De novo assembly of human genome at single-cell levels

Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect ha...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 13; pp. 7479 - 7492
Main Authors Xie, Haoling, Li, Wen, Hu, Yuqiong, Yang, Cheng, Lu, Jiansen, Guo, Yuqing, Wen, Lu, Tang, Fuchou
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.07.2022
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkac586

Cover

Loading…
Abstract Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.
AbstractList Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.
Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.
Author Yang, Cheng
Lu, Jiansen
Xie, Haoling
Tang, Fuchou
Hu, Yuqiong
Wen, Lu
Guo, Yuqing
Li, Wen
Author_xml – sequence: 1
  givenname: Haoling
  surname: Xie
  fullname: Xie, Haoling
– sequence: 2
  givenname: Wen
  surname: Li
  fullname: Li, Wen
– sequence: 3
  givenname: Yuqiong
  surname: Hu
  fullname: Hu, Yuqiong
– sequence: 4
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
– sequence: 5
  givenname: Jiansen
  surname: Lu
  fullname: Lu, Jiansen
– sequence: 6
  givenname: Yuqing
  surname: Guo
  fullname: Guo, Yuqing
– sequence: 7
  givenname: Lu
  orcidid: 0000-0002-1773-1876
  surname: Wen
  fullname: Wen, Lu
– sequence: 8
  givenname: Fuchou
  orcidid: 0000-0002-8625-7717
  surname: Tang
  fullname: Tang, Fuchou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35819189$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYNU7ENX7mWWgozNa9JkI0h9QsGNrkMmc6cdzSR1Mi303zulrai4uov7nXO49wxRzwcPCJ0TfE2wYmNvmvH8w9hMiiM0IEzQlCtBe2iAGc5Sgrnso2GM7xgTTjJ-gvosk0QRqQZI3EHiwzokJkaoc7dJQpksVrXxyRx8qCExbRIrP3eQWnAucbAGF0_RcWlchLP9HKG3h_vX6VM6e3l8nt7OUss4b1OVE8FzqqAojZ2UdMJKrASxnBaZEqZQNKc5MEGAgcW5ZKIURALLJjbLARdshG52vstVXkNhwbeNcXrZVLVpNjqYSv_e-Gqh52GtFcOMEd4ZXO4NmvC5gtjquorbQ4yHsIqaCimzCcZUdujFz6zvkMOzOoDsANuEGBsota1a01ZhG105TbDeFqK7QvS-kE5z9UdzsP2P_gLOaY6b
CitedBy_id crossref_primary_10_3389_fgene_2022_1100016
crossref_primary_10_1186_s13059_023_02995_w
crossref_primary_10_1186_s12864_025_11423_1
crossref_primary_10_1093_nargab_lqae047
crossref_primary_10_1016_j_csbj_2023_03_038
crossref_primary_10_1146_annurev_genet_022123_110824
crossref_primary_10_1038_s41421_023_00638_9
crossref_primary_10_3390_ijms25105089
crossref_primary_10_1038_s41467_023_40898_3
crossref_primary_10_1186_s12859_023_05499_3
crossref_primary_10_1038_s41592_023_01978_w
crossref_primary_10_1038_s41467_024_49992_6
crossref_primary_10_1186_s13059_024_03423_3
crossref_primary_10_1093_nar_gkad532
crossref_primary_10_1093_gpbjnl_qzae024
crossref_primary_10_1016_j_compbiomed_2023_107680
crossref_primary_10_1093_nar_gkae1294
crossref_primary_10_1016_j_mam_2024_101255
Cites_doi 10.3390/cancers11040528
10.1186/s13059-021-02396-x
10.1038/nmeth.1628
10.1038/nrmicro2857
10.1371/journal.pone.0044196
10.1186/s13059-017-1311-2
10.1038/nbt.4060
10.1101/2022.03.06.483034
10.1038/nmeth.1315
10.1111/cas.14112
10.1038/s41586-020-2547-7
10.1038/s41586-021-03420-7
10.1016/S0145-2126(00)00125-9
10.1093/jhered/esab031
10.1038/nbt.1966
10.1038/s41586-021-03836-1
10.1016/j.isci.2021.102290
10.1007/s10549-015-3610-1
10.1038/s41467-020-18564-9
10.1111/age.13060
10.1093/bioinformatics/btaa025
10.1038/s42003-021-02559-3
10.1038/nmeth.3865
10.1093/bioinformatics/bty191
10.1038/s41586-021-03477-4
10.1089/cmb.2012.0021
10.1016/j.gde.2009.12.002
10.1093/bioinformatics/bts174
10.1126/science.aab1785
10.1016/j.cell.2019.01.022
10.1016/j.pbi.2017.02.002
10.1126/science.aab4082
10.1038/s41592-019-0669-3
10.3389/fgene.2015.00267
10.1101/gr.097261.109
10.1038/s41592-020-01056-5
10.1038/s41587-019-0072-8
10.1073/pnas.1315370110
10.1038/s41586-021-03451-0
10.1038/s41586-021-03822-7
10.1080/13816810.2017.1323341
10.1101/gr.263566.120
10.1186/s13059-021-02406-y
10.1101/gr.221184.117
10.1126/science.aao3791
10.1186/s13059-020-02134-9
10.1038/s41467-020-20236-7
10.1093/molbev/msab199
10.1038/nbt.4277
10.1042/ETLS20160028
10.1093/bioinformatics/btaa680
10.1101/2021.05.26.445798
10.1534/g3.114.015784
10.1016/j.ccell.2020.09.015
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac586
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 7492
ExternalDocumentID PMC9303314
35819189
10_1093_nar_gkac586
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 2018YFA0107601
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c344t-9b164b29edfac7f273f0961c42d596ad92b2be361e3ec0b836f618e357c5be0d3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:30:33 EDT 2025
Fri Jul 11 13:06:50 EDT 2025
Mon Jul 21 06:00:40 EDT 2025
Tue Jul 01 02:59:16 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-9b164b29edfac7f273f0961c42d596ad92b2be361e3ec0b836f618e357c5be0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0002-1773-1876
0000-0002-8625-7717
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac586
PMID 35819189
PQID 2688570028
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303314
proquest_miscellaneous_2688570028
pubmed_primary_35819189
crossref_citationtrail_10_1093_nar_gkac586
crossref_primary_10_1093_nar_gkac586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chitsaz (2022072200022851900_B53) 2011; 29
Abascal (2022072200022851900_B15) 2021; 593
Naumann (2022072200022851900_B41) 2001; 25
Chen (2022072200022851900_B45) 2021; 12
Ciobanu (2022072200022851900_B25) 2021; 24
Lee (2022072200022851900_B20) 2015; 154
Fan (2022072200022851900_B33) 2021; 22
Ludwig (2022072200022851900_B24) 2019; 176
Rhie (2022072200022851900_B38) 2020; 21
Jarvis (2022072200022851900_B8) 2022
Belser (2022072200022851900_B5) 2021; 4
Rhie (2022072200022851900_B7) 2021; 592
Bian (2022072200022851900_B16) 2018; 362
Zafar (2022072200022851900_B23) 2017; 18
Peng (2022072200022851900_B54) 2012; 28
Nurk (2022072200022851900_B37) 2020; 30
Tang (2022072200022851900_B17) 2009; 6
Maheswaran (2022072200022851900_B18) 2010; 20
Kage (2022072200022851900_B19) 2019; 110
Chin (2022072200022851900_B44) 2020; 11
Fitz-gibbon (2022072200022851900_B42) 2014; 133
Lodato (2022072200022851900_B22) 2015; 350
Ruan (2022072200022851900_B35) 2020; 17
Li (2022072200022851900_B52) 2019; 11
Merabet (2022072200022851900_B51) 2015; 6
Logsdon (2022072200022851900_B4) 2021; 593
Lin (2022072200022851900_B9) 2021; 22
Nattestad (2022072200022851900_B56) 2021; 37
Li (2022072200022851900_B29) 2010; 20
Miga (2022072200022851900_B3) 2020; 585
Sjodin (2022072200022851900_B31) 2021; 112
Martincorena (2022072200022851900_B13) 2015; 349
Kolmogorov (2022072200022851900_B46) 2019; 37
Guan (2022072200022851900_B34) 2020; 36
Lasken (2022072200022851900_B27) 2012; 10
Li (2022072200022851900_B11) 2021; 597
Peterson (2022072200022851900_B21) 2013; 110
Luo (2022072200022851900_B55) 2012; 4
Nurk (2022072200022851900_B6) 2021
Engreitz (2022072200022851900_B49) 2012; 7
Mostovoy (2022072200022851900_B30) 2016; 13
Brandt (2022072200022851900_B40) 2015; 5
Zhou (2022072200022851900_B12) 2020; 38
Bowers (2022072200022851900_B26) 2017; 1
Koren (2022072200022851900_B43) 2018; 36
Dobson (2022072200022851900_B32) 2021; 52
Bankevich (2022072200022851900_B28) 2012; 19
Moore (2022072200022851900_B14) 2021; 597
Cheng (2022072200022851900_B36) 2021; 18
Tyson (2022072200022851900_B2) 2018; 28
Li (2022072200022851900_B47) 2018; 34
Jain (2022072200022851900_B1) 2018; 36
Mucciolo (2022072200022851900_B50) 2018; 39
Manni (2022072200022851900_B39) 2021; 38
Wang (2022072200022851900_B48) 2011; 8
Jiao (2022072200022851900_B10) 2017; 36
References_xml – volume: 11
  start-page: 528
  year: 2019
  ident: 2022072200022851900_B52
  article-title: The role of hox transcription factors in cancer predisposition and progression
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11040528
– volume: 22
  start-page: 175
  year: 2021
  ident: 2022072200022851900_B9
  article-title: Chromosome-level genome assembly of a regenerable maize inbred line A188
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02396-x
– volume: 8
  start-page: 652
  year: 2011
  ident: 2022072200022851900_B48
  article-title: CREST maps somatic structural variation in cancer genomes with base-pair resolution
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1628
– volume: 10
  start-page: 631
  year: 2012
  ident: 2022072200022851900_B27
  article-title: Genomic sequencing of uncultured microorganisms from single cells
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2857
– volume: 7
  start-page: e44196
  year: 2012
  ident: 2022072200022851900_B49
  article-title: Three-Dimensional genome architecture influences partner selection for chromosomal translocations in human disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044196
– volume: 18
  start-page: 178
  year: 2017
  ident: 2022072200022851900_B23
  article-title: SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1311-2
– volume: 36
  start-page: 338
  year: 2018
  ident: 2022072200022851900_B1
  article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4060
– year: 2022
  ident: 2022072200022851900_B8
  article-title: Automated assembly of high-quality diploid human reference genomes
  doi: 10.1101/2022.03.06.483034
– volume: 6
  start-page: 377
  year: 2009
  ident: 2022072200022851900_B17
  article-title: mRNA-Seq whole-transcriptome analysis of a single cell
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1315
– volume: 110
  start-page: 2652
  year: 2019
  ident: 2022072200022851900_B19
  article-title: Small lung tumor biopsy samples are feasible for high quality targeted next generation sequencing
  publication-title: Cancer Sci
  doi: 10.1111/cas.14112
– volume: 585
  start-page: 79
  year: 2020
  ident: 2022072200022851900_B3
  article-title: Telomere-to-telomere assembly of a complete human X chromosome
  publication-title: Nature
  doi: 10.1038/s41586-020-2547-7
– volume: 593
  start-page: 101
  year: 2021
  ident: 2022072200022851900_B4
  article-title: The structure, function and evolution of a complete human chromosome 8
  publication-title: Nature
  doi: 10.1038/s41586-021-03420-7
– volume: 25
  start-page: 313
  year: 2001
  ident: 2022072200022851900_B41
  article-title: Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization
  publication-title: Leuk. Res.
  doi: 10.1016/S0145-2126(00)00125-9
– volume: 112
  start-page: 549
  year: 2021
  ident: 2022072200022851900_B31
  article-title: Chromosome-level reference genome assembly for the American Pika (Ochotona princeps)
  publication-title: J. Hered.
  doi: 10.1093/jhered/esab031
– volume: 29
  start-page: 915
  year: 2011
  ident: 2022072200022851900_B53
  article-title: Efficient de novo assembly of single-cell bacterial genomes from short-read data sets
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1966
– volume: 597
  start-page: 398
  year: 2021
  ident: 2022072200022851900_B11
  article-title: A body map of somatic mutagenesis in morphologically normal human tissues
  publication-title: Nature
  doi: 10.1038/s41586-021-03836-1
– volume: 24
  start-page: 102290
  year: 2021
  ident: 2022072200022851900_B25
  article-title: A single-cell genomics pipeline for environmental microbial eukaryotes
  publication-title: Iscience
  doi: 10.1016/j.isci.2021.102290
– volume: 154
  start-page: 339
  year: 2015
  ident: 2022072200022851900_B20
  article-title: Detection of cerebrospinal fluid tumor cells and its clinical relevance in leptomeningeal metastasis of breast cancer
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-015-3610-1
– volume: 133
  start-page: 2152
  year: 2014
  ident: 2022072200022851900_B42
  article-title: Highly multiplexed targeted DNA sequencing from single nuclei
  publication-title: Nat. Protoc.
– volume: 11
  start-page: 4794
  year: 2020
  ident: 2022072200022851900_B44
  article-title: A diploid assembly-based benchmark for variants in the major histocompatibility complex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18564-9
– volume: 52
  start-page: 263
  year: 2021
  ident: 2022072200022851900_B32
  article-title: De novo assembly and annotation of the North American bison (Bison bison) reference genome and subsequent variant identification
  publication-title: Anim. Genet.
  doi: 10.1111/age.13060
– volume: 36
  start-page: 2896
  year: 2020
  ident: 2022072200022851900_B34
  article-title: Identifying and removing haplotypic duplication in primary genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa025
– volume: 4
  start-page: 1047
  year: 2021
  ident: 2022072200022851900_B5
  article-title: Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02559-3
– volume: 13
  start-page: 587
  year: 2016
  ident: 2022072200022851900_B30
  article-title: A hybrid approach for de novo human genome sequence assembly and phasing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3865
– volume: 34
  start-page: 3094
  year: 2018
  ident: 2022072200022851900_B47
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 4
  start-page: 1
  year: 2012
  ident: 2022072200022851900_B55
  article-title: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler
  publication-title: Gigascience
– volume: 593
  start-page: 405
  year: 2021
  ident: 2022072200022851900_B15
  article-title: Somatic mutation landscapes at single-molecule resolution
  publication-title: Nature
  doi: 10.1038/s41586-021-03477-4
– volume: 19
  start-page: 455
  year: 2012
  ident: 2022072200022851900_B28
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2012.0021
– volume: 20
  start-page: 96
  year: 2010
  ident: 2022072200022851900_B18
  article-title: Circulating tumor cells: a window into cancer biology and metastasis
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2009.12.002
– volume: 28
  start-page: 1420
  year: 2012
  ident: 2022072200022851900_B54
  article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts174
– volume: 350
  start-page: 94
  year: 2015
  ident: 2022072200022851900_B22
  article-title: Somatic mutation in single human neurons tracks developmental and transcriptional history
  publication-title: Science
  doi: 10.1126/science.aab1785
– volume: 176
  start-page: 1325
  year: 2019
  ident: 2022072200022851900_B24
  article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.022
– volume: 36
  start-page: 64
  year: 2017
  ident: 2022072200022851900_B10
  article-title: The impact of third generation genomic technologies on plant genome assembly
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.02.002
– volume: 349
  start-page: 1483
  year: 2015
  ident: 2022072200022851900_B13
  article-title: Somatic mutation in cancer and normal cells
  publication-title: Science
  doi: 10.1126/science.aab4082
– volume: 17
  start-page: 155
  year: 2020
  ident: 2022072200022851900_B35
  article-title: Fast and accurate long-read assembly with wtdbg2
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0669-3
– volume: 6
  start-page: 267
  year: 2015
  ident: 2022072200022851900_B51
  article-title: The TALE face of Hox proteins in animal evolution
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00267
– volume: 20
  start-page: 265
  year: 2010
  ident: 2022072200022851900_B29
  article-title: De novo assembly of human genomes with massively parallel short read sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.097261.109
– volume: 18
  start-page: 170
  year: 2021
  ident: 2022072200022851900_B36
  article-title: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01056-5
– volume: 37
  start-page: 540
  year: 2019
  ident: 2022072200022851900_B46
  article-title: Assembly of long, error-prone reads using repeat graphs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0072-8
– volume: 110
  start-page: E4978
  year: 2013
  ident: 2022072200022851900_B21
  article-title: Ascites analysis by a microfluidic chip allows tumor-cell profiling
  publication-title: Proc. Natl. Acad. Sci. U.SA.
  doi: 10.1073/pnas.1315370110
– volume: 592
  start-page: 737
  year: 2021
  ident: 2022072200022851900_B7
  article-title: Towards complete and error-free genome assemblies of all vertebrate species
  publication-title: Nature
  doi: 10.1038/s41586-021-03451-0
– volume: 597
  start-page: 381
  year: 2021
  ident: 2022072200022851900_B14
  article-title: The mutational landscape of human somatic and germline cells
  publication-title: Nature
  doi: 10.1038/s41586-021-03822-7
– volume: 39
  start-page: 137
  year: 2018
  ident: 2022072200022851900_B50
  article-title: A novel GRK1 mutation in an Italian patient with Oguchi disease
  publication-title: Ophthalmic Genet
  doi: 10.1080/13816810.2017.1323341
– volume: 30
  start-page: 1291
  year: 2020
  ident: 2022072200022851900_B37
  article-title: HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads
  publication-title: Genome Res
  doi: 10.1101/gr.263566.120
– volume: 22
  start-page: 195
  year: 2021
  ident: 2022072200022851900_B33
  article-title: SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02406-y
– volume: 28
  start-page: 266
  year: 2018
  ident: 2022072200022851900_B2
  article-title: MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome
  publication-title: Genome Res.
  doi: 10.1101/gr.221184.117
– volume: 362
  start-page: 1060
  year: 2018
  ident: 2022072200022851900_B16
  article-title: Single-cell multiomics sequencing and analyses of human colorectal cancer
  publication-title: Science
  doi: 10.1126/science.aao3791
– volume: 21
  start-page: 245
  year: 2020
  ident: 2022072200022851900_B38
  article-title: Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02134-9
– volume: 12
  start-page: 60
  year: 2021
  ident: 2022072200022851900_B45
  article-title: Efficient assembly of nanopore reads via highly accurate and intact error correction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20236-7
– volume: 38
  start-page: 4647
  year: 2021
  ident: 2022072200022851900_B39
  article-title: BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msab199
– volume: 36
  start-page: 1174
  year: 2018
  ident: 2022072200022851900_B43
  article-title: De novo assembly of haplotype-resolved genomes with trio binning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4277
– volume: 1
  start-page: 249
  year: 2017
  ident: 2022072200022851900_B26
  article-title: Analysis of single-cell genome sequences of bacteria and archaea
  publication-title: Emerg. Top. Life Sci.
  doi: 10.1042/ETLS20160028
– volume: 37
  start-page: 413
  year: 2021
  ident: 2022072200022851900_B56
  article-title: Ribbon: intuitive visualization for complex genomic variation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa680
– year: 2021
  ident: 2022072200022851900_B6
  article-title: The complete sequence of a human genome
  doi: 10.1101/2021.05.26.445798
– volume: 5
  start-page: 931
  year: 2015
  ident: 2022072200022851900_B40
  article-title: Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 genomes project phase I data
  publication-title: G3 Genes Genomes Genet.
  doi: 10.1534/g3.114.015784
– volume: 38
  start-page: 818
  year: 2020
  ident: 2022072200022851900_B12
  article-title: Single-Cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.09.015
SSID ssj0014154
Score 2.4957943
Snippet Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7479
SubjectTerms Chromosome Mapping
Genome, Human
Genomics
High-Throughput Nucleotide Sequencing - methods
Humans
Nanopores
Sequence Analysis, DNA - methods
Title De novo assembly of human genome at single-cell levels
URI https://www.ncbi.nlm.nih.gov/pubmed/35819189
https://www.proquest.com/docview/2688570028
https://pubmed.ncbi.nlm.nih.gov/PMC9303314
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQkGAviG3AysdkpIkHqmxJnDjx49RtqpAYPHSiPEWx42wTbTJYisT--t3ZTpqyPsBeospxY9l3Pt-d735HyH7IYqGiUHlgXCReVAgOe05ITNRliueJ7xcG7fOMj8-jT9N4ugwdMtkljTxQt2vzSh5CVWgDumKW7H9QtvsoNMBvoC88gcLw_CcaH-thVf-uh6AA67mcmctyW3QPoVfnGjMV0Rcw0x466IczjBC66eujZwhnjJCt6qrAC4SebwuoMLWXF-McK_tcdLE7JgDg2zKHbLwwgnzxEyba9fruHNGjS-0anW8hNHGoYc8SXZ-z2BNRzOCYWqzMA21FqMnDEqsy1oLLtrzEehITzBnRO32TyJbGuyfZLepVhVHnpxc_chVbBO0ela_nhswI6CaCVCwPuC7s8OvnkYAjm2Hh88ch2BVY8mLyZdpdO4E2Y_HG3LRcQieMfQgjH7pxN8mTdpBVbeaeifJ3pG1PdZk8J8-czUGPLANtkUe62iY7R1Xe1PM_9AM1UcDmemWbPB21FQB3CD_WFPmLtvxF65Ia_qKWv2je0B5_UctfL8j56clkNPZcnQ1PsShqPCHBZpah0EWZq6QEhbbEQkCwhYtY8LwQoQylZjzQTCtfpoyXPEg1ixMVS-0X7CXZqOpK7xJaBrlSXARSpuh4wRrDQvtRkANXgGHiD8jHdr0y5UDosRbKLLPBECyDdc7cOg_Iftf52mKvrO_2vl34DBYI55tXul7cZCFPTf2GMB2QV5YQ3YdaCg5IskKirgPirq--qa4uDf6646HXD_7nG7K53G1vyUbza6HfgW7byD3jE9ozXHkH7u6nng
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+assembly+of+human+genome+at+single-cell+levels&rft.jtitle=Nucleic+acids+research&rft.au=Xie%2C+Haoling&rft.au=Li%2C+Wen&rft.au=Hu%2C+Yuqiong&rft.au=Yang%2C+Cheng&rft.date=2022-07-22&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=13&rft.spage=7479&rft.epage=7492&rft_id=info:doi/10.1093%2Fnar%2Fgkac586&rft_id=info%3Apmid%2F35819189&rft.externalDocID=PMC9303314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon