Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction
It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolit...
Saved in:
Published in | Progress in natural science Vol. 30; no. 6; pp. 896 - 904 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0071 |
DOI | 10.1016/j.pnsc.2020.10.018 |
Cover
Abstract | It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 m2 g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 M HClO4 electrolyte and 0.1 M KOH electrolyte, in which the half-wave potential reaches 0.81 V and 0.92 V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 mV only after 10000 potential cycles in O2-saturated 0.1 M HClO4 and remains almost constant in O2-saturated 0.1 M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium.
[Display omitted]
•S-doped Fe–N–C electrocatalysts were prepared via one-step doping method.•Prepared catalysts own ultrahigh specific surface area (1062–1326 m2 g−1).•The catalysts show good activity and durability in both acidic and alkaline medium. |
---|---|
AbstractList | It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 m2 g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 M HClO4 electrolyte and 0.1 M KOH electrolyte, in which the half-wave potential reaches 0.81 V and 0.92 V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 mV only after 10000 potential cycles in O2-saturated 0.1 M HClO4 and remains almost constant in O2-saturated 0.1 M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium.
[Display omitted]
•S-doped Fe–N–C electrocatalysts were prepared via one-step doping method.•Prepared catalysts own ultrahigh specific surface area (1062–1326 m2 g−1).•The catalysts show good activity and durability in both acidic and alkaline medium. |
Author | Shen, Shuiyun Lin, Chen Fu, Cehuang Li, Xiaolin Zhang, Junliang Yan, Xiaohui Hu, Huanming Wei, Guanghua |
Author_xml | – sequence: 1 givenname: Xiaohui surname: Yan fullname: Yan, Xiaohui organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 2 givenname: Xiaolin surname: Li fullname: Li, Xiaolin organization: Central Research Institute, Shanghai Electric Group, Shanghai, 200070, China – sequence: 3 givenname: Cehuang surname: Fu fullname: Fu, Cehuang organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 4 givenname: Chen surname: Lin fullname: Lin, Chen organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 5 givenname: Huanming surname: Hu fullname: Hu, Huanming organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 6 givenname: Shuiyun surname: Shen fullname: Shen, Shuiyun organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 7 givenname: Guanghua surname: Wei fullname: Wei, Guanghua organization: SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China – sequence: 8 givenname: Junliang surname: Zhang fullname: Zhang, Junliang email: junliang.zhang@sjtu.edu.cn organization: Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, China |
BookMark | eNp9kD1OAzEQhV0EiSRwASpfYIOd3eyPRIMiAkiBFEC9mrXHkUOyXo03gXQ0nIAbchK8hIoihcdPT_NGM9-A9WpXI2MXUoykkOnlatTUXo3GYtwZIyHzHutLIcaREJk8ZQPvV6KTadZnn3OgJXLfoLLGKu63ZEAhB0LgT5F2DWo-w--Pr8fwphzXqFpyClpY733ruUayu9BjyG34AwY79C1oCXWYZgg2-Obo1XPjiLv3_RJrTqi3qrWuU_ArztiJgbXH879_yF5mN8_Tu2i-uL2fXs8jFSdJG0EFsUigUkYVBmBSFAnEkBilZSUqTAVmCiVW2uQSdJqFmkwKAC2TXIoki4csP8xV5LwnNKWyLXQbtAR2XUpRdgjLVdkhLDuEnRcQhuj4X7QhuwHaHw9dHUIYjtpZpNIri7VCbSlwLLWzx-I_fSOWRA |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118666 crossref_primary_10_1016_j_fmre_2021_09_001 crossref_primary_10_1007_s11431_021_1889_4 crossref_primary_10_1002_aenm_202200469 crossref_primary_10_1039_D1CY01195B crossref_primary_10_1016_j_jcis_2025_01_064 crossref_primary_10_1016_j_envres_2023_115808 crossref_primary_10_1002_cctc_202201594 crossref_primary_10_3390_en15218229 crossref_primary_10_1039_D2NR04880A crossref_primary_10_1039_D1MH01307F crossref_primary_10_1016_j_electacta_2023_142946 crossref_primary_10_1016_j_jallcom_2023_171898 crossref_primary_10_1016_j_microc_2023_108954 crossref_primary_10_1021_acsaem_4c03250 crossref_primary_10_1039_D4TA07734B crossref_primary_10_1002_adsu_202300205 crossref_primary_10_3390_catal11121525 |
Cites_doi | 10.1016/j.nanoen.2016.04.042 10.1002/adma.201706758 10.1149/1.2423590 10.1039/c3ta12142a 10.1039/C8CC05273E 10.1021/acsami.7b19332 10.1016/j.apenergy.2019.114060 10.1021/acscatal.7b01775 10.1039/c3cp52252k 10.1016/j.jpowsour.2010.09.021 10.1016/j.actamat.2003.08.004 10.1016/j.electacta.2010.03.002 10.1016/j.pnsc.2017.11.003 10.1002/anie.201503159 10.1002/chin.200524023 10.1039/C9TA06128B 10.1149/1.1865612 10.1021/jacs.8b07294 10.1149/1.2803519 10.1021/acs.jpcc.5b07653 10.1002/anie.201206720 10.1021/acscatal.5b02325 10.1016/j.apcatb.2013.10.026 10.1021/jacs.5b12530 10.1038/376238a0 10.1126/science.1109157 10.1016/j.pnsc.2018.03.001 10.1039/C6MH00344C 10.1016/0003-4916(88)90057-7 10.1016/j.rser.2018.03.024 10.1007/s11708-017-0477-3 10.1039/C5TA03860J 10.1021/acscatal.8b00138 10.1038/s41929-018-0164-8 10.1149/2.0451714jes 10.1021/jacs.7b06514 10.1149/2.1191704jes 10.1038/2011212a0 10.1016/j.pecs.2018.01.001 10.1002/(SICI)1096-987X(199612)17:16<1783::AID-JCC1>3.0.CO;2-J 10.1016/j.coelec.2019.10.011 10.1002/cssc.201800074 10.1016/j.pnsc.2017.01.008 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.pnsc.2020.10.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EndPage | 904 |
ExternalDocumentID | 10_1016_j_pnsc_2020_10_018 S1002007120305475 |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 123 1B1 1~5 29P 2B. 2C. 2DF 3YN 4.4 457 4G. 5VR 5VS 5XA 5XB 5XL 6I. 7-5 92E 92I 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABJNI ABMAC ACGFS ACNNM ACRLP ADEZE ADMUD AEFWE AEXQZ AEZYN AFTJW AFUIB AGHFR AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AWYRJ CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CS3 CW9 DU5 EBS EJD EO9 EP2 FA0 FDB GROUPED_DOAJ HH5 HZ~ IHE IPNFZ IXB JUIAU KQ8 M41 M4Z NCXOZ NQ- O-L O9- OK1 Q-- Q-0 R-A RIG ROL RPZ RT1 S.. SDG SPC SSZ T8Q TCJ TFW TGP U1F U1G U5A U5K UNMZH XFK ~02 ~L8 AATTM AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION EFJIC FYGXN H13 SSH TDBHL |
ID | FETCH-LOGICAL-c344t-aba304abcfc9faa5994a3a4fcd1b0be60e7ce1ebdf81ad6781a459aad14810473 |
IEDL.DBID | IXB |
ISSN | 1002-0071 |
IngestDate | Tue Jul 01 04:26:25 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Acidic and alkaline medium Non-precious metal catalyst Fuel cells Oxygen reduction reaction Co-doping |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-aba304abcfc9faa5994a3a4fcd1b0be60e7ce1ebdf81ad6781a459aad14810473 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1002007120305475 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_pnsc_2020_10_018 crossref_primary_10_1016_j_pnsc_2020_10_018 elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_10_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Progress in natural science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mei, Ma, An, Wang, Xi, Sun, Luo, Wu (bib17) 2017; 164 Wang, Lai, Song, Zhou, Liu, Wang, Yang, Chen, Shi, Zheng, Rauf, Sun (bib34) 2015; 54 Pan, Ott, Dionigi, Strasser (bib9) 2019; 18 Noerskov, Bligaard, Logadottir, Kitchin, Stimming (bib40) 2005; 36 Dong, He, Jing, Yue, Li (bib10) 2016; 138 Jasinski, Raymond (bib18) 1965; 112 Wu (bib16) 2017; 11 Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su, Shao, Wu (bib43) 2017; 139 Gu, Wu, Sun, Xu, Zhao (bib47) 2019; 35 Mashkour, Rahimnejad, Pourali, Ezoji, ElMekawy, Pant (bib3) 2017; 27 Wu, Wang, Wang, Zhang, Yang, Yang, Li (bib35) 2018; 10 Ota, Ohgi, Nam, Matsuzawa, Mitsushima, Ishihara (bib29) 2011; 196 Kattel, Wang (bib31) 2013; 1 Wu, Wang, Wang, Zhang, Yang, Yang, Li, Zhou, Zhou, Sun (bib42) 2018; 10 Delley (bib37) 2000; 8 Ishihara, Ohgi, Matsuzawa, Mitsushima, Ota (bib21) 2010; 55 Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu (bib48) 2016; 25 Jasinski (bib19) 1964; 201 Hammer, Norskov (bib41) 1995; 376 Chisaka, Ishihara, Uehara, Matsumoto, Ota (bib20) 2015; 3 Ota, Ohgi, Nam, Matsuzawa, Mitsushima, Ishihara (bib23) 2011; 196 Jasinski (bib27) 1965; 112 Jing, Luo, Yin, Huang, Jia, Wei, Sun, Zhao (bib22) 2014; 147 Lototskyy, Tolj, Pickering, Sita, Barbir, Yartys (bib2) 2017; 27 Yang, Stevens, Dahn (bib30) 2008; 155 Xiao, Zhu, Ma, Jin (bib44) 2018; 8 You, Jiang, Sheng, Drisdell, Yano, Sun (bib36) 2015; 5 Wu, Pan, An (bib7) 2018; 89 Jiang, Li, Sheng, Hu, Chen, Wang (bib45) 2018; 140 Tian, Shen, Zhu, Luo, Yan, Wei, Zhang (bib11) 2018; 11 Li, Chen, Cullen, Hwang, Wang, Li, Liu, Karakalos, Lucero, Zhang, Lei, Xu, Sterbinsky, Feng, Su, More, Wang, Wang, Wu (bib46) 2018; 1 Pan, An, Zhao, Tang (bib15) 2018; 66 Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib49) 2018; 30 Guan, Zhang, Chen, Pei, Liu, Xue, Zhu, Zhuang (bib50) 2018; 54 Mei, Xi, Ma, An, Wang, Sun, Luo, Wu (bib28) 2017; 164 Jacobson and (bib5) 2005; 308 Chisaka, Ishihara, Uehara, Matsumoto, Imai, Ota (bib24) 2015; 3 Luo, Zhu, Tian, Li, Shen, Yan, Zhang (bib12) 2017; 7 Ishihara, Lee, Doi, Mitsushima, Kamiya, Hara, Domen, Fukuda, Ota (bib25) 2005; 8 Kendall (bib1) 2018; 28 Ishihara, Ohgi, Matsuzawa, Mitsushima, Ota (bib26) 2010; 55 Liang, Jiao, Jaroniec, Qiao (bib33) 2012; 51 Haile (bib4) 2003; 51 Colic, Bandarenka (bib8) 2016 Shao, Smith, Guerrero, Protsailo, Su, Kaneko, Odell, Humbert, Sasaki, Marzullo (bib13) 2013; 15 Pan, Bi, An (bib6) 2020; 258 Liu, Barkholtz (bib14) 2017; 4 Rosensteel (bib38) 1988; 185 Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu, Li (bib32) 2016; 25 Artyushkova, Serov, Rojas-Carbonell, Atanassov (bib51) 2015; 119 Juffer, Argos, de Vlieg (bib39) 1996; 17 Ishihara (10.1016/j.pnsc.2020.10.018_bib26) 2010; 55 Colic (10.1016/j.pnsc.2020.10.018_bib8) 2016 Li (10.1016/j.pnsc.2020.10.018_bib46) 2018; 1 Wang (10.1016/j.pnsc.2020.10.018_bib48) 2016; 25 Kattel (10.1016/j.pnsc.2020.10.018_bib31) 2013; 1 Artyushkova (10.1016/j.pnsc.2020.10.018_bib51) 2015; 119 Guan (10.1016/j.pnsc.2020.10.018_bib50) 2018; 54 Liang (10.1016/j.pnsc.2020.10.018_bib33) 2012; 51 Jiang (10.1016/j.pnsc.2020.10.018_bib45) 2018; 140 Wu (10.1016/j.pnsc.2020.10.018_bib42) 2018; 10 Juffer (10.1016/j.pnsc.2020.10.018_bib39) 1996; 17 Noerskov (10.1016/j.pnsc.2020.10.018_bib40) 2005; 36 Luo (10.1016/j.pnsc.2020.10.018_bib12) 2017; 7 Delley (10.1016/j.pnsc.2020.10.018_bib37) 2000; 8 Rosensteel (10.1016/j.pnsc.2020.10.018_bib38) 1988; 185 Jasinski (10.1016/j.pnsc.2020.10.018_bib18) 1965; 112 Mashkour (10.1016/j.pnsc.2020.10.018_bib3) 2017; 27 Gu (10.1016/j.pnsc.2020.10.018_bib47) 2019; 35 Wang (10.1016/j.pnsc.2020.10.018_bib49) 2018; 30 Mei (10.1016/j.pnsc.2020.10.018_bib17) 2017; 164 Tian (10.1016/j.pnsc.2020.10.018_bib11) 2018; 11 Yang (10.1016/j.pnsc.2020.10.018_bib30) 2008; 155 Chisaka (10.1016/j.pnsc.2020.10.018_bib24) 2015; 3 Zhang (10.1016/j.pnsc.2020.10.018_bib43) 2017; 139 Jasinski (10.1016/j.pnsc.2020.10.018_bib27) 1965; 112 Ishihara (10.1016/j.pnsc.2020.10.018_bib25) 2005; 8 Pan (10.1016/j.pnsc.2020.10.018_bib6) 2020; 258 Pan (10.1016/j.pnsc.2020.10.018_bib9) 2019; 18 Hammer (10.1016/j.pnsc.2020.10.018_bib41) 1995; 376 Mei (10.1016/j.pnsc.2020.10.018_bib28) 2017; 164 Dong (10.1016/j.pnsc.2020.10.018_bib10) 2016; 138 Jasinski (10.1016/j.pnsc.2020.10.018_bib19) 1964; 201 Wang (10.1016/j.pnsc.2020.10.018_bib34) 2015; 54 Jacobson and (10.1016/j.pnsc.2020.10.018_bib5) 2005; 308 Wang (10.1016/j.pnsc.2020.10.018_bib32) 2016; 25 Jing (10.1016/j.pnsc.2020.10.018_bib22) 2014; 147 You (10.1016/j.pnsc.2020.10.018_bib36) 2015; 5 Ishihara (10.1016/j.pnsc.2020.10.018_bib21) 2010; 55 Liu (10.1016/j.pnsc.2020.10.018_bib14) 2017; 4 Ota (10.1016/j.pnsc.2020.10.018_bib23) 2011; 196 Shao (10.1016/j.pnsc.2020.10.018_bib13) 2013; 15 Haile (10.1016/j.pnsc.2020.10.018_bib4) 2003; 51 Chisaka (10.1016/j.pnsc.2020.10.018_bib20) 2015; 3 Pan (10.1016/j.pnsc.2020.10.018_bib15) 2018; 66 Wu (10.1016/j.pnsc.2020.10.018_bib16) 2017; 11 Xiao (10.1016/j.pnsc.2020.10.018_bib44) 2018; 8 Ota (10.1016/j.pnsc.2020.10.018_bib29) 2011; 196 Wu (10.1016/j.pnsc.2020.10.018_bib35) 2018; 10 Lototskyy (10.1016/j.pnsc.2020.10.018_bib2) 2017; 27 Wu (10.1016/j.pnsc.2020.10.018_bib7) 2018; 89 Kendall (10.1016/j.pnsc.2020.10.018_bib1) 2018; 28 |
References_xml | – volume: 30 start-page: 1706758 year: 2018 ident: bib49 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. – volume: 27 start-page: 647 year: 2017 end-page: 651 ident: bib3 article-title: Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 112 start-page: 526 year: 1965 end-page: 528 ident: bib27 article-title: Cobalt phthalocyanine as a fuel cell cathode publication-title: J. Electrochem. Soc. – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: bib41 article-title: Why gold is the noblest of all the metals publication-title: Nature – volume: 27 start-page: 3 year: 2017 end-page: 20 ident: bib2 article-title: The use of metal hydrides in fuel cell applications publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 89 start-page: 168 year: 2018 end-page: 183 ident: bib7 article-title: Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications publication-title: Renew. Sustain. Energy Rev. – volume: 25 start-page: 110 year: 2016 end-page: 119 ident: bib32 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nanomater. Energy – volume: 11 start-page: 286 year: 2017 end-page: 298 ident: bib16 article-title: Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells publication-title: Front. Energy – volume: 10 start-page: 14602 year: 2018 end-page: 14613 ident: bib35 article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 1783 year: 1996 end-page: 1803 ident: bib39 article-title: Adsorption of proteins onto charged surfaces: a Monte Carlo approach with explicit ions publication-title: J. Comput. Chem. – volume: 201 start-page: 1212 year: 1964 end-page: 1213 ident: bib19 article-title: A new fuel cell cathode catalyst publication-title: Nature – volume: 155 start-page: B79 year: 2008 end-page: B91 ident: bib30 article-title: Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction publication-title: J. Electrochem. Soc. – volume: 51 start-page: 11496 year: 2012 end-page: 11500 ident: bib33 article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 8005 year: 2010 end-page: 8012 ident: bib21 article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells publication-title: Electrochim. Acta – volume: 11 start-page: 1015 year: 2018 end-page: 1019 ident: bib11 article-title: Icosahedral Pt–Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity publication-title: ChemSusChem – volume: 140 start-page: 11594 year: 2018 end-page: 11598 ident: bib45 article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 20132 year: 2019 end-page: 20138 ident: bib47 article-title: Atomically dispersed Fe–Nx active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction publication-title: J. Mater. Chem. – volume: 1 start-page: 10790 year: 2013 end-page: 10797 ident: bib31 article-title: A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores publication-title: J. Mater. Chem. – volume: 185 start-page: 407 year: 1988 end-page: 408 ident: bib38 article-title: Rapidly rotating nuclei as Riemann ellipsoids publication-title: Ann. Phys. – volume: 36 year: 2005 ident: bib40 article-title: Trends in the exchange current for hydrogen evolution publication-title: ChemInform – volume: 308 start-page: 1901 year: 2005 end-page: 1905 ident: bib5 article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles publication-title: Science – volume: 1 start-page: 935 year: 2018 end-page: 945 ident: bib46 article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells publication-title: Nature Catalysis – volume: 119 start-page: 25917 year: 2015 end-page: 25928 ident: bib51 article-title: Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts publication-title: J. Phys. Chem. C – volume: 3 start-page: 16414 year: 2015 end-page: 16418 ident: bib24 article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis? publication-title: J. Mater. Chem. – volume: 28 start-page: 113 year: 2018 end-page: 120 ident: bib1 article-title: Fuel cell development for New Energy Vehicles (NEVs) and clean air in China publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 51 start-page: 5981 year: 2003 end-page: 6000 ident: bib4 article-title: Fuel cell materials and components publication-title: Acta Mater. – volume: 5 start-page: 7068 year: 2015 end-page: 7076 ident: bib36 article-title: Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction publication-title: ACS Catal. – volume: 164 start-page: F1556 year: 2017 end-page: F1565 ident: bib28 article-title: Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells publication-title: J. Electrochem. Soc. – volume: 196 start-page: 5256 year: 2011 end-page: 5263 ident: bib29 article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell publication-title: J. Power Sources – volume: 15 start-page: 15078 year: 2013 ident: bib13 article-title: Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction publication-title: Phys. Chem. Chem. Phys. – volume: 139 start-page: 14143 year: 2017 end-page: 14149 ident: bib43 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 141 year: 2018 end-page: 175 ident: bib15 article-title: Advances and challenges in alkaline anion exchange membrane fuel cells publication-title: Prog. Energy Combust. Sci. – volume: 54 start-page: 9907 year: 2015 end-page: 9910 ident: bib34 article-title: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2824 year: 2018 end-page: 2832 ident: bib44 article-title: Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N publication-title: ACS Catal. – volume: 112 start-page: 526 year: 1965 ident: bib18 article-title: Cobalt phthalocyanine as a fuel cell cathode publication-title: J. Electrochem. Soc. – volume: 25 start-page: 110 year: 2016 end-page: 119 ident: bib48 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nanomater. Energy – volume: 8 start-page: A201 year: 2005 end-page: A203 ident: bib25 article-title: Tantalum oxynitride for a novel cathode of PEFC publication-title: Electrochem. Solid State Lett. – volume: 3 start-page: 16414 year: 2015 end-page: 16418 ident: bib20 article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis publication-title: J. Mater. Chem. – volume: 54 start-page: 12073 year: 2018 end-page: 12076 ident: bib50 article-title: Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst publication-title: Chem. Commun. – volume: 147 start-page: 897 year: 2014 end-page: 903 ident: bib22 article-title: Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction publication-title: Appl. Catal. B Environ. – volume: 164 start-page: F354 year: 2017 end-page: F363 ident: bib17 article-title: Layered spongy-like O-doped g-C3N4: an efficient non-metal oxygen reduction catalyst for alkaline fuel cells publication-title: J. Electrochem. Soc. – volume: 196 start-page: 5256 year: 2011 end-page: 5263 ident: bib23 article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell publication-title: J. Power Sources – start-page: 6b00997 year: 2016 ident: bib8 article-title: Pt-alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems publication-title: ACS Catal. – volume: 138 start-page: 1494 year: 2016 ident: bib10 article-title: Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5420 year: 2017 end-page: 5430 ident: bib12 article-title: Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction publication-title: ACS Catal. – volume: 55 start-page: 8005 year: 2010 end-page: 8012 ident: bib26 article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells publication-title: Electrochim. Acta – volume: 258 start-page: 114060 year: 2020 ident: bib6 article-title: A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells publication-title: Appl. Energy – volume: 8 start-page: 361 year: 2000 end-page: 364 ident: bib37 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. – volume: 18 start-page: 61 year: 2019 end-page: 71 ident: bib9 article-title: Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells publication-title: Current Opinion in Electrochemistry – volume: 4 start-page: 20 year: 2017 end-page: 37 ident: bib14 article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal-organic frameworks publication-title: Materials Horizons – volume: 10 start-page: 14602 year: 2018 end-page: 14613 ident: bib42 article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 110 year: 2016 ident: 10.1016/j.pnsc.2020.10.018_bib48 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.04.042 – volume: 30 start-page: 1706758 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib49 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 112 start-page: 526 year: 1965 ident: 10.1016/j.pnsc.2020.10.018_bib27 article-title: Cobalt phthalocyanine as a fuel cell cathode publication-title: J. Electrochem. Soc. doi: 10.1149/1.2423590 – volume: 1 start-page: 10790 year: 2013 ident: 10.1016/j.pnsc.2020.10.018_bib31 article-title: A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores publication-title: J. Mater. Chem. doi: 10.1039/c3ta12142a – volume: 54 start-page: 12073 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib50 article-title: Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst publication-title: Chem. Commun. doi: 10.1039/C8CC05273E – volume: 10 start-page: 14602 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib35 article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19332 – volume: 258 start-page: 114060 year: 2020 ident: 10.1016/j.pnsc.2020.10.018_bib6 article-title: A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114060 – volume: 7 start-page: 5420 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib12 article-title: Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b01775 – volume: 112 start-page: 526 year: 1965 ident: 10.1016/j.pnsc.2020.10.018_bib18 article-title: Cobalt phthalocyanine as a fuel cell cathode publication-title: J. Electrochem. Soc. doi: 10.1149/1.2423590 – volume: 15 start-page: 15078 year: 2013 ident: 10.1016/j.pnsc.2020.10.018_bib13 article-title: Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52252k – volume: 196 start-page: 5256 year: 2011 ident: 10.1016/j.pnsc.2020.10.018_bib23 article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.09.021 – volume: 51 start-page: 5981 year: 2003 ident: 10.1016/j.pnsc.2020.10.018_bib4 article-title: Fuel cell materials and components publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.08.004 – volume: 55 start-page: 8005 year: 2010 ident: 10.1016/j.pnsc.2020.10.018_bib21 article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.03.002 – volume: 27 start-page: 647 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib3 article-title: Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2017.11.003 – volume: 54 start-page: 9907 year: 2015 ident: 10.1016/j.pnsc.2020.10.018_bib34 article-title: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503159 – volume: 196 start-page: 5256 year: 2011 ident: 10.1016/j.pnsc.2020.10.018_bib29 article-title: Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.09.021 – volume: 36 year: 2005 ident: 10.1016/j.pnsc.2020.10.018_bib40 article-title: Trends in the exchange current for hydrogen evolution publication-title: ChemInform doi: 10.1002/chin.200524023 – volume: 35 start-page: 20132 year: 2019 ident: 10.1016/j.pnsc.2020.10.018_bib47 article-title: Atomically dispersed Fe–Nx active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction publication-title: J. Mater. Chem. doi: 10.1039/C9TA06128B – volume: 8 start-page: A201 year: 2005 ident: 10.1016/j.pnsc.2020.10.018_bib25 article-title: Tantalum oxynitride for a novel cathode of PEFC publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1865612 – volume: 55 start-page: 8005 year: 2010 ident: 10.1016/j.pnsc.2020.10.018_bib26 article-title: Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.03.002 – volume: 140 start-page: 11594 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib45 article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 155 start-page: B79 year: 2008 ident: 10.1016/j.pnsc.2020.10.018_bib30 article-title: Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction publication-title: J. Electrochem. Soc. doi: 10.1149/1.2803519 – volume: 119 start-page: 25917 year: 2015 ident: 10.1016/j.pnsc.2020.10.018_bib51 article-title: Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07653 – volume: 51 start-page: 11496 year: 2012 ident: 10.1016/j.pnsc.2020.10.018_bib33 article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206720 – volume: 5 start-page: 7068 year: 2015 ident: 10.1016/j.pnsc.2020.10.018_bib36 article-title: Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction publication-title: ACS Catal. doi: 10.1021/acscatal.5b02325 – volume: 147 start-page: 897 year: 2014 ident: 10.1016/j.pnsc.2020.10.018_bib22 article-title: Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.10.026 – volume: 138 start-page: 1494 year: 2016 ident: 10.1016/j.pnsc.2020.10.018_bib10 article-title: Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12530 – volume: 376 start-page: 238 year: 1995 ident: 10.1016/j.pnsc.2020.10.018_bib41 article-title: Why gold is the noblest of all the metals publication-title: Nature doi: 10.1038/376238a0 – volume: 10 start-page: 14602 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib42 article-title: Three-dimensional networks of S-doped Fe/N/C with hierarchical porosity for efficient oxygen reduction in polymer electrolyte membrane fuel cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19332 – volume: 308 start-page: 1901 year: 2005 ident: 10.1016/j.pnsc.2020.10.018_bib5 article-title: Cleaning the air and improving health with hydrogen fuel-cell vehicles publication-title: Science doi: 10.1126/science.1109157 – volume: 28 start-page: 113 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib1 article-title: Fuel cell development for New Energy Vehicles (NEVs) and clean air in China publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2018.03.001 – volume: 4 start-page: 20 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib14 article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal-organic frameworks publication-title: Materials Horizons doi: 10.1039/C6MH00344C – volume: 185 start-page: 407 year: 1988 ident: 10.1016/j.pnsc.2020.10.018_bib38 article-title: Rapidly rotating nuclei as Riemann ellipsoids publication-title: Ann. Phys. doi: 10.1016/0003-4916(88)90057-7 – volume: 89 start-page: 168 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib7 article-title: Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.024 – volume: 11 start-page: 286 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib16 article-title: Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells publication-title: Front. Energy doi: 10.1007/s11708-017-0477-3 – volume: 3 start-page: 16414 year: 2015 ident: 10.1016/j.pnsc.2020.10.018_bib20 article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis publication-title: J. Mater. Chem. doi: 10.1039/C5TA03860J – volume: 8 start-page: 2824 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib44 article-title: Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy publication-title: ACS Catal. doi: 10.1021/acscatal.8b00138 – volume: 1 start-page: 935 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib46 article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells publication-title: Nature Catalysis doi: 10.1038/s41929-018-0164-8 – volume: 164 start-page: F1556 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib28 article-title: Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0451714jes – volume: 8 start-page: 361 year: 2000 ident: 10.1016/j.pnsc.2020.10.018_bib37 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. – volume: 139 start-page: 14143 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib43 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06514 – volume: 164 start-page: F354 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib17 article-title: Layered spongy-like O-doped g-C3N4: an efficient non-metal oxygen reduction catalyst for alkaline fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.1191704jes – volume: 201 start-page: 1212 year: 1964 ident: 10.1016/j.pnsc.2020.10.018_bib19 article-title: A new fuel cell cathode catalyst publication-title: Nature doi: 10.1038/2011212a0 – volume: 66 start-page: 141 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib15 article-title: Advances and challenges in alkaline anion exchange membrane fuel cells publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.01.001 – volume: 25 start-page: 110 year: 2016 ident: 10.1016/j.pnsc.2020.10.018_bib32 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.04.042 – volume: 17 start-page: 1783 year: 1996 ident: 10.1016/j.pnsc.2020.10.018_bib39 article-title: Adsorption of proteins onto charged surfaces: a Monte Carlo approach with explicit ions publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199612)17:16<1783::AID-JCC1>3.0.CO;2-J – volume: 18 start-page: 61 year: 2019 ident: 10.1016/j.pnsc.2020.10.018_bib9 article-title: Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells publication-title: Current Opinion in Electrochemistry doi: 10.1016/j.coelec.2019.10.011 – volume: 11 start-page: 1015 year: 2018 ident: 10.1016/j.pnsc.2020.10.018_bib11 article-title: Icosahedral Pt–Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity publication-title: ChemSusChem doi: 10.1002/cssc.201800074 – start-page: 6b00997 year: 2016 ident: 10.1016/j.pnsc.2020.10.018_bib8 article-title: Pt-alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems publication-title: ACS Catal. – volume: 27 start-page: 3 year: 2017 ident: 10.1016/j.pnsc.2020.10.018_bib2 article-title: The use of metal hydrides in fuel cell applications publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2017.01.008 – volume: 3 start-page: 16414 year: 2015 ident: 10.1016/j.pnsc.2020.10.018_bib24 article-title: Nano-TaOxNy particles synthesized from oxy-tantalum phthalocyanine: how to prepare precursors to enhance the oxygen reduction reaction activity after ammonia pyrolysis? publication-title: J. Mater. Chem. doi: 10.1039/C5TA03860J |
SSID | ssj0007167 |
Score | 2.3306808 |
Snippet | It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 896 |
SubjectTerms | Acidic and alkaline medium Co-doping Fuel cells Non-precious metal catalyst Oxygen reduction reaction |
Title | Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction |
URI | https://dx.doi.org/10.1016/j.pnsc.2020.10.018 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgR6wPro-zBgyKxSbNpmmMtlvpoL7XQW9hXoCJpaFKxNy_-Av-hv8SZZFMUpAcPgWTYDWFndmYnzPcNIecu45gVSIsLCQlKS9oW9xxhIVedLSKb-wzBycNRezBh91NvWiG9EguDZZXG9xc-PffWRtI0q9lMZrPmGMlDMUK20GaZj0BzRJUiiG96s_bGkA_kDVZw5-OTAc4UNV5JnCKNYQsF1zY2_vgrOP0IOP1dsmNOirRbfEyNVHS8R2pmL6b0whBGX-6Tj0cs56YImsTCH5ouFxGXmnI4ENKxpeaJVrSvv94_R3D1qGl9k_-5WaVZShWY4SuMQawJHWoQw7gCpSlBaMq3UgoHXDp_W4HN0QVSvqJS4a7ARhyQSf_2qTewTHsFS7qMZaAd7toMdBTJIOLcCwLGXc4iqRxhC922tS-1o4WKOg5XENQczryAcwUZFBI8uIekGs9jfUSohrRMSZ91XNlmyof3ycATEdOR8CCj69SJU65rKA33OLbAeAnLIrPnEHURoi5QBrqok6v1nKRg3tg42ivVFf6ynxBCw4Z5x_-cd0K28akobDkl1Wyx1GdwPMlEg2x17x4Go0Zuh99gk-pl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHPRixEd8uwcPGlNp6S6lR0IkoMBFTbw1-2qCMUAoGrl58Rf4D_0lztCFaGI4eGjSTnc3zc7sPJqZbwDOQi4pKtCeVBoDlIr2PSkC5RFWna9SX0acipO7vWrrgd88iscVaMxrYSit0un-XKfPtLWjlN1ulkf9fvmOwEPJQlZIZnkkVqHIBUZ7BSjW27et3kIhY0gw67FCh5-eXO1MnuY1GmSEZFghwpVPvT_-sk8_bE5zEzacs8jq-feUYMUOtqDkjmPGzh1m9MU2fHQoo5tR3STl_rDsZZxKbZlEn5DdeWY4soY17df7Zw-vBnPdb2Y_b6bZJGMGJfEVx1C5CetaJOO4vFBTI9FlcGUMfVw2fJui2LExob4SX_EuL4_YgYfm9X2j5bkOC54OOZ8gg2Toc2RTquNUShHHXIaSp9oEyle26ttI28Aqk9YCadCuBZKLWEqDQRRhPIS7UBgMB3YPmMXIzOiI10Jd5SbC9XQsVMptqgQGdbV9COb7mmgHP05dMJ6TeZ7ZU0K8SIgXRENe7MPlYs4oB99YOlrM2ZX8EqEErcOSeQf_nHcKa637bifptHu3h7BOb_I8lyMoTMYv9hi9lYk6cdL4DWNV7RI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+specific+surface+area+S-doped+Fe%E2%80%93N%E2%80%93C+electrocatalysts+derived+from+Metal%E2%80%93Organic+frameworks+for+oxygen+reduction+reaction&rft.jtitle=Progress+in+natural+science&rft.au=Yan%2C+Xiaohui&rft.au=Li%2C+Xiaolin&rft.au=Fu%2C+Cehuang&rft.au=Lin%2C+Chen&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=896&rft.epage=904&rft_id=info:doi/10.1016%2Fj.pnsc.2020.10.018&rft.externalDocID=S1002007120305475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon |