De novo assembly of human genome at single-cell levels
Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect ha...
Saved in:
Published in | Nucleic acids research Vol. 50; no. 13; pp. 7479 - 7492 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkac586 |
Cover
Loading…
Abstract | Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly. |
---|---|
AbstractList | Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly. Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly. |
Author | Yang, Cheng Lu, Jiansen Xie, Haoling Tang, Fuchou Hu, Yuqiong Wen, Lu Guo, Yuqing Li, Wen |
Author_xml | – sequence: 1 givenname: Haoling surname: Xie fullname: Xie, Haoling – sequence: 2 givenname: Wen surname: Li fullname: Li, Wen – sequence: 3 givenname: Yuqiong surname: Hu fullname: Hu, Yuqiong – sequence: 4 givenname: Cheng surname: Yang fullname: Yang, Cheng – sequence: 5 givenname: Jiansen surname: Lu fullname: Lu, Jiansen – sequence: 6 givenname: Yuqing surname: Guo fullname: Guo, Yuqing – sequence: 7 givenname: Lu orcidid: 0000-0002-1773-1876 surname: Wen fullname: Wen, Lu – sequence: 8 givenname: Fuchou orcidid: 0000-0002-8625-7717 surname: Tang fullname: Tang, Fuchou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35819189$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYNU7ENX7mWWgozNa9JkI0h9QsGNrkMmc6cdzSR1Mi303zulrai4uov7nXO49wxRzwcPCJ0TfE2wYmNvmvH8w9hMiiM0IEzQlCtBe2iAGc5Sgrnso2GM7xgTTjJ-gvosk0QRqQZI3EHiwzokJkaoc7dJQpksVrXxyRx8qCExbRIrP3eQWnAucbAGF0_RcWlchLP9HKG3h_vX6VM6e3l8nt7OUss4b1OVE8FzqqAojZ2UdMJKrASxnBaZEqZQNKc5MEGAgcW5ZKIURALLJjbLARdshG52vstVXkNhwbeNcXrZVLVpNjqYSv_e-Gqh52GtFcOMEd4ZXO4NmvC5gtjquorbQ4yHsIqaCimzCcZUdujFz6zvkMOzOoDsANuEGBsota1a01ZhG105TbDeFqK7QvS-kE5z9UdzsP2P_gLOaY6b |
CitedBy_id | crossref_primary_10_3389_fgene_2022_1100016 crossref_primary_10_1186_s13059_023_02995_w crossref_primary_10_1186_s12864_025_11423_1 crossref_primary_10_1093_nargab_lqae047 crossref_primary_10_1016_j_csbj_2023_03_038 crossref_primary_10_1146_annurev_genet_022123_110824 crossref_primary_10_1038_s41421_023_00638_9 crossref_primary_10_3390_ijms25105089 crossref_primary_10_1038_s41467_023_40898_3 crossref_primary_10_1186_s12859_023_05499_3 crossref_primary_10_1038_s41592_023_01978_w crossref_primary_10_1038_s41467_024_49992_6 crossref_primary_10_1186_s13059_024_03423_3 crossref_primary_10_1093_nar_gkad532 crossref_primary_10_1093_gpbjnl_qzae024 crossref_primary_10_1016_j_compbiomed_2023_107680 crossref_primary_10_1093_nar_gkae1294 crossref_primary_10_1016_j_mam_2024_101255 |
Cites_doi | 10.3390/cancers11040528 10.1186/s13059-021-02396-x 10.1038/nmeth.1628 10.1038/nrmicro2857 10.1371/journal.pone.0044196 10.1186/s13059-017-1311-2 10.1038/nbt.4060 10.1101/2022.03.06.483034 10.1038/nmeth.1315 10.1111/cas.14112 10.1038/s41586-020-2547-7 10.1038/s41586-021-03420-7 10.1016/S0145-2126(00)00125-9 10.1093/jhered/esab031 10.1038/nbt.1966 10.1038/s41586-021-03836-1 10.1016/j.isci.2021.102290 10.1007/s10549-015-3610-1 10.1038/s41467-020-18564-9 10.1111/age.13060 10.1093/bioinformatics/btaa025 10.1038/s42003-021-02559-3 10.1038/nmeth.3865 10.1093/bioinformatics/bty191 10.1038/s41586-021-03477-4 10.1089/cmb.2012.0021 10.1016/j.gde.2009.12.002 10.1093/bioinformatics/bts174 10.1126/science.aab1785 10.1016/j.cell.2019.01.022 10.1016/j.pbi.2017.02.002 10.1126/science.aab4082 10.1038/s41592-019-0669-3 10.3389/fgene.2015.00267 10.1101/gr.097261.109 10.1038/s41592-020-01056-5 10.1038/s41587-019-0072-8 10.1073/pnas.1315370110 10.1038/s41586-021-03451-0 10.1038/s41586-021-03822-7 10.1080/13816810.2017.1323341 10.1101/gr.263566.120 10.1186/s13059-021-02406-y 10.1101/gr.221184.117 10.1126/science.aao3791 10.1186/s13059-020-02134-9 10.1038/s41467-020-20236-7 10.1093/molbev/msab199 10.1038/nbt.4277 10.1042/ETLS20160028 10.1093/bioinformatics/btaa680 10.1101/2021.05.26.445798 10.1534/g3.114.015784 10.1016/j.ccell.2020.09.015 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkac586 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 7492 |
ExternalDocumentID | PMC9303314 35819189 10_1093_nar_gkac586 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 2018YFA0107601 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c344t-9b164b29edfac7f273f0961c42d596ad92b2be361e3ec0b836f618e357c5be0d3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:30:33 EDT 2025 Fri Jul 11 13:06:50 EDT 2025 Mon Jul 21 06:00:40 EDT 2025 Tue Jul 01 02:59:16 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-9b164b29edfac7f273f0961c42d596ad92b2be361e3ec0b836f618e357c5be0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0002-1773-1876 0000-0002-8625-7717 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkac586 |
PMID | 35819189 |
PQID | 2688570028 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303314 proquest_miscellaneous_2688570028 pubmed_primary_35819189 crossref_citationtrail_10_1093_nar_gkac586 crossref_primary_10_1093_nar_gkac586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-22 |
PublicationDateYYYYMMDD | 2022-07-22 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Chitsaz (2022072200022851900_B53) 2011; 29 Abascal (2022072200022851900_B15) 2021; 593 Naumann (2022072200022851900_B41) 2001; 25 Chen (2022072200022851900_B45) 2021; 12 Ciobanu (2022072200022851900_B25) 2021; 24 Lee (2022072200022851900_B20) 2015; 154 Fan (2022072200022851900_B33) 2021; 22 Ludwig (2022072200022851900_B24) 2019; 176 Rhie (2022072200022851900_B38) 2020; 21 Jarvis (2022072200022851900_B8) 2022 Belser (2022072200022851900_B5) 2021; 4 Rhie (2022072200022851900_B7) 2021; 592 Bian (2022072200022851900_B16) 2018; 362 Zafar (2022072200022851900_B23) 2017; 18 Peng (2022072200022851900_B54) 2012; 28 Nurk (2022072200022851900_B37) 2020; 30 Tang (2022072200022851900_B17) 2009; 6 Maheswaran (2022072200022851900_B18) 2010; 20 Kage (2022072200022851900_B19) 2019; 110 Chin (2022072200022851900_B44) 2020; 11 Fitz-gibbon (2022072200022851900_B42) 2014; 133 Lodato (2022072200022851900_B22) 2015; 350 Ruan (2022072200022851900_B35) 2020; 17 Li (2022072200022851900_B52) 2019; 11 Merabet (2022072200022851900_B51) 2015; 6 Logsdon (2022072200022851900_B4) 2021; 593 Lin (2022072200022851900_B9) 2021; 22 Nattestad (2022072200022851900_B56) 2021; 37 Li (2022072200022851900_B29) 2010; 20 Miga (2022072200022851900_B3) 2020; 585 Sjodin (2022072200022851900_B31) 2021; 112 Martincorena (2022072200022851900_B13) 2015; 349 Kolmogorov (2022072200022851900_B46) 2019; 37 Guan (2022072200022851900_B34) 2020; 36 Lasken (2022072200022851900_B27) 2012; 10 Li (2022072200022851900_B11) 2021; 597 Peterson (2022072200022851900_B21) 2013; 110 Luo (2022072200022851900_B55) 2012; 4 Nurk (2022072200022851900_B6) 2021 Engreitz (2022072200022851900_B49) 2012; 7 Mostovoy (2022072200022851900_B30) 2016; 13 Brandt (2022072200022851900_B40) 2015; 5 Zhou (2022072200022851900_B12) 2020; 38 Bowers (2022072200022851900_B26) 2017; 1 Koren (2022072200022851900_B43) 2018; 36 Dobson (2022072200022851900_B32) 2021; 52 Bankevich (2022072200022851900_B28) 2012; 19 Moore (2022072200022851900_B14) 2021; 597 Cheng (2022072200022851900_B36) 2021; 18 Tyson (2022072200022851900_B2) 2018; 28 Li (2022072200022851900_B47) 2018; 34 Jain (2022072200022851900_B1) 2018; 36 Mucciolo (2022072200022851900_B50) 2018; 39 Manni (2022072200022851900_B39) 2021; 38 Wang (2022072200022851900_B48) 2011; 8 Jiao (2022072200022851900_B10) 2017; 36 |
References_xml | – volume: 11 start-page: 528 year: 2019 ident: 2022072200022851900_B52 article-title: The role of hox transcription factors in cancer predisposition and progression publication-title: Cancers (Basel) doi: 10.3390/cancers11040528 – volume: 22 start-page: 175 year: 2021 ident: 2022072200022851900_B9 article-title: Chromosome-level genome assembly of a regenerable maize inbred line A188 publication-title: Genome Biol doi: 10.1186/s13059-021-02396-x – volume: 8 start-page: 652 year: 2011 ident: 2022072200022851900_B48 article-title: CREST maps somatic structural variation in cancer genomes with base-pair resolution publication-title: Nat. Methods doi: 10.1038/nmeth.1628 – volume: 10 start-page: 631 year: 2012 ident: 2022072200022851900_B27 article-title: Genomic sequencing of uncultured microorganisms from single cells publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2857 – volume: 7 start-page: e44196 year: 2012 ident: 2022072200022851900_B49 article-title: Three-Dimensional genome architecture influences partner selection for chromosomal translocations in human disease publication-title: PLoS One doi: 10.1371/journal.pone.0044196 – volume: 18 start-page: 178 year: 2017 ident: 2022072200022851900_B23 article-title: SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models publication-title: Genome Biol doi: 10.1186/s13059-017-1311-2 – volume: 36 start-page: 338 year: 2018 ident: 2022072200022851900_B1 article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – year: 2022 ident: 2022072200022851900_B8 article-title: Automated assembly of high-quality diploid human reference genomes doi: 10.1101/2022.03.06.483034 – volume: 6 start-page: 377 year: 2009 ident: 2022072200022851900_B17 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat. Methods doi: 10.1038/nmeth.1315 – volume: 110 start-page: 2652 year: 2019 ident: 2022072200022851900_B19 article-title: Small lung tumor biopsy samples are feasible for high quality targeted next generation sequencing publication-title: Cancer Sci doi: 10.1111/cas.14112 – volume: 585 start-page: 79 year: 2020 ident: 2022072200022851900_B3 article-title: Telomere-to-telomere assembly of a complete human X chromosome publication-title: Nature doi: 10.1038/s41586-020-2547-7 – volume: 593 start-page: 101 year: 2021 ident: 2022072200022851900_B4 article-title: The structure, function and evolution of a complete human chromosome 8 publication-title: Nature doi: 10.1038/s41586-021-03420-7 – volume: 25 start-page: 313 year: 2001 ident: 2022072200022851900_B41 article-title: Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization publication-title: Leuk. Res. doi: 10.1016/S0145-2126(00)00125-9 – volume: 112 start-page: 549 year: 2021 ident: 2022072200022851900_B31 article-title: Chromosome-level reference genome assembly for the American Pika (Ochotona princeps) publication-title: J. Hered. doi: 10.1093/jhered/esab031 – volume: 29 start-page: 915 year: 2011 ident: 2022072200022851900_B53 article-title: Efficient de novo assembly of single-cell bacterial genomes from short-read data sets publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1966 – volume: 597 start-page: 398 year: 2021 ident: 2022072200022851900_B11 article-title: A body map of somatic mutagenesis in morphologically normal human tissues publication-title: Nature doi: 10.1038/s41586-021-03836-1 – volume: 24 start-page: 102290 year: 2021 ident: 2022072200022851900_B25 article-title: A single-cell genomics pipeline for environmental microbial eukaryotes publication-title: Iscience doi: 10.1016/j.isci.2021.102290 – volume: 154 start-page: 339 year: 2015 ident: 2022072200022851900_B20 article-title: Detection of cerebrospinal fluid tumor cells and its clinical relevance in leptomeningeal metastasis of breast cancer publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-015-3610-1 – volume: 133 start-page: 2152 year: 2014 ident: 2022072200022851900_B42 article-title: Highly multiplexed targeted DNA sequencing from single nuclei publication-title: Nat. Protoc. – volume: 11 start-page: 4794 year: 2020 ident: 2022072200022851900_B44 article-title: A diploid assembly-based benchmark for variants in the major histocompatibility complex publication-title: Nat. Commun. doi: 10.1038/s41467-020-18564-9 – volume: 52 start-page: 263 year: 2021 ident: 2022072200022851900_B32 article-title: De novo assembly and annotation of the North American bison (Bison bison) reference genome and subsequent variant identification publication-title: Anim. Genet. doi: 10.1111/age.13060 – volume: 36 start-page: 2896 year: 2020 ident: 2022072200022851900_B34 article-title: Identifying and removing haplotypic duplication in primary genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa025 – volume: 4 start-page: 1047 year: 2021 ident: 2022072200022851900_B5 article-title: Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing publication-title: Commun. Biol. doi: 10.1038/s42003-021-02559-3 – volume: 13 start-page: 587 year: 2016 ident: 2022072200022851900_B30 article-title: A hybrid approach for de novo human genome sequence assembly and phasing publication-title: Nat. Methods doi: 10.1038/nmeth.3865 – volume: 34 start-page: 3094 year: 2018 ident: 2022072200022851900_B47 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 4 start-page: 1 year: 2012 ident: 2022072200022851900_B55 article-title: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler publication-title: Gigascience – volume: 593 start-page: 405 year: 2021 ident: 2022072200022851900_B15 article-title: Somatic mutation landscapes at single-molecule resolution publication-title: Nature doi: 10.1038/s41586-021-03477-4 – volume: 19 start-page: 455 year: 2012 ident: 2022072200022851900_B28 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing publication-title: J. Comput. Biol. doi: 10.1089/cmb.2012.0021 – volume: 20 start-page: 96 year: 2010 ident: 2022072200022851900_B18 article-title: Circulating tumor cells: a window into cancer biology and metastasis publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2009.12.002 – volume: 28 start-page: 1420 year: 2012 ident: 2022072200022851900_B54 article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – volume: 350 start-page: 94 year: 2015 ident: 2022072200022851900_B22 article-title: Somatic mutation in single human neurons tracks developmental and transcriptional history publication-title: Science doi: 10.1126/science.aab1785 – volume: 176 start-page: 1325 year: 2019 ident: 2022072200022851900_B24 article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics publication-title: Cell doi: 10.1016/j.cell.2019.01.022 – volume: 36 start-page: 64 year: 2017 ident: 2022072200022851900_B10 article-title: The impact of third generation genomic technologies on plant genome assembly publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.02.002 – volume: 349 start-page: 1483 year: 2015 ident: 2022072200022851900_B13 article-title: Somatic mutation in cancer and normal cells publication-title: Science doi: 10.1126/science.aab4082 – volume: 17 start-page: 155 year: 2020 ident: 2022072200022851900_B35 article-title: Fast and accurate long-read assembly with wtdbg2 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 6 start-page: 267 year: 2015 ident: 2022072200022851900_B51 article-title: The TALE face of Hox proteins in animal evolution publication-title: Front. Genet. doi: 10.3389/fgene.2015.00267 – volume: 20 start-page: 265 year: 2010 ident: 2022072200022851900_B29 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res doi: 10.1101/gr.097261.109 – volume: 18 start-page: 170 year: 2021 ident: 2022072200022851900_B36 article-title: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm publication-title: Nat. Methods doi: 10.1038/s41592-020-01056-5 – volume: 37 start-page: 540 year: 2019 ident: 2022072200022851900_B46 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 110 start-page: E4978 year: 2013 ident: 2022072200022851900_B21 article-title: Ascites analysis by a microfluidic chip allows tumor-cell profiling publication-title: Proc. Natl. Acad. Sci. U.SA. doi: 10.1073/pnas.1315370110 – volume: 592 start-page: 737 year: 2021 ident: 2022072200022851900_B7 article-title: Towards complete and error-free genome assemblies of all vertebrate species publication-title: Nature doi: 10.1038/s41586-021-03451-0 – volume: 597 start-page: 381 year: 2021 ident: 2022072200022851900_B14 article-title: The mutational landscape of human somatic and germline cells publication-title: Nature doi: 10.1038/s41586-021-03822-7 – volume: 39 start-page: 137 year: 2018 ident: 2022072200022851900_B50 article-title: A novel GRK1 mutation in an Italian patient with Oguchi disease publication-title: Ophthalmic Genet doi: 10.1080/13816810.2017.1323341 – volume: 30 start-page: 1291 year: 2020 ident: 2022072200022851900_B37 article-title: HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads publication-title: Genome Res doi: 10.1101/gr.263566.120 – volume: 22 start-page: 195 year: 2021 ident: 2022072200022851900_B33 article-title: SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform publication-title: Genome Biol doi: 10.1186/s13059-021-02406-y – volume: 28 start-page: 266 year: 2018 ident: 2022072200022851900_B2 article-title: MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome publication-title: Genome Res. doi: 10.1101/gr.221184.117 – volume: 362 start-page: 1060 year: 2018 ident: 2022072200022851900_B16 article-title: Single-cell multiomics sequencing and analyses of human colorectal cancer publication-title: Science doi: 10.1126/science.aao3791 – volume: 21 start-page: 245 year: 2020 ident: 2022072200022851900_B38 article-title: Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies publication-title: Genome Biol doi: 10.1186/s13059-020-02134-9 – volume: 12 start-page: 60 year: 2021 ident: 2022072200022851900_B45 article-title: Efficient assembly of nanopore reads via highly accurate and intact error correction publication-title: Nat. Commun. doi: 10.1038/s41467-020-20236-7 – volume: 38 start-page: 4647 year: 2021 ident: 2022072200022851900_B39 article-title: BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msab199 – volume: 36 start-page: 1174 year: 2018 ident: 2022072200022851900_B43 article-title: De novo assembly of haplotype-resolved genomes with trio binning publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4277 – volume: 1 start-page: 249 year: 2017 ident: 2022072200022851900_B26 article-title: Analysis of single-cell genome sequences of bacteria and archaea publication-title: Emerg. Top. Life Sci. doi: 10.1042/ETLS20160028 – volume: 37 start-page: 413 year: 2021 ident: 2022072200022851900_B56 article-title: Ribbon: intuitive visualization for complex genomic variation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa680 – year: 2021 ident: 2022072200022851900_B6 article-title: The complete sequence of a human genome doi: 10.1101/2021.05.26.445798 – volume: 5 start-page: 931 year: 2015 ident: 2022072200022851900_B40 article-title: Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 genomes project phase I data publication-title: G3 Genes Genomes Genet. doi: 10.1534/g3.114.015784 – volume: 38 start-page: 818 year: 2020 ident: 2022072200022851900_B12 article-title: Single-Cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.09.015 |
SSID | ssj0014154 |
Score | 2.4957943 |
Snippet | Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7479 |
SubjectTerms | Chromosome Mapping Genome, Human Genomics High-Throughput Nucleotide Sequencing - methods Humans Nanopores Sequence Analysis, DNA - methods |
Title | De novo assembly of human genome at single-cell levels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35819189 https://www.proquest.com/docview/2688570028 https://pubmed.ncbi.nlm.nih.gov/PMC9303314 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQkGAviG3AysdkpIkHqmxJnDjx49RtqpAYPHSiPEWx42wTbTJYisT--t3ZTpqyPsBeospxY9l3Pt-d735HyH7IYqGiUHlgXCReVAgOe05ITNRliueJ7xcG7fOMj8-jT9N4ugwdMtkljTxQt2vzSh5CVWgDumKW7H9QtvsoNMBvoC88gcLw_CcaH-thVf-uh6AA67mcmctyW3QPoVfnGjMV0Rcw0x466IczjBC66eujZwhnjJCt6qrAC4SebwuoMLWXF-McK_tcdLE7JgDg2zKHbLwwgnzxEyba9fruHNGjS-0anW8hNHGoYc8SXZ-z2BNRzOCYWqzMA21FqMnDEqsy1oLLtrzEehITzBnRO32TyJbGuyfZLepVhVHnpxc_chVbBO0ela_nhswI6CaCVCwPuC7s8OvnkYAjm2Hh88ch2BVY8mLyZdpdO4E2Y_HG3LRcQieMfQgjH7pxN8mTdpBVbeaeifJ3pG1PdZk8J8-czUGPLANtkUe62iY7R1Xe1PM_9AM1UcDmemWbPB21FQB3CD_WFPmLtvxF65Ia_qKWv2je0B5_UctfL8j56clkNPZcnQ1PsShqPCHBZpah0EWZq6QEhbbEQkCwhYtY8LwQoQylZjzQTCtfpoyXPEg1ixMVS-0X7CXZqOpK7xJaBrlSXARSpuh4wRrDQvtRkANXgGHiD8jHdr0y5UDosRbKLLPBECyDdc7cOg_Iftf52mKvrO_2vl34DBYI55tXul7cZCFPTf2GMB2QV5YQ3YdaCg5IskKirgPirq--qa4uDf6646HXD_7nG7K53G1vyUbza6HfgW7byD3jE9ozXHkH7u6nng |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+assembly+of+human+genome+at+single-cell+levels&rft.jtitle=Nucleic+acids+research&rft.au=Xie%2C+Haoling&rft.au=Li%2C+Wen&rft.au=Hu%2C+Yuqiong&rft.au=Yang%2C+Cheng&rft.date=2022-07-22&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=13&rft.spage=7479&rft.epage=7492&rft_id=info:doi/10.1093%2Fnar%2Fgkac586&rft_id=info%3Apmid%2F35819189&rft.externalDocID=PMC9303314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |