Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs

In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecu...

Full description

Saved in:
Bibliographic Details
Published inProgress in natural science Vol. 30; no. 6; pp. 839 - 845
Main Authors Guan, Shumeng, Zhou, Fen, Tan, Jinting, Pan, Mu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecular diffusion resistance, Knudsen diffusion resistance, and local O2 resistance in CL. The results showed that with the pore formation the cell performance had a significant improvement at high current density, mainly due to its better oxygen transport properties, especially under low platinum conditions. The addition of pore-forming agent moved the pore diameter toward a larger pore diameter with a range from 70 to 100 nm, and also obtaining a higher cumulative pore volume. It was found that the increase of the cumulative pore volume and larger pore size were conducive to the diffusion of oxygen molecules in CL, and the resistance caused by which was the dominant part in total transport resistance. Further tests indicated that the improvement of molecular diffusion resistance was much larger than that of Knudsen diffusion resistance in the catalyst layer after pore formed. In addition, the optimized pore structure will also get a higher number of effective pores, which resulted in an increased effective area of the ionomer on the Pt surface. The higher effective area of the ionomer was particularly beneficial for the reduction of local O2 resistance with low Pt loading. •The pore size of the CL was successfully optimized by adding pore-forming agent.•The modified CL better delays the arrival of mass-transport polarization.•The oxygen transport resistance decreases after pore-formed, which is more obvious under low Pt loading.•Increasing a number of large pore with diameter of 70–100 nm results in a decrease of RCL,Fick.•Adding pore-forming agent can increase the effective oxygen transport ionomer area, which is beneficial to reduce RLocal.
AbstractList In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the pore size distribution of the catalyst layer (CL), and to study its effect on the mechanism of oxygen transport resistance, including molecular diffusion resistance, Knudsen diffusion resistance, and local O2 resistance in CL. The results showed that with the pore formation the cell performance had a significant improvement at high current density, mainly due to its better oxygen transport properties, especially under low platinum conditions. The addition of pore-forming agent moved the pore diameter toward a larger pore diameter with a range from 70 to 100 nm, and also obtaining a higher cumulative pore volume. It was found that the increase of the cumulative pore volume and larger pore size were conducive to the diffusion of oxygen molecules in CL, and the resistance caused by which was the dominant part in total transport resistance. Further tests indicated that the improvement of molecular diffusion resistance was much larger than that of Knudsen diffusion resistance in the catalyst layer after pore formed. In addition, the optimized pore structure will also get a higher number of effective pores, which resulted in an increased effective area of the ionomer on the Pt surface. The higher effective area of the ionomer was particularly beneficial for the reduction of local O2 resistance with low Pt loading. •The pore size of the CL was successfully optimized by adding pore-forming agent.•The modified CL better delays the arrival of mass-transport polarization.•The oxygen transport resistance decreases after pore-formed, which is more obvious under low Pt loading.•Increasing a number of large pore with diameter of 70–100 nm results in a decrease of RCL,Fick.•Adding pore-forming agent can increase the effective oxygen transport ionomer area, which is beneficial to reduce RLocal.
Author Zhou, Fen
Pan, Mu
Guan, Shumeng
Tan, Jinting
Author_xml – sequence: 1
  givenname: Shumeng
  surname: Guan
  fullname: Guan, Shumeng
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
– sequence: 2
  givenname: Fen
  surname: Zhou
  fullname: Zhou, Fen
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
– sequence: 3
  givenname: Jinting
  surname: Tan
  fullname: Tan, Jinting
  email: tanjinting@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
– sequence: 4
  givenname: Mu
  surname: Pan
  fullname: Pan, Mu
  email: panmu@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
BookMark eNp9kL1OwzAURj0UiRZ4ASa_QIIdJ3EisaCqhUpFMMBsuc4NdZXYkW0Q6dPjUCaGTvdHOp_uPQs0M9YAQreUpJTQ8u6QDsarNCMZSUmVEspnaE4JyRJCOL1EC-8PZGpLPkd2Y9ruE4wCbFs8WAfY62MchqB7fZRBW4O1wUoG2Y0-4E6O4HBchj3gHtReGu37Cbbf4wfEvZPGx6CAHXjtg5yyY8Lr6nm99NfoopWdh5u_eoXe16u35VOyfXncLB-2iWJ5HhIpeUNbTmXNCwqkrFWrWEV43UDGGM9UIeuqyFklWS13krOdahRAmeVlpcpix65QdcpVznrvoBVKh99v4n26E5SISZY4iEmWmGQJUokoK6LZP3RwupduPA_dnyCIT31pcMIrPWlttAMVRGP1OfwHyyKKIg
CitedBy_id crossref_primary_10_1016_j_jpowsour_2025_236581
crossref_primary_10_1016_j_cej_2024_151569
crossref_primary_10_1021_acs_energyfuels_3c00559
crossref_primary_10_1002_smll_202308563
crossref_primary_10_3390_molecules30020379
crossref_primary_10_1021_acsaem_4c01528
crossref_primary_10_1002_aenm_202101222
crossref_primary_10_1016_j_ijhydene_2024_02_047
crossref_primary_10_1016_j_ijhydene_2024_02_303
crossref_primary_10_1016_j_cej_2024_153474
crossref_primary_10_1016_j_cej_2022_137489
crossref_primary_10_1016_j_ijhydene_2024_10_302
crossref_primary_10_7316_JHNE_2023_34_2_178
crossref_primary_10_1016_j_icheatmasstransfer_2024_108280
crossref_primary_10_1016_j_energy_2022_124201
crossref_primary_10_1002_adma_202306387
crossref_primary_10_1016_j_jpowsour_2023_233807
crossref_primary_10_1126_sciadv_adf4863
crossref_primary_10_1039_D4CY01086H
crossref_primary_10_1016_j_pnsc_2024_07_010
crossref_primary_10_1016_j_ijhydene_2024_10_265
crossref_primary_10_1016_j_energy_2024_130363
crossref_primary_10_1016_j_icheatmasstransfer_2025_108806
crossref_primary_10_1016_j_ijhydene_2022_05_144
crossref_primary_10_1021_acscatal_3c02152
crossref_primary_10_1007_s12209_023_00371_0
crossref_primary_10_1016_j_ijhydene_2023_06_250
crossref_primary_10_1016_j_jpowsour_2021_230186
crossref_primary_10_1126_sciadv_ade1194
crossref_primary_10_1016_j_jechem_2024_11_055
crossref_primary_10_1149_1945_7111_ac3598
crossref_primary_10_1016_j_jpowsour_2022_231695
crossref_primary_10_1149_1945_7111_ac44bd
crossref_primary_10_1002_rpm_20240028
crossref_primary_10_1016_j_esci_2024_100254
crossref_primary_10_1016_j_gee_2023_11_002
crossref_primary_10_1016_j_ijhydene_2021_12_227
crossref_primary_10_1016_j_jpowsour_2023_232966
crossref_primary_10_1016_j_apcatb_2024_124894
Cites_doi 10.1021/acs.jpclett.6b00216
10.1149/1.1993488
10.1149/2.0501914jes
10.1002/fuce.201200014
10.1016/j.electacta.2011.05.123
10.1023/A:1003259531775
10.1016/j.apenergy.2011.01.010
10.1016/j.jpowsour.2015.04.079
10.1016/j.jpowsour.2003.12.055
10.1016/j.jpowsour.2012.04.069
10.1149/2.F03152if
10.1149/1.2356218
10.1149/1.3546038
10.1016/j.jpowsour.2004.09.021
10.1016/j.jpowsour.2018.01.068
10.1016/j.ijhydene.2011.06.090
10.1149/06403.0321ecst
10.1002/er.4012
10.1016/j.ijhydene.2012.05.031
10.1016/j.ijhydene.2006.06.057
10.1016/j.jpowsour.2017.01.087
10.1149/2.049306jes
10.1021/am900600y
10.1016/j.jpowsour.2013.11.073
10.1016/j.fuel.2014.09.022
10.1016/j.ijhydene.2009.05.022
10.1016/j.ijhydene.2016.12.015
10.1149/1.3152226
10.1149/2.061212jes
10.1016/j.apcatb.2004.06.021
10.1016/j.ijhydene.2011.05.073
10.1149/1.2218760
10.1149/1.2780966
10.1016/j.ijhydene.2016.11.002
10.1038/s41563-019-0487-0
ContentType Journal Article
Copyright 2020 Chinese Materials Research Society
Copyright_xml – notice: 2020 Chinese Materials Research Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.pnsc.2020.08.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 845
ExternalDocumentID 10_1016_j_pnsc_2020_08_017
S1002007120304871
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
123
1B1
1~5
29P
2B.
2C.
2DF
3YN
4.4
457
4G.
5VR
5VS
5XA
5XB
5XL
6I.
7-5
92E
92I
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABJNI
ABMAC
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEFWE
AEXQZ
AEZYN
AFTJW
AFUIB
AGHFR
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWYRJ
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CS3
CW9
DU5
EBS
EJD
EO9
EP2
FA0
FDB
GROUPED_DOAJ
HH5
HZ~
IHE
IPNFZ
IXB
JUIAU
KQ8
M41
M4Z
NCXOZ
NQ-
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RPZ
RT1
S..
SDG
SPC
SSZ
T8Q
TCJ
TFW
TGP
U1F
U1G
U5A
U5K
UNMZH
XFK
~02
~L8
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
EFJIC
FYGXN
H13
SSH
TDBHL
ID FETCH-LOGICAL-c344t-aa7d1f71a9751e069cfc38079de23372c5a985438a39aba73bcdcee62468c65b3
IEDL.DBID AIKHN
ISSN 1002-0071
IngestDate Tue Jul 01 04:26:24 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
Fri Feb 23 02:45:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords PEMFC
Oxygen transport resistance
Pore size optimization
Pore-forming agent
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-aa7d1f71a9751e069cfc38079de23372c5a985438a39aba73bcdcee62468c65b3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1002007120304871
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_pnsc_2020_08_017
crossref_primary_10_1016_j_pnsc_2020_08_017
elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_08_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Progress in natural science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kongkanand, Mathias (bib15) 2016; 7
Lee, Kim, Choi (bib29) 2013; 13
Yim, Sohn, Park, Yoon, Park, Yang, Kim (bib20) 2011; 56
Welty, Wicks, Rorrer, Wilson (bib36) 2008
Nonoyama, Okazaki, Weber, Ikogi, Yoshida (bib12) 2011; 158
Soboleva, Zhao, Malek, Xie, Navessin, Holdcroft (bib16) 2016; 2
Takahiro, Shohji, Shuichiro (bib17) 2011; 36
Ying, Wei, Xu, Williams, Liu, Bonville, Kunz, Fenton (bib22) 2005; 141
Zhao, He, Li, Tian, Wan, Jiang (bib23) 2007; 32
Jayasayee, Zlotorowicz, Clos, Dahl, Kjelstrup (bib33) 2014; 64
Greszler, Caulk, Sinha (bib13) 2012; 159
Tucker, Odgaard, Lund, Yde-Andersen, Thomas (bib25) 2005; 152
Yoshida, Kojima (bib3) 2015; 24
Ye, Gao, Zhu, Zheng, Li, Zheng (bib6) 2017; 42
He, Lv, Dickerson (bib35) 2014
Debe (bib5) 2013; 160
Liang, Pan, Xu, Wang (bib19) 2015; 139
Mu, Cheng, Ying, Tang, Mu (bib34) 2010; 35
Baker, Wieser, Neyerlin, Murphy (bib9) 2006; 3
Gasteiger, Kocha, Sompalli, Wagner (bib31) 2005; 56
Fischer, Jindra, Wendt (bib30) 1998; 28
Jomori, Nonoyama, Yoshida (bib38) 2012; 215
Wang, Li, Wan, Chen, Tan, Pan (bib8) 2018; 379
Mashio, Ohma, Yamamoto, Shinohara (bib37) 2007; 11
Beuscher (bib10) 2006; 153
Yun, Chen, Mishler, Cho, Adroher (bib1) 2011; 88
Ott, Orfanidi, Schmies, Anke, Nong, Hübner, Gernert, Gliech, Lerch, Strasser (bib7) 2020; 19
Hwang, Chi, Yi, Lee (bib21) 2011; 36
Zlotorowicz, Jayasayee, Dahl, Thomassen, Kjelstrup (bib32) 2015; 287
Cheng, Wang, Wei, Yan, Shen, Ke, Zhu, Zhang (bib27) 2019; 166
Litster, Mclean (bib24) 2004; 130
Oh, Lee, Lee, Min, Yi (bib14) 2017; 345
Cho, Jung, Yun, Dong, Ju, Ghoe, Cho, Sung (bib26) 2012; 37
Murata, Imanishi, Hasegawa, Namba (bib4) 2014; 253
Baker, Caulk, Neyerlin, Murphy (bib11) 2009; 156
Wang, Shubo, Linfa, Junliang, Zhigang, Jun, Chunwen, Minggao, Xiangming (bib2) 2016; 9
Wan, Zhong, Liu, Jin, Pan (bib28) 2018; 42
Kim, Yi, Jung, Jeong, Yi (bib18) 2017; 42
Zhao (10.1016/j.pnsc.2020.08.017_bib23) 2007; 32
Greszler (10.1016/j.pnsc.2020.08.017_bib13) 2012; 159
Baker (10.1016/j.pnsc.2020.08.017_bib9) 2006; 3
Yun (10.1016/j.pnsc.2020.08.017_bib1) 2011; 88
Wan (10.1016/j.pnsc.2020.08.017_bib28) 2018; 42
Ye (10.1016/j.pnsc.2020.08.017_bib6) 2017; 42
Liang (10.1016/j.pnsc.2020.08.017_bib19) 2015; 139
Lee (10.1016/j.pnsc.2020.08.017_bib29) 2013; 13
Murata (10.1016/j.pnsc.2020.08.017_bib4) 2014; 253
Cheng (10.1016/j.pnsc.2020.08.017_bib27) 2019; 166
Yim (10.1016/j.pnsc.2020.08.017_bib20) 2011; 56
Zlotorowicz (10.1016/j.pnsc.2020.08.017_bib32) 2015; 287
Hwang (10.1016/j.pnsc.2020.08.017_bib21) 2011; 36
Nonoyama (10.1016/j.pnsc.2020.08.017_bib12) 2011; 158
He (10.1016/j.pnsc.2020.08.017_bib35) 2014
Yoshida (10.1016/j.pnsc.2020.08.017_bib3) 2015; 24
Ying (10.1016/j.pnsc.2020.08.017_bib22) 2005; 141
Wang (10.1016/j.pnsc.2020.08.017_bib8) 2018; 379
Tucker (10.1016/j.pnsc.2020.08.017_bib25) 2005; 152
Mashio (10.1016/j.pnsc.2020.08.017_bib37) 2007; 11
Jomori (10.1016/j.pnsc.2020.08.017_bib38) 2012; 215
Baker (10.1016/j.pnsc.2020.08.017_bib11) 2009; 156
Kongkanand (10.1016/j.pnsc.2020.08.017_bib15) 2016; 7
Wang (10.1016/j.pnsc.2020.08.017_bib2) 2016; 9
Beuscher (10.1016/j.pnsc.2020.08.017_bib10) 2006; 153
Debe (10.1016/j.pnsc.2020.08.017_bib5) 2013; 160
Gasteiger (10.1016/j.pnsc.2020.08.017_bib31) 2005; 56
Takahiro (10.1016/j.pnsc.2020.08.017_bib17) 2011; 36
Jayasayee (10.1016/j.pnsc.2020.08.017_bib33) 2014; 64
Litster (10.1016/j.pnsc.2020.08.017_bib24) 2004; 130
Cho (10.1016/j.pnsc.2020.08.017_bib26) 2012; 37
Ott (10.1016/j.pnsc.2020.08.017_bib7) 2020; 19
Soboleva (10.1016/j.pnsc.2020.08.017_bib16) 2016; 2
Mu (10.1016/j.pnsc.2020.08.017_bib34) 2010; 35
Fischer (10.1016/j.pnsc.2020.08.017_bib30) 1998; 28
Welty (10.1016/j.pnsc.2020.08.017_bib36) 2008
Oh (10.1016/j.pnsc.2020.08.017_bib14) 2017; 345
Kim (10.1016/j.pnsc.2020.08.017_bib18) 2017; 42
References_xml – volume: 32
  start-page: 380
  year: 2007
  end-page: 384
  ident: bib23
  publication-title: Int. J. Hydrogen Energy
– volume: 160
  start-page: F522
  year: 2013
  end-page: F534
  ident: bib5
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 2872
  year: 2010
  end-page: 2876
  ident: bib34
  publication-title: Int. J. Hydrogen Energy
– volume: 166
  start-page: F1055
  year: 2019
  end-page: F1061
  ident: bib27
  publication-title: J. Electrochem. Soc.
– volume: 379
  start-page: 338
  year: 2018
  end-page: 343
  ident: bib8
  publication-title: J. Power Sources
– volume: 11
  year: 2007
  ident: bib37
  publication-title: Ecs Transactions
– volume: 141
  start-page: 250
  year: 2005
  end-page: 257
  ident: bib22
  publication-title: J. Power Sources
– volume: 130
  start-page: 61
  year: 2004
  end-page: 76
  ident: bib24
  publication-title: J. Power Sources
– volume: 42
  start-page: 478
  year: 2017
  end-page: 485
  ident: bib18
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 7241
  year: 2017
  end-page: 7245
  ident: bib6
  publication-title: Int. J. Hydrogen Energy
– volume: 253
  start-page: 104
  year: 2014
  end-page: 113
  ident: bib4
  publication-title: J. Power Sources
– volume: 153
  start-page: A1788
  year: 2006
  ident: bib10
  publication-title: J. Electrochem. Soc.
– volume: 158
  start-page: B416
  year: 2011
  ident: bib12
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 375
  year: 2016
  end-page: 384
  ident: bib16
  publication-title: ACS Appl. Mater. Interfaces
– volume: 156
  start-page: B991
  year: 2009
  ident: bib11
  publication-title: J. Electrochem. Soc.
– volume: 215
  start-page: 18
  year: 2012
  end-page: 27
  ident: bib38
  publication-title: J. Power Sources
– volume: 36
  start-page: 12361
  year: 2011
  end-page: 12369
  ident: bib17
  publication-title: Int. J. Hydrogen Energy
– volume: 287
  start-page: 472
  year: 2015
  end-page: 477
  ident: bib32
  publication-title: J. Power Sources
– volume: 3
  start-page: 989
  year: 2006
  ident: bib9
  publication-title: ECS Transactions
– volume: 88
  start-page: 981
  year: 2011
  end-page: 1007
  ident: bib1
  publication-title: Appl. Energy
– volume: 159
  start-page: F831
  year: 2012
  end-page: F840
  ident: bib13
  publication-title: J. Electrochem. Soc.
– volume: 19
  start-page: 77
  year: 2020
  end-page: 85
  ident: bib7
  publication-title: Nat. Mater.
– volume: 56
  start-page: 9
  year: 2005
  end-page: 35
  ident: bib31
  publication-title: Appl. Catal., B
– volume: 42
  start-page: 2225
  year: 2018
  end-page: 2233
  ident: bib28
  publication-title: Int. J. Energy Res.
– year: 2008
  ident: bib36
  article-title: Fundamentals of Momentum, Heat and Mass Transfer
– volume: 139
  start-page: 393
  year: 2015
  end-page: 400
  ident: bib19
  publication-title: Fuel
– volume: 37
  start-page: 11969
  year: 2012
  end-page: 11974
  ident: bib26
  publication-title: Int. J. Hydrogen Energy
– volume: 64
  start-page: 321
  year: 2014
  end-page: 339
  ident: bib33
  publication-title: Ecs Transactions
– year: 2014
  ident: bib35
  article-title: Springer
– volume: 7
  start-page: 1127
  year: 2016
  end-page: 1137
  ident: bib15
  publication-title: J. Phys. Chem. Lett.
– volume: 24
  start-page: 45
  year: 2015
  ident: bib3
  publication-title: Electrochem. Soc. Interface.
– volume: 13
  start-page: 173
  year: 2013
  end-page: 180
  ident: bib29
  publication-title: Fuel Cell.
– volume: 36
  start-page: 9876
  year: 2011
  end-page: 9885
  ident: bib21
  publication-title: Int. J. Hydrogen Energy
– volume: 345
  start-page: 67
  year: 2017
  end-page: 77
  ident: bib14
  publication-title: J. Power Sources
– volume: 9
  start-page: 1
  year: 2016
  end-page: 39
  ident: bib2
  publication-title: Energies
– volume: 56
  start-page: 9064
  year: 2011
  end-page: 9073
  ident: bib20
  publication-title: Electrochim. Acta
– volume: 152
  start-page: A1844
  year: 2005
  ident: bib25
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 277
  year: 1998
  end-page: 282
  ident: bib30
  publication-title: J. Appl. Electrochem.
– volume: 7
  start-page: 1127
  year: 2016
  ident: 10.1016/j.pnsc.2020.08.017_bib15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00216
– volume: 152
  start-page: A1844
  year: 2005
  ident: 10.1016/j.pnsc.2020.08.017_bib25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1993488
– volume: 166
  start-page: F1055
  year: 2019
  ident: 10.1016/j.pnsc.2020.08.017_bib27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501914jes
– volume: 13
  start-page: 173
  year: 2013
  ident: 10.1016/j.pnsc.2020.08.017_bib29
  publication-title: Fuel Cell.
  doi: 10.1002/fuce.201200014
– volume: 56
  start-page: 9064
  year: 2011
  ident: 10.1016/j.pnsc.2020.08.017_bib20
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.05.123
– volume: 28
  start-page: 277
  year: 1998
  ident: 10.1016/j.pnsc.2020.08.017_bib30
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1003259531775
– volume: 88
  start-page: 981
  year: 2011
  ident: 10.1016/j.pnsc.2020.08.017_bib1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.010
– volume: 287
  start-page: 472
  year: 2015
  ident: 10.1016/j.pnsc.2020.08.017_bib32
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.079
– volume: 130
  start-page: 61
  year: 2004
  ident: 10.1016/j.pnsc.2020.08.017_bib24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.055
– volume: 215
  start-page: 18
  year: 2012
  ident: 10.1016/j.pnsc.2020.08.017_bib38
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.069
– volume: 24
  start-page: 45
  year: 2015
  ident: 10.1016/j.pnsc.2020.08.017_bib3
  publication-title: Electrochem. Soc. Interface.
  doi: 10.1149/2.F03152if
– volume: 3
  start-page: 989
  year: 2006
  ident: 10.1016/j.pnsc.2020.08.017_bib9
  publication-title: ECS Transactions
  doi: 10.1149/1.2356218
– volume: 158
  start-page: B416
  year: 2011
  ident: 10.1016/j.pnsc.2020.08.017_bib12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3546038
– volume: 141
  start-page: 250
  year: 2005
  ident: 10.1016/j.pnsc.2020.08.017_bib22
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.021
– volume: 379
  start-page: 338
  year: 2018
  ident: 10.1016/j.pnsc.2020.08.017_bib8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.068
– volume: 36
  start-page: 12361
  year: 2011
  ident: 10.1016/j.pnsc.2020.08.017_bib17
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.06.090
– year: 2014
  ident: 10.1016/j.pnsc.2020.08.017_bib35
– volume: 64
  start-page: 321
  year: 2014
  ident: 10.1016/j.pnsc.2020.08.017_bib33
  publication-title: Ecs Transactions
  doi: 10.1149/06403.0321ecst
– volume: 42
  start-page: 2225
  year: 2018
  ident: 10.1016/j.pnsc.2020.08.017_bib28
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4012
– volume: 37
  start-page: 11969
  year: 2012
  ident: 10.1016/j.pnsc.2020.08.017_bib26
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.05.031
– volume: 32
  start-page: 380
  year: 2007
  ident: 10.1016/j.pnsc.2020.08.017_bib23
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.06.057
– volume: 345
  start-page: 67
  year: 2017
  ident: 10.1016/j.pnsc.2020.08.017_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.087
– volume: 160
  start-page: F522
  year: 2013
  ident: 10.1016/j.pnsc.2020.08.017_bib5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.049306jes
– volume: 2
  start-page: 375
  year: 2016
  ident: 10.1016/j.pnsc.2020.08.017_bib16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900600y
– volume: 253
  start-page: 104
  year: 2014
  ident: 10.1016/j.pnsc.2020.08.017_bib4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.073
– volume: 139
  start-page: 393
  year: 2015
  ident: 10.1016/j.pnsc.2020.08.017_bib19
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.09.022
– volume: 35
  start-page: 2872
  year: 2010
  ident: 10.1016/j.pnsc.2020.08.017_bib34
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.022
– volume: 42
  start-page: 478
  year: 2017
  ident: 10.1016/j.pnsc.2020.08.017_bib18
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.015
– year: 2008
  ident: 10.1016/j.pnsc.2020.08.017_bib36
– volume: 156
  start-page: B991
  year: 2009
  ident: 10.1016/j.pnsc.2020.08.017_bib11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3152226
– volume: 159
  start-page: F831
  year: 2012
  ident: 10.1016/j.pnsc.2020.08.017_bib13
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.061212jes
– volume: 56
  start-page: 9
  year: 2005
  ident: 10.1016/j.pnsc.2020.08.017_bib31
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2004.06.021
– volume: 36
  start-page: 9876
  year: 2011
  ident: 10.1016/j.pnsc.2020.08.017_bib21
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.073
– volume: 153
  start-page: A1788
  year: 2006
  ident: 10.1016/j.pnsc.2020.08.017_bib10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2218760
– volume: 11
  year: 2007
  ident: 10.1016/j.pnsc.2020.08.017_bib37
  publication-title: Ecs Transactions
  doi: 10.1149/1.2780966
– volume: 42
  start-page: 7241
  year: 2017
  ident: 10.1016/j.pnsc.2020.08.017_bib6
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.002
– volume: 19
  start-page: 77
  year: 2020
  ident: 10.1016/j.pnsc.2020.08.017_bib7
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0487-0
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.pnsc.2020.08.017_bib2
  publication-title: Energies
SSID ssj0007167
Score 2.4206522
Snippet In PEMFC, the oxygen transport resistance severely hinders the cell from achieving high performance. In this paper, pore-forming agent was used to optimize the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 839
SubjectTerms Oxygen transport resistance
PEMFC
Pore size optimization
Pore-forming agent
Title Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs
URI https://dx.doi.org/10.1016/j.pnsc.2020.08.017
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze_FFnB_4OfLggyJla9Km7eMcjk3ZEFTYW0mbFCpbN2wF51_vXZsOBdmDjwm9UK6Xu1_Su98RcoVt3jwpEktCNLYcLRxLaiUs7Uo_YYolPYkX-pOpGL06DzN31iCDuhYG0yqN7698eumtzUzXaLO7StPuM5KHYoRk-HfPxzryFuOBANNu9cePo-nGIcORoOyxgpsfR6Z2pkrzWmU5MhmyXsnkWfYt-yM-_Yg5w32yZ8Ai7Vfv0yYNnR2QttmOOb02nNE3h2Q5rpuN0GVCAVNrmqdfMACPsDClljTNaHlbs84LOpeAtSlMAgCkC431v2m-QOHl5xqMihY16zmFAzmCTFwbVni6nwwH-RF5Hd6_DEaW6aVgxdxxCktKT9mJZ8vAc23dE0GcxMg1HyjNOPdY7MrAdx3uSx7ISHo8ihXET8Ec4cfCjfgxaWbLTJ8QqkTiCDtSsBjseMUA-AZCc-X6gGZ4LE6JXWswjA3ROPa7mId1RtlbiFoPUeshNsG0vVNyu5FZVTQbW5926w8T_jKWEOLAFrmzf8qdk10cVVksF6RZvH_oS8AiRdQxttYhO-PZ3TeQid64
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQizh84f-bgQZGytWnT9qhjY9NtCG6wW0mbFCpbN2wF51_ve206FGQHj02bUF6T976k730fITco8-YKHhsCorFhK24bQkluKEd4sSWtuC3wQH805v2p_TRzZjXSqWphMK1S-_7SpxfeWre0tDVbqyRpvSJ5KEZIC__ueVhHvgNowEX9hsHsceOOYUNQKKzg0scrXTlTJnmt0gx5DK12weNZqJb9EZ1-RJzeAdnXUJE-lG_TIDWVHpKGXowZvdWM0XdHZDmopEboMqaAqBXNki-4AH-w0IWWNElpcVazznI6F4C0KTQC_KMLhdW_SbbAzsvPNUwpmlec5xS24wgxcWwY4aU76nWyYzLtdSedvqGVFIyI2XZuCOFKM3ZN4buOqdrcj-IImeZ9qSzGXCtyhO85NvME80UoXBZGEqInt2zuRdwJ2Qmpp8tUnRIqeWxzM5QwGKx3aQHs9bli0vEAy7CIN4lZWTCINM04ql3Mgyqf7C1Aqwdo9QAlME23Se43fVYlycbWp53qwwS_pkoAUWBLv7N_9rsmu_3JaBgMB-Pnc7KHd8p8lgtSz98_1CWgkjy8KmbdN2-s34M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+pore+size+optimization+in+catalyst+layer+on+the+mechanism+of+oxygen+transport+resistance+in+PEMFCs&rft.jtitle=Progress+in+natural+science&rft.au=Guan%2C+Shumeng&rft.au=Zhou%2C+Fen&rft.au=Tan%2C+Jinting&rft.au=Pan%2C+Mu&rft.date=2020-12-01&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=839&rft.epage=845&rft_id=info:doi/10.1016%2Fj.pnsc.2020.08.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2020_08_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon