Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting
Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significa...
Saved in:
Published in | Applied soft computing Vol. 154; p. 111362 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2024.111362 |
Cover
Loading…
Abstract | Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significant challenges. Existing methods such as GridSearch with cross-validation (GridsearchCV) for optimizing the hyper-parameters are time-consuming for complex models or large search spaces, and they do not ensure that the model has excellent predictive accuracy. To address these challenges, we propose a novel method called GridsearchWEF that uses grid search with a weighted error function. This method aims to reduce the time cost of hyper-parameter optimization for machine learning models and guarantee their prediction performance. We conduct an empirical analysis of crude oil return forecasting using four machine learning models: RF, GBDT, SVR, and LASSO. We compare the performance of these models using GridsearchCV, random search with cross-validation (RandomizedSearchCV), Bayes optimization with cross-validation (BayesSearchCV), and GridsearchWEF. The results show that GridsearchWEF outperforms the other methods in terms of hyper-parameter optimization, modeling efficiency, prediction accuracy, and economic values. In particular, the time of all models using GridSearchWEF is less than 30 s, which is much less than other algorithms. GridsearchWEF is a more efficient and superior method for hyper-parameter optimization in financial time series forecasting.
•A novel method for hyper-parameter optimization based on a weighted error function.•A faster and more accurate prediction of crude oil returns using machine learning models.•A comparison of four types of machine learning models: GF-type, GV-type, RV-type, and BV-type models.•An evaluation of the economic significance of the proposed method for crude oil investment. |
---|---|
AbstractList | Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significant challenges. Existing methods such as GridSearch with cross-validation (GridsearchCV) for optimizing the hyper-parameters are time-consuming for complex models or large search spaces, and they do not ensure that the model has excellent predictive accuracy. To address these challenges, we propose a novel method called GridsearchWEF that uses grid search with a weighted error function. This method aims to reduce the time cost of hyper-parameter optimization for machine learning models and guarantee their prediction performance. We conduct an empirical analysis of crude oil return forecasting using four machine learning models: RF, GBDT, SVR, and LASSO. We compare the performance of these models using GridsearchCV, random search with cross-validation (RandomizedSearchCV), Bayes optimization with cross-validation (BayesSearchCV), and GridsearchWEF. The results show that GridsearchWEF outperforms the other methods in terms of hyper-parameter optimization, modeling efficiency, prediction accuracy, and economic values. In particular, the time of all models using GridSearchWEF is less than 30 s, which is much less than other algorithms. GridsearchWEF is a more efficient and superior method for hyper-parameter optimization in financial time series forecasting.
•A novel method for hyper-parameter optimization based on a weighted error function.•A faster and more accurate prediction of crude oil returns using machine learning models.•A comparison of four types of machine learning models: GF-type, GV-type, RV-type, and BV-type models.•An evaluation of the economic significance of the proposed method for crude oil investment. |
ArticleNumber | 111362 |
Author | Liu, Xiufeng Zhang, Weiguo Zhao, Yuan |
Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0001-6225-6501 surname: Zhao fullname: Zhao, Yuan email: bmyzhao@outlook.com organization: School of Business Administration, South China University of Technology, 510641, Guangzhou, PR China – sequence: 2 givenname: Weiguo surname: Zhang fullname: Zhang, Weiguo email: wgzhang@scut.edu.cn organization: College of Management, Shenzhen University, 518060, Shenzhen, PR China – sequence: 3 givenname: Xiufeng orcidid: 0000-0001-5133-6688 surname: Liu fullname: Liu, Xiufeng email: xiuli@dtu.dk organization: Department of Technology, Management and Economics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark |
BookMark | eNp9kEFOwzAQRS1UJErhAqx8gZTYcRMHsUEVtEiV2MDamjiTdqrWiWxDVU5PQlmx6GpG-vNG-u-ajVzrkLE7kU5FKvL77RRCa6cylWoqhMhyecHGQhcyKXMtRv0-y3WiSpVfsesQtmkPlVKPmVt4qnlA8HbDDxQ3HPgBab2JWHP0vvW8-XQ2Uuse-PLYoU868LDHiJ63XaQ9fcOQ8mY4JQfOEux4H2D_1hOGIUELIZJb37DLBnYBb__mhH28PL_Pl8nqbfE6f1olNlMqJpDJShYiR5sDqHqWFmUjmkzJBrWWqshTXQuosrrUCpus1EUGlZJpYYuqhFmRTZg8_bW-DcFjYzpPe_BHI1IzGDNbMxgzgzFzMtZD-h9kKf6Wix5odx59PKHYl_oi9CZYQmexpr57NHVL5_Afn0aLFA |
CitedBy_id | crossref_primary_10_1063_5_0247775 crossref_primary_10_1016_j_eiar_2025_107887 crossref_primary_10_1016_j_energy_2024_132374 crossref_primary_10_1016_j_engappai_2024_108688 crossref_primary_10_1016_j_uncres_2025_100145 crossref_primary_10_3390_math12182956 crossref_primary_10_1088_1361_6501_ad9101 crossref_primary_10_1007_s41060_024_00710_x crossref_primary_10_1109_JSEN_2025_3527471 crossref_primary_10_2478_amns_2024_2680 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1016_j_health_2024_100380 crossref_primary_10_1051_bioconf_202515707002 crossref_primary_10_1016_j_engappai_2025_110408 crossref_primary_10_1016_j_neucom_2025_129672 crossref_primary_10_1038_s41598_025_94142_7 crossref_primary_10_1007_s11192_024_05183_0 crossref_primary_10_1007_s00521_024_10457_y crossref_primary_10_1016_j_powtec_2025_120753 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_1016_j_najef_2024_102252 crossref_primary_10_1007_s10586_024_04909_2 crossref_primary_10_1007_s10878_024_01196_w crossref_primary_10_1016_j_aap_2024_107910 crossref_primary_10_1016_j_oceaneng_2025_120773 |
Cites_doi | 10.1016/j.eneco.2021.105205 10.1016/j.eneco.2017.09.010 10.1016/j.resourpol.2022.102656 10.1142/S2010495217500129 10.3390/w15030486 10.1016/j.jbankfin.2014.05.026 10.1016/j.jempfin.2019.08.007 10.1016/j.frl.2021.102280 10.1287/ijoc.2022.1172 10.1016/j.knosys.2021.107297 10.1016/S0305-0483(01)00026-3 10.1111/iere.12074 10.3844/ajassp.2009.1509.1514 10.1016/j.ins.2022.09.002 10.1007/s00477-018-1560-y 10.3982/ECTA5771 10.1016/j.techfore.2016.04.027 10.1016/j.asoc.2020.106181 10.1016/j.ijforecast.2019.02.001 10.1016/j.ijforecast.2013.09.003 10.1089/big.2020.0159 10.1016/j.apenergy.2021.117588 10.1287/mnsc.2013.1838 10.1016/j.ijforecast.2021.07.005 10.1016/j.ijforecast.2021.12.013 10.1016/j.asoc.2022.109724 10.1016/j.scitotenv.2023.162580 10.1080/07350015.2011.648859 10.1016/j.ins.2022.08.120 10.1145/2834892.2834896 10.1016/j.compag.2021.106541 10.1016/j.techfore.2022.121810 10.1016/j.asoc.2021.107538 10.1016/j.asoc.2021.107472 10.1023/A:1010933404324 10.1016/j.jbankfin.2019.03.009 10.1016/j.techfore.2021.121181 10.1109/JPROC.2015.2460697 10.1038/nature14539 10.1016/j.eneco.2019.05.018 10.1016/j.ribaf.2022.101829 10.1287/ijoc.2021.1147 10.1016/j.knosys.2020.106669 10.1016/j.ipm.2021.102816 10.1093/rfs/hhm055 10.1016/j.eswa.2023.121202 10.1016/j.knosys.2015.01.002 10.1016/j.envsoft.2023.105851 10.1016/j.asoc.2017.01.011 10.1016/j.neucom.2020.07.061 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.asoc.2024.111362 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2024_111362 S1568494624001364 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-a32b2716ec6aa4d5079f1f342fe88247608d1ab3d984ef39873ab4207c7b9a573 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:24 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Sat Mar 23 16:41:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time series forecasting Hyper-parameter optimization Economic value Machine learning Modeling efficiency |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-a32b2716ec6aa4d5079f1f342fe88247608d1ab3d984ef39873ab4207c7b9a573 |
ORCID | 0000-0001-5133-6688 0000-0001-6225-6501 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494624001364 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111362 crossref_citationtrail_10_1016_j_asoc_2024_111362 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Adnan, Mostafa, Dai, Heddam, Kuriqi, Kisi (b28) 2023; 17 Gülerce, Ünal (b10) 2017; 12 Fan, Pan, Li, Li (b41) 2016; 112 Zhang, Wang (b2) 2022 Yang, Shami (b15) 2020; 415 S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim, R.M. Patton, Optimizing deep learning hyper-parameters through an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, 2015, pp. 1–5. Effrosynidis, Spiliotis, Sylaios, Arampatzis (b12) 2023 Maciąg, Bembenik, Piekarzewicz, Del Ser, Lobo, Kasabov (b27) 2023; 170 Gao, Wen, Deng (b6) 2022; 612 Shi, Xu, Li, Li (b49) 2021; 109 Bergstra, Bengio (b34) 2012; 13 Wang, Pan, Liu, Wu (b56) 2019; 102 Ruder (b33) 2016 Guyon, Elisseeff (b19) 2003; 3 Friedman (b43) 2001 Campbell, Thompson (b50) 2008; 21 Bi, Adomavicius, Li, Qu (b8) 2022; 34 Haykin (b22) 2009 Dai, Kang (b55) 2021; 97 Gargano, Timmermann (b59) 2014; 30 Huang, Deng (b13) 2021; 213 Wu, Chen, Zhang, Xiong, Lei, Deng (b16) 2019; 17 Yuan, Chen, Lei, Yuan, Muhammad Adnan (b26) 2018; 32 Zhang, Hong (b31) 2021; 228 Dash, Choi, Scheuermann, Liu (b18) 2002 Baumeister, Kilian (b53) 2014; 55 Li, Hu, Heng, Chen (b14) 2021; 173 LeCun, Bengio, Hinton (b25) 2015; 521 Lv, Peng, Hu, Wang (b40) 2022; 612 Zhang, Wang, Wang, Zhang, Pan (b58) 2022; 77 Tan, Sirichand, Vivian, Wang (b64) 2022; 38 Mostafa, Kisi, Adnan, Sadeghifar, Kuriqi (b29) 2023; 15 Kukreja, Löfberg, Brenner (b45) 2006; 39 Ghosh, Neufeld, Sahoo (b60) 2022; 46 Maclaurin, Duvenaud, Adams (b36) 2015 Lahat, Adali, Jutten (b20) 2015; 103 Snoek, Larochelle, Adams (b35) 2012; 25 Zhang, Ma, Wei (b63) 2019; 81 Neely, Rapach, Tu, Zhou (b51) 2014; 60 Wu, Meng, Zhang, He, Romo, Dong, Lu (b5) 2024; 236 Tay, Cao (b32) 2001; 29 Zhao, Zhang, Gong, Wang (b47) 2021; 303 Adnan, Mostafa, Islam, Kisi, Kuriqi, Heddam (b30) 2021; 191 Baumeister, Kilian (b54) 2012; 30 Vapnik (b23) 1999 Hansen, Lunde, Nason (b46) 2011; 79 Xiong, Li, Bao, Hu, Zhang (b11) 2015; 77 Liang, Umar, Ma, Huynh (b65) 2022; 182 Ismail, Yahya, Shabri (b21) 2009; 6 Sezer, Gudelek, Ozbayoglu (b1) 2020; 90 Hyndman, Athanasopoulos (b4) 2018 Chen, Wang, Chen, Yan (b17) 2022; 131 Torres, Hadjout, Sebaa, Martínez-Álvarez, Troncoso (b3) 2021; 9 Tian, Zheng, Zhao, Liu, Zeng (b7) 2022; 34 Veček, Črepinšek, Mernik (b48) 2017; 54 Uniejewski, Marcjasz, Weron (b42) 2019; 35 Drucker, Burges, Kaufman, Smola, Vapnik (b44) 1996; 9 Orte, Mira, Sánchez, Solana (b61) 2023; 64 Zhang, Ma, Wang (b52) 2019; 54 Haugom, Langeland, Molnár, Westgaard (b9) 2014; 47 Zhang, Wahab, Wang (b39) 2023; 39 Miao, Ramchander, Wang, Yang (b57) 2017; 68 Kaya, Yılmaz, Yaslan, Öğüdücü, Çıngı (b38) 2022; 59 Gu, Chang, Xiong, Chen (b62) 2021; 109 Breiman (b24) 2001; 45 Chen (10.1016/j.asoc.2024.111362_b17) 2022; 131 Ghosh (10.1016/j.asoc.2024.111362_b60) 2022; 46 Zhao (10.1016/j.asoc.2024.111362_b47) 2021; 303 Gülerce (10.1016/j.asoc.2024.111362_b10) 2017; 12 Gargano (10.1016/j.asoc.2024.111362_b59) 2014; 30 Adnan (10.1016/j.asoc.2024.111362_b28) 2023; 17 Maciąg (10.1016/j.asoc.2024.111362_b27) 2023; 170 Gao (10.1016/j.asoc.2024.111362_b6) 2022; 612 Bi (10.1016/j.asoc.2024.111362_b8) 2022; 34 Tan (10.1016/j.asoc.2024.111362_b64) 2022; 38 Liang (10.1016/j.asoc.2024.111362_b65) 2022; 182 Baumeister (10.1016/j.asoc.2024.111362_b54) 2012; 30 Zhang (10.1016/j.asoc.2024.111362_b2) 2022 Hyndman (10.1016/j.asoc.2024.111362_b4) 2018 Bergstra (10.1016/j.asoc.2024.111362_b34) 2012; 13 Zhang (10.1016/j.asoc.2024.111362_b63) 2019; 81 Guyon (10.1016/j.asoc.2024.111362_b19) 2003; 3 Dai (10.1016/j.asoc.2024.111362_b55) 2021; 97 10.1016/j.asoc.2024.111362_b37 Xiong (10.1016/j.asoc.2024.111362_b11) 2015; 77 Tian (10.1016/j.asoc.2024.111362_b7) 2022; 34 Maclaurin (10.1016/j.asoc.2024.111362_b36) 2015 Wang (10.1016/j.asoc.2024.111362_b56) 2019; 102 Campbell (10.1016/j.asoc.2024.111362_b50) 2008; 21 Neely (10.1016/j.asoc.2024.111362_b51) 2014; 60 Zhang (10.1016/j.asoc.2024.111362_b39) 2023; 39 Ruder (10.1016/j.asoc.2024.111362_b33) 2016 Wu (10.1016/j.asoc.2024.111362_b5) 2024; 236 Yang (10.1016/j.asoc.2024.111362_b15) 2020; 415 Snoek (10.1016/j.asoc.2024.111362_b35) 2012; 25 Vapnik (10.1016/j.asoc.2024.111362_b23) 1999 Tay (10.1016/j.asoc.2024.111362_b32) 2001; 29 Drucker (10.1016/j.asoc.2024.111362_b44) 1996; 9 Adnan (10.1016/j.asoc.2024.111362_b30) 2021; 191 Miao (10.1016/j.asoc.2024.111362_b57) 2017; 68 Dash (10.1016/j.asoc.2024.111362_b18) 2002 Zhang (10.1016/j.asoc.2024.111362_b31) 2021; 228 LeCun (10.1016/j.asoc.2024.111362_b25) 2015; 521 Effrosynidis (10.1016/j.asoc.2024.111362_b12) 2023 Torres (10.1016/j.asoc.2024.111362_b3) 2021; 9 Kaya (10.1016/j.asoc.2024.111362_b38) 2022; 59 Friedman (10.1016/j.asoc.2024.111362_b43) 2001 Yuan (10.1016/j.asoc.2024.111362_b26) 2018; 32 Veček (10.1016/j.asoc.2024.111362_b48) 2017; 54 Baumeister (10.1016/j.asoc.2024.111362_b53) 2014; 55 Zhang (10.1016/j.asoc.2024.111362_b58) 2022; 77 Gu (10.1016/j.asoc.2024.111362_b62) 2021; 109 Hansen (10.1016/j.asoc.2024.111362_b46) 2011; 79 Huang (10.1016/j.asoc.2024.111362_b13) 2021; 213 Li (10.1016/j.asoc.2024.111362_b14) 2021; 173 Ismail (10.1016/j.asoc.2024.111362_b21) 2009; 6 Orte (10.1016/j.asoc.2024.111362_b61) 2023; 64 Haugom (10.1016/j.asoc.2024.111362_b9) 2014; 47 Lv (10.1016/j.asoc.2024.111362_b40) 2022; 612 Zhang (10.1016/j.asoc.2024.111362_b52) 2019; 54 Kukreja (10.1016/j.asoc.2024.111362_b45) 2006; 39 Sezer (10.1016/j.asoc.2024.111362_b1) 2020; 90 Lahat (10.1016/j.asoc.2024.111362_b20) 2015; 103 Mostafa (10.1016/j.asoc.2024.111362_b29) 2023; 15 Uniejewski (10.1016/j.asoc.2024.111362_b42) 2019; 35 Wu (10.1016/j.asoc.2024.111362_b16) 2019; 17 Breiman (10.1016/j.asoc.2024.111362_b24) 2001; 45 Fan (10.1016/j.asoc.2024.111362_b41) 2016; 112 Haykin (10.1016/j.asoc.2024.111362_b22) 2009 Shi (10.1016/j.asoc.2024.111362_b49) 2021; 109 |
References_xml | – volume: 47 start-page: 1 year: 2014 end-page: 14 ident: b9 article-title: Forecasting volatility of the US oil market publication-title: J. Bank. Financ. – volume: 34 start-page: 1644 year: 2022 end-page: 1660 ident: b8 article-title: Improving sales forecasting accuracy: A tensor factorization approach with demand awareness publication-title: INFORMS J. Comput. – volume: 9 year: 1996 ident: b44 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 228 year: 2021 ident: b31 article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads publication-title: Knowl.-Based Syst. – volume: 6 start-page: 1509 year: 2009 ident: b21 article-title: Forecasting gold prices using multiple linear regression method publication-title: Am. J. Appl. Sci. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b25 article-title: Deep learning publication-title: nature – volume: 77 start-page: 92 year: 2015 end-page: 102 ident: b11 article-title: A combination method for interval forecasting of agricultural commodity futures prices publication-title: Knowl.-Based Syst. – volume: 131 year: 2022 ident: b17 article-title: A framework based on heterogeneous ensemble models for liquid steel temperature prediction in LF refining process publication-title: Appl. Soft Comput. – volume: 191 year: 2021 ident: b30 article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms publication-title: Comput. Electron. Agric. – volume: 34 start-page: 1940 year: 2022 end-page: 1957 ident: b7 article-title: Inductive representation learning on dynamic stock co-movement graphs for stock predictions publication-title: INFORMS J. Comput. – volume: 38 start-page: 944 year: 2022 end-page: 969 ident: b64 article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals publication-title: Int. J. Forecast. – reference: S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim, R.M. Patton, Optimizing deep learning hyper-parameters through an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, 2015, pp. 1–5. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b19 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 90 year: 2020 ident: b1 article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019 publication-title: Appl. Soft Comput. – volume: 112 start-page: 245 year: 2016 end-page: 253 ident: b41 article-title: An ICA-based support vector regression scheme for forecasting crude oil prices publication-title: Technol. Forecast. Soc. Change – volume: 81 start-page: 1109 year: 2019 end-page: 1120 ident: b63 article-title: Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches publication-title: Energy Econ. – start-page: 1189 year: 2001 end-page: 1232 ident: b43 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – start-page: 2113 year: 2015 end-page: 2122 ident: b36 article-title: Gradient-based hyperparameter optimization through reversible learning publication-title: International Conference on Machine Learning – volume: 612 start-page: 553 year: 2022 end-page: 562 ident: b6 article-title: A novel network-based and divergence-based time series forecasting method publication-title: Inform. Sci. – volume: 170 year: 2023 ident: b27 article-title: Effective air pollution prediction by combining time series decomposition with stacking and bagging ensembles of evolving spiking neural networks publication-title: Environ. Model. Softw. – year: 1999 ident: b23 article-title: The Nature of Statistical Learning Theory – volume: 54 start-page: 23 year: 2017 end-page: 45 ident: b48 article-title: On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms publication-title: Appl. Soft Comput. – volume: 236 year: 2024 ident: b5 article-title: Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting publication-title: Expert Syst. Appl. – volume: 13 year: 2012 ident: b34 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 612 start-page: 994 year: 2022 end-page: 1023 ident: b40 article-title: Effective machine learning model combination based on selective ensemble strategy for time series forecasting publication-title: Inform. Sci. – volume: 39 start-page: 814 year: 2006 end-page: 819 ident: b45 article-title: A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification publication-title: IFAC Proc. – volume: 17 year: 2023 ident: b28 article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 303 year: 2021 ident: b47 article-title: A novel method for online real-time forecasting of crude oil price publication-title: Appl. Energy – volume: 54 start-page: 97 year: 2019 end-page: 117 ident: b52 article-title: Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? publication-title: J. Empir. Financ. – year: 2018 ident: b4 article-title: Forecasting: Principles and Practice – volume: 12 year: 2017 ident: b10 article-title: Forecasting of oil and agricultural commodity prices: VARMA versus ARMA publication-title: Ann. Financ. Econ. – volume: 109 year: 2021 ident: b62 article-title: Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees publication-title: Appl. Soft Comput. – volume: 60 start-page: 1772 year: 2014 end-page: 1791 ident: b51 article-title: Forecasting the equity risk premium: the role of technical indicators publication-title: Manage. Sci. – volume: 30 start-page: 825 year: 2014 end-page: 843 ident: b59 article-title: Forecasting commodity price indexes using macroeconomic and financial predictors publication-title: Int. J. Forecast. – volume: 213 year: 2021 ident: b13 article-title: A new crude oil price forecasting model based on variational mode decomposition publication-title: Knowl.-Based Syst. – volume: 25 year: 2012 ident: b35 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 79 start-page: 453 year: 2011 end-page: 497 ident: b46 article-title: The model confidence set publication-title: Econometrica – volume: 29 start-page: 309 year: 2001 end-page: 317 ident: b32 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega – volume: 173 year: 2021 ident: b14 article-title: A novel multiscale forecasting model for crude oil price time series publication-title: Technol. Forecast. Soc. Change – year: 2016 ident: b33 article-title: An overview of gradient descent optimization algorithms – volume: 97 year: 2021 ident: b55 article-title: Bond yield and crude oil prices predictability publication-title: Energy Econ. – volume: 102 start-page: 43 year: 2019 end-page: 58 ident: b56 article-title: Oil price increases and the predictability of equity premium publication-title: J. Bank. Financ. – volume: 59 year: 2022 ident: b38 article-title: Demand forecasting model using hotel clustering findings for hospitality industry publication-title: Inf. Process. Manage. – volume: 46 year: 2022 ident: b60 article-title: Forecasting directional movements of stock prices for intraday trading using LSTM and random forests publication-title: Finance Res. Lett. – volume: 64 year: 2023 ident: b61 article-title: A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction publication-title: Res. Int. Bus. Finance – start-page: 115 year: 2002 end-page: 122 ident: b18 article-title: Feature selection for clustering-a filter solution publication-title: 2002 IEEE International Conference on Data Mining, 2002. Proceedings – volume: 109 year: 2021 ident: b49 article-title: Prediction and analysis of train arrival delay based on xgboost and Bayesian optimization publication-title: Appl. Soft Comput. – volume: 35 start-page: 1533 year: 2019 end-page: 1547 ident: b42 article-title: Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO publication-title: Int. J. Forecast. – volume: 21 start-page: 1509 year: 2008 end-page: 1531 ident: b50 article-title: Predicting excess stock returns out of sample: Can anything beat the historical average? publication-title: Rev. Financ. Stud. – year: 2009 ident: b22 article-title: Neural Networks and Learning Machines – volume: 9 start-page: 3 year: 2021 end-page: 21 ident: b3 article-title: Deep learning for time series forecasting: a survey publication-title: Big Data – volume: 32 start-page: 2199 year: 2018 end-page: 2212 ident: b26 article-title: Monthly runoff forecasting based on LSTM–ALO model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 15 start-page: 486 year: 2023 ident: b29 article-title: Modeling potential evapotranspiration by improved machine learning methods using limited climatic data publication-title: Water – volume: 182 year: 2022 ident: b65 article-title: Climate policy uncertainty and world renewable energy index volatility forecasting publication-title: Technol. Forecast. Soc. Change – volume: 103 start-page: 1449 year: 2015 end-page: 1477 ident: b20 article-title: Multimodal data fusion: an overview of methods, challenges, and prospects publication-title: Proc. IEEE – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b15 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b24 article-title: Random forests publication-title: Mach. Learn. – volume: 39 start-page: 486 year: 2023 end-page: 502 ident: b39 article-title: Forecasting crude oil market volatility using variable selection and common factor publication-title: Int. J. Forecast. – volume: 30 start-page: 326 year: 2012 end-page: 336 ident: b54 article-title: Real-time forecasts of the real price of oil publication-title: J. Bus. Econom. Statist. – volume: 55 start-page: 869 year: 2014 end-page: 889 ident: b53 article-title: What central bankers need to know about forecasting oil prices publication-title: Internat. Econom. Rev. – year: 2023 ident: b12 article-title: Time series and regression methods for univariate environmental forecasting: An empirical evaluation publication-title: Sci. Total Environ. – year: 2022 ident: b2 article-title: Forecasting crude oil futures market returns: A principal component analysis combination approach publication-title: Int. J. Forecast. – volume: 68 start-page: 77 year: 2017 end-page: 88 ident: b57 article-title: Influential factors in crude oil price forecasting publication-title: Energy Econ. – volume: 77 year: 2022 ident: b58 article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method publication-title: Resour. Policy – volume: 17 start-page: 26 year: 2019 end-page: 40 ident: b16 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – volume: 25 year: 2012 ident: 10.1016/j.asoc.2024.111362_b35 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.asoc.2024.111362_b33 – year: 1999 ident: 10.1016/j.asoc.2024.111362_b23 – volume: 97 year: 2021 ident: 10.1016/j.asoc.2024.111362_b55 article-title: Bond yield and crude oil prices predictability publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105205 – volume: 68 start-page: 77 year: 2017 ident: 10.1016/j.asoc.2024.111362_b57 article-title: Influential factors in crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.09.010 – volume: 77 year: 2022 ident: 10.1016/j.asoc.2024.111362_b58 article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method publication-title: Resour. Policy doi: 10.1016/j.resourpol.2022.102656 – volume: 12 issue: 03 year: 2017 ident: 10.1016/j.asoc.2024.111362_b10 article-title: Forecasting of oil and agricultural commodity prices: VARMA versus ARMA publication-title: Ann. Financ. Econ. doi: 10.1142/S2010495217500129 – volume: 15 start-page: 486 issue: 3 year: 2023 ident: 10.1016/j.asoc.2024.111362_b29 article-title: Modeling potential evapotranspiration by improved machine learning methods using limited climatic data publication-title: Water doi: 10.3390/w15030486 – volume: 47 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2024.111362_b9 article-title: Forecasting volatility of the US oil market publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2014.05.026 – year: 2022 ident: 10.1016/j.asoc.2024.111362_b2 article-title: Forecasting crude oil futures market returns: A principal component analysis combination approach publication-title: Int. J. Forecast. – start-page: 115 year: 2002 ident: 10.1016/j.asoc.2024.111362_b18 article-title: Feature selection for clustering-a filter solution – volume: 54 start-page: 97 year: 2019 ident: 10.1016/j.asoc.2024.111362_b52 article-title: Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2019.08.007 – volume: 46 year: 2022 ident: 10.1016/j.asoc.2024.111362_b60 article-title: Forecasting directional movements of stock prices for intraday trading using LSTM and random forests publication-title: Finance Res. Lett. doi: 10.1016/j.frl.2021.102280 – volume: 34 start-page: 1940 issue: 4 year: 2022 ident: 10.1016/j.asoc.2024.111362_b7 article-title: Inductive representation learning on dynamic stock co-movement graphs for stock predictions publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2022.1172 – volume: 228 year: 2021 ident: 10.1016/j.asoc.2024.111362_b31 article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107297 – volume: 29 start-page: 309 issue: 4 year: 2001 ident: 10.1016/j.asoc.2024.111362_b32 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega doi: 10.1016/S0305-0483(01)00026-3 – volume: 55 start-page: 869 issue: 3 year: 2014 ident: 10.1016/j.asoc.2024.111362_b53 article-title: What central bankers need to know about forecasting oil prices publication-title: Internat. Econom. Rev. doi: 10.1111/iere.12074 – volume: 6 start-page: 1509 issue: 8 year: 2009 ident: 10.1016/j.asoc.2024.111362_b21 article-title: Forecasting gold prices using multiple linear regression method publication-title: Am. J. Appl. Sci. doi: 10.3844/ajassp.2009.1509.1514 – volume: 612 start-page: 994 year: 2022 ident: 10.1016/j.asoc.2024.111362_b40 article-title: Effective machine learning model combination based on selective ensemble strategy for time series forecasting publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.09.002 – volume: 32 start-page: 2199 year: 2018 ident: 10.1016/j.asoc.2024.111362_b26 article-title: Monthly runoff forecasting based on LSTM–ALO model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1560-y – year: 2009 ident: 10.1016/j.asoc.2024.111362_b22 – volume: 79 start-page: 453 issue: 2 year: 2011 ident: 10.1016/j.asoc.2024.111362_b46 article-title: The model confidence set publication-title: Econometrica doi: 10.3982/ECTA5771 – volume: 9 year: 1996 ident: 10.1016/j.asoc.2024.111362_b44 article-title: Support vector regression machines – volume: 112 start-page: 245 year: 2016 ident: 10.1016/j.asoc.2024.111362_b41 article-title: An ICA-based support vector regression scheme for forecasting crude oil prices publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2016.04.027 – volume: 90 year: 2020 ident: 10.1016/j.asoc.2024.111362_b1 article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106181 – volume: 35 start-page: 1533 issue: 4 year: 2019 ident: 10.1016/j.asoc.2024.111362_b42 article-title: Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.02.001 – volume: 30 start-page: 825 issue: 3 year: 2014 ident: 10.1016/j.asoc.2024.111362_b59 article-title: Forecasting commodity price indexes using macroeconomic and financial predictors publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2013.09.003 – volume: 9 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.asoc.2024.111362_b3 article-title: Deep learning for time series forecasting: a survey publication-title: Big Data doi: 10.1089/big.2020.0159 – volume: 303 year: 2021 ident: 10.1016/j.asoc.2024.111362_b47 article-title: A novel method for online real-time forecasting of crude oil price publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117588 – start-page: 1189 year: 2001 ident: 10.1016/j.asoc.2024.111362_b43 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 60 start-page: 1772 issue: 7 year: 2014 ident: 10.1016/j.asoc.2024.111362_b51 article-title: Forecasting the equity risk premium: the role of technical indicators publication-title: Manage. Sci. doi: 10.1287/mnsc.2013.1838 – volume: 38 start-page: 944 issue: 3 year: 2022 ident: 10.1016/j.asoc.2024.111362_b64 article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.07.005 – volume: 39 start-page: 486 issue: 1 year: 2023 ident: 10.1016/j.asoc.2024.111362_b39 article-title: Forecasting crude oil market volatility using variable selection and common factor publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.12.013 – volume: 131 year: 2022 ident: 10.1016/j.asoc.2024.111362_b17 article-title: A framework based on heterogeneous ensemble models for liquid steel temperature prediction in LF refining process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109724 – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.asoc.2024.111362_b16 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – year: 2023 ident: 10.1016/j.asoc.2024.111362_b12 article-title: Time series and regression methods for univariate environmental forecasting: An empirical evaluation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.162580 – volume: 30 start-page: 326 issue: 2 year: 2012 ident: 10.1016/j.asoc.2024.111362_b54 article-title: Real-time forecasts of the real price of oil publication-title: J. Bus. Econom. Statist. doi: 10.1080/07350015.2011.648859 – volume: 612 start-page: 553 year: 2022 ident: 10.1016/j.asoc.2024.111362_b6 article-title: A novel network-based and divergence-based time series forecasting method publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.08.120 – ident: 10.1016/j.asoc.2024.111362_b37 doi: 10.1145/2834892.2834896 – volume: 191 year: 2021 ident: 10.1016/j.asoc.2024.111362_b30 article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106541 – volume: 182 year: 2022 ident: 10.1016/j.asoc.2024.111362_b65 article-title: Climate policy uncertainty and world renewable energy index volatility forecasting publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2022.121810 – volume: 109 year: 2021 ident: 10.1016/j.asoc.2024.111362_b49 article-title: Prediction and analysis of train arrival delay based on xgboost and Bayesian optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107538 – volume: 109 year: 2021 ident: 10.1016/j.asoc.2024.111362_b62 article-title: Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107472 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.asoc.2024.111362_b24 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 issue: 2 year: 2012 ident: 10.1016/j.asoc.2024.111362_b34 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 102 start-page: 43 year: 2019 ident: 10.1016/j.asoc.2024.111362_b56 article-title: Oil price increases and the predictability of equity premium publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2019.03.009 – year: 2018 ident: 10.1016/j.asoc.2024.111362_b4 – volume: 173 year: 2021 ident: 10.1016/j.asoc.2024.111362_b14 article-title: A novel multiscale forecasting model for crude oil price time series publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.121181 – volume: 103 start-page: 1449 issue: 9 year: 2015 ident: 10.1016/j.asoc.2024.111362_b20 article-title: Multimodal data fusion: an overview of methods, challenges, and prospects publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2460697 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.asoc.2024.111362_b25 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – volume: 17 issue: 1 year: 2023 ident: 10.1016/j.asoc.2024.111362_b28 article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 81 start-page: 1109 year: 2019 ident: 10.1016/j.asoc.2024.111362_b63 article-title: Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches publication-title: Energy Econ. doi: 10.1016/j.eneco.2019.05.018 – volume: 64 year: 2023 ident: 10.1016/j.asoc.2024.111362_b61 article-title: A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction publication-title: Res. Int. Bus. Finance doi: 10.1016/j.ribaf.2022.101829 – volume: 34 start-page: 1644 issue: 3 year: 2022 ident: 10.1016/j.asoc.2024.111362_b8 article-title: Improving sales forecasting accuracy: A tensor factorization approach with demand awareness publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2021.1147 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.asoc.2024.111362_b19 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – start-page: 2113 year: 2015 ident: 10.1016/j.asoc.2024.111362_b36 article-title: Gradient-based hyperparameter optimization through reversible learning – volume: 39 start-page: 814 issue: 1 year: 2006 ident: 10.1016/j.asoc.2024.111362_b45 article-title: A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification publication-title: IFAC Proc. – volume: 213 year: 2021 ident: 10.1016/j.asoc.2024.111362_b13 article-title: A new crude oil price forecasting model based on variational mode decomposition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106669 – volume: 59 issue: 1 year: 2022 ident: 10.1016/j.asoc.2024.111362_b38 article-title: Demand forecasting model using hotel clustering findings for hospitality industry publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2021.102816 – volume: 21 start-page: 1509 issue: 4 year: 2008 ident: 10.1016/j.asoc.2024.111362_b50 article-title: Predicting excess stock returns out of sample: Can anything beat the historical average? publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhm055 – volume: 236 year: 2024 ident: 10.1016/j.asoc.2024.111362_b5 article-title: Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121202 – volume: 77 start-page: 92 year: 2015 ident: 10.1016/j.asoc.2024.111362_b11 article-title: A combination method for interval forecasting of agricultural commodity futures prices publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.01.002 – volume: 170 year: 2023 ident: 10.1016/j.asoc.2024.111362_b27 article-title: Effective air pollution prediction by combining time series decomposition with stacking and bagging ensembles of evolving spiking neural networks publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2023.105851 – volume: 54 start-page: 23 year: 2017 ident: 10.1016/j.asoc.2024.111362_b48 article-title: On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.011 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.asoc.2024.111362_b15 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 |
SSID | ssj0016928 |
Score | 2.5692468 |
Snippet | Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111362 |
SubjectTerms | Economic value Hyper-parameter optimization Machine learning Modeling efficiency Time series forecasting |
Title | Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting |
URI | https://dx.doi.org/10.1016/j.asoc.2024.111362 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3Wdvsbh7rrRRrfBVRC72FTXYXKjYtacWbv92dZFMUpAdPIckMhJnJPJZvZhA6D6wVCd9IYhQNCdeKkVRIRXTAjAiFzjiFBufHYRCP-N3YHzdQv-6FAVil8_2VTy-9tXvScdLszCeTzoutPCIueAAoSI8FMBOU8xCs_PJrBfPwAlHuVwViAtSucabCeEkrAVsjUg6egwX07-D0I-AMdtCWyxRxr_qYXdTQ-R7arrcwYPdT7qP8ppgoXFkshmNVLPFneeCpFdZFMSswBC9QwBWObdlZEJj3PQUcDJ5ZjzF1rZjYAGk9gQPD1nkMBqoX8EZncgEQ6QM0Gly_9mPitiiQjHG-JJLRlNqqSGeBlFzZ_E8YzzCrA22zayuwbqQ8mTIlIq4NE1HIZMppN8xCqzU_ZIeomc9yfYRwyqTwbf0XSa04M0yyjKrIwIh6bTOvbgt5tfiSzI0Yh00X70mNJXtLQOQJiDypRN5CFyueeTVgYy21X2sl-WUmiY0Aa_iO_8l3gjbhrgKdnaLmsvjQZzYLWabt0szaaKPXf354guvtfTz8BmbM3rc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sANRduaNG24TROjY48LIHGr0iaRhmBD3RB_n3hNJ5AQB66NLVW260f62Qa4Es6KZGgVtTqIKDea0UwqTY1gVkbS5DzABufxRCRP_P45fK5Br-qFQVil9_2lT195a_-k5aXZep9OWw-u8oi55AJRkB0m-AY0cDpVWIdGdzBMJuufCUKuVqwiPUUG3ztTwryUE4IrEwOOzoOJ4Pf49C3m9Hdh2yeLpFu-zx7UzGwfdqpFDMR_lwcwuyummpRGS_BmlSjyubrzNJqYopgXBOMX6uCGJK7yLCiO_H5DKAyZO6fx5rsxiUXSaggHwcXzBG3ULPDE5GqBKOlDeOrfPvYS6hcp0JxxvqSKBVngCiOTC6W4dimgtB3LnBqMS7B5JNqx7qiMaRlzY5mMI6YyHrSjPHKKCyN2BPXZfGaOgWRMydCVgLEymjPLFMsDHVucUm9c8tVuQqcSX5r7KeO47OI1reBkLymKPEWRp6XIm3C95nkvZ2z8SR1WWkl_WErqgsAffCf_5LuEzeRxPEpHg8nwFLbwpMSgnUF9WXyYc5eULLMLb3RfFhDf0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grid+search+with+a+weighted+error+function%3A+Hyper-parameter+optimization+for+financial+time+series+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yuan&rft.au=Zhang%2C+Weiguo&rft.au=Liu%2C+Xiufeng&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=154&rft_id=info:doi/10.1016%2Fj.asoc.2024.111362&rft.externalDocID=S1568494624001364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |