Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting

Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significa...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 154; p. 111362
Main Authors Zhao, Yuan, Zhang, Weiguo, Liu, Xiufeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2024.111362

Cover

Loading…
Abstract Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significant challenges. Existing methods such as GridSearch with cross-validation (GridsearchCV) for optimizing the hyper-parameters are time-consuming for complex models or large search spaces, and they do not ensure that the model has excellent predictive accuracy. To address these challenges, we propose a novel method called GridsearchWEF that uses grid search with a weighted error function. This method aims to reduce the time cost of hyper-parameter optimization for machine learning models and guarantee their prediction performance. We conduct an empirical analysis of crude oil return forecasting using four machine learning models: RF, GBDT, SVR, and LASSO. We compare the performance of these models using GridsearchCV, random search with cross-validation (RandomizedSearchCV), Bayes optimization with cross-validation (BayesSearchCV), and GridsearchWEF. The results show that GridsearchWEF outperforms the other methods in terms of hyper-parameter optimization, modeling efficiency, prediction accuracy, and economic values. In particular, the time of all models using GridSearchWEF is less than 30 s, which is much less than other algorithms. GridsearchWEF is a more efficient and superior method for hyper-parameter optimization in financial time series forecasting. •A novel method for hyper-parameter optimization based on a weighted error function.•A faster and more accurate prediction of crude oil returns using machine learning models.•A comparison of four types of machine learning models: GF-type, GV-type, RV-type, and BV-type models.•An evaluation of the economic significance of the proposed method for crude oil investment.
AbstractList Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper-parameters with less time and ensuring the prediction accuracy of models are still significant challenges. Existing methods such as GridSearch with cross-validation (GridsearchCV) for optimizing the hyper-parameters are time-consuming for complex models or large search spaces, and they do not ensure that the model has excellent predictive accuracy. To address these challenges, we propose a novel method called GridsearchWEF that uses grid search with a weighted error function. This method aims to reduce the time cost of hyper-parameter optimization for machine learning models and guarantee their prediction performance. We conduct an empirical analysis of crude oil return forecasting using four machine learning models: RF, GBDT, SVR, and LASSO. We compare the performance of these models using GridsearchCV, random search with cross-validation (RandomizedSearchCV), Bayes optimization with cross-validation (BayesSearchCV), and GridsearchWEF. The results show that GridsearchWEF outperforms the other methods in terms of hyper-parameter optimization, modeling efficiency, prediction accuracy, and economic values. In particular, the time of all models using GridSearchWEF is less than 30 s, which is much less than other algorithms. GridsearchWEF is a more efficient and superior method for hyper-parameter optimization in financial time series forecasting. •A novel method for hyper-parameter optimization based on a weighted error function.•A faster and more accurate prediction of crude oil returns using machine learning models.•A comparison of four types of machine learning models: GF-type, GV-type, RV-type, and BV-type models.•An evaluation of the economic significance of the proposed method for crude oil investment.
ArticleNumber 111362
Author Liu, Xiufeng
Zhang, Weiguo
Zhao, Yuan
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0001-6225-6501
  surname: Zhao
  fullname: Zhao, Yuan
  email: bmyzhao@outlook.com
  organization: School of Business Administration, South China University of Technology, 510641, Guangzhou, PR China
– sequence: 2
  givenname: Weiguo
  surname: Zhang
  fullname: Zhang, Weiguo
  email: wgzhang@scut.edu.cn
  organization: College of Management, Shenzhen University, 518060, Shenzhen, PR China
– sequence: 3
  givenname: Xiufeng
  orcidid: 0000-0001-5133-6688
  surname: Liu
  fullname: Liu, Xiufeng
  email: xiuli@dtu.dk
  organization: Department of Technology, Management and Economics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
BookMark eNp9kEFOwzAQRS1UJErhAqx8gZTYcRMHsUEVtEiV2MDamjiTdqrWiWxDVU5PQlmx6GpG-vNG-u-ajVzrkLE7kU5FKvL77RRCa6cylWoqhMhyecHGQhcyKXMtRv0-y3WiSpVfsesQtmkPlVKPmVt4qnlA8HbDDxQ3HPgBab2JWHP0vvW8-XQ2Uuse-PLYoU868LDHiJ63XaQ9fcOQ8mY4JQfOEux4H2D_1hOGIUELIZJb37DLBnYBb__mhH28PL_Pl8nqbfE6f1olNlMqJpDJShYiR5sDqHqWFmUjmkzJBrWWqshTXQuosrrUCpus1EUGlZJpYYuqhFmRTZg8_bW-DcFjYzpPe_BHI1IzGDNbMxgzgzFzMtZD-h9kKf6Wix5odx59PKHYl_oi9CZYQmexpr57NHVL5_Afn0aLFA
CitedBy_id crossref_primary_10_1063_5_0247775
crossref_primary_10_1016_j_eiar_2025_107887
crossref_primary_10_1016_j_energy_2024_132374
crossref_primary_10_1016_j_engappai_2024_108688
crossref_primary_10_1016_j_uncres_2025_100145
crossref_primary_10_3390_math12182956
crossref_primary_10_1088_1361_6501_ad9101
crossref_primary_10_1007_s41060_024_00710_x
crossref_primary_10_1109_JSEN_2025_3527471
crossref_primary_10_2478_amns_2024_2680
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1016_j_health_2024_100380
crossref_primary_10_1051_bioconf_202515707002
crossref_primary_10_1016_j_engappai_2025_110408
crossref_primary_10_1016_j_neucom_2025_129672
crossref_primary_10_1038_s41598_025_94142_7
crossref_primary_10_1007_s11192_024_05183_0
crossref_primary_10_1007_s00521_024_10457_y
crossref_primary_10_1016_j_powtec_2025_120753
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1016_j_najef_2024_102252
crossref_primary_10_1007_s10586_024_04909_2
crossref_primary_10_1007_s10878_024_01196_w
crossref_primary_10_1016_j_aap_2024_107910
crossref_primary_10_1016_j_oceaneng_2025_120773
Cites_doi 10.1016/j.eneco.2021.105205
10.1016/j.eneco.2017.09.010
10.1016/j.resourpol.2022.102656
10.1142/S2010495217500129
10.3390/w15030486
10.1016/j.jbankfin.2014.05.026
10.1016/j.jempfin.2019.08.007
10.1016/j.frl.2021.102280
10.1287/ijoc.2022.1172
10.1016/j.knosys.2021.107297
10.1016/S0305-0483(01)00026-3
10.1111/iere.12074
10.3844/ajassp.2009.1509.1514
10.1016/j.ins.2022.09.002
10.1007/s00477-018-1560-y
10.3982/ECTA5771
10.1016/j.techfore.2016.04.027
10.1016/j.asoc.2020.106181
10.1016/j.ijforecast.2019.02.001
10.1016/j.ijforecast.2013.09.003
10.1089/big.2020.0159
10.1016/j.apenergy.2021.117588
10.1287/mnsc.2013.1838
10.1016/j.ijforecast.2021.07.005
10.1016/j.ijforecast.2021.12.013
10.1016/j.asoc.2022.109724
10.1016/j.scitotenv.2023.162580
10.1080/07350015.2011.648859
10.1016/j.ins.2022.08.120
10.1145/2834892.2834896
10.1016/j.compag.2021.106541
10.1016/j.techfore.2022.121810
10.1016/j.asoc.2021.107538
10.1016/j.asoc.2021.107472
10.1023/A:1010933404324
10.1016/j.jbankfin.2019.03.009
10.1016/j.techfore.2021.121181
10.1109/JPROC.2015.2460697
10.1038/nature14539
10.1016/j.eneco.2019.05.018
10.1016/j.ribaf.2022.101829
10.1287/ijoc.2021.1147
10.1016/j.knosys.2020.106669
10.1016/j.ipm.2021.102816
10.1093/rfs/hhm055
10.1016/j.eswa.2023.121202
10.1016/j.knosys.2015.01.002
10.1016/j.envsoft.2023.105851
10.1016/j.asoc.2017.01.011
10.1016/j.neucom.2020.07.061
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111362
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111362
S1568494624001364
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-a32b2716ec6aa4d5079f1f342fe88247608d1ab3d984ef39873ab4207c7b9a573
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:24 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Sat Mar 23 16:41:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Time series forecasting
Hyper-parameter optimization
Economic value
Machine learning
Modeling efficiency
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-a32b2716ec6aa4d5079f1f342fe88247608d1ab3d984ef39873ab4207c7b9a573
ORCID 0000-0001-5133-6688
0000-0001-6225-6501
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1568494624001364
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111362
crossref_citationtrail_10_1016_j_asoc_2024_111362
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Adnan, Mostafa, Dai, Heddam, Kuriqi, Kisi (b28) 2023; 17
Gülerce, Ünal (b10) 2017; 12
Fan, Pan, Li, Li (b41) 2016; 112
Zhang, Wang (b2) 2022
Yang, Shami (b15) 2020; 415
S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim, R.M. Patton, Optimizing deep learning hyper-parameters through an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, 2015, pp. 1–5.
Effrosynidis, Spiliotis, Sylaios, Arampatzis (b12) 2023
Maciąg, Bembenik, Piekarzewicz, Del Ser, Lobo, Kasabov (b27) 2023; 170
Gao, Wen, Deng (b6) 2022; 612
Shi, Xu, Li, Li (b49) 2021; 109
Bergstra, Bengio (b34) 2012; 13
Wang, Pan, Liu, Wu (b56) 2019; 102
Ruder (b33) 2016
Guyon, Elisseeff (b19) 2003; 3
Friedman (b43) 2001
Campbell, Thompson (b50) 2008; 21
Bi, Adomavicius, Li, Qu (b8) 2022; 34
Haykin (b22) 2009
Dai, Kang (b55) 2021; 97
Gargano, Timmermann (b59) 2014; 30
Huang, Deng (b13) 2021; 213
Wu, Chen, Zhang, Xiong, Lei, Deng (b16) 2019; 17
Yuan, Chen, Lei, Yuan, Muhammad Adnan (b26) 2018; 32
Zhang, Hong (b31) 2021; 228
Dash, Choi, Scheuermann, Liu (b18) 2002
Baumeister, Kilian (b53) 2014; 55
Li, Hu, Heng, Chen (b14) 2021; 173
LeCun, Bengio, Hinton (b25) 2015; 521
Lv, Peng, Hu, Wang (b40) 2022; 612
Zhang, Wang, Wang, Zhang, Pan (b58) 2022; 77
Tan, Sirichand, Vivian, Wang (b64) 2022; 38
Mostafa, Kisi, Adnan, Sadeghifar, Kuriqi (b29) 2023; 15
Kukreja, Löfberg, Brenner (b45) 2006; 39
Ghosh, Neufeld, Sahoo (b60) 2022; 46
Maclaurin, Duvenaud, Adams (b36) 2015
Lahat, Adali, Jutten (b20) 2015; 103
Snoek, Larochelle, Adams (b35) 2012; 25
Zhang, Ma, Wei (b63) 2019; 81
Neely, Rapach, Tu, Zhou (b51) 2014; 60
Wu, Meng, Zhang, He, Romo, Dong, Lu (b5) 2024; 236
Tay, Cao (b32) 2001; 29
Zhao, Zhang, Gong, Wang (b47) 2021; 303
Adnan, Mostafa, Islam, Kisi, Kuriqi, Heddam (b30) 2021; 191
Baumeister, Kilian (b54) 2012; 30
Vapnik (b23) 1999
Hansen, Lunde, Nason (b46) 2011; 79
Xiong, Li, Bao, Hu, Zhang (b11) 2015; 77
Liang, Umar, Ma, Huynh (b65) 2022; 182
Ismail, Yahya, Shabri (b21) 2009; 6
Sezer, Gudelek, Ozbayoglu (b1) 2020; 90
Hyndman, Athanasopoulos (b4) 2018
Chen, Wang, Chen, Yan (b17) 2022; 131
Torres, Hadjout, Sebaa, Martínez-Álvarez, Troncoso (b3) 2021; 9
Tian, Zheng, Zhao, Liu, Zeng (b7) 2022; 34
Veček, Črepinšek, Mernik (b48) 2017; 54
Uniejewski, Marcjasz, Weron (b42) 2019; 35
Drucker, Burges, Kaufman, Smola, Vapnik (b44) 1996; 9
Orte, Mira, Sánchez, Solana (b61) 2023; 64
Zhang, Ma, Wang (b52) 2019; 54
Haugom, Langeland, Molnár, Westgaard (b9) 2014; 47
Zhang, Wahab, Wang (b39) 2023; 39
Miao, Ramchander, Wang, Yang (b57) 2017; 68
Kaya, Yılmaz, Yaslan, Öğüdücü, Çıngı (b38) 2022; 59
Gu, Chang, Xiong, Chen (b62) 2021; 109
Breiman (b24) 2001; 45
Chen (10.1016/j.asoc.2024.111362_b17) 2022; 131
Ghosh (10.1016/j.asoc.2024.111362_b60) 2022; 46
Zhao (10.1016/j.asoc.2024.111362_b47) 2021; 303
Gülerce (10.1016/j.asoc.2024.111362_b10) 2017; 12
Gargano (10.1016/j.asoc.2024.111362_b59) 2014; 30
Adnan (10.1016/j.asoc.2024.111362_b28) 2023; 17
Maciąg (10.1016/j.asoc.2024.111362_b27) 2023; 170
Gao (10.1016/j.asoc.2024.111362_b6) 2022; 612
Bi (10.1016/j.asoc.2024.111362_b8) 2022; 34
Tan (10.1016/j.asoc.2024.111362_b64) 2022; 38
Liang (10.1016/j.asoc.2024.111362_b65) 2022; 182
Baumeister (10.1016/j.asoc.2024.111362_b54) 2012; 30
Zhang (10.1016/j.asoc.2024.111362_b2) 2022
Hyndman (10.1016/j.asoc.2024.111362_b4) 2018
Bergstra (10.1016/j.asoc.2024.111362_b34) 2012; 13
Zhang (10.1016/j.asoc.2024.111362_b63) 2019; 81
Guyon (10.1016/j.asoc.2024.111362_b19) 2003; 3
Dai (10.1016/j.asoc.2024.111362_b55) 2021; 97
10.1016/j.asoc.2024.111362_b37
Xiong (10.1016/j.asoc.2024.111362_b11) 2015; 77
Tian (10.1016/j.asoc.2024.111362_b7) 2022; 34
Maclaurin (10.1016/j.asoc.2024.111362_b36) 2015
Wang (10.1016/j.asoc.2024.111362_b56) 2019; 102
Campbell (10.1016/j.asoc.2024.111362_b50) 2008; 21
Neely (10.1016/j.asoc.2024.111362_b51) 2014; 60
Zhang (10.1016/j.asoc.2024.111362_b39) 2023; 39
Ruder (10.1016/j.asoc.2024.111362_b33) 2016
Wu (10.1016/j.asoc.2024.111362_b5) 2024; 236
Yang (10.1016/j.asoc.2024.111362_b15) 2020; 415
Snoek (10.1016/j.asoc.2024.111362_b35) 2012; 25
Vapnik (10.1016/j.asoc.2024.111362_b23) 1999
Tay (10.1016/j.asoc.2024.111362_b32) 2001; 29
Drucker (10.1016/j.asoc.2024.111362_b44) 1996; 9
Adnan (10.1016/j.asoc.2024.111362_b30) 2021; 191
Miao (10.1016/j.asoc.2024.111362_b57) 2017; 68
Dash (10.1016/j.asoc.2024.111362_b18) 2002
Zhang (10.1016/j.asoc.2024.111362_b31) 2021; 228
LeCun (10.1016/j.asoc.2024.111362_b25) 2015; 521
Effrosynidis (10.1016/j.asoc.2024.111362_b12) 2023
Torres (10.1016/j.asoc.2024.111362_b3) 2021; 9
Kaya (10.1016/j.asoc.2024.111362_b38) 2022; 59
Friedman (10.1016/j.asoc.2024.111362_b43) 2001
Yuan (10.1016/j.asoc.2024.111362_b26) 2018; 32
Veček (10.1016/j.asoc.2024.111362_b48) 2017; 54
Baumeister (10.1016/j.asoc.2024.111362_b53) 2014; 55
Zhang (10.1016/j.asoc.2024.111362_b58) 2022; 77
Gu (10.1016/j.asoc.2024.111362_b62) 2021; 109
Hansen (10.1016/j.asoc.2024.111362_b46) 2011; 79
Huang (10.1016/j.asoc.2024.111362_b13) 2021; 213
Li (10.1016/j.asoc.2024.111362_b14) 2021; 173
Ismail (10.1016/j.asoc.2024.111362_b21) 2009; 6
Orte (10.1016/j.asoc.2024.111362_b61) 2023; 64
Haugom (10.1016/j.asoc.2024.111362_b9) 2014; 47
Lv (10.1016/j.asoc.2024.111362_b40) 2022; 612
Zhang (10.1016/j.asoc.2024.111362_b52) 2019; 54
Kukreja (10.1016/j.asoc.2024.111362_b45) 2006; 39
Sezer (10.1016/j.asoc.2024.111362_b1) 2020; 90
Lahat (10.1016/j.asoc.2024.111362_b20) 2015; 103
Mostafa (10.1016/j.asoc.2024.111362_b29) 2023; 15
Uniejewski (10.1016/j.asoc.2024.111362_b42) 2019; 35
Wu (10.1016/j.asoc.2024.111362_b16) 2019; 17
Breiman (10.1016/j.asoc.2024.111362_b24) 2001; 45
Fan (10.1016/j.asoc.2024.111362_b41) 2016; 112
Haykin (10.1016/j.asoc.2024.111362_b22) 2009
Shi (10.1016/j.asoc.2024.111362_b49) 2021; 109
References_xml – volume: 47
  start-page: 1
  year: 2014
  end-page: 14
  ident: b9
  article-title: Forecasting volatility of the US oil market
  publication-title: J. Bank. Financ.
– volume: 34
  start-page: 1644
  year: 2022
  end-page: 1660
  ident: b8
  article-title: Improving sales forecasting accuracy: A tensor factorization approach with demand awareness
  publication-title: INFORMS J. Comput.
– volume: 9
  year: 1996
  ident: b44
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 228
  year: 2021
  ident: b31
  article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 1509
  year: 2009
  ident: b21
  article-title: Forecasting gold prices using multiple linear regression method
  publication-title: Am. J. Appl. Sci.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b25
  article-title: Deep learning
  publication-title: nature
– volume: 77
  start-page: 92
  year: 2015
  end-page: 102
  ident: b11
  article-title: A combination method for interval forecasting of agricultural commodity futures prices
  publication-title: Knowl.-Based Syst.
– volume: 131
  year: 2022
  ident: b17
  article-title: A framework based on heterogeneous ensemble models for liquid steel temperature prediction in LF refining process
  publication-title: Appl. Soft Comput.
– volume: 191
  year: 2021
  ident: b30
  article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms
  publication-title: Comput. Electron. Agric.
– volume: 34
  start-page: 1940
  year: 2022
  end-page: 1957
  ident: b7
  article-title: Inductive representation learning on dynamic stock co-movement graphs for stock predictions
  publication-title: INFORMS J. Comput.
– volume: 38
  start-page: 944
  year: 2022
  end-page: 969
  ident: b64
  article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals
  publication-title: Int. J. Forecast.
– reference: S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim, R.M. Patton, Optimizing deep learning hyper-parameters through an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, 2015, pp. 1–5.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b19
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 90
  year: 2020
  ident: b1
  article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019
  publication-title: Appl. Soft Comput.
– volume: 112
  start-page: 245
  year: 2016
  end-page: 253
  ident: b41
  article-title: An ICA-based support vector regression scheme for forecasting crude oil prices
  publication-title: Technol. Forecast. Soc. Change
– volume: 81
  start-page: 1109
  year: 2019
  end-page: 1120
  ident: b63
  article-title: Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches
  publication-title: Energy Econ.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b43
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– start-page: 2113
  year: 2015
  end-page: 2122
  ident: b36
  article-title: Gradient-based hyperparameter optimization through reversible learning
  publication-title: International Conference on Machine Learning
– volume: 612
  start-page: 553
  year: 2022
  end-page: 562
  ident: b6
  article-title: A novel network-based and divergence-based time series forecasting method
  publication-title: Inform. Sci.
– volume: 170
  year: 2023
  ident: b27
  article-title: Effective air pollution prediction by combining time series decomposition with stacking and bagging ensembles of evolving spiking neural networks
  publication-title: Environ. Model. Softw.
– year: 1999
  ident: b23
  article-title: The Nature of Statistical Learning Theory
– volume: 54
  start-page: 23
  year: 2017
  end-page: 45
  ident: b48
  article-title: On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms
  publication-title: Appl. Soft Comput.
– volume: 236
  year: 2024
  ident: b5
  article-title: Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
– volume: 13
  year: 2012
  ident: b34
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 612
  start-page: 994
  year: 2022
  end-page: 1023
  ident: b40
  article-title: Effective machine learning model combination based on selective ensemble strategy for time series forecasting
  publication-title: Inform. Sci.
– volume: 39
  start-page: 814
  year: 2006
  end-page: 819
  ident: b45
  article-title: A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification
  publication-title: IFAC Proc.
– volume: 17
  year: 2023
  ident: b28
  article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 303
  year: 2021
  ident: b47
  article-title: A novel method for online real-time forecasting of crude oil price
  publication-title: Appl. Energy
– volume: 54
  start-page: 97
  year: 2019
  end-page: 117
  ident: b52
  article-title: Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?
  publication-title: J. Empir. Financ.
– year: 2018
  ident: b4
  article-title: Forecasting: Principles and Practice
– volume: 12
  year: 2017
  ident: b10
  article-title: Forecasting of oil and agricultural commodity prices: VARMA versus ARMA
  publication-title: Ann. Financ. Econ.
– volume: 109
  year: 2021
  ident: b62
  article-title: Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees
  publication-title: Appl. Soft Comput.
– volume: 60
  start-page: 1772
  year: 2014
  end-page: 1791
  ident: b51
  article-title: Forecasting the equity risk premium: the role of technical indicators
  publication-title: Manage. Sci.
– volume: 30
  start-page: 825
  year: 2014
  end-page: 843
  ident: b59
  article-title: Forecasting commodity price indexes using macroeconomic and financial predictors
  publication-title: Int. J. Forecast.
– volume: 213
  year: 2021
  ident: b13
  article-title: A new crude oil price forecasting model based on variational mode decomposition
  publication-title: Knowl.-Based Syst.
– volume: 25
  year: 2012
  ident: b35
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 79
  start-page: 453
  year: 2011
  end-page: 497
  ident: b46
  article-title: The model confidence set
  publication-title: Econometrica
– volume: 29
  start-page: 309
  year: 2001
  end-page: 317
  ident: b32
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
– volume: 173
  year: 2021
  ident: b14
  article-title: A novel multiscale forecasting model for crude oil price time series
  publication-title: Technol. Forecast. Soc. Change
– year: 2016
  ident: b33
  article-title: An overview of gradient descent optimization algorithms
– volume: 97
  year: 2021
  ident: b55
  article-title: Bond yield and crude oil prices predictability
  publication-title: Energy Econ.
– volume: 102
  start-page: 43
  year: 2019
  end-page: 58
  ident: b56
  article-title: Oil price increases and the predictability of equity premium
  publication-title: J. Bank. Financ.
– volume: 59
  year: 2022
  ident: b38
  article-title: Demand forecasting model using hotel clustering findings for hospitality industry
  publication-title: Inf. Process. Manage.
– volume: 46
  year: 2022
  ident: b60
  article-title: Forecasting directional movements of stock prices for intraday trading using LSTM and random forests
  publication-title: Finance Res. Lett.
– volume: 64
  year: 2023
  ident: b61
  article-title: A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction
  publication-title: Res. Int. Bus. Finance
– start-page: 115
  year: 2002
  end-page: 122
  ident: b18
  article-title: Feature selection for clustering-a filter solution
  publication-title: 2002 IEEE International Conference on Data Mining, 2002. Proceedings
– volume: 109
  year: 2021
  ident: b49
  article-title: Prediction and analysis of train arrival delay based on xgboost and Bayesian optimization
  publication-title: Appl. Soft Comput.
– volume: 35
  start-page: 1533
  year: 2019
  end-page: 1547
  ident: b42
  article-title: Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO
  publication-title: Int. J. Forecast.
– volume: 21
  start-page: 1509
  year: 2008
  end-page: 1531
  ident: b50
  article-title: Predicting excess stock returns out of sample: Can anything beat the historical average?
  publication-title: Rev. Financ. Stud.
– year: 2009
  ident: b22
  article-title: Neural Networks and Learning Machines
– volume: 9
  start-page: 3
  year: 2021
  end-page: 21
  ident: b3
  article-title: Deep learning for time series forecasting: a survey
  publication-title: Big Data
– volume: 32
  start-page: 2199
  year: 2018
  end-page: 2212
  ident: b26
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 15
  start-page: 486
  year: 2023
  ident: b29
  article-title: Modeling potential evapotranspiration by improved machine learning methods using limited climatic data
  publication-title: Water
– volume: 182
  year: 2022
  ident: b65
  article-title: Climate policy uncertainty and world renewable energy index volatility forecasting
  publication-title: Technol. Forecast. Soc. Change
– volume: 103
  start-page: 1449
  year: 2015
  end-page: 1477
  ident: b20
  article-title: Multimodal data fusion: an overview of methods, challenges, and prospects
  publication-title: Proc. IEEE
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b15
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b24
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 39
  start-page: 486
  year: 2023
  end-page: 502
  ident: b39
  article-title: Forecasting crude oil market volatility using variable selection and common factor
  publication-title: Int. J. Forecast.
– volume: 30
  start-page: 326
  year: 2012
  end-page: 336
  ident: b54
  article-title: Real-time forecasts of the real price of oil
  publication-title: J. Bus. Econom. Statist.
– volume: 55
  start-page: 869
  year: 2014
  end-page: 889
  ident: b53
  article-title: What central bankers need to know about forecasting oil prices
  publication-title: Internat. Econom. Rev.
– year: 2023
  ident: b12
  article-title: Time series and regression methods for univariate environmental forecasting: An empirical evaluation
  publication-title: Sci. Total Environ.
– year: 2022
  ident: b2
  article-title: Forecasting crude oil futures market returns: A principal component analysis combination approach
  publication-title: Int. J. Forecast.
– volume: 68
  start-page: 77
  year: 2017
  end-page: 88
  ident: b57
  article-title: Influential factors in crude oil price forecasting
  publication-title: Energy Econ.
– volume: 77
  year: 2022
  ident: b58
  article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method
  publication-title: Resour. Policy
– volume: 17
  start-page: 26
  year: 2019
  end-page: 40
  ident: b16
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– volume: 25
  year: 2012
  ident: 10.1016/j.asoc.2024.111362_b35
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.asoc.2024.111362_b33
– year: 1999
  ident: 10.1016/j.asoc.2024.111362_b23
– volume: 97
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b55
  article-title: Bond yield and crude oil prices predictability
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105205
– volume: 68
  start-page: 77
  year: 2017
  ident: 10.1016/j.asoc.2024.111362_b57
  article-title: Influential factors in crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.09.010
– volume: 77
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b58
  article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2022.102656
– volume: 12
  issue: 03
  year: 2017
  ident: 10.1016/j.asoc.2024.111362_b10
  article-title: Forecasting of oil and agricultural commodity prices: VARMA versus ARMA
  publication-title: Ann. Financ. Econ.
  doi: 10.1142/S2010495217500129
– volume: 15
  start-page: 486
  issue: 3
  year: 2023
  ident: 10.1016/j.asoc.2024.111362_b29
  article-title: Modeling potential evapotranspiration by improved machine learning methods using limited climatic data
  publication-title: Water
  doi: 10.3390/w15030486
– volume: 47
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2024.111362_b9
  article-title: Forecasting volatility of the US oil market
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2014.05.026
– year: 2022
  ident: 10.1016/j.asoc.2024.111362_b2
  article-title: Forecasting crude oil futures market returns: A principal component analysis combination approach
  publication-title: Int. J. Forecast.
– start-page: 115
  year: 2002
  ident: 10.1016/j.asoc.2024.111362_b18
  article-title: Feature selection for clustering-a filter solution
– volume: 54
  start-page: 97
  year: 2019
  ident: 10.1016/j.asoc.2024.111362_b52
  article-title: Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2019.08.007
– volume: 46
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b60
  article-title: Forecasting directional movements of stock prices for intraday trading using LSTM and random forests
  publication-title: Finance Res. Lett.
  doi: 10.1016/j.frl.2021.102280
– volume: 34
  start-page: 1940
  issue: 4
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b7
  article-title: Inductive representation learning on dynamic stock co-movement graphs for stock predictions
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2022.1172
– volume: 228
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b31
  article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107297
– volume: 29
  start-page: 309
  issue: 4
  year: 2001
  ident: 10.1016/j.asoc.2024.111362_b32
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 55
  start-page: 869
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2024.111362_b53
  article-title: What central bankers need to know about forecasting oil prices
  publication-title: Internat. Econom. Rev.
  doi: 10.1111/iere.12074
– volume: 6
  start-page: 1509
  issue: 8
  year: 2009
  ident: 10.1016/j.asoc.2024.111362_b21
  article-title: Forecasting gold prices using multiple linear regression method
  publication-title: Am. J. Appl. Sci.
  doi: 10.3844/ajassp.2009.1509.1514
– volume: 612
  start-page: 994
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b40
  article-title: Effective machine learning model combination based on selective ensemble strategy for time series forecasting
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.09.002
– volume: 32
  start-page: 2199
  year: 2018
  ident: 10.1016/j.asoc.2024.111362_b26
  article-title: Monthly runoff forecasting based on LSTM–ALO model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1560-y
– year: 2009
  ident: 10.1016/j.asoc.2024.111362_b22
– volume: 79
  start-page: 453
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2024.111362_b46
  article-title: The model confidence set
  publication-title: Econometrica
  doi: 10.3982/ECTA5771
– volume: 9
  year: 1996
  ident: 10.1016/j.asoc.2024.111362_b44
  article-title: Support vector regression machines
– volume: 112
  start-page: 245
  year: 2016
  ident: 10.1016/j.asoc.2024.111362_b41
  article-title: An ICA-based support vector regression scheme for forecasting crude oil prices
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2016.04.027
– volume: 90
  year: 2020
  ident: 10.1016/j.asoc.2024.111362_b1
  article-title: Financial time series forecasting with deep learning: A systematic literature review: 2005–2019
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106181
– volume: 35
  start-page: 1533
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2024.111362_b42
  article-title: Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.02.001
– volume: 30
  start-page: 825
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2024.111362_b59
  article-title: Forecasting commodity price indexes using macroeconomic and financial predictors
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2013.09.003
– volume: 9
  start-page: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b3
  article-title: Deep learning for time series forecasting: a survey
  publication-title: Big Data
  doi: 10.1089/big.2020.0159
– volume: 303
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b47
  article-title: A novel method for online real-time forecasting of crude oil price
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117588
– start-page: 1189
  year: 2001
  ident: 10.1016/j.asoc.2024.111362_b43
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 60
  start-page: 1772
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2024.111362_b51
  article-title: Forecasting the equity risk premium: the role of technical indicators
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.2013.1838
– volume: 38
  start-page: 944
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b64
  article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.07.005
– volume: 39
  start-page: 486
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111362_b39
  article-title: Forecasting crude oil market volatility using variable selection and common factor
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.12.013
– volume: 131
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b17
  article-title: A framework based on heterogeneous ensemble models for liquid steel temperature prediction in LF refining process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109724
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2024.111362_b16
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– year: 2023
  ident: 10.1016/j.asoc.2024.111362_b12
  article-title: Time series and regression methods for univariate environmental forecasting: An empirical evaluation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.162580
– volume: 30
  start-page: 326
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2024.111362_b54
  article-title: Real-time forecasts of the real price of oil
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1080/07350015.2011.648859
– volume: 612
  start-page: 553
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b6
  article-title: A novel network-based and divergence-based time series forecasting method
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.08.120
– ident: 10.1016/j.asoc.2024.111362_b37
  doi: 10.1145/2834892.2834896
– volume: 191
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b30
  article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106541
– volume: 182
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b65
  article-title: Climate policy uncertainty and world renewable energy index volatility forecasting
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2022.121810
– volume: 109
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b49
  article-title: Prediction and analysis of train arrival delay based on xgboost and Bayesian optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107538
– volume: 109
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b62
  article-title: Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107472
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.asoc.2024.111362_b24
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2024.111362_b34
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 102
  start-page: 43
  year: 2019
  ident: 10.1016/j.asoc.2024.111362_b56
  article-title: Oil price increases and the predictability of equity premium
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2019.03.009
– year: 2018
  ident: 10.1016/j.asoc.2024.111362_b4
– volume: 173
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b14
  article-title: A novel multiscale forecasting model for crude oil price time series
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.121181
– volume: 103
  start-page: 1449
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2024.111362_b20
  article-title: Multimodal data fusion: an overview of methods, challenges, and prospects
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2460697
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.asoc.2024.111362_b25
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111362_b28
  article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 81
  start-page: 1109
  year: 2019
  ident: 10.1016/j.asoc.2024.111362_b63
  article-title: Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2019.05.018
– volume: 64
  year: 2023
  ident: 10.1016/j.asoc.2024.111362_b61
  article-title: A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction
  publication-title: Res. Int. Bus. Finance
  doi: 10.1016/j.ribaf.2022.101829
– volume: 34
  start-page: 1644
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b8
  article-title: Improving sales forecasting accuracy: A tensor factorization approach with demand awareness
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2021.1147
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.asoc.2024.111362_b19
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– start-page: 2113
  year: 2015
  ident: 10.1016/j.asoc.2024.111362_b36
  article-title: Gradient-based hyperparameter optimization through reversible learning
– volume: 39
  start-page: 814
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2024.111362_b45
  article-title: A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification
  publication-title: IFAC Proc.
– volume: 213
  year: 2021
  ident: 10.1016/j.asoc.2024.111362_b13
  article-title: A new crude oil price forecasting model based on variational mode decomposition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106669
– volume: 59
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111362_b38
  article-title: Demand forecasting model using hotel clustering findings for hospitality industry
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2021.102816
– volume: 21
  start-page: 1509
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2024.111362_b50
  article-title: Predicting excess stock returns out of sample: Can anything beat the historical average?
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhm055
– volume: 236
  year: 2024
  ident: 10.1016/j.asoc.2024.111362_b5
  article-title: Effective LSTMs with seasonal-trend decomposition and adaptive learning and niching-based backtracking search algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121202
– volume: 77
  start-page: 92
  year: 2015
  ident: 10.1016/j.asoc.2024.111362_b11
  article-title: A combination method for interval forecasting of agricultural commodity futures prices
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.01.002
– volume: 170
  year: 2023
  ident: 10.1016/j.asoc.2024.111362_b27
  article-title: Effective air pollution prediction by combining time series decomposition with stacking and bagging ensembles of evolving spiking neural networks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2023.105851
– volume: 54
  start-page: 23
  year: 2017
  ident: 10.1016/j.asoc.2024.111362_b48
  article-title: On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.011
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.asoc.2024.111362_b15
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
SSID ssj0016928
Score 2.5692468
Snippet Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111362
SubjectTerms Economic value
Hyper-parameter optimization
Machine learning
Modeling efficiency
Time series forecasting
Title Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting
URI https://dx.doi.org/10.1016/j.asoc.2024.111362
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3Wdvsbh7rrRRrfBVRC72FTXYXKjYtacWbv92dZFMUpAdPIckMhJnJPJZvZhA6D6wVCd9IYhQNCdeKkVRIRXTAjAiFzjiFBufHYRCP-N3YHzdQv-6FAVil8_2VTy-9tXvScdLszCeTzoutPCIueAAoSI8FMBOU8xCs_PJrBfPwAlHuVwViAtSucabCeEkrAVsjUg6egwX07-D0I-AMdtCWyxRxr_qYXdTQ-R7arrcwYPdT7qP8ppgoXFkshmNVLPFneeCpFdZFMSswBC9QwBWObdlZEJj3PQUcDJ5ZjzF1rZjYAGk9gQPD1nkMBqoX8EZncgEQ6QM0Gly_9mPitiiQjHG-JJLRlNqqSGeBlFzZ_E8YzzCrA22zayuwbqQ8mTIlIq4NE1HIZMppN8xCqzU_ZIeomc9yfYRwyqTwbf0XSa04M0yyjKrIwIh6bTOvbgt5tfiSzI0Yh00X70mNJXtLQOQJiDypRN5CFyueeTVgYy21X2sl-WUmiY0Aa_iO_8l3gjbhrgKdnaLmsvjQZzYLWabt0szaaKPXf354guvtfTz8BmbM3rc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sANRduaNG24TROjY48LIHGr0iaRhmBD3RB_n3hNJ5AQB66NLVW260f62Qa4Es6KZGgVtTqIKDea0UwqTY1gVkbS5DzABufxRCRP_P45fK5Br-qFQVil9_2lT195a_-k5aXZep9OWw-u8oi55AJRkB0m-AY0cDpVWIdGdzBMJuufCUKuVqwiPUUG3ztTwryUE4IrEwOOzoOJ4Pf49C3m9Hdh2yeLpFu-zx7UzGwfdqpFDMR_lwcwuyummpRGS_BmlSjyubrzNJqYopgXBOMX6uCGJK7yLCiO_H5DKAyZO6fx5rsxiUXSaggHwcXzBG3ULPDE5GqBKOlDeOrfPvYS6hcp0JxxvqSKBVngCiOTC6W4dimgtB3LnBqMS7B5JNqx7qiMaRlzY5mMI6YyHrSjPHKKCyN2BPXZfGaOgWRMydCVgLEymjPLFMsDHVucUm9c8tVuQqcSX5r7KeO47OI1reBkLymKPEWRp6XIm3C95nkvZ2z8SR1WWkl_WErqgsAffCf_5LuEzeRxPEpHg8nwFLbwpMSgnUF9WXyYc5eULLMLb3RfFhDf0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grid+search+with+a+weighted+error+function%3A+Hyper-parameter+optimization+for+financial+time+series+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yuan&rft.au=Zhang%2C+Weiguo&rft.au=Liu%2C+Xiufeng&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=154&rft_id=info:doi/10.1016%2Fj.asoc.2024.111362&rft.externalDocID=S1568494624001364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon