Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction

It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolit...

Full description

Saved in:
Bibliographic Details
Published inProgress in natural science Vol. 30; no. 6; pp. 896 - 904
Main Authors Yan, Xiaohui, Li, Xiaolin, Fu, Cehuang, Lin, Chen, Hu, Huanming, Shen, Shuiyun, Wei, Guanghua, Zhang, Junliang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN1002-0071
DOI10.1016/j.pnsc.2020.10.018

Cover

Abstract It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 ​m2 ​g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 ​M HClO4 electrolyte and 0.1 ​M KOH electrolyte, in which the half-wave potential reaches 0.81 ​V and 0.92 ​V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 ​mV only after 10000 potential cycles in O2-saturated 0.1 ​M HClO4 and remains almost constant in O2-saturated 0.1 ​M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium. [Display omitted] •S-doped Fe–N–C electrocatalysts were prepared via one-step doping method.•Prepared catalysts own ultrahigh specific surface area (1062–1326 ​m2 ​g−1).•The catalysts show good activity and durability in both acidic and alkaline medium.
AbstractList It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 ​m2 ​g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 ​M HClO4 electrolyte and 0.1 ​M KOH electrolyte, in which the half-wave potential reaches 0.81 ​V and 0.92 ​V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 ​mV only after 10000 potential cycles in O2-saturated 0.1 ​M HClO4 and remains almost constant in O2-saturated 0.1 ​M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium. [Display omitted] •S-doped Fe–N–C electrocatalysts were prepared via one-step doping method.•Prepared catalysts own ultrahigh specific surface area (1062–1326 ​m2 ​g−1).•The catalysts show good activity and durability in both acidic and alkaline medium.
Author Shen, Shuiyun
Lin, Chen
Fu, Cehuang
Li, Xiaolin
Zhang, Junliang
Yan, Xiaohui
Hu, Huanming
Wei, Guanghua
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Yan
  fullname: Yan, Xiaohui
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 2
  givenname: Xiaolin
  surname: Li
  fullname: Li, Xiaolin
  organization: Central Research Institute, Shanghai Electric Group, Shanghai, 200070, China
– sequence: 3
  givenname: Cehuang
  surname: Fu
  fullname: Fu, Cehuang
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 4
  givenname: Chen
  surname: Lin
  fullname: Lin, Chen
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 5
  givenname: Huanming
  surname: Hu
  fullname: Hu, Huanming
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 6
  givenname: Shuiyun
  surname: Shen
  fullname: Shen, Shuiyun
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 7
  givenname: Guanghua
  surname: Wei
  fullname: Wei, Guanghua
  organization: SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
– sequence: 8
  givenname: Junliang
  surname: Zhang
  fullname: Zhang, Junliang
  email: junliang.zhang@sjtu.edu.cn
  organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China
BookMark eNp9kD1OAzEQhV0EiSRwASpfYIOd3eyPRIMiAkiBFEC9mrXHkUOyXo03gXQ0nIAbchK8hIoihcdPT_NGM9-A9WpXI2MXUoykkOnlatTUXo3GYtwZIyHzHutLIcaREJk8ZQPvV6KTadZnn3OgJXLfoLLGKu63ZEAhB0LgT5F2DWo-w--Pr8fwphzXqFpyClpY733ruUayu9BjyG34AwY79C1oCXWYZgg2-Obo1XPjiLv3_RJrTqi3qrWuU_ArztiJgbXH879_yF5mN8_Tu2i-uL2fXs8jFSdJG0EFsUigUkYVBmBSFAnEkBilZSUqTAVmCiVW2uQSdJqFmkwKAC2TXIoki4csP8xV5LwnNKWyLXQbtAR2XUpRdgjLVdkhLDuEnRcQhuj4X7QhuwHaHw9dHUIYjtpZpNIri7VCbSlwLLWzx-I_fSOWRA
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118666
crossref_primary_10_1016_j_fmre_2021_09_001
crossref_primary_10_1007_s11431_021_1889_4
crossref_primary_10_1002_aenm_202200469
crossref_primary_10_1039_D1CY01195B
crossref_primary_10_1016_j_jcis_2025_01_064
crossref_primary_10_1016_j_envres_2023_115808
crossref_primary_10_1002_cctc_202201594
crossref_primary_10_3390_en15218229
crossref_primary_10_1039_D2NR04880A
crossref_primary_10_1039_D1MH01307F
crossref_primary_10_1016_j_electacta_2023_142946
crossref_primary_10_1016_j_jallcom_2023_171898
crossref_primary_10_1016_j_microc_2023_108954
crossref_primary_10_1021_acsaem_4c03250
crossref_primary_10_1039_D4TA07734B
crossref_primary_10_1002_adsu_202300205
crossref_primary_10_3390_catal11121525
Cites_doi 10.1016/j.nanoen.2016.04.042
10.1002/adma.201706758
10.1149/1.2423590
10.1039/c3ta12142a
10.1039/C8CC05273E
10.1021/acsami.7b19332
10.1016/j.apenergy.2019.114060
10.1021/acscatal.7b01775
10.1039/c3cp52252k
10.1016/j.jpowsour.2010.09.021
10.1016/j.actamat.2003.08.004
10.1016/j.electacta.2010.03.002
10.1016/j.pnsc.2017.11.003
10.1002/anie.201503159
10.1002/chin.200524023
10.1039/C9TA06128B
10.1149/1.1865612
10.1021/jacs.8b07294
10.1149/1.2803519
10.1021/acs.jpcc.5b07653
10.1002/anie.201206720
10.1021/acscatal.5b02325
10.1016/j.apcatb.2013.10.026
10.1021/jacs.5b12530
10.1038/376238a0
10.1126/science.1109157
10.1016/j.pnsc.2018.03.001
10.1039/C6MH00344C
10.1016/0003-4916(88)90057-7
10.1016/j.rser.2018.03.024
10.1007/s11708-017-0477-3
10.1039/C5TA03860J
10.1021/acscatal.8b00138
10.1038/s41929-018-0164-8
10.1149/2.0451714jes
10.1021/jacs.7b06514
10.1149/2.1191704jes
10.1038/2011212a0
10.1016/j.pecs.2018.01.001
10.1002/(SICI)1096-987X(199612)17:16<1783::AID-JCC1>3.0.CO;2-J
10.1016/j.coelec.2019.10.011
10.1002/cssc.201800074
10.1016/j.pnsc.2017.01.008
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.pnsc.2020.10.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 904
ExternalDocumentID 10_1016_j_pnsc_2020_10_018
S1002007120305475
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
123
1B1
1~5
29P
2B.
2C.
2DF
3YN
4.4
457
4G.
5VR
5VS
5XA
5XB
5XL
6I.
7-5
92E
92I
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABJNI
ABMAC
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEFWE
AEXQZ
AEZYN
AFTJW
AFUIB
AGHFR
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWYRJ
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CS3
CW9
DU5
EBS
EJD
EO9
EP2
FA0
FDB
GROUPED_DOAJ
HH5
HZ~
IHE
IPNFZ
IXB
JUIAU
KQ8
M41
M4Z
NCXOZ
NQ-
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RPZ
RT1
S..
SDG
SPC
SSZ
T8Q
TCJ
TFW
TGP
U1F
U1G
U5A
U5K
UNMZH
XFK
~02
~L8
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
EFJIC
FYGXN
H13
SSH
TDBHL
ID FETCH-LOGICAL-c344t-aba304abcfc9faa5994a3a4fcd1b0be60e7ce1ebdf81ad6781a459aad14810473
IEDL.DBID IXB
ISSN 1002-0071
IngestDate Tue Jul 01 04:26:25 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 23 02:45:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Acidic and alkaline medium
Non-precious metal catalyst
Fuel cells
Oxygen reduction reaction
Co-doping
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-aba304abcfc9faa5994a3a4fcd1b0be60e7ce1ebdf81ad6781a459aad14810473
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1002007120305475
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_pnsc_2020_10_018
crossref_primary_10_1016_j_pnsc_2020_10_018
elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_10_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Progress in natural science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mei, Ma, An, Wang, Xi, Sun, Luo, Wu (bib17) 2017; 164
Wang, Lai, Song, Zhou, Liu, Wang, Yang, Chen, Shi, Zheng, Rauf, Sun (bib34) 2015; 54
Pan, Ott, Dionigi, Strasser (bib9) 2019; 18
Noerskov, Bligaard, Logadottir, Kitchin, Stimming (bib40) 2005; 36
Dong, He, Jing, Yue, Li (bib10) 2016; 138
Jasinski, Raymond (bib18) 1965; 112
Wu (bib16) 2017; 11
Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su, Shao, Wu (bib43) 2017; 139
Gu, Wu, Sun, Xu, Zhao (bib47) 2019; 35
Mashkour, Rahimnejad, Pourali, Ezoji, ElMekawy, Pant (bib3) 2017; 27
Wu, Wang, Wang, Zhang, Yang, Yang, Li (bib35) 2018; 10
Ota, Ohgi, Nam, Matsuzawa, Mitsushima, Ishihara (bib29) 2011; 196
Kattel, Wang (bib31) 2013; 1
Wu, Wang, Wang, Zhang, Yang, Yang, Li, Zhou, Zhou, Sun (bib42) 2018; 10
Delley (bib37) 2000; 8
Ishihara, Ohgi, Matsuzawa, Mitsushima, Ota (bib21) 2010; 55
Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu (bib48) 2016; 25
Jasinski (bib19) 1964; 201
Hammer, Norskov (bib41) 1995; 376
Chisaka, Ishihara, Uehara, Matsumoto, Ota (bib20) 2015; 3
Ota, Ohgi, Nam, Matsuzawa, Mitsushima, Ishihara (bib23) 2011; 196
Jasinski (bib27) 1965; 112
Jing, Luo, Yin, Huang, Jia, Wei, Sun, Zhao (bib22) 2014; 147
Lototskyy, Tolj, Pickering, Sita, Barbir, Yartys (bib2) 2017; 27
Yang, Stevens, Dahn (bib30) 2008; 155
Xiao, Zhu, Ma, Jin (bib44) 2018; 8
You, Jiang, Sheng, Drisdell, Yano, Sun (bib36) 2015; 5
Wu, Pan, An (bib7) 2018; 89
Jiang, Li, Sheng, Hu, Chen, Wang (bib45) 2018; 140
Tian, Shen, Zhu, Luo, Yan, Wei, Zhang (bib11) 2018; 11
Li, Chen, Cullen, Hwang, Wang, Li, Liu, Karakalos, Lucero, Zhang, Lei, Xu, Sterbinsky, Feng, Su, More, Wang, Wang, Wu (bib46) 2018; 1
Pan, An, Zhao, Tang (bib15) 2018; 66
Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib49) 2018; 30
Guan, Zhang, Chen, Pei, Liu, Xue, Zhu, Zhuang (bib50) 2018; 54
Mei, Xi, Ma, An, Wang, Sun, Luo, Wu (bib28) 2017; 164
Jacobson and (bib5) 2005; 308
Chisaka, Ishihara, Uehara, Matsumoto, Imai, Ota (bib24) 2015; 3
Luo, Zhu, Tian, Li, Shen, Yan, Zhang (bib12) 2017; 7
Ishihara, Lee, Doi, Mitsushima, Kamiya, Hara, Domen, Fukuda, Ota (bib25) 2005; 8
Kendall (bib1) 2018; 28
Ishihara, Ohgi, Matsuzawa, Mitsushima, Ota (bib26) 2010; 55
Liang, Jiao, Jaroniec, Qiao (bib33) 2012; 51
Haile (bib4) 2003; 51
Colic, Bandarenka (bib8) 2016
Shao, Smith, Guerrero, Protsailo, Su, Kaneko, Odell, Humbert, Sasaki, Marzullo (bib13) 2013; 15
Pan, Bi, An (bib6) 2020; 258
Liu, Barkholtz (bib14) 2017; 4
Rosensteel (bib38) 1988; 185
Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu, Li (bib32) 2016; 25
Artyushkova, Serov, Rojas-Carbonell, Atanassov (bib51) 2015; 119
Juffer, Argos, de Vlieg (bib39) 1996; 17
Ishihara (10.1016/j.pnsc.2020.10.018_bib26) 2010; 55
Colic (10.1016/j.pnsc.2020.10.018_bib8) 2016
Li (10.1016/j.pnsc.2020.10.018_bib46) 2018; 1
Wang (10.1016/j.pnsc.2020.10.018_bib48) 2016; 25
Kattel (10.1016/j.pnsc.2020.10.018_bib31) 2013; 1
Artyushkova (10.1016/j.pnsc.2020.10.018_bib51) 2015; 119
Guan (10.1016/j.pnsc.2020.10.018_bib50) 2018; 54
Liang (10.1016/j.pnsc.2020.10.018_bib33) 2012; 51
Jiang (10.1016/j.pnsc.2020.10.018_bib45) 2018; 140
Wu (10.1016/j.pnsc.2020.10.018_bib42) 2018; 10
Juffer (10.1016/j.pnsc.2020.10.018_bib39) 1996; 17
Noerskov (10.1016/j.pnsc.2020.10.018_bib40) 2005; 36
Luo (10.1016/j.pnsc.2020.10.018_bib12) 2017; 7
Delley (10.1016/j.pnsc.2020.10.018_bib37) 2000; 8
Rosensteel (10.1016/j.pnsc.2020.10.018_bib38) 1988; 185
Jasinski (10.1016/j.pnsc.2020.10.018_bib18) 1965; 112
Mashkour (10.1016/j.pnsc.2020.10.018_bib3) 2017; 27
Gu (10.1016/j.pnsc.2020.10.018_bib47) 2019; 35
Wang (10.1016/j.pnsc.2020.10.018_bib49) 2018; 30
Mei (10.1016/j.pnsc.2020.10.018_bib17) 2017; 164
Tian (10.1016/j.pnsc.2020.10.018_bib11) 2018; 11
Yang (10.1016/j.pnsc.2020.10.018_bib30) 2008; 155
Chisaka (10.1016/j.pnsc.2020.10.018_bib24) 2015; 3
Zhang (10.1016/j.pnsc.2020.10.018_bib43) 2017; 139
Jasinski (10.1016/j.pnsc.2020.10.018_bib27) 1965; 112
Ishihara (10.1016/j.pnsc.2020.10.018_bib25) 2005; 8
Pan (10.1016/j.pnsc.2020.10.018_bib6) 2020; 258
Pan (10.1016/j.pnsc.2020.10.018_bib9) 2019; 18
Hammer (10.1016/j.pnsc.2020.10.018_bib41) 1995; 376
Mei (10.1016/j.pnsc.2020.10.018_bib28) 2017; 164
Dong (10.1016/j.pnsc.2020.10.018_bib10) 2016; 138
Jasinski (10.1016/j.pnsc.2020.10.018_bib19) 1964; 201
Wang (10.1016/j.pnsc.2020.10.018_bib34) 2015; 54
Jacobson and (10.1016/j.pnsc.2020.10.018_bib5) 2005; 308
Wang (10.1016/j.pnsc.2020.10.018_bib32) 2016; 25
Jing (10.1016/j.pnsc.2020.10.018_bib22) 2014; 147
You (10.1016/j.pnsc.2020.10.018_bib36) 2015; 5
Ishihara (10.1016/j.pnsc.2020.10.018_bib21) 2010; 55
Liu (10.1016/j.pnsc.2020.10.018_bib14) 2017; 4
Ota (10.1016/j.pnsc.2020.10.018_bib23) 2011; 196
Shao (10.1016/j.pnsc.2020.10.018_bib13) 2013; 15
Haile (10.1016/j.pnsc.2020.10.018_bib4) 2003; 51
Chisaka (10.1016/j.pnsc.2020.10.018_bib20) 2015; 3
Pan (10.1016/j.pnsc.2020.10.018_bib15) 2018; 66
Wu (10.1016/j.pnsc.2020.10.018_bib16) 2017; 11
Xiao (10.1016/j.pnsc.2020.10.018_bib44) 2018; 8
Ota (10.1016/j.pnsc.2020.10.018_bib29) 2011; 196
Wu (10.1016/j.pnsc.2020.10.018_bib35) 2018; 10
Lototskyy (10.1016/j.pnsc.2020.10.018_bib2) 2017; 27
Wu (10.1016/j.pnsc.2020.10.018_bib7) 2018; 89
Kendall (10.1016/j.pnsc.2020.10.018_bib1) 2018; 28
References_xml – volume: 30
  start-page: 1706758
  year: 2018
  ident: bib49
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
– volume: 27
  start-page: 647
  year: 2017
  end-page: 651
  ident: bib3
  article-title: Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 112
  start-page: 526
  year: 1965
  end-page: 528
  ident: bib27
  article-title: Cobalt phthalocyanine as a fuel cell cathode
  publication-title: J. Electrochem. Soc.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  ident: bib41
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
– volume: 27
  start-page: 3
  year: 2017
  end-page: 20
  ident: bib2
  article-title: The use of metal hydrides in fuel cell applications
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 89
  start-page: 168
  year: 2018
  end-page: 183
  ident: bib7
  article-title: Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 25
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib32
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nanomater. Energy
– volume: 11
  start-page: 286
  year: 2017
  end-page: 298
  ident: bib16
  article-title: Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells
  publication-title: Front. Energy
– volume: 10
  start-page: 14602
  year: 2018
  end-page: 14613
  ident: bib35
  article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 1783
  year: 1996
  end-page: 1803
  ident: bib39
  article-title: Adsorption of proteins onto charged surfaces: a Monte Carlo approach with explicit ions
  publication-title: J. Comput. Chem.
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  ident: bib19
  article-title: A new fuel cell cathode catalyst
  publication-title: Nature
– volume: 155
  start-page: B79
  year: 2008
  end-page: B91
  ident: bib30
  article-title: Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction
  publication-title: J. Electrochem. Soc.
– volume: 51
  start-page: 11496
  year: 2012
  end-page: 11500
  ident: bib33
  article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 8005
  year: 2010
  end-page: 8012
  ident: bib21
  article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 1015
  year: 2018
  end-page: 1019
  ident: bib11
  article-title: Icosahedral Pt–Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity
  publication-title: ChemSusChem
– volume: 140
  start-page: 11594
  year: 2018
  end-page: 11598
  ident: bib45
  article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 20132
  year: 2019
  end-page: 20138
  ident: bib47
  article-title: Atomically dispersed Fe–Nx active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 10790
  year: 2013
  end-page: 10797
  ident: bib31
  article-title: A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores
  publication-title: J. Mater. Chem.
– volume: 185
  start-page: 407
  year: 1988
  end-page: 408
  ident: bib38
  article-title: Rapidly rotating nuclei as Riemann ellipsoids
  publication-title: Ann. Phys.
– volume: 36
  year: 2005
  ident: bib40
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: ChemInform
– volume: 308
  start-page: 1901
  year: 2005
  end-page: 1905
  ident: bib5
  article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles
  publication-title: Science
– volume: 1
  start-page: 935
  year: 2018
  end-page: 945
  ident: bib46
  article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells
  publication-title: Nature Catalysis
– volume: 119
  start-page: 25917
  year: 2015
  end-page: 25928
  ident: bib51
  article-title: Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 16414
  year: 2015
  end-page: 16418
  ident: bib24
  article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis?
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 113
  year: 2018
  end-page: 120
  ident: bib1
  article-title: Fuel cell development for New Energy Vehicles (NEVs) and clean air in China
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 51
  start-page: 5981
  year: 2003
  end-page: 6000
  ident: bib4
  article-title: Fuel cell materials and components
  publication-title: Acta Mater.
– volume: 5
  start-page: 7068
  year: 2015
  end-page: 7076
  ident: bib36
  article-title: Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction
  publication-title: ACS Catal.
– volume: 164
  start-page: F1556
  year: 2017
  end-page: F1565
  ident: bib28
  article-title: Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 5256
  year: 2011
  end-page: 5263
  ident: bib29
  article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell
  publication-title: J. Power Sources
– volume: 15
  start-page: 15078
  year: 2013
  ident: bib13
  article-title: Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction
  publication-title: Phys. Chem. Chem. Phys.
– volume: 139
  start-page: 14143
  year: 2017
  end-page: 14149
  ident: bib43
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
– volume: 66
  start-page: 141
  year: 2018
  end-page: 175
  ident: bib15
  article-title: Advances and challenges in alkaline anion exchange membrane fuel cells
  publication-title: Prog. Energy Combust. Sci.
– volume: 54
  start-page: 9907
  year: 2015
  end-page: 9910
  ident: bib34
  article-title: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 2824
  year: 2018
  end-page: 2832
  ident: bib44
  article-title: Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N
  publication-title: ACS Catal.
– volume: 112
  start-page: 526
  year: 1965
  ident: bib18
  article-title: Cobalt phthalocyanine as a fuel cell cathode
  publication-title: J. Electrochem. Soc.
– volume: 25
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib48
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nanomater. Energy
– volume: 8
  start-page: A201
  year: 2005
  end-page: A203
  ident: bib25
  article-title: Tantalum oxynitride for a novel cathode of PEFC
  publication-title: Electrochem. Solid State Lett.
– volume: 3
  start-page: 16414
  year: 2015
  end-page: 16418
  ident: bib20
  article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis
  publication-title: J. Mater. Chem.
– volume: 54
  start-page: 12073
  year: 2018
  end-page: 12076
  ident: bib50
  article-title: Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst
  publication-title: Chem. Commun.
– volume: 147
  start-page: 897
  year: 2014
  end-page: 903
  ident: bib22
  article-title: Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction
  publication-title: Appl. Catal. B Environ.
– volume: 164
  start-page: F354
  year: 2017
  end-page: F363
  ident: bib17
  article-title: Layered spongy-like O-doped g-C3N4: an efficient non-metal oxygen reduction catalyst for alkaline fuel cells
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 5256
  year: 2011
  end-page: 5263
  ident: bib23
  article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell
  publication-title: J. Power Sources
– start-page: 6b00997
  year: 2016
  ident: bib8
  article-title: Pt-alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems
  publication-title: ACS Catal.
– volume: 138
  start-page: 1494
  year: 2016
  ident: bib10
  article-title: Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5420
  year: 2017
  end-page: 5430
  ident: bib12
  article-title: Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 55
  start-page: 8005
  year: 2010
  end-page: 8012
  ident: bib26
  article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells
  publication-title: Electrochim. Acta
– volume: 258
  start-page: 114060
  year: 2020
  ident: bib6
  article-title: A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells
  publication-title: Appl. Energy
– volume: 8
  start-page: 361
  year: 2000
  end-page: 364
  ident: bib37
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 61
  year: 2019
  end-page: 71
  ident: bib9
  article-title: Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells
  publication-title: Current Opinion in Electrochemistry
– volume: 4
  start-page: 20
  year: 2017
  end-page: 37
  ident: bib14
  article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal-organic frameworks
  publication-title: Materials Horizons
– volume: 10
  start-page: 14602
  year: 2018
  end-page: 14613
  ident: bib42
  article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 110
  year: 2016
  ident: 10.1016/j.pnsc.2020.10.018_bib48
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.04.042
– volume: 30
  start-page: 1706758
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib49
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 112
  start-page: 526
  year: 1965
  ident: 10.1016/j.pnsc.2020.10.018_bib27
  article-title: Cobalt phthalocyanine as a fuel cell cathode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2423590
– volume: 1
  start-page: 10790
  year: 2013
  ident: 10.1016/j.pnsc.2020.10.018_bib31
  article-title: A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta12142a
– volume: 54
  start-page: 12073
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib50
  article-title: Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05273E
– volume: 10
  start-page: 14602
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib35
  article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19332
– volume: 258
  start-page: 114060
  year: 2020
  ident: 10.1016/j.pnsc.2020.10.018_bib6
  article-title: A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114060
– volume: 7
  start-page: 5420
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib12
  article-title: Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01775
– volume: 112
  start-page: 526
  year: 1965
  ident: 10.1016/j.pnsc.2020.10.018_bib18
  article-title: Cobalt phthalocyanine as a fuel cell cathode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2423590
– volume: 15
  start-page: 15078
  year: 2013
  ident: 10.1016/j.pnsc.2020.10.018_bib13
  article-title: Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52252k
– volume: 196
  start-page: 5256
  year: 2011
  ident: 10.1016/j.pnsc.2020.10.018_bib23
  article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.09.021
– volume: 51
  start-page: 5981
  year: 2003
  ident: 10.1016/j.pnsc.2020.10.018_bib4
  article-title: Fuel cell materials and components
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.08.004
– volume: 55
  start-page: 8005
  year: 2010
  ident: 10.1016/j.pnsc.2020.10.018_bib21
  article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.03.002
– volume: 27
  start-page: 647
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib3
  article-title: Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2017.11.003
– volume: 54
  start-page: 9907
  year: 2015
  ident: 10.1016/j.pnsc.2020.10.018_bib34
  article-title: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503159
– volume: 196
  start-page: 5256
  year: 2011
  ident: 10.1016/j.pnsc.2020.10.018_bib29
  article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.09.021
– volume: 36
  year: 2005
  ident: 10.1016/j.pnsc.2020.10.018_bib40
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: ChemInform
  doi: 10.1002/chin.200524023
– volume: 35
  start-page: 20132
  year: 2019
  ident: 10.1016/j.pnsc.2020.10.018_bib47
  article-title: Atomically dispersed Fe–Nx active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA06128B
– volume: 8
  start-page: A201
  year: 2005
  ident: 10.1016/j.pnsc.2020.10.018_bib25
  article-title: Tantalum oxynitride for a novel cathode of PEFC
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1865612
– volume: 55
  start-page: 8005
  year: 2010
  ident: 10.1016/j.pnsc.2020.10.018_bib26
  article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.03.002
– volume: 140
  start-page: 11594
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib45
  article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 155
  start-page: B79
  year: 2008
  ident: 10.1016/j.pnsc.2020.10.018_bib30
  article-title: Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2803519
– volume: 119
  start-page: 25917
  year: 2015
  ident: 10.1016/j.pnsc.2020.10.018_bib51
  article-title: Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07653
– volume: 51
  start-page: 11496
  year: 2012
  ident: 10.1016/j.pnsc.2020.10.018_bib33
  article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206720
– volume: 5
  start-page: 7068
  year: 2015
  ident: 10.1016/j.pnsc.2020.10.018_bib36
  article-title: Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02325
– volume: 147
  start-page: 897
  year: 2014
  ident: 10.1016/j.pnsc.2020.10.018_bib22
  article-title: Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.10.026
– volume: 138
  start-page: 1494
  year: 2016
  ident: 10.1016/j.pnsc.2020.10.018_bib10
  article-title: Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12530
– volume: 376
  start-page: 238
  year: 1995
  ident: 10.1016/j.pnsc.2020.10.018_bib41
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 10
  start-page: 14602
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib42
  article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19332
– volume: 308
  start-page: 1901
  year: 2005
  ident: 10.1016/j.pnsc.2020.10.018_bib5
  article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles
  publication-title: Science
  doi: 10.1126/science.1109157
– volume: 28
  start-page: 113
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib1
  article-title: Fuel cell development for New Energy Vehicles (NEVs) and clean air in China
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2018.03.001
– volume: 4
  start-page: 20
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib14
  article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal-organic frameworks
  publication-title: Materials Horizons
  doi: 10.1039/C6MH00344C
– volume: 185
  start-page: 407
  year: 1988
  ident: 10.1016/j.pnsc.2020.10.018_bib38
  article-title: Rapidly rotating nuclei as Riemann ellipsoids
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(88)90057-7
– volume: 89
  start-page: 168
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib7
  article-title: Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.024
– volume: 11
  start-page: 286
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib16
  article-title: Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells
  publication-title: Front. Energy
  doi: 10.1007/s11708-017-0477-3
– volume: 3
  start-page: 16414
  year: 2015
  ident: 10.1016/j.pnsc.2020.10.018_bib20
  article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA03860J
– volume: 8
  start-page: 2824
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib44
  article-title: Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00138
– volume: 1
  start-page: 935
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib46
  article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells
  publication-title: Nature Catalysis
  doi: 10.1038/s41929-018-0164-8
– volume: 164
  start-page: F1556
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib28
  article-title: Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0451714jes
– volume: 8
  start-page: 361
  year: 2000
  ident: 10.1016/j.pnsc.2020.10.018_bib37
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 14143
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib43
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06514
– volume: 164
  start-page: F354
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib17
  article-title: Layered spongy-like O-doped g-C3N4: an efficient non-metal oxygen reduction catalyst for alkaline fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1191704jes
– volume: 201
  start-page: 1212
  year: 1964
  ident: 10.1016/j.pnsc.2020.10.018_bib19
  article-title: A new fuel cell cathode catalyst
  publication-title: Nature
  doi: 10.1038/2011212a0
– volume: 66
  start-page: 141
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib15
  article-title: Advances and challenges in alkaline anion exchange membrane fuel cells
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.01.001
– volume: 25
  start-page: 110
  year: 2016
  ident: 10.1016/j.pnsc.2020.10.018_bib32
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.04.042
– volume: 17
  start-page: 1783
  year: 1996
  ident: 10.1016/j.pnsc.2020.10.018_bib39
  article-title: Adsorption of proteins onto charged surfaces: a Monte Carlo approach with explicit ions
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199612)17:16<1783::AID-JCC1>3.0.CO;2-J
– volume: 18
  start-page: 61
  year: 2019
  ident: 10.1016/j.pnsc.2020.10.018_bib9
  article-title: Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells
  publication-title: Current Opinion in Electrochemistry
  doi: 10.1016/j.coelec.2019.10.011
– volume: 11
  start-page: 1015
  year: 2018
  ident: 10.1016/j.pnsc.2020.10.018_bib11
  article-title: Icosahedral Pt–Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800074
– start-page: 6b00997
  year: 2016
  ident: 10.1016/j.pnsc.2020.10.018_bib8
  article-title: Pt-alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems
  publication-title: ACS Catal.
– volume: 27
  start-page: 3
  year: 2017
  ident: 10.1016/j.pnsc.2020.10.018_bib2
  article-title: The use of metal hydrides in fuel cell applications
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2017.01.008
– volume: 3
  start-page: 16414
  year: 2015
  ident: 10.1016/j.pnsc.2020.10.018_bib24
  article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis?
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA03860J
SSID ssj0007167
Score 2.3306808
Snippet It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 896
SubjectTerms Acidic and alkaline medium
Co-doping
Fuel cells
Non-precious metal catalyst
Oxygen reduction reaction
Title Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction
URI https://dx.doi.org/10.1016/j.pnsc.2020.10.018
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgR6wPro-zBgyKxSbNpmmMtlvpoL7XQW9hXoCJpaFKxNy_-Av-hv8SZZFMUpAcPgWTYDWFndmYnzPcNIecu45gVSIsLCQlKS9oW9xxhIVedLSKb-wzBycNRezBh91NvWiG9EguDZZXG9xc-PffWRtI0q9lMZrPmGMlDMUK20GaZj0BzRJUiiG96s_bGkA_kDVZw5-OTAc4UNV5JnCKNYQsF1zY2_vgrOP0IOP1dsmNOirRbfEyNVHS8R2pmL6b0whBGX-6Tj0cs56YImsTCH5ouFxGXmnI4ENKxpeaJVrSvv94_R3D1qGl9k_-5WaVZShWY4SuMQawJHWoQw7gCpSlBaMq3UgoHXDp_W4HN0QVSvqJS4a7ARhyQSf_2qTewTHsFS7qMZaAd7toMdBTJIOLcCwLGXc4iqRxhC922tS-1o4WKOg5XENQczryAcwUZFBI8uIekGs9jfUSohrRMSZ91XNlmyof3ycATEdOR8CCj69SJU65rKA33OLbAeAnLIrPnEHURoi5QBrqok6v1nKRg3tg42ivVFf6ynxBCw4Z5x_-cd0K28akobDkl1Wyx1GdwPMlEg2x17x4Go0Zuh99gk-pl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHPRixEd8uwcPGlNp6S6lR0IkoMBFTbw1-2qCMUAoGrl58Rf4D_0lztCFaGI4eGjSTnc3zc7sPJqZbwDOQi4pKtCeVBoDlIr2PSkC5RFWna9SX0acipO7vWrrgd88iscVaMxrYSit0un-XKfPtLWjlN1ulkf9fvmOwEPJQlZIZnkkVqHIBUZ7BSjW27et3kIhY0gw67FCh5-eXO1MnuY1GmSEZFghwpVPvT_-sk8_bE5zEzacs8jq-feUYMUOtqDkjmPGzh1m9MU2fHQoo5tR3STl_rDsZZxKbZlEn5DdeWY4soY17df7Zw-vBnPdb2Y_b6bZJGMGJfEVx1C5CetaJOO4vFBTI9FlcGUMfVw2fJui2LExob4SX_EuL4_YgYfm9X2j5bkOC54OOZ8gg2Toc2RTquNUShHHXIaSp9oEyle26ttI28Aqk9YCadCuBZKLWEqDQRRhPIS7UBgMB3YPmMXIzOiI10Jd5SbC9XQsVMptqgQGdbV9COb7mmgHP05dMJ6TeZ7ZU0K8SIgXRENe7MPlYs4oB99YOlrM2ZX8EqEErcOSeQf_nHcKa637bifptHu3h7BOb_I8lyMoTMYv9hi9lYk6cdL4DWNV7RI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+specific+surface+area+S-doped+Fe%E2%80%93N%E2%80%93C+electrocatalysts+derived+from+Metal%E2%80%93Organic+frameworks+for+oxygen+reduction+reaction&rft.jtitle=Progress+in+natural+science&rft.au=Yan%2C+Xiaohui&rft.au=Li%2C+Xiaolin&rft.au=Fu%2C+Cehuang&rft.au=Lin%2C+Chen&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=896&rft.epage=904&rft_id=info:doi/10.1016%2Fj.pnsc.2020.10.018&rft.externalDocID=S1002007120305475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon