The asymptotic formulas for coefficients and algebraicity of Jacobi forms expressed by infinite product
We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi thet...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 471; no. 1-2; pp. 623 - 646 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi theta function to derive the asymptotic behavior of the Betti numbers of the Hilbert scheme of points on an algebraic surface by Bringmann–Manschot and about the asymptotic behavior of the χy-genera of Hilbert schemes of points on K3 surfaces by Manschot–Rolon. We also get the algebraicity of the generating functions given by Göttsche for the Hilbert schemes associated to general algebraic surfaces. |
---|---|
AbstractList | We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi theta function to derive the asymptotic behavior of the Betti numbers of the Hilbert scheme of points on an algebraic surface by Bringmann–Manschot and about the asymptotic behavior of the χy-genera of Hilbert schemes of points on K3 surfaces by Manschot–Rolon. We also get the algebraicity of the generating functions given by Göttsche for the Hilbert schemes associated to general algebraic surfaces. |
Author | Jo, Sihun Jin, Seokho |
Author_xml | – sequence: 1 givenname: Seokho orcidid: 0000-0003-3127-4170 surname: Jin fullname: Jin, Seokho email: archimed@cau.ac.kr organization: Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea – sequence: 2 givenname: Sihun surname: Jo fullname: Jo, Sihun email: sihunjo@woosuk.ac.kr organization: Department of Mathematics Education, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-Gun, Jeollabuk-do 55338, Republic of Korea |
BookMark | eNp9kEtLAzEUhYNUsK3-AVf5AzMmmVcH3EjxScFNBXchj5uaoTMZklScf29GXbu69x74DvecFVoMbgCErinJKaH1TZd3vRA5I3SThJy09Rla0jQysqHFAi0JYSxjZfN-gVYhdIRQWjV0iQ77D8AiTP0YXbQKG-f701GEecHKgTFWWRhiwGLQWBwPIL1IUpywM_hFKCftDxQwfI0eQgCN5YTtYOxgI-DRO31S8RKdG3EMcPU31-jt4X6_fcp2r4_P27tdpoqyjFkrStkqKstKF1I3ZauqllVa0XQyXaRAtKhZsakbWRowlWikgkYIKqtaC2DFGrFfX-VdCB4MH73thZ84JXyuind8rorPVc1askzQ7S8E6bNPC56HObQCbT2oyLWz_-HfZSJ24g |
CitedBy_id | crossref_primary_10_1017_S0013091522000141 crossref_primary_10_1007_s11139_021_00409_8 |
Cites_doi | 10.1007/JHEP02(2016)170 10.1093/qmath/22.1.107 10.4310/CNTP.2013.v7.n3.a4 10.4310/CNTP.2015.v9.n2.a6 10.1017/S0305004100040573 10.1090/tran/6409 10.1007/BF01453572 10.1215/00127094-3449994 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmaa.2018.10.096 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 646 |
ExternalDocumentID | 10_1016_j_jmaa_2018_10_096 S0022247X18309338 |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2017R1C1B5076788 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea grantid: 2015R1C1A1A01053719 funderid: https://doi.org/10.13039/501100003725 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c344t-9a4b9c1b45d3bd749c5925dc1d3b2d309613623867b4fef5a7bce7aa1b56dae23 |
IEDL.DBID | AIKHN |
ISSN | 0022-247X |
IngestDate | Thu Sep 26 15:55:19 EDT 2024 Fri Feb 23 02:29:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | q-series Theta functions Jacobi forms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-9a4b9c1b45d3bd749c5925dc1d3b2d309613623867b4fef5a7bce7aa1b56dae23 |
ORCID | 0000-0003-3127-4170 |
OpenAccessLink | https://doi.org/10.1016/j.jmaa.2018.10.096 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1016_j_jmaa_2018_10_096 elsevier_sciencedirect_doi_10_1016_j_jmaa_2018_10_096 |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bringmann, Dousse (br0020) 2016; 368 Andrews, Askey, Roy (br0010) 1999; vol. 71 Göttsche (br0040) 1990; 286 Manschot, Rolon (br0090) 2015; 9 Kim, Kim, Lee (br0070) 2016; 2 Macdonald (br0080) 1962; 58 Wright (br0100) 1971; 22 Kubert, Lang (br0060) 1981; vol. 244 Griffin, Ono, Warnaar (br0050) 2016; 165 Bringmann, Manschot (br0030) 2013; 7 Göttsche (10.1016/j.jmaa.2018.10.096_br0040) 1990; 286 Manschot (10.1016/j.jmaa.2018.10.096_br0090) 2015; 9 Bringmann (10.1016/j.jmaa.2018.10.096_br0030) 2013; 7 Griffin (10.1016/j.jmaa.2018.10.096_br0050) 2016; 165 Andrews (10.1016/j.jmaa.2018.10.096_br0010) 1999; vol. 71 Kim (10.1016/j.jmaa.2018.10.096_br0070) 2016; 2 Kubert (10.1016/j.jmaa.2018.10.096_br0060) 1981; vol. 244 Macdonald (10.1016/j.jmaa.2018.10.096_br0080) 1962; 58 Wright (10.1016/j.jmaa.2018.10.096_br0100) 1971; 22 Bringmann (10.1016/j.jmaa.2018.10.096_br0020) 2016; 368 |
References_xml | – volume: 368 start-page: 3141 year: 2016 end-page: 3155 ident: br0020 article-title: On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions publication-title: Trans. Amer. Math. Soc. contributor: fullname: Dousse – volume: vol. 71 year: 1999 ident: br0010 article-title: Special Functions publication-title: Encyclopedia Math. Appl. contributor: fullname: Roy – volume: 58 start-page: 563 year: 1962 end-page: 568 ident: br0080 article-title: The Poincaré polynomial of a symmetric product publication-title: Proc. Camb. Philos. Soc. contributor: fullname: Macdonald – volume: 7 start-page: 497 year: 2013 end-page: 513 ident: br0030 article-title: Asymptotic formulas for coefficients of inverse theta functions publication-title: Commun. Number Theory Phys. contributor: fullname: Manschot – volume: 165 start-page: 1475 year: 2016 end-page: 1527 ident: br0050 article-title: A framework of Rogers–Ramanujan identities and their arithmetic properties publication-title: Duke Math. J. contributor: fullname: Warnaar – volume: vol. 244 year: 1981 ident: br0060 article-title: Modular Units publication-title: Grundlehren Math. Wiss. contributor: fullname: Lang – volume: 9 start-page: 413 year: 2015 end-page: 436 ident: br0090 article-title: The asymptotic profile of publication-title: Commun. Number Theory Phys. contributor: fullname: Rolon – volume: 2 start-page: 170 year: 2016 ident: br0070 article-title: Little strings and T-duality publication-title: J. High Energy Phys. contributor: fullname: Lee – volume: 286 start-page: 193 year: 1990 end-page: 207 ident: br0040 article-title: The Betti numbers of the Hilbert scheme of points on a smooth projective surface publication-title: Math. Ann. contributor: fullname: Göttsche – volume: 22 start-page: 107 year: 1971 end-page: 116 ident: br0100 article-title: Stacks. II publication-title: Q. J. Math. contributor: fullname: Wright – volume: 2 start-page: 170 year: 2016 ident: 10.1016/j.jmaa.2018.10.096_br0070 article-title: Little strings and T-duality publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2016)170 contributor: fullname: Kim – volume: vol. 71 year: 1999 ident: 10.1016/j.jmaa.2018.10.096_br0010 article-title: Special Functions contributor: fullname: Andrews – volume: 22 start-page: 107 year: 1971 ident: 10.1016/j.jmaa.2018.10.096_br0100 article-title: Stacks. II publication-title: Q. J. Math. doi: 10.1093/qmath/22.1.107 contributor: fullname: Wright – volume: 7 start-page: 497 issue: 3 year: 2013 ident: 10.1016/j.jmaa.2018.10.096_br0030 article-title: Asymptotic formulas for coefficients of inverse theta functions publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2013.v7.n3.a4 contributor: fullname: Bringmann – volume: vol. 244 year: 1981 ident: 10.1016/j.jmaa.2018.10.096_br0060 article-title: Modular Units contributor: fullname: Kubert – volume: 9 start-page: 413 issue: 2 year: 2015 ident: 10.1016/j.jmaa.2018.10.096_br0090 article-title: The asymptotic profile of χy-genera of Hilbert schemes of points on K3 surfaces publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2015.v9.n2.a6 contributor: fullname: Manschot – volume: 58 start-page: 563 year: 1962 ident: 10.1016/j.jmaa.2018.10.096_br0080 article-title: The Poincaré polynomial of a symmetric product publication-title: Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100040573 contributor: fullname: Macdonald – volume: 368 start-page: 3141 issue: 5 year: 2016 ident: 10.1016/j.jmaa.2018.10.096_br0020 article-title: On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/6409 contributor: fullname: Bringmann – volume: 286 start-page: 193 year: 1990 ident: 10.1016/j.jmaa.2018.10.096_br0040 article-title: The Betti numbers of the Hilbert scheme of points on a smooth projective surface publication-title: Math. Ann. doi: 10.1007/BF01453572 contributor: fullname: Göttsche – volume: 165 start-page: 1475 issue: 8 year: 2016 ident: 10.1016/j.jmaa.2018.10.096_br0050 article-title: A framework of Rogers–Ramanujan identities and their arithmetic properties publication-title: Duke Math. J. doi: 10.1215/00127094-3449994 contributor: fullname: Griffin |
SSID | ssj0011571 |
Score | 2.3189774 |
Snippet | We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 623 |
SubjectTerms | Jacobi forms q-series Theta functions |
Title | The asymptotic formulas for coefficients and algebraicity of Jacobi forms expressed by infinite product |
URI | https://dx.doi.org/10.1016/j.jmaa.2018.10.096 |
Volume | 471 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPEV5VB7YUAAndp2MLQIVCgyIR7fIdhxUJJqIphJd-O3c5YFAQgxMiS9yHJ1P91C--wxwiCHLhr4lqA73PYFBxdPOGa-rZRQSXYhW1I18c9sdPIirkRwtwFnTC0Owytr3Vz699Na15KTW5kk-HlOPL8Y2oUZolFSWh4uwhOHID1uw1LscDm6_fiZwqXhDGk4T6t6ZCub18qqJfoiHxwTyIu7-3-LTt5hzsQardbLIetX3rMOCm2zAys0X0-p0E55xn5mezl_zIkMJoxx0hhkx3TCbuZIhgsASTE8SRod6YHmMomLOspRdoT8043LSlLn3EhTrEmbmDA1vTOkoyytK2C14uDi_Pxt49eEJng2EKLxICxNZboRMApMoEVkZ-TKxHId-EtBJLxi7grCrjEhdKnFPrFNacyO7iXZ-sA2tSTZxO8Aclh06VA6zGaxW9KnmNhW4iq8ifJ-v23DUqCzOK46MuAGPvcSk4JgUTDJctg2y0Wr8Y6djdOJ_zNv957w9WMZRVOHG9qFVvM3cASYShenA4vEH76C59B-H153abOg6vHsa4tPLUf8TRurNEw |
link.rule.ids | 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw_eJNYku93kWMVS-zq10lvY3WwlhT6wKdh_70yTFAXx4C2ZMNkws8yDfPMtwB2mLBN4hqA6rudwTCqOslY7dSXCgOhClKRp5F6_3hry9kiMSvBczMIQrDKP_VlM30TrXFLLrVlbJAnN-GJu43KEm5La8mAHKlgNSFGGSuPprdPd_kxwhXQL0nBSyGdnMpjXZKqIfsgNHgjkRdz9v-WnbzmneQgHebHIGtn3HEHJzo5hv7dlWl2ewDv6manlerpI5yhhVIOusCKmC2bmdsMQQWAJpmYxo0M9sD1GUbpm8zFrYzzUyUZpyeznBhRrY6bXDDdeQuUoW2SUsKcwbL4MnltOfniCY3zOUydUXIfG1VzEvo4lD40IPREbF2-92KeTXjB3-UFdaj62Y4E-MVYq5WpRj5X1_DMoz-Yzew7MYtuhAmmxmsFuRT0q14w5ruLJEN_nqSrcFyaLFhlHRlSAxyYRGTgiA5MMl62CKKwa_fB0hEH8D72Lf-rdwm5r0OtG3dd-5xL28EmYYciuoJx-rOw1FhWpvsk3zRfFzcrZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+asymptotic+formulas+for+coefficients+and+algebraicity+of+Jacobi+forms+expressed+by+infinite+product&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Jin%2C+Seokho&rft.au=Jo%2C+Sihun&rft.date=2019-03-01&rft.issn=0022-247X&rft.volume=471&rft.issue=1-2&rft.spage=623&rft.epage=646&rft_id=info:doi/10.1016%2Fj.jmaa.2018.10.096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmaa_2018_10_096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |