Organic emitters with near-unity photoluminescence to reinforce buried interface of perovskite solar cells and modules
Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy uti...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 14; pp. 5115 - 5123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.07.2024
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI
6
octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm
2
obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm
2
. An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions.
We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability. |
---|---|
AbstractList | We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability. Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI 6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm 2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm 2 . An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions. We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability. Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI 6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm 2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm 2 . An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions. Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm2. An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions. |
Author | Gao, Xingyu Dong, Runmin Suo, Zhen-Yang Mu, Xijiao Cao, Jing Xiao, Guo-Bin Su, Zhenhuang Wu, Yiying |
AuthorAffiliation | State Key Laboratory of Applied Organic Chemistry Chinese Academy of Sciences The Ohio State University Lanzhou University Shanghai Synchrotron Radiation Facility (SSRF) Department of Chemistry and Biochemistry Shanghai Advanced Research Institute College of Chemistry and Chemical Engineering Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province |
AuthorAffiliation_xml | – sequence: 0 name: College of Chemistry and Chemical Engineering – sequence: 0 name: The Ohio State University – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Department of Chemistry and Biochemistry – sequence: 0 name: Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province – sequence: 0 name: Shanghai Synchrotron Radiation Facility (SSRF) – sequence: 0 name: State Key Laboratory of Applied Organic Chemistry – sequence: 0 name: Shanghai Advanced Research Institute – sequence: 0 name: Lanzhou University |
Author_xml | – sequence: 1 givenname: Zhen-Yang surname: Suo fullname: Suo, Zhen-Yang – sequence: 2 givenname: Guo-Bin surname: Xiao fullname: Xiao, Guo-Bin – sequence: 3 givenname: Zhenhuang surname: Su fullname: Su, Zhenhuang – sequence: 4 givenname: Runmin surname: Dong fullname: Dong, Runmin – sequence: 5 givenname: Xijiao surname: Mu fullname: Mu, Xijiao – sequence: 6 givenname: Xingyu surname: Gao fullname: Gao, Xingyu – sequence: 7 givenname: Yiying surname: Wu fullname: Wu, Yiying – sequence: 8 givenname: Jing surname: Cao fullname: Cao, Jing |
BackLink | https://www.osti.gov/biblio/2375565$$D View this record in Osti.gov |
BookMark | eNptkUlLBDEQhYMouF68C0FvQmuSTro7R9FxAcGLnptMUnGiPcmYpEf890bHBcRTLXyveNTbRus-eEBon5ITSmp5ajgAoUIwWENbtBW8Ei1p1r_7RrJNtJ3SEyENI63cQsu7-Ki80xjmLmeICb-6PMMeVKxG7_IbXsxCDsM4dx6SBq8B54AjOG9DLMN0jA4Mdr6IrSqLYPECYlimZ5cBpzCoiDUMQ8LKGzwPZhwg7aINq4YEe191Bz1cTu7Pr6vbu6ub87PbStec52rKWqksE8TIrmNSUdrUWoDh2homQHLCGFihO6lbA4rJtmVUGmO5kN2U8XoHHa7uhpRdn3SxpGc6eA8696xuhWhEgY5W0CKGlxFS7p_CGH3x1deko-V1VNSFIitKx5BSBNuXayq74HNUbugp6T8i6C_4ZPIZwaRIjv9IFtHNVXz7Hz5YwTHpH-43z_od4ziULw |
CitedBy_id | crossref_primary_10_1002_anie_202418834 crossref_primary_10_1021_acsami_4c14579 crossref_primary_10_1002_smll_202408516 crossref_primary_10_1002_ange_202418834 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1002_aenm_202404755 crossref_primary_10_1039_D4CC04884A |
Cites_doi | 10.1016/j.joule.2020.04.001 10.1021/jacs.1c07518 10.1126/science.abh1035 10.1039/C6EE02390H 10.1039/C5EE03522H 10.1038/s41566-023-01287-w 10.1038/s41560-023-01295-8 10.1021/acsenergylett.2c01610 10.1002/aenm.202200614 10.1126/science.1228604 10.1038/s41586-021-03285-w 10.1126/science.aam6620 10.1002/anie.202016087 10.1126/science.adj8858 10.1039/D3EE02818F 10.1016/j.joule.2024.02.015 10.1038/s41586-023-05825-y 10.1038/s41586-023-06784-0 10.1016/j.joule.2023.05.017 10.1002/anie.202100218 10.1038/s41586-023-06637-w 10.1039/D3EE03435F 10.1016/j.joule.2022.12.006 10.1038/s41467-024-45649-6 10.1038/s41560-024-01471-4 10.1016/j.joule.2021.07.016 10.1002/anie.202113932 10.1016/j.joule.2022.06.031 10.1039/D2TC04683K 10.1016/j.nanoen.2022.107849 10.1038/s41586-024-07189-3 10.1038/s41586-021-03964-8 10.1126/science.adg3755 10.1016/j.joule.2022.01.011 10.1038/s41566-023-01247-4 10.1002/anie.202304568 10.1002/anie.202117067 10.1126/science.abi6323 10.1038/s41560-019-0382-6 10.1038/s41586-023-05992-y 10.1038/s41560-023-01444-z 10.1126/science.aba0893 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI OTOTI |
DOI | 10.1039/d4ee01552e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 5123 |
ExternalDocumentID | 2375565 10_1039_D4EE01552E d4ee01552e |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI OTOTI |
ID | FETCH-LOGICAL-c344t-b279af250d98829a1163c5ed4cfd25e94022ef5c89c7dea2977219ddf4598b243 |
ISSN | 1754-5692 |
IngestDate | Mon Jul 22 05:29:01 EDT 2024 Mon Jun 30 12:06:13 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Tue Jul 01 01:45:59 EDT 2025 Tue Dec 17 20:57:57 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-b279af250d98829a1163c5ed4cfd25e94022ef5c89c7dea2977219ddf4598b243 |
Notes | https://doi.org/10.1039/d4ee01552e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE FG02-07ER46427 |
ORCID | 0000-0003-3978-911X 000000033978911X |
OpenAccessLink | https://www.osti.gov/biblio/2375565 |
PQID | 3081175153 |
PQPubID | 2047494 |
PageCount | 9 |
ParticipantIDs | rsc_primary_d4ee01552e crossref_citationtrail_10_1039_D4EE01552E crossref_primary_10_1039_D4EE01552E osti_scitechconnect_2375565 proquest_journals_3081175153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-16 |
PublicationDateYYYYMMDD | 2024-07-16 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United Kingdom |
PublicationTitle | Energy & environmental science |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Shin (D4EE01552E/cit27/1) 2017; 356 Cui (D4EE01552E/cit31/1) 2023; 16 Zheng (D4EE01552E/cit4/1) 2024; 17 Zhu (D4EE01552E/cit23/1) 2022; 103 Liu (D4EE01552E/cit19/1) 2022; 7 Yoo (D4EE01552E/cit10/1) 2021; 590 Wang (D4EE01552E/cit29/1) 2021; 60 Chen (D4EE01552E/cit36/1) 2021; 373 Dou (D4EE01552E/cit33/1) 2021; 33 Lee (D4EE01552E/cit34/1) 2023; 7 Hu (D4EE01552E/cit38/1) 2023; 7 Zhang (D4EE01552E/cit50/1) 2024; 8 Yu (D4EE01552E/cit5/1) 2023; 382 Xiong (D4EE01552E/cit17/1) 2022; 34 Fu (D4EE01552E/cit22/1) 2022; 61 Zhang (D4EE01552E/cit46/1) 2023; 35 Chen (D4EE01552E/cit20/1) 2017; 7 Meng (D4EE01552E/cit39/1) 2022; 6 Li (D4EE01552E/cit48/1) 2023; 11 Min (D4EE01552E/cit56/1) 2022; 6 Park (D4EE01552E/cit1/1) 2023; 616 Guo (D4EE01552E/cit30/1) 2023; 62 Ji (D4EE01552E/cit45/1) 2023; 35 Huang (D4EE01552E/cit2/1) 2023; 623 Zhang (D4EE01552E/cit6/1) 2023; 380 Fang (D4EE01552E/cit57/1) 2021; 143 Yang (D4EE01552E/cit53/1) 2024; 9 Chen (D4EE01552E/cit51/1) 2021; 61 Min (D4EE01552E/cit13/1) 2021; 598 Xu (D4EE01552E/cit32/1) 2023; 36 Deng (D4EE01552E/cit28/1) 2023; 33 Meng (D4EE01552E/cit54/1) 2024; 9 Zhuang (D4EE01552E/cit24/1) 2022; 12 He (D4EE01552E/cit7/1) 2023; 618 Liang (D4EE01552E/cit3/1) 2023; 624 Li (D4EE01552E/cit43/1) 2019; 4 Anaraki (D4EE01552E/cit11/1) 2016; 9 Su (D4EE01552E/cit37/1) 2023; 36 Cao (D4EE01552E/cit26/1) 2018; 30 Luo (D4EE01552E/cit40/1) 2023; 17 Bu (D4EE01552E/cit55/1) 2021; 372 Yu (D4EE01552E/cit58/1) 2021; 60 Wu (D4EE01552E/cit14/1) 2020; 4 Wei (D4EE01552E/cit25/1) 2020; 11 Guo (D4EE01552E/cit49/1) 2021; 33 Wang (D4EE01552E/cit35/1) 2024; 36 Wang (D4EE01552E/cit52/1) 2022; 32 Dong (D4EE01552E/cit18/1) 2022; 12 Li (D4EE01552E/cit41/1) 2023; 8 Levine (D4EE01552E/cit15/1) 2021; 5 Azmi (D4EE01552E/cit47/1) 2024; 628 Li (D4EE01552E/cit21/1) 2016; 9 Uddin (D4EE01552E/cit44/1) 2024; 15 Lee (D4EE01552E/cit9/1) 2012; 338 Zhang (D4EE01552E/cit42/1) 2023; 17 D4EE01552E/cit8/1 Qin (D4EE01552E/cit16/1) 2022; 34 Ni (D4EE01552E/cit12/1) 2020; 367 |
References_xml | – volume: 4 start-page: 1248 year: 2020 ident: D4EE01552E/cit14/1 publication-title: Joule doi: 10.1016/j.joule.2020.04.001 – volume: 143 start-page: 18989 year: 2021 ident: D4EE01552E/cit57/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07518 – volume: 33 start-page: 202303742 year: 2023 ident: D4EE01552E/cit28/1 publication-title: Adv. Funct. Mater. – volume: 372 start-page: 1327 year: 2021 ident: D4EE01552E/cit55/1 publication-title: Science doi: 10.1126/science.abh1035 – volume: 9 start-page: 3128 year: 2016 ident: D4EE01552E/cit11/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02390H – volume: 9 start-page: 490 year: 2016 ident: D4EE01552E/cit21/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03522H – volume: 17 start-page: 1066 year: 2023 ident: D4EE01552E/cit42/1 publication-title: Nat. Photon. doi: 10.1038/s41566-023-01287-w – volume: 30 start-page: 201800568 year: 2018 ident: D4EE01552E/cit26/1 publication-title: Adv. Mater. – volume: 8 start-page: 946 year: 2023 ident: D4EE01552E/cit41/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01295-8 – volume: 7 start-page: 3531 year: 2022 ident: D4EE01552E/cit19/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01610 – volume: 12 start-page: 202200614 year: 2022 ident: D4EE01552E/cit24/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200614 – volume: 338 start-page: 643 year: 2012 ident: D4EE01552E/cit9/1 publication-title: Science doi: 10.1126/science.1228604 – volume: 33 start-page: 202006953 year: 2021 ident: D4EE01552E/cit49/1 publication-title: Adv. Mater. – volume: 590 start-page: 587 year: 2021 ident: D4EE01552E/cit10/1 publication-title: Nature doi: 10.1038/s41586-021-03285-w – volume: 11 start-page: 202002326 year: 2020 ident: D4EE01552E/cit25/1 publication-title: Adv. Energy Mater. – volume: 356 start-page: 167 year: 2017 ident: D4EE01552E/cit27/1 publication-title: Science doi: 10.1126/science.aam6620 – volume: 60 start-page: 6294 year: 2021 ident: D4EE01552E/cit58/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016087 – volume: 382 start-page: 1399 year: 2023 ident: D4EE01552E/cit5/1 publication-title: Science doi: 10.1126/science.adj8858 – volume: 35 start-page: 202303139 year: 2023 ident: D4EE01552E/cit46/1 publication-title: Adv. Mater. – volume: 36 start-page: 202308039 year: 2023 ident: D4EE01552E/cit32/1 publication-title: Adv. Mater. – volume: 16 start-page: 5992 year: 2023 ident: D4EE01552E/cit31/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02818F – volume: 12 start-page: 202200417 year: 2022 ident: D4EE01552E/cit18/1 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1394 year: 2024 ident: D4EE01552E/cit50/1 publication-title: Joule doi: 10.1016/j.joule.2024.02.015 – volume: 616 start-page: 724 year: 2023 ident: D4EE01552E/cit1/1 publication-title: Nature doi: 10.1038/s41586-023-05825-y – volume: 624 start-page: 557 year: 2023 ident: D4EE01552E/cit3/1 publication-title: Nature doi: 10.1038/s41586-023-06784-0 – volume: 36 start-page: 202306724 year: 2023 ident: D4EE01552E/cit37/1 publication-title: Adv. Mater. – volume: 7 start-page: 1574 year: 2023 ident: D4EE01552E/cit38/1 publication-title: Joule doi: 10.1016/j.joule.2023.05.017 – volume: 60 start-page: 8673 year: 2021 ident: D4EE01552E/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202100218 – volume: 623 start-page: 531 year: 2023 ident: D4EE01552E/cit2/1 publication-title: Nature doi: 10.1038/s41586-023-06637-w – volume: 17 start-page: 1153 year: 2024 ident: D4EE01552E/cit4/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03435F – volume: 36 start-page: 202310710 year: 2024 ident: D4EE01552E/cit35/1 publication-title: Adv. Mater. – volume: 7 start-page: 380 year: 2023 ident: D4EE01552E/cit34/1 publication-title: Joule doi: 10.1016/j.joule.2022.12.006 – volume: 35 start-page: 202303665 year: 2023 ident: D4EE01552E/cit45/1 publication-title: Adv. Mater. – volume: 15 year: 2024 ident: D4EE01552E/cit44/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45649-6 – volume: 9 start-page: 536 year: 2024 ident: D4EE01552E/cit54/1 publication-title: Nat. Energy doi: 10.1038/s41560-024-01471-4 – volume: 5 start-page: 2915 year: 2021 ident: D4EE01552E/cit15/1 publication-title: Joule doi: 10.1016/j.joule.2021.07.016 – volume: 61 start-page: e202113932 year: 2021 ident: D4EE01552E/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202113932 – volume: 6 start-page: 2175 year: 2022 ident: D4EE01552E/cit56/1 publication-title: Joule doi: 10.1016/j.joule.2022.06.031 – volume: 11 start-page: 3284 year: 2023 ident: D4EE01552E/cit48/1 publication-title: J. Mater. Chem. C doi: 10.1039/D2TC04683K – volume: 103 start-page: 107849 year: 2022 ident: D4EE01552E/cit23/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107849 – volume: 628 start-page: 93 year: 2024 ident: D4EE01552E/cit47/1 publication-title: Nature doi: 10.1038/s41586-024-07189-3 – volume: 598 start-page: 444 year: 2021 ident: D4EE01552E/cit13/1 publication-title: Nature doi: 10.1038/s41586-021-03964-8 – ident: D4EE01552E/cit8/1 – volume: 32 start-page: 202204396 year: 2022 ident: D4EE01552E/cit52/1 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 201700758 year: 2017 ident: D4EE01552E/cit20/1 publication-title: Adv. Energy Mater. – volume: 380 start-page: 404 year: 2023 ident: D4EE01552E/cit6/1 publication-title: Science doi: 10.1126/science.adg3755 – volume: 6 start-page: 458 year: 2022 ident: D4EE01552E/cit39/1 publication-title: Joule doi: 10.1016/j.joule.2022.01.011 – volume: 17 start-page: 856 year: 2023 ident: D4EE01552E/cit40/1 publication-title: Nat. Photon. doi: 10.1038/s41566-023-01247-4 – volume: 62 start-page: e202304568 year: 2023 ident: D4EE01552E/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202304568 – volume: 33 start-page: 202102947 year: 2021 ident: D4EE01552E/cit33/1 publication-title: Adv. Mater. – volume: 61 start-page: e202117067 year: 2022 ident: D4EE01552E/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202117067 – volume: 373 start-page: 902 year: 2021 ident: D4EE01552E/cit36/1 publication-title: Science doi: 10.1126/science.abi6323 – volume: 4 start-page: 408 year: 2019 ident: D4EE01552E/cit43/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0382-6 – volume: 618 start-page: 80 year: 2023 ident: D4EE01552E/cit7/1 publication-title: Nature doi: 10.1038/s41586-023-05992-y – volume: 34 start-page: 202203143 year: 2022 ident: D4EE01552E/cit16/1 publication-title: Adv. Mater. – volume: 9 start-page: 316 year: 2024 ident: D4EE01552E/cit53/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01444-z – volume: 34 start-page: 202106118 year: 2022 ident: D4EE01552E/cit17/1 publication-title: Adv. Mater. – volume: 367 start-page: 1352 year: 2020 ident: D4EE01552E/cit12/1 publication-title: Science doi: 10.1126/science.aba0893 |
SSID | ssj0062079 |
Score | 2.5096507 |
Snippet | Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it... We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to... |
SourceID | osti proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5115 |
SubjectTerms | Cyano groups Dipoles Electron distribution Emitters Emitters (electron) Energy loss Illumination Interface stability Iodides Luminescence Maximum power Modules Performance degradation Perovskites Photochemicals Photoluminescence Photons Photovoltaic cells Solar cells Substrates Unity |
Title | Organic emitters with near-unity photoluminescence to reinforce buried interface of perovskite solar cells and modules |
URI | https://www.proquest.com/docview/3081175153 https://www.osti.gov/biblio/2375565 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdF2oJWgguKXJz12s4eWxpageAArQhcrPXuWonU2FVi98CVP87Mev2ICBJwsZL12LI8n-elmW8JeQUeXYowZt5EpwYSFF96SDPmgS_SgCEV-xLrkB8_RZfX_P08nA8GP3tdS1WZnqgfO-dK_kersAZ6xSnZf9Bse1NYgN-gXziChuH4VzquBynV2KyWliWzrqrmAF6vyjG8vl0UJZof7G1X9huGUHNtLFsq_ElxvzptKSPWmVS2fIDE4XcbrOmON5j2jrG0XxM5rwpd3biew6aYX48OIn56I3PNoGWHmi-VLcl-X5jc-yadt4T1-VLaExdV4Z0t8068kV5UPelz1z_8ucpXTtgVLBjHSmg9T-lsbBxyL4zqLfBOTG8t9qMtwxz3Ach7ZhaixLDnsiFoCXa6Az9ANlXNjbFUc6Zzem0rYndyj-wzyDXAWO6ffji7-No49Ij5lrKxfe6G5TYQb7qrt-KaYQH2eStn2Vs3G8rYwOXqIXngMg56WsPnERmY_DG53-OhfELuHJBoAySKQKIdkOhvQKJlQVsg0RpItAUSLTLaAYlaIFELJApAog5IT8n1u9nV20vPbcjhqYDz0ktZLGQGQbMWkJgJOYFgXoVGc5VpFhrBISA0WaimQsXaSAa5BThErTMeimnKeHBAhnmRm2eECg6xpU4jxaThXJk0g6umqULu0okUekReN68zUY6tHjdNuUls10QgknM-m9lXPxuRl63sbc3RslPqCLWSAP6RHllhH5kqExbEISQ1I3LcKCtxX_gmCXwcw4aIPxiRA1Bge_dO7Yd_OnFE7nXgPybDcl2Z5xC_lukLh69ftqOgEQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+emitters+with+near-unity+photoluminescence+to+reinforce+buried+interface+of+perovskite+solar+cells+and+modules&rft.jtitle=Energy+%26+environmental+science&rft.au=Suo%2C+Zhen-Yang&rft.au=Xiao%2C+Guo-Bin&rft.au=Su%2C+Zhenhuang&rft.au=Dong%2C+Runmin&rft.date=2024-07-16&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=14&rft.spage=5115&rft.epage=5123&rft_id=info:doi/10.1039%2Fd4ee01552e&rft.externalDocID=d4ee01552e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |