Organic emitters with near-unity photoluminescence to reinforce buried interface of perovskite solar cells and modules

Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy uti...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 17; no. 14; pp. 5115 - 5123
Main Authors Suo, Zhen-Yang, Xiao, Guo-Bin, Su, Zhenhuang, Dong, Runmin, Mu, Xijiao, Gao, Xingyu, Wu, Yiying, Cao, Jing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 16.07.2024
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI 6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm 2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm 2 . An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions. We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability.
AbstractList We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability.
Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI 6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm 2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm 2 . An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions. We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to enhance the device performance and stability.
Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI 6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm 2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm 2 . An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions.
Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it leads to energy loss and phase instability under UV-vis illumination. In this work, we developed a buried interface reinforcement strategy utilizing cyano-based organic emitters with near-unity photoluminescence. Due to the dipole homogenization effect, the electron distribution around the cyano group in triphenylamine-based emitter becomes more dispersed, making it better suited to compensate for iodide vacancies and reinforce the PbI6 octahedral configuration at the buried interface. This emitter with near-unity photoluminescence further suppresses the photochemical degradation during long-term illumination, thereby contributing to better cell performance and stability. Devices with an active area of 0.10 cm2 obtain a champion efficiency of up to 25.67% (certified 25.09%), while the recorded efficiencies of solar modules reach 23.41% (certified 22.83%) and 21.91% for the aperture areas of 11.44 and 72.00 cm2. An unencapsulated device retains 90% of its original performance after 1000 h of continuous 1-sun illumination at maximum power point operating conditions.
Author Gao, Xingyu
Dong, Runmin
Suo, Zhen-Yang
Mu, Xijiao
Cao, Jing
Xiao, Guo-Bin
Su, Zhenhuang
Wu, Yiying
AuthorAffiliation State Key Laboratory of Applied Organic Chemistry
Chinese Academy of Sciences
The Ohio State University
Lanzhou University
Shanghai Synchrotron Radiation Facility (SSRF)
Department of Chemistry and Biochemistry
Shanghai Advanced Research Institute
College of Chemistry and Chemical Engineering
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
AuthorAffiliation_xml – sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: The Ohio State University
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Department of Chemistry and Biochemistry
– sequence: 0
  name: Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
– sequence: 0
  name: Shanghai Synchrotron Radiation Facility (SSRF)
– sequence: 0
  name: State Key Laboratory of Applied Organic Chemistry
– sequence: 0
  name: Shanghai Advanced Research Institute
– sequence: 0
  name: Lanzhou University
Author_xml – sequence: 1
  givenname: Zhen-Yang
  surname: Suo
  fullname: Suo, Zhen-Yang
– sequence: 2
  givenname: Guo-Bin
  surname: Xiao
  fullname: Xiao, Guo-Bin
– sequence: 3
  givenname: Zhenhuang
  surname: Su
  fullname: Su, Zhenhuang
– sequence: 4
  givenname: Runmin
  surname: Dong
  fullname: Dong, Runmin
– sequence: 5
  givenname: Xijiao
  surname: Mu
  fullname: Mu, Xijiao
– sequence: 6
  givenname: Xingyu
  surname: Gao
  fullname: Gao, Xingyu
– sequence: 7
  givenname: Yiying
  surname: Wu
  fullname: Wu, Yiying
– sequence: 8
  givenname: Jing
  surname: Cao
  fullname: Cao, Jing
BackLink https://www.osti.gov/biblio/2375565$$D View this record in Osti.gov
BookMark eNptkUlLBDEQhYMouF68C0FvQmuSTro7R9FxAcGLnptMUnGiPcmYpEf890bHBcRTLXyveNTbRus-eEBon5ITSmp5ajgAoUIwWENbtBW8Ei1p1r_7RrJNtJ3SEyENI63cQsu7-Ki80xjmLmeICb-6PMMeVKxG7_IbXsxCDsM4dx6SBq8B54AjOG9DLMN0jA4Mdr6IrSqLYPECYlimZ5cBpzCoiDUMQ8LKGzwPZhwg7aINq4YEe191Bz1cTu7Pr6vbu6ub87PbStec52rKWqksE8TIrmNSUdrUWoDh2homQHLCGFihO6lbA4rJtmVUGmO5kN2U8XoHHa7uhpRdn3SxpGc6eA8696xuhWhEgY5W0CKGlxFS7p_CGH3x1deko-V1VNSFIitKx5BSBNuXayq74HNUbugp6T8i6C_4ZPIZwaRIjv9IFtHNVXz7Hz5YwTHpH-43z_od4ziULw
CitedBy_id crossref_primary_10_1002_anie_202418834
crossref_primary_10_1021_acsami_4c14579
crossref_primary_10_1002_smll_202408516
crossref_primary_10_1002_ange_202418834
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1002_aenm_202404755
crossref_primary_10_1039_D4CC04884A
Cites_doi 10.1016/j.joule.2020.04.001
10.1021/jacs.1c07518
10.1126/science.abh1035
10.1039/C6EE02390H
10.1039/C5EE03522H
10.1038/s41566-023-01287-w
10.1038/s41560-023-01295-8
10.1021/acsenergylett.2c01610
10.1002/aenm.202200614
10.1126/science.1228604
10.1038/s41586-021-03285-w
10.1126/science.aam6620
10.1002/anie.202016087
10.1126/science.adj8858
10.1039/D3EE02818F
10.1016/j.joule.2024.02.015
10.1038/s41586-023-05825-y
10.1038/s41586-023-06784-0
10.1016/j.joule.2023.05.017
10.1002/anie.202100218
10.1038/s41586-023-06637-w
10.1039/D3EE03435F
10.1016/j.joule.2022.12.006
10.1038/s41467-024-45649-6
10.1038/s41560-024-01471-4
10.1016/j.joule.2021.07.016
10.1002/anie.202113932
10.1016/j.joule.2022.06.031
10.1039/D2TC04683K
10.1016/j.nanoen.2022.107849
10.1038/s41586-024-07189-3
10.1038/s41586-021-03964-8
10.1126/science.adg3755
10.1016/j.joule.2022.01.011
10.1038/s41566-023-01247-4
10.1002/anie.202304568
10.1002/anie.202117067
10.1126/science.abi6323
10.1038/s41560-019-0382-6
10.1038/s41586-023-05992-y
10.1038/s41560-023-01444-z
10.1126/science.aba0893
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
OTOTI
DOI 10.1039/d4ee01552e
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList

CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 5123
ExternalDocumentID 2375565
10_1039_D4EE01552E
d4ee01552e
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
OTOTI
ID FETCH-LOGICAL-c344t-b279af250d98829a1163c5ed4cfd25e94022ef5c89c7dea2977219ddf4598b243
ISSN 1754-5692
IngestDate Mon Jul 22 05:29:01 EDT 2024
Mon Jun 30 12:06:13 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Tue Jul 01 01:45:59 EDT 2025
Tue Dec 17 20:57:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-b279af250d98829a1163c5ed4cfd25e94022ef5c89c7dea2977219ddf4598b243
Notes https://doi.org/10.1039/d4ee01552e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
FG02-07ER46427
ORCID 0000-0003-3978-911X
000000033978911X
OpenAccessLink https://www.osti.gov/biblio/2375565
PQID 3081175153
PQPubID 2047494
PageCount 9
ParticipantIDs rsc_primary_d4ee01552e
crossref_citationtrail_10_1039_D4EE01552E
crossref_primary_10_1039_D4EE01552E
osti_scitechconnect_2375565
proquest_journals_3081175153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-16
PublicationDateYYYYMMDD 2024-07-16
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-16
  day: 16
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle Energy & environmental science
PublicationYear 2024
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Shin (D4EE01552E/cit27/1) 2017; 356
Cui (D4EE01552E/cit31/1) 2023; 16
Zheng (D4EE01552E/cit4/1) 2024; 17
Zhu (D4EE01552E/cit23/1) 2022; 103
Liu (D4EE01552E/cit19/1) 2022; 7
Yoo (D4EE01552E/cit10/1) 2021; 590
Wang (D4EE01552E/cit29/1) 2021; 60
Chen (D4EE01552E/cit36/1) 2021; 373
Dou (D4EE01552E/cit33/1) 2021; 33
Lee (D4EE01552E/cit34/1) 2023; 7
Hu (D4EE01552E/cit38/1) 2023; 7
Zhang (D4EE01552E/cit50/1) 2024; 8
Yu (D4EE01552E/cit5/1) 2023; 382
Xiong (D4EE01552E/cit17/1) 2022; 34
Fu (D4EE01552E/cit22/1) 2022; 61
Zhang (D4EE01552E/cit46/1) 2023; 35
Chen (D4EE01552E/cit20/1) 2017; 7
Meng (D4EE01552E/cit39/1) 2022; 6
Li (D4EE01552E/cit48/1) 2023; 11
Min (D4EE01552E/cit56/1) 2022; 6
Park (D4EE01552E/cit1/1) 2023; 616
Guo (D4EE01552E/cit30/1) 2023; 62
Ji (D4EE01552E/cit45/1) 2023; 35
Huang (D4EE01552E/cit2/1) 2023; 623
Zhang (D4EE01552E/cit6/1) 2023; 380
Fang (D4EE01552E/cit57/1) 2021; 143
Yang (D4EE01552E/cit53/1) 2024; 9
Chen (D4EE01552E/cit51/1) 2021; 61
Min (D4EE01552E/cit13/1) 2021; 598
Xu (D4EE01552E/cit32/1) 2023; 36
Deng (D4EE01552E/cit28/1) 2023; 33
Meng (D4EE01552E/cit54/1) 2024; 9
Zhuang (D4EE01552E/cit24/1) 2022; 12
He (D4EE01552E/cit7/1) 2023; 618
Liang (D4EE01552E/cit3/1) 2023; 624
Li (D4EE01552E/cit43/1) 2019; 4
Anaraki (D4EE01552E/cit11/1) 2016; 9
Su (D4EE01552E/cit37/1) 2023; 36
Cao (D4EE01552E/cit26/1) 2018; 30
Luo (D4EE01552E/cit40/1) 2023; 17
Bu (D4EE01552E/cit55/1) 2021; 372
Yu (D4EE01552E/cit58/1) 2021; 60
Wu (D4EE01552E/cit14/1) 2020; 4
Wei (D4EE01552E/cit25/1) 2020; 11
Guo (D4EE01552E/cit49/1) 2021; 33
Wang (D4EE01552E/cit35/1) 2024; 36
Wang (D4EE01552E/cit52/1) 2022; 32
Dong (D4EE01552E/cit18/1) 2022; 12
Li (D4EE01552E/cit41/1) 2023; 8
Levine (D4EE01552E/cit15/1) 2021; 5
Azmi (D4EE01552E/cit47/1) 2024; 628
Li (D4EE01552E/cit21/1) 2016; 9
Uddin (D4EE01552E/cit44/1) 2024; 15
Lee (D4EE01552E/cit9/1) 2012; 338
Zhang (D4EE01552E/cit42/1) 2023; 17
D4EE01552E/cit8/1
Qin (D4EE01552E/cit16/1) 2022; 34
Ni (D4EE01552E/cit12/1) 2020; 367
References_xml – volume: 4
  start-page: 1248
  year: 2020
  ident: D4EE01552E/cit14/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.001
– volume: 143
  start-page: 18989
  year: 2021
  ident: D4EE01552E/cit57/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07518
– volume: 33
  start-page: 202303742
  year: 2023
  ident: D4EE01552E/cit28/1
  publication-title: Adv. Funct. Mater.
– volume: 372
  start-page: 1327
  year: 2021
  ident: D4EE01552E/cit55/1
  publication-title: Science
  doi: 10.1126/science.abh1035
– volume: 9
  start-page: 3128
  year: 2016
  ident: D4EE01552E/cit11/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02390H
– volume: 9
  start-page: 490
  year: 2016
  ident: D4EE01552E/cit21/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03522H
– volume: 17
  start-page: 1066
  year: 2023
  ident: D4EE01552E/cit42/1
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01287-w
– volume: 30
  start-page: 201800568
  year: 2018
  ident: D4EE01552E/cit26/1
  publication-title: Adv. Mater.
– volume: 8
  start-page: 946
  year: 2023
  ident: D4EE01552E/cit41/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01295-8
– volume: 7
  start-page: 3531
  year: 2022
  ident: D4EE01552E/cit19/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01610
– volume: 12
  start-page: 202200614
  year: 2022
  ident: D4EE01552E/cit24/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200614
– volume: 338
  start-page: 643
  year: 2012
  ident: D4EE01552E/cit9/1
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 33
  start-page: 202006953
  year: 2021
  ident: D4EE01552E/cit49/1
  publication-title: Adv. Mater.
– volume: 590
  start-page: 587
  year: 2021
  ident: D4EE01552E/cit10/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03285-w
– volume: 11
  start-page: 202002326
  year: 2020
  ident: D4EE01552E/cit25/1
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 167
  year: 2017
  ident: D4EE01552E/cit27/1
  publication-title: Science
  doi: 10.1126/science.aam6620
– volume: 60
  start-page: 6294
  year: 2021
  ident: D4EE01552E/cit58/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016087
– volume: 382
  start-page: 1399
  year: 2023
  ident: D4EE01552E/cit5/1
  publication-title: Science
  doi: 10.1126/science.adj8858
– volume: 35
  start-page: 202303139
  year: 2023
  ident: D4EE01552E/cit46/1
  publication-title: Adv. Mater.
– volume: 36
  start-page: 202308039
  year: 2023
  ident: D4EE01552E/cit32/1
  publication-title: Adv. Mater.
– volume: 16
  start-page: 5992
  year: 2023
  ident: D4EE01552E/cit31/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02818F
– volume: 12
  start-page: 202200417
  year: 2022
  ident: D4EE01552E/cit18/1
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1394
  year: 2024
  ident: D4EE01552E/cit50/1
  publication-title: Joule
  doi: 10.1016/j.joule.2024.02.015
– volume: 616
  start-page: 724
  year: 2023
  ident: D4EE01552E/cit1/1
  publication-title: Nature
  doi: 10.1038/s41586-023-05825-y
– volume: 624
  start-page: 557
  year: 2023
  ident: D4EE01552E/cit3/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06784-0
– volume: 36
  start-page: 202306724
  year: 2023
  ident: D4EE01552E/cit37/1
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1574
  year: 2023
  ident: D4EE01552E/cit38/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.05.017
– volume: 60
  start-page: 8673
  year: 2021
  ident: D4EE01552E/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202100218
– volume: 623
  start-page: 531
  year: 2023
  ident: D4EE01552E/cit2/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06637-w
– volume: 17
  start-page: 1153
  year: 2024
  ident: D4EE01552E/cit4/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03435F
– volume: 36
  start-page: 202310710
  year: 2024
  ident: D4EE01552E/cit35/1
  publication-title: Adv. Mater.
– volume: 7
  start-page: 380
  year: 2023
  ident: D4EE01552E/cit34/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.12.006
– volume: 35
  start-page: 202303665
  year: 2023
  ident: D4EE01552E/cit45/1
  publication-title: Adv. Mater.
– volume: 15
  year: 2024
  ident: D4EE01552E/cit44/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45649-6
– volume: 9
  start-page: 536
  year: 2024
  ident: D4EE01552E/cit54/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-024-01471-4
– volume: 5
  start-page: 2915
  year: 2021
  ident: D4EE01552E/cit15/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.07.016
– volume: 61
  start-page: e202113932
  year: 2021
  ident: D4EE01552E/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202113932
– volume: 6
  start-page: 2175
  year: 2022
  ident: D4EE01552E/cit56/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.06.031
– volume: 11
  start-page: 3284
  year: 2023
  ident: D4EE01552E/cit48/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC04683K
– volume: 103
  start-page: 107849
  year: 2022
  ident: D4EE01552E/cit23/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107849
– volume: 628
  start-page: 93
  year: 2024
  ident: D4EE01552E/cit47/1
  publication-title: Nature
  doi: 10.1038/s41586-024-07189-3
– volume: 598
  start-page: 444
  year: 2021
  ident: D4EE01552E/cit13/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03964-8
– ident: D4EE01552E/cit8/1
– volume: 32
  start-page: 202204396
  year: 2022
  ident: D4EE01552E/cit52/1
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 201700758
  year: 2017
  ident: D4EE01552E/cit20/1
  publication-title: Adv. Energy Mater.
– volume: 380
  start-page: 404
  year: 2023
  ident: D4EE01552E/cit6/1
  publication-title: Science
  doi: 10.1126/science.adg3755
– volume: 6
  start-page: 458
  year: 2022
  ident: D4EE01552E/cit39/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.01.011
– volume: 17
  start-page: 856
  year: 2023
  ident: D4EE01552E/cit40/1
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01247-4
– volume: 62
  start-page: e202304568
  year: 2023
  ident: D4EE01552E/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202304568
– volume: 33
  start-page: 202102947
  year: 2021
  ident: D4EE01552E/cit33/1
  publication-title: Adv. Mater.
– volume: 61
  start-page: e202117067
  year: 2022
  ident: D4EE01552E/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202117067
– volume: 373
  start-page: 902
  year: 2021
  ident: D4EE01552E/cit36/1
  publication-title: Science
  doi: 10.1126/science.abi6323
– volume: 4
  start-page: 408
  year: 2019
  ident: D4EE01552E/cit43/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0382-6
– volume: 618
  start-page: 80
  year: 2023
  ident: D4EE01552E/cit7/1
  publication-title: Nature
  doi: 10.1038/s41586-023-05992-y
– volume: 34
  start-page: 202203143
  year: 2022
  ident: D4EE01552E/cit16/1
  publication-title: Adv. Mater.
– volume: 9
  start-page: 316
  year: 2024
  ident: D4EE01552E/cit53/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01444-z
– volume: 34
  start-page: 202106118
  year: 2022
  ident: D4EE01552E/cit17/1
  publication-title: Adv. Mater.
– volume: 367
  start-page: 1352
  year: 2020
  ident: D4EE01552E/cit12/1
  publication-title: Science
  doi: 10.1126/science.aba0893
SSID ssj0062079
Score 2.5096507
Snippet Stabilizing the embedded perovskite-substrate interface without UV-vis damage remains a longstanding challenge in perovskite solar cells and modules since it...
We developed an embedded perovskite-bottom interface reinforcement strategy employing cyano-based emitters with near-unity photoluminescence efficiency, to...
SourceID osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5115
SubjectTerms Cyano groups
Dipoles
Electron distribution
Emitters
Emitters (electron)
Energy loss
Illumination
Interface stability
Iodides
Luminescence
Maximum power
Modules
Performance degradation
Perovskites
Photochemicals
Photoluminescence
Photons
Photovoltaic cells
Solar cells
Substrates
Unity
Title Organic emitters with near-unity photoluminescence to reinforce buried interface of perovskite solar cells and modules
URI https://www.proquest.com/docview/3081175153
https://www.osti.gov/biblio/2375565
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdF2oJWgguKXJz12s4eWxpageAArQhcrPXuWonU2FVi98CVP87Mev2ICBJwsZL12LI8n-elmW8JeQUeXYowZt5EpwYSFF96SDPmgS_SgCEV-xLrkB8_RZfX_P08nA8GP3tdS1WZnqgfO-dK_kersAZ6xSnZf9Bse1NYgN-gXziChuH4VzquBynV2KyWliWzrqrmAF6vyjG8vl0UJZof7G1X9huGUHNtLFsq_ElxvzptKSPWmVS2fIDE4XcbrOmON5j2jrG0XxM5rwpd3biew6aYX48OIn56I3PNoGWHmi-VLcl-X5jc-yadt4T1-VLaExdV4Z0t8068kV5UPelz1z_8ucpXTtgVLBjHSmg9T-lsbBxyL4zqLfBOTG8t9qMtwxz3Ach7ZhaixLDnsiFoCXa6Az9ANlXNjbFUc6Zzem0rYndyj-wzyDXAWO6ffji7-No49Ij5lrKxfe6G5TYQb7qrt-KaYQH2eStn2Vs3G8rYwOXqIXngMg56WsPnERmY_DG53-OhfELuHJBoAySKQKIdkOhvQKJlQVsg0RpItAUSLTLaAYlaIFELJApAog5IT8n1u9nV20vPbcjhqYDz0ktZLGQGQbMWkJgJOYFgXoVGc5VpFhrBISA0WaimQsXaSAa5BThErTMeimnKeHBAhnmRm2eECg6xpU4jxaThXJk0g6umqULu0okUekReN68zUY6tHjdNuUls10QgknM-m9lXPxuRl63sbc3RslPqCLWSAP6RHllhH5kqExbEISQ1I3LcKCtxX_gmCXwcw4aIPxiRA1Bge_dO7Yd_OnFE7nXgPybDcl2Z5xC_lukLh69ftqOgEQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+emitters+with+near-unity+photoluminescence+to+reinforce+buried+interface+of+perovskite+solar+cells+and+modules&rft.jtitle=Energy+%26+environmental+science&rft.au=Suo%2C+Zhen-Yang&rft.au=Xiao%2C+Guo-Bin&rft.au=Su%2C+Zhenhuang&rft.au=Dong%2C+Runmin&rft.date=2024-07-16&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=14&rft.spage=5115&rft.epage=5123&rft_id=info:doi/10.1039%2Fd4ee01552e&rft.externalDocID=d4ee01552e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon