Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs
In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecu...
Saved in:
Published in | Progress in natural science Vol. 30; no. 6; pp. 839 - 845 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecular diffusion resistance, Knudsen diffusion resistance, and local O2 resistance in CL. The results showed that with the pore formation the cell performance had a significant improvement at high current density, mainly due to its better oxygen transport properties, especially under low platinum conditions. The addition of pore-forming agent moved the pore diameter toward a larger pore diameter with a range from 70 to 100 nm, and also obtaining a higher cumulative pore volume. It was found that the increase of the cumulative pore volume and larger pore size were conducive to the diffusion of oxygen molecules in CL, and the resistance caused by which was the dominant part in total transport resistance. Further tests indicated that the improvement of molecular diffusion resistance was much larger than that of Knudsen diffusion resistance in the catalyst layer after pore formed. In addition, the optimized pore structure will also get a higher number of effective pores, which resulted in an increased effective area of the ionomer on the Pt surface. The higher effective area of the ionomer was particularly beneficial for the reduction of local O2 resistance with low Pt loading.
•The pore size of the CL was successfully optimized by adding pore-forming agent.•The modified CL better delays the arrival of mass-transport polarization.•The oxygen transport resistance decreases after pore-formed, which is more obvious under low Pt loading.•Increasing a number of large pore with diameter of 70–100 nm results in a decrease of RCL,Fick.•Adding pore-forming agent can increase the effective oxygen transport ionomer area, which is beneficial to reduce RLocal. |
---|---|
AbstractList | In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecular diffusion resistance, Knudsen diffusion resistance, and local O2 resistance in CL. The results showed that with the pore formation the cell performance had a significant improvement at high current density, mainly due to its better oxygen transport properties, especially under low platinum conditions. The addition of pore-forming agent moved the pore diameter toward a larger pore diameter with a range from 70 to 100 nm, and also obtaining a higher cumulative pore volume. It was found that the increase of the cumulative pore volume and larger pore size were conducive to the diffusion of oxygen molecules in CL, and the resistance caused by which was the dominant part in total transport resistance. Further tests indicated that the improvement of molecular diffusion resistance was much larger than that of Knudsen diffusion resistance in the catalyst layer after pore formed. In addition, the optimized pore structure will also get a higher number of effective pores, which resulted in an increased effective area of the ionomer on the Pt surface. The higher effective area of the ionomer was particularly beneficial for the reduction of local O2 resistance with low Pt loading.
•The pore size of the CL was successfully optimized by adding pore-forming agent.•The modified CL better delays the arrival of mass-transport polarization.•The oxygen transport resistance decreases after pore-formed, which is more obvious under low Pt loading.•Increasing a number of large pore with diameter of 70–100 nm results in a decrease of RCL,Fick.•Adding pore-forming agent can increase the effective oxygen transport ionomer area, which is beneficial to reduce RLocal. |
Author | Zhou, Fen Pan, Mu Guan, Shumeng Tan, Jinting |
Author_xml | – sequence: 1 givenname: Shumeng surname: Guan fullname: Guan, Shumeng organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China – sequence: 2 givenname: Fen surname: Zhou fullname: Zhou, Fen organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China – sequence: 3 givenname: Jinting surname: Tan fullname: Tan, Jinting email: tanjinting@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China – sequence: 4 givenname: Mu surname: Pan fullname: Pan, Mu email: panmu@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China |
BookMark | eNp9kL1OwzAURj0UiRZ4ASa_QIIdJ3EisaCqhUpFMMBsuc4NdZXYkW0Q6dPjUCaGTvdHOp_uPQs0M9YAQreUpJTQ8u6QDsarNCMZSUmVEspnaE4JyRJCOL1EC-8PZGpLPkd2Y9ruE4wCbFs8WAfY62MchqB7fZRBW4O1wUoG2Y0-4E6O4HBchj3gHtReGu37Cbbf4wfEvZPGx6CAHXjtg5yyY8Lr6nm99NfoopWdh5u_eoXe16u35VOyfXncLB-2iWJ5HhIpeUNbTmXNCwqkrFWrWEV43UDGGM9UIeuqyFklWS13krOdahRAmeVlpcpix65QdcpVznrvoBVKh99v4n26E5SISZY4iEmWmGQJUokoK6LZP3RwupduPA_dnyCIT31pcMIrPWlttAMVRGP1OfwHyyKKIg |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_236581 crossref_primary_10_1016_j_cej_2024_151569 crossref_primary_10_1021_acs_energyfuels_3c00559 crossref_primary_10_1002_smll_202308563 crossref_primary_10_3390_molecules30020379 crossref_primary_10_1021_acsaem_4c01528 crossref_primary_10_1002_aenm_202101222 crossref_primary_10_1016_j_ijhydene_2024_02_047 crossref_primary_10_1016_j_ijhydene_2024_02_303 crossref_primary_10_1016_j_cej_2024_153474 crossref_primary_10_1016_j_cej_2022_137489 crossref_primary_10_1016_j_ijhydene_2024_10_302 crossref_primary_10_7316_JHNE_2023_34_2_178 crossref_primary_10_1016_j_icheatmasstransfer_2024_108280 crossref_primary_10_1016_j_energy_2022_124201 crossref_primary_10_1002_adma_202306387 crossref_primary_10_1016_j_jpowsour_2023_233807 crossref_primary_10_1126_sciadv_adf4863 crossref_primary_10_1039_D4CY01086H crossref_primary_10_1016_j_pnsc_2024_07_010 crossref_primary_10_1016_j_ijhydene_2024_10_265 crossref_primary_10_1016_j_energy_2024_130363 crossref_primary_10_1016_j_icheatmasstransfer_2025_108806 crossref_primary_10_1016_j_ijhydene_2022_05_144 crossref_primary_10_1021_acscatal_3c02152 crossref_primary_10_1007_s12209_023_00371_0 crossref_primary_10_1016_j_ijhydene_2023_06_250 crossref_primary_10_1016_j_jpowsour_2021_230186 crossref_primary_10_1126_sciadv_ade1194 crossref_primary_10_1016_j_jechem_2024_11_055 crossref_primary_10_1149_1945_7111_ac3598 crossref_primary_10_1016_j_jpowsour_2022_231695 crossref_primary_10_1149_1945_7111_ac44bd crossref_primary_10_1002_rpm_20240028 crossref_primary_10_1016_j_esci_2024_100254 crossref_primary_10_1016_j_gee_2023_11_002 crossref_primary_10_1016_j_ijhydene_2021_12_227 crossref_primary_10_1016_j_jpowsour_2023_232966 crossref_primary_10_1016_j_apcatb_2024_124894 |
Cites_doi | 10.1021/acs.jpclett.6b00216 10.1149/1.1993488 10.1149/2.0501914jes 10.1002/fuce.201200014 10.1016/j.electacta.2011.05.123 10.1023/A:1003259531775 10.1016/j.apenergy.2011.01.010 10.1016/j.jpowsour.2015.04.079 10.1016/j.jpowsour.2003.12.055 10.1016/j.jpowsour.2012.04.069 10.1149/2.F03152if 10.1149/1.2356218 10.1149/1.3546038 10.1016/j.jpowsour.2004.09.021 10.1016/j.jpowsour.2018.01.068 10.1016/j.ijhydene.2011.06.090 10.1149/06403.0321ecst 10.1002/er.4012 10.1016/j.ijhydene.2012.05.031 10.1016/j.ijhydene.2006.06.057 10.1016/j.jpowsour.2017.01.087 10.1149/2.049306jes 10.1021/am900600y 10.1016/j.jpowsour.2013.11.073 10.1016/j.fuel.2014.09.022 10.1016/j.ijhydene.2009.05.022 10.1016/j.ijhydene.2016.12.015 10.1149/1.3152226 10.1149/2.061212jes 10.1016/j.apcatb.2004.06.021 10.1016/j.ijhydene.2011.05.073 10.1149/1.2218760 10.1149/1.2780966 10.1016/j.ijhydene.2016.11.002 10.1038/s41563-019-0487-0 |
ContentType | Journal Article |
Copyright | 2020 Chinese Materials Research Society |
Copyright_xml | – notice: 2020 Chinese Materials Research Society |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.pnsc.2020.08.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EndPage | 845 |
ExternalDocumentID | 10_1016_j_pnsc_2020_08_017 S1002007120304871 |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 123 1B1 1~5 29P 2B. 2C. 2DF 3YN 4.4 457 4G. 5VR 5VS 5XA 5XB 5XL 6I. 7-5 92E 92I 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABJNI ABMAC ACGFS ACNNM ACRLP ADEZE ADMUD AEFWE AEXQZ AEZYN AFTJW AFUIB AGHFR AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AWYRJ CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CS3 CW9 DU5 EBS EJD EO9 EP2 FA0 FDB GROUPED_DOAJ HH5 HZ~ IHE IPNFZ IXB JUIAU KQ8 M41 M4Z NCXOZ NQ- O-L O9- OK1 Q-- Q-0 R-A RIG ROL RPZ RT1 S.. SDG SPC SSZ T8Q TCJ TFW TGP U1F U1G U5A U5K UNMZH XFK ~02 ~L8 AATTM AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION EFJIC FYGXN H13 SSH TDBHL |
ID | FETCH-LOGICAL-c344t-aa7d1f71a9751e069cfc38079de23372c5a985438a39aba73bcdcee62468c65b3 |
IEDL.DBID | AIKHN |
ISSN | 1002-0071 |
IngestDate | Tue Jul 01 04:26:24 EDT 2025 Thu Apr 24 22:53:45 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | PEMFC Oxygen transport resistance Pore size optimization Pore-forming agent |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-aa7d1f71a9751e069cfc38079de23372c5a985438a39aba73bcdcee62468c65b3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1002007120304871 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_pnsc_2020_08_017 crossref_primary_10_1016_j_pnsc_2020_08_017 elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_08_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Progress in natural science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kongkanand, Mathias (bib15) 2016; 7 Lee, Kim, Choi (bib29) 2013; 13 Yim, Sohn, Park, Yoon, Park, Yang, Kim (bib20) 2011; 56 Welty, Wicks, Rorrer, Wilson (bib36) 2008 Nonoyama, Okazaki, Weber, Ikogi, Yoshida (bib12) 2011; 158 Soboleva, Zhao, Malek, Xie, Navessin, Holdcroft (bib16) 2016; 2 Takahiro, Shohji, Shuichiro (bib17) 2011; 36 Ying, Wei, Xu, Williams, Liu, Bonville, Kunz, Fenton (bib22) 2005; 141 Zhao, He, Li, Tian, Wan, Jiang (bib23) 2007; 32 Jayasayee, Zlotorowicz, Clos, Dahl, Kjelstrup (bib33) 2014; 64 Greszler, Caulk, Sinha (bib13) 2012; 159 Tucker, Odgaard, Lund, Yde-Andersen, Thomas (bib25) 2005; 152 Yoshida, Kojima (bib3) 2015; 24 Ye, Gao, Zhu, Zheng, Li, Zheng (bib6) 2017; 42 He, Lv, Dickerson (bib35) 2014 Debe (bib5) 2013; 160 Liang, Pan, Xu, Wang (bib19) 2015; 139 Mu, Cheng, Ying, Tang, Mu (bib34) 2010; 35 Baker, Wieser, Neyerlin, Murphy (bib9) 2006; 3 Gasteiger, Kocha, Sompalli, Wagner (bib31) 2005; 56 Fischer, Jindra, Wendt (bib30) 1998; 28 Jomori, Nonoyama, Yoshida (bib38) 2012; 215 Wang, Li, Wan, Chen, Tan, Pan (bib8) 2018; 379 Mashio, Ohma, Yamamoto, Shinohara (bib37) 2007; 11 Beuscher (bib10) 2006; 153 Yun, Chen, Mishler, Cho, Adroher (bib1) 2011; 88 Ott, Orfanidi, Schmies, Anke, Nong, Hübner, Gernert, Gliech, Lerch, Strasser (bib7) 2020; 19 Hwang, Chi, Yi, Lee (bib21) 2011; 36 Zlotorowicz, Jayasayee, Dahl, Thomassen, Kjelstrup (bib32) 2015; 287 Cheng, Wang, Wei, Yan, Shen, Ke, Zhu, Zhang (bib27) 2019; 166 Litster, Mclean (bib24) 2004; 130 Oh, Lee, Lee, Min, Yi (bib14) 2017; 345 Cho, Jung, Yun, Dong, Ju, Ghoe, Cho, Sung (bib26) 2012; 37 Murata, Imanishi, Hasegawa, Namba (bib4) 2014; 253 Baker, Caulk, Neyerlin, Murphy (bib11) 2009; 156 Wang, Shubo, Linfa, Junliang, Zhigang, Jun, Chunwen, Minggao, Xiangming (bib2) 2016; 9 Wan, Zhong, Liu, Jin, Pan (bib28) 2018; 42 Kim, Yi, Jung, Jeong, Yi (bib18) 2017; 42 Zhao (10.1016/j.pnsc.2020.08.017_bib23) 2007; 32 Greszler (10.1016/j.pnsc.2020.08.017_bib13) 2012; 159 Baker (10.1016/j.pnsc.2020.08.017_bib9) 2006; 3 Yun (10.1016/j.pnsc.2020.08.017_bib1) 2011; 88 Wan (10.1016/j.pnsc.2020.08.017_bib28) 2018; 42 Ye (10.1016/j.pnsc.2020.08.017_bib6) 2017; 42 Liang (10.1016/j.pnsc.2020.08.017_bib19) 2015; 139 Lee (10.1016/j.pnsc.2020.08.017_bib29) 2013; 13 Murata (10.1016/j.pnsc.2020.08.017_bib4) 2014; 253 Cheng (10.1016/j.pnsc.2020.08.017_bib27) 2019; 166 Yim (10.1016/j.pnsc.2020.08.017_bib20) 2011; 56 Zlotorowicz (10.1016/j.pnsc.2020.08.017_bib32) 2015; 287 Hwang (10.1016/j.pnsc.2020.08.017_bib21) 2011; 36 Nonoyama (10.1016/j.pnsc.2020.08.017_bib12) 2011; 158 He (10.1016/j.pnsc.2020.08.017_bib35) 2014 Yoshida (10.1016/j.pnsc.2020.08.017_bib3) 2015; 24 Ying (10.1016/j.pnsc.2020.08.017_bib22) 2005; 141 Wang (10.1016/j.pnsc.2020.08.017_bib8) 2018; 379 Tucker (10.1016/j.pnsc.2020.08.017_bib25) 2005; 152 Mashio (10.1016/j.pnsc.2020.08.017_bib37) 2007; 11 Jomori (10.1016/j.pnsc.2020.08.017_bib38) 2012; 215 Baker (10.1016/j.pnsc.2020.08.017_bib11) 2009; 156 Kongkanand (10.1016/j.pnsc.2020.08.017_bib15) 2016; 7 Wang (10.1016/j.pnsc.2020.08.017_bib2) 2016; 9 Beuscher (10.1016/j.pnsc.2020.08.017_bib10) 2006; 153 Debe (10.1016/j.pnsc.2020.08.017_bib5) 2013; 160 Gasteiger (10.1016/j.pnsc.2020.08.017_bib31) 2005; 56 Takahiro (10.1016/j.pnsc.2020.08.017_bib17) 2011; 36 Jayasayee (10.1016/j.pnsc.2020.08.017_bib33) 2014; 64 Litster (10.1016/j.pnsc.2020.08.017_bib24) 2004; 130 Cho (10.1016/j.pnsc.2020.08.017_bib26) 2012; 37 Ott (10.1016/j.pnsc.2020.08.017_bib7) 2020; 19 Soboleva (10.1016/j.pnsc.2020.08.017_bib16) 2016; 2 Mu (10.1016/j.pnsc.2020.08.017_bib34) 2010; 35 Fischer (10.1016/j.pnsc.2020.08.017_bib30) 1998; 28 Welty (10.1016/j.pnsc.2020.08.017_bib36) 2008 Oh (10.1016/j.pnsc.2020.08.017_bib14) 2017; 345 Kim (10.1016/j.pnsc.2020.08.017_bib18) 2017; 42 |
References_xml | – volume: 32 start-page: 380 year: 2007 end-page: 384 ident: bib23 publication-title: Int. J. Hydrogen Energy – volume: 160 start-page: F522 year: 2013 end-page: F534 ident: bib5 publication-title: J. Electrochem. Soc. – volume: 35 start-page: 2872 year: 2010 end-page: 2876 ident: bib34 publication-title: Int. J. Hydrogen Energy – volume: 166 start-page: F1055 year: 2019 end-page: F1061 ident: bib27 publication-title: J. Electrochem. Soc. – volume: 379 start-page: 338 year: 2018 end-page: 343 ident: bib8 publication-title: J. Power Sources – volume: 11 year: 2007 ident: bib37 publication-title: Ecs Transactions – volume: 141 start-page: 250 year: 2005 end-page: 257 ident: bib22 publication-title: J. Power Sources – volume: 130 start-page: 61 year: 2004 end-page: 76 ident: bib24 publication-title: J. Power Sources – volume: 42 start-page: 478 year: 2017 end-page: 485 ident: bib18 publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 7241 year: 2017 end-page: 7245 ident: bib6 publication-title: Int. J. Hydrogen Energy – volume: 253 start-page: 104 year: 2014 end-page: 113 ident: bib4 publication-title: J. Power Sources – volume: 153 start-page: A1788 year: 2006 ident: bib10 publication-title: J. Electrochem. Soc. – volume: 158 start-page: B416 year: 2011 ident: bib12 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 375 year: 2016 end-page: 384 ident: bib16 publication-title: ACS Appl. Mater. Interfaces – volume: 156 start-page: B991 year: 2009 ident: bib11 publication-title: J. Electrochem. Soc. – volume: 215 start-page: 18 year: 2012 end-page: 27 ident: bib38 publication-title: J. Power Sources – volume: 36 start-page: 12361 year: 2011 end-page: 12369 ident: bib17 publication-title: Int. J. Hydrogen Energy – volume: 287 start-page: 472 year: 2015 end-page: 477 ident: bib32 publication-title: J. Power Sources – volume: 3 start-page: 989 year: 2006 ident: bib9 publication-title: ECS Transactions – volume: 88 start-page: 981 year: 2011 end-page: 1007 ident: bib1 publication-title: Appl. Energy – volume: 159 start-page: F831 year: 2012 end-page: F840 ident: bib13 publication-title: J. Electrochem. Soc. – volume: 19 start-page: 77 year: 2020 end-page: 85 ident: bib7 publication-title: Nat. Mater. – volume: 56 start-page: 9 year: 2005 end-page: 35 ident: bib31 publication-title: Appl. Catal., B – volume: 42 start-page: 2225 year: 2018 end-page: 2233 ident: bib28 publication-title: Int. J. Energy Res. – year: 2008 ident: bib36 article-title: Fundamentals of Momentum, Heat and Mass Transfer – volume: 139 start-page: 393 year: 2015 end-page: 400 ident: bib19 publication-title: Fuel – volume: 37 start-page: 11969 year: 2012 end-page: 11974 ident: bib26 publication-title: Int. J. Hydrogen Energy – volume: 64 start-page: 321 year: 2014 end-page: 339 ident: bib33 publication-title: Ecs Transactions – year: 2014 ident: bib35 article-title: Springer – volume: 7 start-page: 1127 year: 2016 end-page: 1137 ident: bib15 publication-title: J. Phys. Chem. Lett. – volume: 24 start-page: 45 year: 2015 ident: bib3 publication-title: Electrochem. Soc. Interface. – volume: 13 start-page: 173 year: 2013 end-page: 180 ident: bib29 publication-title: Fuel Cell. – volume: 36 start-page: 9876 year: 2011 end-page: 9885 ident: bib21 publication-title: Int. J. Hydrogen Energy – volume: 345 start-page: 67 year: 2017 end-page: 77 ident: bib14 publication-title: J. Power Sources – volume: 9 start-page: 1 year: 2016 end-page: 39 ident: bib2 publication-title: Energies – volume: 56 start-page: 9064 year: 2011 end-page: 9073 ident: bib20 publication-title: Electrochim. Acta – volume: 152 start-page: A1844 year: 2005 ident: bib25 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 277 year: 1998 end-page: 282 ident: bib30 publication-title: J. Appl. Electrochem. – volume: 7 start-page: 1127 year: 2016 ident: 10.1016/j.pnsc.2020.08.017_bib15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00216 – volume: 152 start-page: A1844 year: 2005 ident: 10.1016/j.pnsc.2020.08.017_bib25 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1993488 – volume: 166 start-page: F1055 year: 2019 ident: 10.1016/j.pnsc.2020.08.017_bib27 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501914jes – volume: 13 start-page: 173 year: 2013 ident: 10.1016/j.pnsc.2020.08.017_bib29 publication-title: Fuel Cell. doi: 10.1002/fuce.201200014 – volume: 56 start-page: 9064 year: 2011 ident: 10.1016/j.pnsc.2020.08.017_bib20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.05.123 – volume: 28 start-page: 277 year: 1998 ident: 10.1016/j.pnsc.2020.08.017_bib30 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1003259531775 – volume: 88 start-page: 981 year: 2011 ident: 10.1016/j.pnsc.2020.08.017_bib1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.010 – volume: 287 start-page: 472 year: 2015 ident: 10.1016/j.pnsc.2020.08.017_bib32 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.079 – volume: 130 start-page: 61 year: 2004 ident: 10.1016/j.pnsc.2020.08.017_bib24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.12.055 – volume: 215 start-page: 18 year: 2012 ident: 10.1016/j.pnsc.2020.08.017_bib38 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.069 – volume: 24 start-page: 45 year: 2015 ident: 10.1016/j.pnsc.2020.08.017_bib3 publication-title: Electrochem. Soc. Interface. doi: 10.1149/2.F03152if – volume: 3 start-page: 989 year: 2006 ident: 10.1016/j.pnsc.2020.08.017_bib9 publication-title: ECS Transactions doi: 10.1149/1.2356218 – volume: 158 start-page: B416 year: 2011 ident: 10.1016/j.pnsc.2020.08.017_bib12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3546038 – volume: 141 start-page: 250 year: 2005 ident: 10.1016/j.pnsc.2020.08.017_bib22 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.021 – volume: 379 start-page: 338 year: 2018 ident: 10.1016/j.pnsc.2020.08.017_bib8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.068 – volume: 36 start-page: 12361 year: 2011 ident: 10.1016/j.pnsc.2020.08.017_bib17 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.06.090 – year: 2014 ident: 10.1016/j.pnsc.2020.08.017_bib35 – volume: 64 start-page: 321 year: 2014 ident: 10.1016/j.pnsc.2020.08.017_bib33 publication-title: Ecs Transactions doi: 10.1149/06403.0321ecst – volume: 42 start-page: 2225 year: 2018 ident: 10.1016/j.pnsc.2020.08.017_bib28 publication-title: Int. J. Energy Res. doi: 10.1002/er.4012 – volume: 37 start-page: 11969 year: 2012 ident: 10.1016/j.pnsc.2020.08.017_bib26 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.05.031 – volume: 32 start-page: 380 year: 2007 ident: 10.1016/j.pnsc.2020.08.017_bib23 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.057 – volume: 345 start-page: 67 year: 2017 ident: 10.1016/j.pnsc.2020.08.017_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.087 – volume: 160 start-page: F522 year: 2013 ident: 10.1016/j.pnsc.2020.08.017_bib5 publication-title: J. Electrochem. Soc. doi: 10.1149/2.049306jes – volume: 2 start-page: 375 year: 2016 ident: 10.1016/j.pnsc.2020.08.017_bib16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900600y – volume: 253 start-page: 104 year: 2014 ident: 10.1016/j.pnsc.2020.08.017_bib4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.073 – volume: 139 start-page: 393 year: 2015 ident: 10.1016/j.pnsc.2020.08.017_bib19 publication-title: Fuel doi: 10.1016/j.fuel.2014.09.022 – volume: 35 start-page: 2872 year: 2010 ident: 10.1016/j.pnsc.2020.08.017_bib34 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.022 – volume: 42 start-page: 478 year: 2017 ident: 10.1016/j.pnsc.2020.08.017_bib18 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.015 – year: 2008 ident: 10.1016/j.pnsc.2020.08.017_bib36 – volume: 156 start-page: B991 year: 2009 ident: 10.1016/j.pnsc.2020.08.017_bib11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3152226 – volume: 159 start-page: F831 year: 2012 ident: 10.1016/j.pnsc.2020.08.017_bib13 publication-title: J. Electrochem. Soc. doi: 10.1149/2.061212jes – volume: 56 start-page: 9 year: 2005 ident: 10.1016/j.pnsc.2020.08.017_bib31 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2004.06.021 – volume: 36 start-page: 9876 year: 2011 ident: 10.1016/j.pnsc.2020.08.017_bib21 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.073 – volume: 153 start-page: A1788 year: 2006 ident: 10.1016/j.pnsc.2020.08.017_bib10 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2218760 – volume: 11 year: 2007 ident: 10.1016/j.pnsc.2020.08.017_bib37 publication-title: Ecs Transactions doi: 10.1149/1.2780966 – volume: 42 start-page: 7241 year: 2017 ident: 10.1016/j.pnsc.2020.08.017_bib6 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.002 – volume: 19 start-page: 77 year: 2020 ident: 10.1016/j.pnsc.2020.08.017_bib7 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0487-0 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.pnsc.2020.08.017_bib2 publication-title: Energies |
SSID | ssj0007167 |
Score | 2.4206522 |
Snippet | In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 839 |
SubjectTerms | Oxygen transport resistance PEMFC Pore size optimization Pore-forming agent |
Title | Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs |
URI | https://dx.doi.org/10.1016/j.pnsc.2020.08.017 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze_FFnB_4OfLggyJla9Km7eMcjk3ZEFTYW0mbFCpbN2wF51_vXZsOBdmDjwm9UK6Xu1_Su98RcoVt3jwpEktCNLYcLRxLaiUs7Uo_YYolPYkX-pOpGL06DzN31iCDuhYG0yqN7698eumtzUzXaLO7StPuM5KHYoRk-HfPxzryFuOBANNu9cePo-nGIcORoOyxgpsfR6Z2pkrzWmU5MhmyXsnkWfYt-yM-_Yg5w32yZ8Ai7Vfv0yYNnR2QttmOOb02nNE3h2Q5rpuN0GVCAVNrmqdfMACPsDClljTNaHlbs84LOpeAtSlMAgCkC431v2m-QOHl5xqMihY16zmFAzmCTFwbVni6nwwH-RF5Hd6_DEaW6aVgxdxxCktKT9mJZ8vAc23dE0GcxMg1HyjNOPdY7MrAdx3uSx7ISHo8ihXET8Ec4cfCjfgxaWbLTJ8QqkTiCDtSsBjseMUA-AZCc-X6gGZ4LE6JXWswjA3ROPa7mId1RtlbiFoPUeshNsG0vVNyu5FZVTQbW5926w8T_jKWEOLAFrmzf8qdk10cVVksF6RZvH_oS8AiRdQxttYhO-PZ3TeQid64 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQizh84f-bgQZGytWnT9qhjY9NtCG6wW0mbFCpbN2wF51_ve206FGQHj02bUF6T976k730fITco8-YKHhsCorFhK24bQkluKEd4sSWtuC3wQH805v2p_TRzZjXSqWphMK1S-_7SpxfeWre0tDVbqyRpvSJ5KEZIC__ueVhHvgNowEX9hsHsceOOYUNQKKzg0scrXTlTJnmt0gx5DK12weNZqJb9EZ1-RJzeAdnXUJE-lG_TIDWVHpKGXowZvdWM0XdHZDmopEboMqaAqBXNki-4AH-w0IWWNElpcVazznI6F4C0KTQC_KMLhdW_SbbAzsvPNUwpmlec5xS24wgxcWwY4aU76nWyYzLtdSedvqGVFIyI2XZuCOFKM3ZN4buOqdrcj-IImeZ9qSzGXCtyhO85NvME80UoXBZGEqInt2zuRdwJ2Qmpp8tUnRIqeWxzM5QwGKx3aQHs9bli0vEAy7CIN4lZWTCINM04ql3Mgyqf7C1Aqwdo9QAlME23Se43fVYlycbWp53qwwS_pkoAUWBLv7N_9rsmu_3JaBgMB-Pnc7KHd8p8lgtSz98_1CWgkjy8KmbdN2-s34M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+pore+size+optimization+in+catalyst+layer+on+the+mechanism+of+oxygen+transport+resistance+in+PEMFCs&rft.jtitle=Progress+in+natural+science&rft.au=Guan%2C+Shumeng&rft.au=Zhou%2C+Fen&rft.au=Tan%2C+Jinting&rft.au=Pan%2C+Mu&rft.date=2020-12-01&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=839&rft.epage=845&rft_id=info:doi/10.1016%2Fj.pnsc.2020.08.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2020_08_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon |