contributor:
    fullname: mac suibhne
– ident: ref29
  doi: 10.1109/JPHOT.2011.2105861
– ident: ref21
  doi: 10.1109/LPT.2012.2185689
– ident: ref23
  doi: 10.1364/OE.21.026450
– ident: ref65
  doi: 10.1364/OE.18.005426
– ident: ref9
  doi: 10.1089/end.2005.19.25
– ident: ref42
  doi: 10.1109/MCOM.2012.6146483
– ident: ref56
  doi: 10.1364/OL.31.002553
– ident: ref75
  doi: 10.1364/OPEX.12.004080
– ident: ref2
  doi: 10.1038/nphoton.2013.273
– ident: ref24
  doi: 10.1364/OL.38.001615
– ident: ref69
  doi: 10.1364/OE.21.024281
– ident: ref57
  doi: 10.1063/1.3254214
– volume: 29
  start-page: 5
  year: 1983
  ident: ref71
  article-title: The diagnostic potential of breath analysis
  publication-title: Clin Chem
  doi: 10.1093/clinchem/29.1.5
  contributor:
    fullname: manolis
– ident: ref77
  doi: 10.1364/OE.15.008731
– ident: ref66
  doi: 10.1364/OE.16.006194
– ident: ref59
  doi: 10.1364/JOSAB.29.000635
– ident: ref19
  doi: 10.1364/OE.16.017637
– ident: ref8
  doi: 10.1364/OE.20.007046
– ident: ref5
  doi: 10.1364/OE.21.001798
– ident: ref46
  doi: 10.1364/ECEOC.2012.Th.3.A.5
– ident: ref76
  doi: 10.1038/nature03349
– ident: ref51
  doi: 10.1364/OFC.2013.PDP5A.3
– ident: ref67
  doi: 10.1364/JOSAB.28.002486
– ident: ref45
  doi: 10.1364/OE.17.023468
– ident: ref82
  doi: 10.1016/j.jqsrt.2009.02.013
– ident: ref78
  doi: 10.1364/OE.15.011219
– ident: ref33
  doi: 10.1109/3.594865
– ident: ref22
  doi: 10.1364/OE.21.009289
– ident: ref6
  doi: 10.1364/OL.36.003912
– ident: ref15
  doi: 10.1109/LPT.2006.873486
– ident: ref36
  doi: 10.1109/MCOM.2010.5496875
– ident: ref35
  doi: 10.1007/s00340-011-4741-7
– ident: ref72
  doi: 10.1016/j.cccn.2004.04.023
– ident: ref55
  doi: 10.1016/j.yofte.2012.07.014
– ident: ref44
  doi: 10.1364/OPEX.13.000236
– ident: ref39
  doi: 10.1016/j.crhy.2011.04.009
– ident: ref32
  doi: 10.1063/1.1702744
– ident: ref49
  doi: 10.1515/nanoph-2013-0042
– ident: ref40
  doi: 10.1038/nphoton.2013.94
– ident: ref17
  doi: 10.1364/OE.19.001854
– ident: ref27
  doi: 10.1063/1.92351
– ident: ref25
  doi: 10.1364/OL.38.004739
– ident: ref18
  doi: 10.1364/OE.21.025883
– ident: ref7
  doi: 10.1038/nphoton.2012.142
– ident: ref53
  doi: 10.1364/OFC.2013.OM3I.5
SSID ssj0008480
Score 2.3703814
Snippet We review recent advances in the development of high power short- and ultrashort pulsed Thulium-doped fiber amplifier (TDFA) systems seeded by semiconductor...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 525
SubjectTerms Amplifiers
Architecture
Design engineering
Fiber lasers
fiber nonlinear optics
Fibers
Gain
gas detection
hollow-core fibers
mid-infrared fiber optics
Nanostructure
Networks
Optical fiber amplifiers
Optical fiber dispersion
Optical fiber networks
Oscillators
Photonics
Power amplifiers
Semiconductor lasers
supercontinuum generation
telecommunications
thulium-doped fiber amplifiers
ultrafast optics
Title High Power Diode-Seeded Fiber Amplifiers at 2 μm-From Architectures to Applications
URI https://ieeexplore.ieee.org/document/6776418
https://search.proquest.com/docview/1620063856
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BEhJ74L3a8pJX2hu4pImfxwqoEBJoV4DUWxTbY2m1okE0vfDb-A38JmynrQrsgVsOcWJ5JjPfZL6ZAfjlch9nWEiqrQkBitKGamMERcuUtcGhstSn-_pGXN6zqyEfLsHJvBYGERP5DLvxMuXyXW0n8VfZqZBShLXLsKyyvK3VmltdxVTbeUBKGjD6cFYgk-nToOJ_LiKLi3UDmgn-rXjnhNJUlU-mOPmXwQZcz3bW0kr-dSeN6drnD00bv7r1TVifAk3SbzVjC5ZwtA3fFtoPbsNqon_a8Q7cRboH-R0nppHzv7VDehu8GjoyiIQS0o-0cx-HZpOqITl5fXmgg6f6gfQX0hBj0tSkv5AP34X7wcXd2SWdzlugtmCsoYa5nNtccqe00Jx7J7TKsFKF70nliyK3IR5EH0yE9hlHITGcZ-E8F9pVlSu-w8qoHuEPILaXmR5aWTDHw1OVElZXpspQ-gwDxunA8UwA5WPbVqNM4UimyySuMoqrnIqrAzvxROd3Tg-zAz9nMivDRxEzHdUI68m47Ik8YTEu9v6_dB_W4gtastgBrDRPEzwM6KIxR0mt3gCx_8t6
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa6DsO6wx59oNnaTgN225Q6tp7HoGuQbk2xYSmQm2FJFFAUjYvGuey39Tf0N02SkyB7HHrzwbIFkSY_mh9JgI8u93GGhaTamhCgKG2oNkZQtExZGxwqS326RxdieMm-TvhkAz6vamEQMZHPsBsvUy7f1XYef5UdCylFWPsEngY_n8m2WmtldxVTbe8BKWlA6ZNliUymj4OS_ziNPC7WDXgmeLjiDzeU5qr8Y4yThxm8gtFyby2x5Lo7b0zX_vqrbeNjN_8aXi6gJum3uvEGNnC6DS_WGhBuw7NEALWzHRhHwgf5HmemkS9XtUP6M_g1dGQQKSWkH4nnPo7NJlVDcvJwf0MHd_UN6a8lImakqUl_LSO-C5eD0_HJkC4mLlBbMNZQw1zObS65U1pozr0TWmVYqcL3pPJFkdsQEaIPRkL7jKOQGM6zcJ4L7arKFXuwOa2nuA_E9jLTQysL5nh4qlLC6spUGUqfYUA5Hfi0FEB52zbWKFNAkukyiauM4ioX4urATjzR1Z2Lw-zAh6XMyvBZxFxHNcV6Pit7Ik9ojIu3_1_6Hp4Px6Pz8vzs4ts72Iova6ljB7DZ3M3xMGCNxhwlFfsNljHOzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Power+Diode-Seeded+Fiber+Amplifiers+at+2+%CE%BCm%E2%80%94From+Architectures+to+Applications&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Heidt%2C+Alexander+M.&rft.au=Zhihong+Li&rft.au=Richardson%2C+David+J.&rft.date=2014-09-01&rft.issn=1077-260X&rft.eissn=1558-4542&rft.volume=20&rft.issue=5&rft.spage=525&rft.epage=536&rft_id=info:doi/10.1109%2FJSTQE.2014.2312933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTQE_2014_2312933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon