Heptazine-based porous graphitic carbon nitride: a visible-light driven photocatalyst for water splitting

Graphitic carbon nitride (C 3 N 4 ) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band gap, C 3 N 4 has insufficient sunlight absorption which limits the energy conversion efficiency. Here, by means of density functional theory...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 36; pp. 2799 - 285
Main Authors Liu, Bin, Xu, Bo, Li, Shenchang, Du, Jinli, Liu, Zhiguo, Zhong, Wenying
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphitic carbon nitride (C 3 N 4 ) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band gap, C 3 N 4 has insufficient sunlight absorption which limits the energy conversion efficiency. Here, by means of density functional theory, we explore a heptazine-based porous graphitic carbon nitride, the C 6 N 7 monolayer as a visible-light driven photocatalyst for water splitting. The C 6 N 7 monolayer possesses a direct band gap of 1.90 eV and pronounced optical absorbance in the visible light region. More importantly, the band alignment of the C 6 N 7 monolayer with respect to the water redox levels is found to satisfy the thermodynamic criteria for water splitting. By evaluating the free energy change in the oxidation/reduction reactions of the C 6 N 7 monolayer, it is found that cocatalysts are required for water splitting. The C 6 N 7 monolayer also favours separation of photoexcited electron-hole pairs, due to its high electron mobility (∼10 4 cm 2 V −1 s −1 ) but very low hole mobility, which renders the C 6 N 7 monolayer a promising candidate for water splitting under visible light. Heptazine-based porous graphitic carbon nitride with a suitable band alignment with respect to the water redox levels for water splitting.
AbstractList Graphitic carbon nitride (C 3 N 4 ) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band gap, C 3 N 4 has insufficient sunlight absorption which limits the energy conversion efficiency. Here, by means of density functional theory, we explore a heptazine-based porous graphitic carbon nitride, the C 6 N 7 monolayer as a visible-light driven photocatalyst for water splitting. The C 6 N 7 monolayer possesses a direct band gap of 1.90 eV and pronounced optical absorbance in the visible light region. More importantly, the band alignment of the C 6 N 7 monolayer with respect to the water redox levels is found to satisfy the thermodynamic criteria for water splitting. By evaluating the free energy change in the oxidation/reduction reactions of the C 6 N 7 monolayer, it is found that cocatalysts are required for water splitting. The C 6 N 7 monolayer also favours separation of photoexcited electron–hole pairs, due to its high electron mobility (∼10 4 cm 2 V −1 s −1 ) but very low hole mobility, which renders the C 6 N 7 monolayer a promising candidate for water splitting under visible light.
Graphitic carbon nitride (C3N4) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band gap, C3N4 has insufficient sunlight absorption which limits the energy conversion efficiency. Here, by means of density functional theory, we explore a heptazine-based porous graphitic carbon nitride, the C6N7 monolayer as a visible-light driven photocatalyst for water splitting. The C6N7 monolayer possesses a direct band gap of 1.90 eV and pronounced optical absorbance in the visible light region. More importantly, the band alignment of the C6N7 monolayer with respect to the water redox levels is found to satisfy the thermodynamic criteria for water splitting. By evaluating the free energy change in the oxidation/reduction reactions of the C6N7 monolayer, it is found that cocatalysts are required for water splitting. The C6N7 monolayer also favours separation of photoexcited electron–hole pairs, due to its high electron mobility (∼104 cm2 V−1 s−1) but very low hole mobility, which renders the C6N7 monolayer a promising candidate for water splitting under visible light.
Graphitic carbon nitride (C 3 N 4 ) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band gap, C 3 N 4 has insufficient sunlight absorption which limits the energy conversion efficiency. Here, by means of density functional theory, we explore a heptazine-based porous graphitic carbon nitride, the C 6 N 7 monolayer as a visible-light driven photocatalyst for water splitting. The C 6 N 7 monolayer possesses a direct band gap of 1.90 eV and pronounced optical absorbance in the visible light region. More importantly, the band alignment of the C 6 N 7 monolayer with respect to the water redox levels is found to satisfy the thermodynamic criteria for water splitting. By evaluating the free energy change in the oxidation/reduction reactions of the C 6 N 7 monolayer, it is found that cocatalysts are required for water splitting. The C 6 N 7 monolayer also favours separation of photoexcited electron-hole pairs, due to its high electron mobility (∼10 4 cm 2 V −1 s −1 ) but very low hole mobility, which renders the C 6 N 7 monolayer a promising candidate for water splitting under visible light. Heptazine-based porous graphitic carbon nitride with a suitable band alignment with respect to the water redox levels for water splitting.
Author Liu, Bin
Xu, Bo
Zhong, Wenying
Li, Shenchang
Liu, Zhiguo
Du, Jinli
AuthorAffiliation School of Science and Key Laboratory of Biomedical Functional Materials
China Pharmaceutical University
National Laboratory of Solid State Microstructures
Collaborative Innovation Center of Advanced Microstructures
Department of Materials Science and Engineering
College of Engineering and Applied Sciences
Nanjing University
AuthorAffiliation_xml – name: Nanjing University
– name: School of Science and Key Laboratory of Biomedical Functional Materials
– name: National Laboratory of Solid State Microstructures
– name: China Pharmaceutical University
– name: College of Engineering and Applied Sciences
– name: Department of Materials Science and Engineering
– name: Collaborative Innovation Center of Advanced Microstructures
Author_xml – sequence: 1
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
– sequence: 2
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
– sequence: 3
  givenname: Shenchang
  surname: Li
  fullname: Li, Shenchang
– sequence: 4
  givenname: Jinli
  surname: Du
  fullname: Du, Jinli
– sequence: 5
  givenname: Zhiguo
  surname: Liu
  fullname: Liu, Zhiguo
– sequence: 6
  givenname: Wenying
  surname: Zhong
  fullname: Zhong, Wenying
BookMark eNp9kE1LAzEURYNUsNZu3AsRd8JoMpmmibtSrBUKbup6yGebMk5iklbqr3e0Une-zX1wD-_BOQe91rcGgEuM7jAi_F7xLBChFbUnoF-iESrGFae9487YGRimtEHdMIQo533g5iZk8elaU0iRjIbBR79NcBVFWLvsFFQiSt_C1uXotHmAAu5ccrIxReNW6wx1dDvTwrD22SuRRbNPGVof4YfIJsIUGpeza1cX4NSKJpnhbw7A6-xxOZ0Xi5en5-lkUShSVbmQJaN4TDDF1NgRUdIwgrnWpFIaS0sxVlJbpvDICsLG0iJRCc5LK5SVUloyADeHuyH6961Jud74bWy7l3VZclxSVDHUUbcHSkWfUjS2DtG9ibivMaq_bdZTvpz82Jx18NUBjkkduT_bXX_9X18HbckX35GBPw
CitedBy_id crossref_primary_10_1016_j_commatsci_2024_112861
crossref_primary_10_1021_acs_chemmater_3c02277
crossref_primary_10_3390_cryst13010047
crossref_primary_10_1016_j_apsusc_2021_152270
crossref_primary_10_1016_j_colsurfa_2022_130249
crossref_primary_10_1016_j_ijhydene_2021_12_228
crossref_primary_10_1021_acsaem_0c02924
crossref_primary_10_1016_j_matpr_2022_04_118
crossref_primary_10_3390_nano13162300
crossref_primary_10_1016_j_fuel_2023_127682
crossref_primary_10_1063_5_0060496
crossref_primary_10_1016_j_cej_2021_134051
crossref_primary_10_1016_j_apsusc_2021_149814
crossref_primary_10_1016_j_cej_2021_134075
crossref_primary_10_1021_acs_jpca_1c04597
crossref_primary_10_1016_j_enconman_2021_115133
crossref_primary_10_1016_j_jcis_2021_09_190
crossref_primary_10_3390_ma15062221
crossref_primary_10_1039_D2CP03311A
crossref_primary_10_1088_1361_6528_ac31e7
Cites_doi 10.1039/C5TA04955E
10.1039/C8TA02061B
10.1021/ja411321s
10.1103/PhysRevA.38.3098
10.1021/cm401661x
10.1021/jp506538d
10.1039/b505646b
10.1039/C7NR00688H
10.1002/cctc.201000397
10.1038/414625a
10.1021/ja103798k
10.1038/238037a0
10.1021/jz502646d
10.1126/science.1061051
10.1039/b822385h
10.1063/1.1564060
10.1021/acs.chemmater.5b02344
10.1063/1.463940
10.1039/B800489G
10.1021/jp308334x
10.1002/advs.201600337
10.1016/j.diamond.2006.01.013
10.1002/adma.201700008
10.1039/C6CP01007E
10.1103/PhysRev.115.786
10.1103/PhysRevB.28.1809
10.1039/C6TA06628C
10.1063/1.3427419
10.1021/jacs.8b07855
10.1039/C8EE00886H
10.1103/PhysRevB.54.11169
10.1016/j.apsusc.2018.05.051
10.1016/j.apcatb.2004.12.007
10.1021/jp047349j
10.1016/j.diamond.2018.05.003
10.1039/b923596e
10.1039/C5NR04717J
10.1021/ja048939y
10.1021/ja907528a
10.1038/ncomms5475
10.1021/acsami.8b01729
10.1021/cr1001645
10.1021/acs.jpcc.7b12428
10.1063/1.1329672
10.1021/ja4109787
10.1016/j.rser.2005.01.009
10.1103/PhysRevB.76.125109
10.1103/PhysRevLett.77.3865
10.1021/cr100246c
10.1021/jp405808a
10.1021/acs.jpcc.7b07776
10.1038/nmat2317
10.1038/nmat2780
10.1016/0927-0256(96)00008-0
10.1021/jacs.7b08474
10.1103/PhysRev.80.72
10.1021/cr00033a004
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/c9ta03646f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 285
ExternalDocumentID 10_1039_C9TA03646F
c9ta03646f
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
EJD
GNO
HZ
H~N
IPNFZ
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c344t-b2861731616ef53cbe8319dd34cd1bf611cbdf8c15fa387bf0a4a992facfbbbf3
ISSN 2050-7488
IngestDate Fri Sep 13 04:42:09 EDT 2024
Fri Aug 23 01:29:11 EDT 2024
Sat Jan 08 03:27:07 EST 2022
Wed Nov 11 00:29:01 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-b2861731616ef53cbe8319dd34cd1bf611cbdf8c15fa387bf0a4a992facfbbbf3
Notes 10.1039/c9ta03646f
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0003-3931-0439
0000-0001-5114-0255
PQID 2291260480
PQPubID 2047523
PageCount 7
ParticipantIDs rsc_primary_c9ta03646f
crossref_primary_10_1039_C9TA03646F
proquest_journals_2291260480
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Singh (C9TA03646F-(cit12)/*[position()=1]) 2015; 6
Zhuang (C9TA03646F-(cit20)/*[position()=1]) 2013; 117
Tee (C9TA03646F-(cit6)/*[position()=1]) 2017; 4
Faraji (C9TA03646F-(cit19)/*[position()=1]) 2019; 12
Zhang (C9TA03646F-(cit55)/*[position()=1]) 2015; 7
Li (C9TA03646F-(cit51)/*[position()=1]) 2006; 15
Yi (C9TA03646F-(cit5)/*[position()=1]) 2010; 9
Tay (C9TA03646F-(cit30)/*[position()=1]) 2015; 27
Wang (C9TA03646F-(cit53)/*[position()=1]) 2018; 453
Kresse (C9TA03646F-(cit39)/*[position()=1]) 1996; 6
Langreth (C9TA03646F-(cit41)/*[position()=1]) 1983; 28
Chen (C9TA03646F-(cit2)/*[position()=1]) 2010; 110
Bardeen (C9TA03646F-(cit47)/*[position()=1]) 1950; 80
Kudo (C9TA03646F-(cit3)/*[position()=1]) 2009; 38
Ou (C9TA03646F-(cit28)/*[position()=1]) 2017; 29
Hoffmann (C9TA03646F-(cit10)/*[position()=1]) 1995; 95
Srinivasu (C9TA03646F-(cit31)/*[position()=1]) 2015; 3
Perdew (C9TA03646F-(cit40)/*[position()=1]) 1996; 77
Ehrenreich (C9TA03646F-(cit44)/*[position()=1]) 1959; 115
Zou (C9TA03646F-(cit17)/*[position()=1]) 2001; 414
Man (C9TA03646F-(cit56)/*[position()=1]) 2011; 3
Makaremi (C9TA03646F-(cit34)/*[position()=1]) 2018; 10
Ma (C9TA03646F-(cit32)/*[position()=1]) 2012; 116
Long (C9TA03646F-(cit48)/*[position()=1]) 2009; 131
Miller (C9TA03646F-(cit52)/*[position()=1]) 2004; 126
Qiao (C9TA03646F-(cit58)/*[position()=1]) 2014; 5
Zhuang (C9TA03646F-(cit21)/*[position()=1]) 2013; 25
Chen (C9TA03646F-(cit11)/*[position()=1]) 2010; 39
Ni (C9TA03646F-(cit8)/*[position()=1]) 2007; 11
Schwinghammer (C9TA03646F-(cit29)/*[position()=1]) 2014; 136
Zou (C9TA03646F-(cit4)/*[position()=1]) 2001; 414
Liu (C9TA03646F-(cit33)/*[position()=1]) 2010; 132
Abe (C9TA03646F-(cit16)/*[position()=1]) 2005; 30
Zhang (C9TA03646F-(cit35)/*[position()=1]) 2018; 122
Liu (C9TA03646F-(cit25)/*[position()=1]) 2016; 18
Kohtani (C9TA03646F-(cit15)/*[position()=1]) 2005; 58
Henkelman (C9TA03646F-(cit57)/*[position()=1]) 2000; 113
Cook (C9TA03646F-(cit9)/*[position()=1]) 2010; 110
Heyd (C9TA03646F-(cit43)/*[position()=1]) 2003; 118
Kresse (C9TA03646F-(cit38)/*[position()=1]) 1996; 54
Xu (C9TA03646F-(cit49)/*[position()=1]) 2010; 96
Asahi (C9TA03646F-(cit13)/*[position()=1]) 2001; 293
Lu (C9TA03646F-(cit22)/*[position()=1]) 2016; 4
Hu (C9TA03646F-(cit24)/*[position()=1]) 2017; 139
Qiao (C9TA03646F-(cit26)/*[position()=1]) 2018; 140
Kumar (C9TA03646F-(cit18)/*[position()=1]) 2018; 6
Cai (C9TA03646F-(cit54)/*[position()=1]) 2014; 136
Wang (C9TA03646F-(cit27)/*[position()=1]) 2009; 8
Martyna (C9TA03646F-(cit45)/*[position()=1]) 1992; 97
Srinivasu (C9TA03646F-(cit36)/*[position()=1]) 2014; 118
Becke (C9TA03646F-(cit42)/*[position()=1]) 1998; 38
Ashwin Kishore (C9TA03646F-(cit50)/*[position()=1]) 2017; 121
Li (C9TA03646F-(cit37)/*[position()=1]) 2018; 87
Fujishima (C9TA03646F-(cit1)/*[position()=1]) 1972; 238
Ji (C9TA03646F-(cit23)/*[position()=1]) 2017; 9
Tada (C9TA03646F-(cit7)/*[position()=1]) 2009; 38
Nørskov (C9TA03646F-(cit46)/*[position()=1]) 2004; 108
Xu (C9TA03646F-(cit14)/*[position()=1]) 2007; 76
References_xml – volume: 3
  start-page: 23011
  year: 2015
  ident: C9TA03646F-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04955E
  contributor:
    fullname: Srinivasu
– volume: 6
  start-page: 12876
  year: 2018
  ident: C9TA03646F-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02061B
  contributor:
    fullname: Kumar
– volume: 136
  start-page: 1730
  year: 2014
  ident: C9TA03646F-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411321s
  contributor:
    fullname: Schwinghammer
– volume: 38
  start-page: 3098
  year: 1998
  ident: C9TA03646F-(cit42)/*[position()=1]
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
  contributor:
    fullname: Becke
– volume: 25
  start-page: 3232
  year: 2013
  ident: C9TA03646F-(cit21)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm401661x
  contributor:
    fullname: Zhuang
– volume: 118
  start-page: 26479
  year: 2014
  ident: C9TA03646F-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506538d
  contributor:
    fullname: Srinivasu
– volume: 30
  start-page: 3829
  year: 2005
  ident: C9TA03646F-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b505646b
  contributor:
    fullname: Abe
– volume: 9
  start-page: 8608
  year: 2017
  ident: C9TA03646F-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR00688H
  contributor:
    fullname: Ji
– volume: 3
  start-page: 1159
  year: 2011
  ident: C9TA03646F-(cit56)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
  contributor:
    fullname: Man
– volume: 414
  start-page: 625
  year: 2001
  ident: C9TA03646F-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/414625a
  contributor:
    fullname: Zou
– volume: 132
  start-page: 11642
  year: 2010
  ident: C9TA03646F-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103798k
  contributor:
    fullname: Liu
– volume: 238
  start-page: 37
  year: 1972
  ident: C9TA03646F-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/238037a0
  contributor:
    fullname: Fujishima
– volume: 6
  start-page: 1087
  year: 2015
  ident: C9TA03646F-(cit12)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502646d
  contributor:
    fullname: Singh
– volume: 293
  start-page: 269
  year: 2001
  ident: C9TA03646F-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1061051
  contributor:
    fullname: Asahi
– volume: 38
  start-page: 1849
  year: 2009
  ident: C9TA03646F-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b822385h
  contributor:
    fullname: Tada
– volume: 118
  start-page: 8207
  year: 2003
  ident: C9TA03646F-(cit43)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
  contributor:
    fullname: Heyd
– volume: 27
  start-page: 4930
  year: 2015
  ident: C9TA03646F-(cit30)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02344
  contributor:
    fullname: Tay
– volume: 97
  start-page: 2635
  year: 1992
  ident: C9TA03646F-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
  contributor:
    fullname: Martyna
– volume: 38
  start-page: 253
  year: 2009
  ident: C9TA03646F-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
  contributor:
    fullname: Kudo
– volume: 116
  start-page: 23485
  year: 2012
  ident: C9TA03646F-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp308334x
  contributor:
    fullname: Ma
– volume: 4
  start-page: 1600337
  year: 2017
  ident: C9TA03646F-(cit6)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600337
  contributor:
    fullname: Tee
– volume: 15
  start-page: 1593
  year: 2006
  ident: C9TA03646F-(cit51)/*[position()=1]
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2006.01.013
  contributor:
    fullname: Li
– volume: 414
  start-page: 625
  year: 2001
  ident: C9TA03646F-(cit17)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/414625a
  contributor:
    fullname: Zou
– volume: 29
  start-page: 1700008
  year: 2017
  ident: C9TA03646F-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700008
  contributor:
    fullname: Ou
– volume: 18
  start-page: 14222
  year: 2016
  ident: C9TA03646F-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01007E
  contributor:
    fullname: Liu
– volume: 115
  start-page: 786
  year: 1959
  ident: C9TA03646F-(cit44)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.115.786
  contributor:
    fullname: Ehrenreich
– volume: 28
  start-page: 1809
  year: 1983
  ident: C9TA03646F-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.28.1809
  contributor:
    fullname: Langreth
– volume: 4
  start-page: 14827
  year: 2016
  ident: C9TA03646F-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06628C
  contributor:
    fullname: Lu
– volume: 96
  start-page: 183108
  year: 2010
  ident: C9TA03646F-(cit49)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3427419
  contributor:
    fullname: Xu
– volume: 140
  start-page: 12256
  year: 2018
  ident: C9TA03646F-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07855
  contributor:
    fullname: Qiao
– volume: 12
  start-page: 59
  year: 2019
  ident: C9TA03646F-(cit19)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00886H
  contributor:
    fullname: Faraji
– volume: 54
  start-page: 11169
  year: 1996
  ident: C9TA03646F-(cit38)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– volume: 453
  start-page: 442
  year: 2018
  ident: C9TA03646F-(cit53)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.051
  contributor:
    fullname: Wang
– volume: 58
  start-page: 265
  year: 2005
  ident: C9TA03646F-(cit15)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2004.12.007
  contributor:
    fullname: Kohtani
– volume: 108
  start-page: 17886
  year: 2004
  ident: C9TA03646F-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
  contributor:
    fullname: Nørskov
– volume: 87
  start-page: 50
  year: 2018
  ident: C9TA03646F-(cit37)/*[position()=1]
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2018.05.003
  contributor:
    fullname: Li
– volume: 39
  start-page: 3157
  year: 2010
  ident: C9TA03646F-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b923596e
  contributor:
    fullname: Chen
– volume: 7
  start-page: 16020
  year: 2015
  ident: C9TA03646F-(cit55)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04717J
  contributor:
    fullname: Zhang
– volume: 126
  start-page: 5372
  year: 2004
  ident: C9TA03646F-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja048939y
  contributor:
    fullname: Miller
– volume: 131
  start-page: 17728
  year: 2009
  ident: C9TA03646F-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907528a
  contributor:
    fullname: Long
– volume: 5
  start-page: 4475
  year: 2014
  ident: C9TA03646F-(cit58)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
  contributor:
    fullname: Qiao
– volume: 10
  start-page: 11143
  year: 2018
  ident: C9TA03646F-(cit34)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01729
  contributor:
    fullname: Makaremi
– volume: 110
  start-page: 6503
  year: 2010
  ident: C9TA03646F-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001645
  contributor:
    fullname: Chen
– volume: 122
  start-page: 5291
  year: 2018
  ident: C9TA03646F-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12428
  contributor:
    fullname: Zhang
– volume: 113
  start-page: 9901
  year: 2000
  ident: C9TA03646F-(cit57)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
  contributor:
    fullname: Henkelman
– volume: 136
  start-page: 6269
  year: 2014
  ident: C9TA03646F-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4109787
  contributor:
    fullname: Cai
– volume: 11
  start-page: 401
  year: 2007
  ident: C9TA03646F-(cit8)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2005.01.009
  contributor:
    fullname: Ni
– volume: 76
  start-page: 125109
  year: 2007
  ident: C9TA03646F-(cit14)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.125109
  contributor:
    fullname: Xu
– volume: 77
  start-page: 3865
  year: 1996
  ident: C9TA03646F-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 110
  start-page: 6474
  year: 2010
  ident: C9TA03646F-(cit9)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
  contributor:
    fullname: Cook
– volume: 117
  start-page: 20440
  year: 2013
  ident: C9TA03646F-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp405808a
  contributor:
    fullname: Zhuang
– volume: 121
  start-page: 22216
  year: 2017
  ident: C9TA03646F-(cit50)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07776
  contributor:
    fullname: Ashwin Kishore
– volume: 8
  start-page: 76
  year: 2009
  ident: C9TA03646F-(cit27)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
  contributor:
    fullname: Wang
– volume: 9
  start-page: 559
  year: 2010
  ident: C9TA03646F-(cit5)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2780
  contributor:
    fullname: Yi
– volume: 6
  start-page: 15
  year: 1996
  ident: C9TA03646F-(cit39)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Kresse
– volume: 139
  start-page: 15429
  year: 2017
  ident: C9TA03646F-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08474
  contributor:
    fullname: Hu
– volume: 80
  start-page: 72
  year: 1950
  ident: C9TA03646F-(cit47)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.80.72
  contributor:
    fullname: Bardeen
– volume: 95
  start-page: 69
  year: 1995
  ident: C9TA03646F-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
  contributor:
    fullname: Hoffmann
SSID ssj0000800699
Score 2.3986964
Snippet Graphitic carbon nitride (C 3 N 4 ) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band...
Graphitic carbon nitride (C3N4) based semiconductors are found to be potential metal-free photocatalysts for water splitting. However, due to the wide band...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 2799
SubjectTerms Carbon
Carbon nitride
Chemical reduction
Density functional theory
Electron mobility
Electronics industry
Energy conversion
Energy conversion efficiency
Energy gap
Free energy
Hole mobility
Mobility
Monolayers
Oxidation
Photocatalysts
Redox reactions
Splitting
Water splitting
Title Heptazine-based porous graphitic carbon nitride: a visible-light driven photocatalyst for water splitting
URI https://www.proquest.com/docview/2291260480/abstract/
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VXRZkCW5VljycNOFWrVoVVJZLKvUW-amNVNqqTYXYv7V_kLEdJykqCLhElZNaqefz-JvpPBB6z6SIdTUfj0tKPRKAHsx8SbwoBf4cqDQmpk3nl9tktiCfl_Gy13voRC0dKnbN70_mlfyPVGEM5KqzZP9Bss2kMACfQb5wBQnD9a9kPJPbypSH9vRhJIbApXVEqylCraPadN1pBuKFbbsrhbSJzTqbnK2kt9Jm-VDstLobbu821ca4cn7sKxN6-J3q8ol74KgmMvo3JPabfkr_0CF3neOuh2ObBOTumKLiNsXQeOldypaOym0c-vPyYKBWNmBd2oFN-4Tx1N6BALSTu2XgBojlelV2PRgdDWk9JC481YSf1K_aasHQj31d8NQqadkds61wnRofddAaHelkf2R7MNUHfAgkOT55eviRLr7Ks4rqf2cT1Z6RLi7g9msxXcznRT5Z5mfoPByBedlH5-NJ_mneuPY0CU9M59Lm5V1h3Cj70E5_TIVa--Zs55rPGJKTP0VPasHisYXaM9ST6-focadm5QtU_gI6bEGHG9BhCzpcg-4jpvgIcthCDh9BDgNIsIEcbiD3Ei2mk_xm5tX9OjweEVJ5LITtrTuhBYlUccSZTEHBCxERLgKmkiDgTKiUB7GiUTpiyqeEZlmoKFeMMRVdoP56s5avEOa-kCEDWz0LGKE-YymPmQK6LmRC01gM0Du3dMXWlmUpTDhFlBU3WT42CzwdoCu3qkW9bfdFGGYBGPEk9QfoAla6-X4rmAG6PH2j2Ap1-edJX6NHGuPWS3eF-tXuIN8Ab63Y2xonPwEY2KHs
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heptazine-based+porous+graphitic+carbon+nitride%3A+a+visible-light+driven+photocatalyst+for+water+splitting&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Liu%2C+Bin&rft.au=Xu%2C+Bo&rft.au=Li%2C+Shenchang&rft.au=Du%2C+Jinli&rft.date=2019&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=36&rft.spage=20799&rft.epage=20805&rft_id=info:doi/10.1039%2Fc9ta03646f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon