An Extension of the Stefan-Type Solution Method Applicable to Multi-component, Multi-phase 1D Systems
We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl– H 2 O -saturated hydrothermal heat pipe. For this example, three mathematical models are constructe...
Saved in:
Published in | Transport in porous media Vol. 117; no. 3; pp. 415 - 441 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0169-3913 1573-1634 |
DOI | 10.1007/s11242-017-0840-1 |
Cover
Abstract | We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl–
H
2
O
-saturated hydrothermal heat pipe. For this example, three mathematical models are constructed. The first two models concern the rate of progression of two interfaces, one separating brine from two-phase fluid and another separating two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows that the layer may reach quasi-steady-state thickness even while the salt content of the layer continues to increase; the two-phase layer model shows how variable heat flux at the top of the layer leads to departure from the linear growth rate predicted by a simpler model. The third model concerns the temperature profile in the entire column. The governing advection–diffusion equation has highly variable coefficients, with no negligible terms in it in the region of parameter space considered. We present a method to solve this type of equation by constructing a propagator and a corresponding Green’s function. Finally, we show how to use the developed framework to test the internal consistency of numerical simulations, again using the 1D heat pipe as an example. |
---|---|
AbstractList | We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl–H2O-saturated hydrothermal heat pipe. For this example, three mathematical models are constructed. The first two models concern the rate of progression of two interfaces, one separating brine from two-phase fluid and another separating two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows that the layer may reach quasi-steady-state thickness even while the salt content of the layer continues to increase; the two-phase layer model shows how variable heat flux at the top of the layer leads to departure from the linear growth rate predicted by a simpler model. The third model concerns the temperature profile in the entire column. The governing advection–diffusion equation has highly variable coefficients, with no negligible terms in it in the region of parameter space considered. We present a method to solve this type of equation by constructing a propagator and a corresponding Green’s function. Finally, we show how to use the developed framework to test the internal consistency of numerical simulations, again using the 1D heat pipe as an example. We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl– H 2 O -saturated hydrothermal heat pipe. For this example, three mathematical models are constructed. The first two models concern the rate of progression of two interfaces, one separating brine from two-phase fluid and another separating two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows that the layer may reach quasi-steady-state thickness even while the salt content of the layer continues to increase; the two-phase layer model shows how variable heat flux at the top of the layer leads to departure from the linear growth rate predicted by a simpler model. The third model concerns the temperature profile in the entire column. The governing advection–diffusion equation has highly variable coefficients, with no negligible terms in it in the region of parameter space considered. We present a method to solve this type of equation by constructing a propagator and a corresponding Green’s function. Finally, we show how to use the developed framework to test the internal consistency of numerical simulations, again using the 1D heat pipe as an example. We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl– H 2 O -saturated hydrothermal heat pipe. For this example, three mathematical models are constructed. The first two models concern the rate of progression of two interfaces, one separating brine from two-phase fluid and another separating two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows that the layer may reach quasi-steady-state thickness even while the salt content of the layer continues to increase; the two-phase layer model shows how variable heat flux at the top of the layer leads to departure from the linear growth rate predicted by a simpler model. The third model concerns the temperature profile in the entire column. The governing advection–diffusion equation has highly variable coefficients, with no negligible terms in it in the region of parameter space considered. We present a method to solve this type of equation by constructing a propagator and a corresponding Green’s function. Finally, we show how to use the developed framework to test the internal consistency of numerical simulations, again using the 1D heat pipe as an example. |
Author | Miele, Sean Coakley, Samuel Lewis, K. C. |
Author_xml | – sequence: 1 givenname: K. C. surname: Lewis fullname: Lewis, K. C. email: klewis@monmouth.edu organization: Monmouth University – sequence: 2 givenname: Samuel surname: Coakley fullname: Coakley, Samuel organization: Rutgers University – sequence: 3 givenname: Sean surname: Miele fullname: Miele, Sean organization: Monmouth University |
BookMark | eNp9kMtOwzAQRS1UJNrCB7CzxBbD-BEnWVZQHlIrFi1ry0kcGpTaIXYl-vc4ahcIia488twzMzoTNLLOGoSuKdxRgPTeU8oEI0BTApkAQs_QmCYpJ1RyMUJjoDInPKf8Ak28_wSIVCbGyMwsnn8HY33jLHY1DhuDV8HU2pL1vou1a3dh6C1N2LgKz7qubUpdtAYHh5e7NjSkdNsunmPD7fGj22hvMH3Eq70PZusv0XmtW2-uju8UvT_N1w8vZPH2_PowW5CSCxFIrivgRiYFMKiSUjKd67SAnFNgBYDUkFZFWXAh00xWiSnqKmEZ5KySTAIkfIpuDnO73n3tjA_q0-16G1cqFjckIirJT6VoliUiy4QYUukhVfbO-97UqmyCHlSEXjetoqAG8-pgXkXzajCvaCTpH7Lrm63u9ycZdmB8zNoP0_-66V_oB4GqlWo |
CitedBy_id | crossref_primary_10_1007_s11242_022_01812_5 crossref_primary_10_1007_s11242_018_1172_5 |
Cites_doi | 10.1016/j.epsl.2015.05.047 10.1002/ggge.20249 10.1029/JB086iB10p09433 10.1029/96JB00091 10.1007/s11242-014-0379-3 10.1029/98JB01515 10.1002/2013EO070004 10.1146/annurev.earth.24.1.191 10.1126/science.203.4385.1073 10.1016/0016-7037(90)90048-P 10.1002/jgrb.50158 10.1007/s11242-013-0171-9 10.1002/0470047429 10.1016/0017-9310(95)00128-V 10.1016/S0012-821X(97)00059-9 10.1016/j.dsr2.2015.05.005 10.1029/2008JB006029 10.2478/s13533-011-0053-z 10.1029/2011JF002284 10.1029/2008JB006030 10.1029/2002GL016176 10.1016/j.epsl.2011.12.037 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2017 Copyright Springer Science & Business Media 2017 Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2017 – notice: Copyright Springer Science & Business Media 2017 – notice: Transport in Porous Media is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11242-017-0840-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-1634 |
EndPage | 441 |
ExternalDocumentID | 10_1007_s11242_017_0840_1 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PDBOC PF- PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK6 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z8M Z8N Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z ZMTXR ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c344t-9ad03e65b020d5c62a9a7b093102b006a07dbcb346786d5ebfd528092d6260053 |
IEDL.DBID | U2A |
ISSN | 0169-3913 |
IngestDate | Fri Jul 25 10:02:28 EDT 2025 Fri Jul 25 10:56:44 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Fri Feb 21 02:36:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Hydrothermal systems Stefan problem Heat pipe Analytic solutions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-9ad03e65b020d5c62a9a7b093102b006a07dbcb346786d5ebfd528092d6260053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2344541579 |
PQPubID | 2043596 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2344541579 proquest_journals_1885488449 crossref_citationtrail_10_1007_s11242_017_0840_1 crossref_primary_10_1007_s11242_017_0840_1 springer_journals_10_1007_s11242_017_0840_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Transport in porous media |
PublicationTitleAbbrev | Transp Porous Med |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Elderfield, Schultz (CR7) 1996; 24 Lowell, Houghton, Farough, Craft, Larson, Miele (CR15) 2015; 425 Stauffer, Lewis, Stein, Travis, Lichtner, Zyvoloski (CR20) 2014; 105 Lewis, Lowell (CR12) 2009 McGuinness (CR16) 1990; 14 Singh, Lowell, Lewis (CR19) 2013; 14 Von Damm (CR25) 2004 Corliss, Dymond, Gordon, Edmund, Von Herzen, Ballard, Green, Williams, Bainbridge, Crane, Van Andel (CR6) 1979; 203 Lewis (CR10) 2013; 94 Lewis, Zyvoloski, Travis, Wilson, Rowland (CR13) 2012 Berndt, Seyfried (CR3) 1990; 54 Straus, Schubert (CR24) 1981; 86 Lewis, Karra, Kelkar (CR14) 2013; 99 Preuss (CR18) 1985; 9 McGuinness (CR17) 1996; 39 CR27 Carslaw, Jaeger (CR4) 1959 Han, Lowell, Lewis (CR8) 2013; 118 Choi, Lowell (CR5) 2015; II Lewis, Lowell (CR11) 2009 Young (CR29) 1996; 101 Bayin (CR2) 2006 CR22 CR21 Xu, Lowell (CR28) 1998; 103 Von Damm, Buttermore, Oosting, Bray, Fornari, Lilley, Shanks (CR26) 1997; 149 Bai, Xu, Lowell (CR1) 2003 Hessler, Kaharl (CR9) 1995 Stein, Stein (CR23) 1995 PH Stauffer (840_CR20) 2014; 105 S Bayin (840_CR2) 2006 H Elderfield (840_CR7) 1996; 24 S Singh (840_CR19) 2013; 14 840_CR21 840_CR22 K Damm Von (840_CR26) 1997; 149 840_CR27 KC Lewis (840_CR10) 2013; 94 MJ McGuinness (840_CR17) 1996; 39 KC Lewis (840_CR12) 2009 MJ McGuinness (840_CR16) 1990; 14 KC Lewis (840_CR13) 2012 K Damm Von (840_CR25) 2004 W Bai (840_CR1) 2003 RR Hessler (840_CR9) 1995 HS Carslaw (840_CR4) 1959 JB Corliss (840_CR6) 1979; 203 W Xu (840_CR28) 1998; 103 M Berndt (840_CR3) 1990; 54 R Young (840_CR29) 1996; 101 RP Lowell (840_CR15) 2015; 425 K Preuss (840_CR18) 1985; 9 L Han (840_CR8) 2013; 118 KC Lewis (840_CR14) 2013; 99 KC Lewis (840_CR11) 2009 CA Stein (840_CR23) 1995 J Straus (840_CR24) 1981; 86 J Choi (840_CR5) 2015; II |
References_xml | – volume: 425 start-page: 145 year: 2015 end-page: 153 ident: CR15 article-title: Mathematical modeling of diffuse flow in seafloor hydrothermal systems: the potential extent of the subsurface biosphere at mid-ocean ridges publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.05.047 – year: 2004 ident: CR25 publication-title: Evolution of the Hydrothermal System at East Pacific Rise ’N: Geochemical Evidence for Changes in the Upper Oceanic Crust, Volume 148 of Geophysical Monograph Series – ident: CR22 – volume: 14 start-page: 4021 year: 2013 end-page: 4034 ident: CR19 article-title: Numerical modeling of phase separation at the Main Endeavour Field, Juan de Fuca Ridge publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/ggge.20249 – year: 2003 ident: CR1 article-title: The dynamics of submarine geothermal heat pipes publication-title: Geophys. Res. Lett. – volume: 86 start-page: 9433 year: 1981 end-page: 9438 ident: CR24 article-title: One-dimensional model of vapor-dominated geothermal systems publication-title: J. Geophys. Res. doi: 10.1029/JB086iB10p09433 – year: 1959 ident: CR4 publication-title: Conduction of Heat in Solids – volume: 101 start-page: 18011 year: 1996 end-page: 18022 ident: CR29 article-title: Phase transitions in one-dimensional steady state hydrothermal flows publication-title: J. Geophys. Res. doi: 10.1029/96JB00091 – volume: 105 start-page: 471 year: 2014 end-page: 485 ident: CR20 article-title: Joule–Thomson effects on the flow of liquid water publication-title: Transp. Porous Media doi: 10.1007/s11242-014-0379-3 – volume: 103 start-page: 20859 year: 1998 end-page: 20868 ident: CR28 article-title: Oscillatory instability of one-dimensional two-phase hydrothermal flow in heterogeneous porous media publication-title: J. Geophys. Res. doi: 10.1029/98JB01515 – year: 1995 ident: CR23 publication-title: Heat Flow and Hydrothermal Circulation, Volume 91 of Geophysical Monograph Series – volume: 94 start-page: 71 year: 2013 end-page: 72 ident: CR10 article-title: Forgotten merits of the analytic viewpoint publication-title: EOS doi: 10.1002/2013EO070004 – year: 2009 ident: CR11 article-title: Numerical modeling of two-phase flow in the NaCl- system I: introduction of a numerical method and benchmarking publication-title: J. Geophys. Res. – ident: CR27 – volume: 14 start-page: 1301 year: 1990 end-page: 1307 ident: CR16 article-title: Heat pipe stability in geothermal reservoirs publication-title: Trans. Geotherm. Resourc. Counc. – volume: 24 start-page: 191 year: 1996 end-page: 224 ident: CR7 article-title: Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.24.1.191 – ident: CR21 – volume: 203 start-page: 1073 year: 1979 end-page: 1089 ident: CR6 article-title: Submarine thermal springs on the Galapagos Rift publication-title: Science doi: 10.1126/science.203.4385.1073 – year: 1995 ident: CR9 publication-title: The Deep-Sea Hydrothermal Vent Community: An Overview, Volume 91 of Geophysical Monograph Series – volume: 54 start-page: 2235 year: 1990 end-page: 2245 ident: CR3 article-title: Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(90)90048-P – volume: 118 start-page: 2635 year: 2013 end-page: 2647 ident: CR8 article-title: Dynamics of two-phase hydrothermal systems at a surface pressure of 25 mPa publication-title: J. Geophys. Res. doi: 10.1002/jgrb.50158 – volume: 99 start-page: 17 year: 2013 end-page: 35 ident: CR14 article-title: A model for tracking fronts of stress induced permeability enhancement publication-title: Transp. Porous Media doi: 10.1007/s11242-013-0171-9 – year: 2006 ident: CR2 publication-title: Mathematical Methods in Science and Engineering doi: 10.1002/0470047429 – year: 2009 ident: CR12 article-title: Numerical modeling of two-phase flow in the NaCl- system II: applications publication-title: J. Geophys. Res. – volume: 39 start-page: 259 year: 1996 end-page: 274 ident: CR17 article-title: Steady solution selection and existence in geothermal heat pipes—1. The convective case publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00128-V – volume: 149 start-page: 101 year: 1997 end-page: 111 ident: CR26 article-title: Direct observation of the evolution of a seafloor “black smoker” from vapor to brine publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(97)00059-9 – year: 2012 ident: CR13 article-title: Drainage subsidence associated with arctic permafrost degradation publication-title: J. Geophys. Res. – volume: II start-page: 17 issue: 121 year: 2015 end-page: 30 ident: CR5 article-title: The response of two-phase hydrothermal systems to changing magmatic heat input at mid-ocean ridges publication-title: Deep Sea Res. doi: 10.1016/j.dsr2.2015.05.005 – volume: 9 start-page: 353 year: 1985 end-page: 361 ident: CR18 article-title: A quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rocks publication-title: Trans. Geotherm. Resour. Counc. – volume: 39 start-page: 259 year: 1996 ident: 840_CR17 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00128-V – volume: 118 start-page: 2635 year: 2013 ident: 840_CR8 publication-title: J. Geophys. Res. doi: 10.1002/jgrb.50158 – volume: 99 start-page: 17 year: 2013 ident: 840_CR14 publication-title: Transp. Porous Media doi: 10.1007/s11242-013-0171-9 – ident: 840_CR27 – volume: 14 start-page: 4021 year: 2013 ident: 840_CR19 publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/ggge.20249 – year: 2009 ident: 840_CR11 publication-title: J. Geophys. Res. doi: 10.1029/2008JB006029 – volume: 101 start-page: 18011 year: 1996 ident: 840_CR29 publication-title: J. Geophys. Res. doi: 10.1029/96JB00091 – volume-title: The Deep-Sea Hydrothermal Vent Community: An Overview, Volume 91 of Geophysical Monograph Series year: 1995 ident: 840_CR9 – volume: 94 start-page: 71 year: 2013 ident: 840_CR10 publication-title: EOS doi: 10.1002/2013EO070004 – volume: 9 start-page: 353 year: 1985 ident: 840_CR18 publication-title: Trans. Geotherm. Resour. Counc. – volume: 24 start-page: 191 year: 1996 ident: 840_CR7 publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.24.1.191 – ident: 840_CR21 doi: 10.2478/s13533-011-0053-z – volume-title: Mathematical Methods in Science and Engineering year: 2006 ident: 840_CR2 doi: 10.1002/0470047429 – year: 2012 ident: 840_CR13 publication-title: J. Geophys. Res. doi: 10.1029/2011JF002284 – volume: 103 start-page: 20859 year: 1998 ident: 840_CR28 publication-title: J. Geophys. Res. doi: 10.1029/98JB01515 – year: 2009 ident: 840_CR12 publication-title: J. Geophys. Res. doi: 10.1029/2008JB006030 – volume: II start-page: 17 issue: 121 year: 2015 ident: 840_CR5 publication-title: Deep Sea Res. doi: 10.1016/j.dsr2.2015.05.005 – volume: 203 start-page: 1073 year: 1979 ident: 840_CR6 publication-title: Science doi: 10.1126/science.203.4385.1073 – volume-title: Evolution of the Hydrothermal System at East Pacific Rise $$9^{\circ }50$$ year: 2004 ident: 840_CR25 – year: 2003 ident: 840_CR1 publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL016176 – volume-title: Conduction of Heat in Solids year: 1959 ident: 840_CR4 – volume-title: Heat Flow and Hydrothermal Circulation, Volume 91 of Geophysical Monograph Series year: 1995 ident: 840_CR23 – volume: 14 start-page: 1301 year: 1990 ident: 840_CR16 publication-title: Trans. Geotherm. Resourc. Counc. – volume: 149 start-page: 101 year: 1997 ident: 840_CR26 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(97)00059-9 – volume: 54 start-page: 2235 year: 1990 ident: 840_CR3 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(90)90048-P – volume: 425 start-page: 145 year: 2015 ident: 840_CR15 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.05.047 – ident: 840_CR22 doi: 10.1016/j.epsl.2011.12.037 – volume: 86 start-page: 9433 year: 1981 ident: 840_CR24 publication-title: J. Geophys. Res. doi: 10.1029/JB086iB10p09433 – volume: 105 start-page: 471 year: 2014 ident: 840_CR20 publication-title: Transp. Porous Media doi: 10.1007/s11242-014-0379-3 |
SSID | ssj0010084 |
Score | 2.1439178 |
Snippet | We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 415 |
SubjectTerms | Advection-diffusion equation Brines Civil Engineering Classical and Continuum Physics Computer simulation Earth and Environmental Science Earth Sciences Economic models Geotechnical Engineering & Applied Earth Sciences Green's functions Heat flux Heat pipes Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Mathematical models Multiphase Phase separation Saline water Seawater Temperature profiles Thickness |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyQxEC5cZVkvoq6y44scPK2G7fQzOYiMOiKCw-IDvDVJJ80epHvUFvz5VmU6ji7qtbvTgUqlHqnK9wHsitgQjFfNTSUkT22ec6ml4BZ9Sx3pyKSeReFinJ_dpOe32e0cjMNdGGqrDDbRG2rbVnRG_idOcBR6m0IdTu45sUZRdTVQaOieWsEeeIixb7CAJlmi3i8cjcZ_L1_rCgQfP0X7VjxRIgl1Tn-ZDl0dtSkUhHUacfHeU83Cz_8qpt4RnS7DUh9BsuF0yVdgzjWr8OM4ELetwnff1Vk9_gQ3bNjo2feotw1ra4bRHrvqXK0bTgkoC4di7MITSbPhtJxt7hzrWuYv53JqOm8b9E37_YPJP_R8TJywHu18DW5OR9fHZ7znVeAVCrHjStsocXlmMFS0WZXHWunCRAojvZh2oY4KayqToA2Vuc2cqW0Wy0jFlrIf3LXrMN_gxL-AmaIQVghNiW4q00TniXC1MMopqzBPH0AUZFhWPeg4cV_clTO4ZBJ7iWIvSeylGMDv1yGTKeLGVx9vhYUp-833WAopMQ-Taao-fD3TpAHshbV8M_qzuTa-_tkmLMZeeairZwvmu4cnt40BS2d2ei18AdL845U priority: 102 providerName: ProQuest |
Title | An Extension of the Stefan-Type Solution Method Applicable to Multi-component, Multi-phase 1D Systems |
URI | https://link.springer.com/article/10.1007/s11242-017-0840-1 https://www.proquest.com/docview/1885488449 https://www.proquest.com/docview/2344541579 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IfoifuJ0jjz4pAaaNm2Tx27uA2VD1IE-laRJ8UE6cRX8871krVNRwadCkzRwyeV-17v8DqET6itL45UTlVFOmI4iwiWnRINtyT3pKeaqKIwn0WjKLu_D--oe97zOdq9Dku6kXl52A1Nk0whiy0XqEXB5miG47lYbp37yETqwDPELQm9BAkGDOpT50ye-GqMlwvwWFHW2ZrCFNiuQiJPFqm6jFVPsoPVeXZttB625xM1svotMUuD-m0tDnxV4lmMAdPi2NLksiPUxcf3fC49drWicLCLW6sngcobd_Vti88pnBZif8-rF8yMYN0wvcEVovoemg_5db0Sq0gkkCxgriZDaC0wUKkCDOswiXwoZK08AmPOtokkv1ipTARyTPNKhUbkOfe4JX1sHBxRzHzUKmPgAYRXHVFMqrS_LOAtkFFCTUyWM0AJc8RbyahmmWcUrbstbPKVLRmQr9hTEnlqxp7SFTj-GPC9INf7q3K4XJq30a55SzsHV4oyJH5t9EEII0CSG5rN6LT-N_m2uw3_1PkIbvttLNo-njRrly6s5BohSqg5a5YNhBzWTQbc7sc_hw1Ufnt3-5Pqm4zbsO9343vU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW6FyQbSAWCjFB7gAFnE-7UNVLe1WW9pdIWil3oIdO-qhShY2CPhz_LbOeJ0uIOit1806kcYTv5nMzHsAL0RsiMar5qYSkqc2z7nUUnCL2FJHOjKpV1GYzvLJWfr-PDtfg1_9LAy1VfZnoj-obVvRN_K3cYKrEG0KtTf_wkk1iqqrvYSGDtIKdtdTjIXBjmP38zumcIvdowPc75dxfDg-3Z_woDLAK7xlx5W2UeLyzGDgZLMqj7XShcFEH6GXfFJHhTWVSfBEkbnNnKltFstIxZZygYhUIxAC1lOacB3A-rvx7MPH6zoG0dUv2cUVT5RI-rqqH95DaKW2iIK4VSMu_kTGVbj7V4XWA9_hfbgXIlY2WrrYJqy5Zgs29nuhuC2447tIq8UDcKOGjX_4nvi2YW3NMLpknzpX64ZTwsv6j3Bs6oWr2WhZPjeXjnUt88PAnJrc2wax8E34YX6BSMvEAQvs6g_h7FYs_AgGDT74MTBTFMIKoSmxTmWa6DwRrhZGOWWVM8kQot6GZRVIzklr47Jc0TOT2Us0e0lmL8UQXl0vmS8ZPm7683a_MWV42RelkBLzPpmm6p-XV547hNf9Xv62-n_PenLzzZ7DxuR0elKeHM2On8Ld2DsSdRRtw6D7-s09w2CpMzvBIxl8vu2X4AoTWB7z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5S8XERrYrVqjl4UkM3u9nd5Fj6oD5aBC30tiSbLB7KttgV_PlO9tGqVMHr5gUzSeabnck3CF1RV1kar4SomHLCdBAQLjklGmxL4khHsbyKwnAUDMbsfuJPyjqniyrbvQpJFm8aLEtTmrXmOmmtHr6BWbIpBaHlJXUIuD-bcBtTu9HHbnsZRrBs8QW5tyCeoF4V1lw3xXfDtEKbPwKkud3p76O9EjDidqHhA7Rh0jra6VR12upoK0_ijBeHyLRT3PvIU9JnKZ4lGMAdfs5MIlNi_U1c_QPDw7xuNG4X0Ws1NTib4fwtLrE55rMURHFbfpi_gqHDtItLcvMjNO73XjoDUpZRILHHWEaE1I5nAl8BMtR-HLhSyFA5AoCdaw-ddEKtYuXBlckD7RuVaN_ljnC1dXbgkB6jWgoLnyCswpBqSqX1axlnngw8ahKqhBFagFveQE4lwyguOcZtqYtptGJHtmKPQOyRFXtEG-h6OWReEGz81blZKSYqz9oiopyD28UZE2ubXRCCDzAlhOabSpdfRv-21um_el-i7aduP3q8Gz2coV0331Y2vaeJatnbuzkH5JKpi3x3fgJ84uCU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extension+of+the+Stefan-Type+Solution+Method+Applicable+to+Multi-component%2C+Multi-phase+1D+Systems&rft.jtitle=Transport+in+porous+media&rft.au=Lewis%2C+K+C&rft.au=Coakley%2C+Samuel&rft.au=Miele%2C+Sean&rft.date=2017-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0169-3913&rft.eissn=1573-1634&rft.volume=117&rft.issue=3&rft.spage=415&rft.epage=441&rft_id=info:doi/10.1007%2Fs11242-017-0840-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon |