The asymptotic formulas for coefficients and algebraicity of Jacobi forms expressed by infinite product

We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi thet...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 471; no. 1-2; pp. 623 - 646
Main Authors Jin, Seokho, Jo, Sihun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi theta function to derive the asymptotic behavior of the Betti numbers of the Hilbert scheme of points on an algebraic surface by Bringmann–Manschot and about the asymptotic behavior of the χy-genera of Hilbert schemes of points on K3 surfaces by Manschot–Rolon. We also get the algebraicity of the generating functions given by Göttsche for the Hilbert schemes associated to general algebraic surfaces.
AbstractList We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi theta function to derive the asymptotic behavior of the Betti numbers of the Hilbert scheme of points on an algebraic surface by Bringmann–Manschot and about the asymptotic behavior of the χy-genera of Hilbert schemes of points on K3 surfaces by Manschot–Rolon. We also get the algebraicity of the generating functions given by Göttsche for the Hilbert schemes associated to general algebraic surfaces.
Author Jo, Sihun
Jin, Seokho
Author_xml – sequence: 1
  givenname: Seokho
  orcidid: 0000-0003-3127-4170
  surname: Jin
  fullname: Jin, Seokho
  email: archimed@cau.ac.kr
  organization: Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
– sequence: 2
  givenname: Sihun
  surname: Jo
  fullname: Jo, Sihun
  email: sihunjo@woosuk.ac.kr
  organization: Department of Mathematics Education, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-Gun, Jeollabuk-do 55338, Republic of Korea
BookMark eNp9kEtLAzEUhYNUsK3-AVf5AzMmmVcH3EjxScFNBXchj5uaoTMZklScf29GXbu69x74DvecFVoMbgCErinJKaH1TZd3vRA5I3SThJy09Rla0jQysqHFAi0JYSxjZfN-gVYhdIRQWjV0iQ77D8AiTP0YXbQKG-f701GEecHKgTFWWRhiwGLQWBwPIL1IUpywM_hFKCftDxQwfI0eQgCN5YTtYOxgI-DRO31S8RKdG3EMcPU31-jt4X6_fcp2r4_P27tdpoqyjFkrStkqKstKF1I3ZauqllVa0XQyXaRAtKhZsakbWRowlWikgkYIKqtaC2DFGrFfX-VdCB4MH73thZ84JXyuind8rorPVc1askzQ7S8E6bNPC56HObQCbT2oyLWz_-HfZSJ24g
CitedBy_id crossref_primary_10_1017_S0013091522000141
crossref_primary_10_1007_s11139_021_00409_8
Cites_doi 10.1007/JHEP02(2016)170
10.1093/qmath/22.1.107
10.4310/CNTP.2013.v7.n3.a4
10.4310/CNTP.2015.v9.n2.a6
10.1017/S0305004100040573
10.1090/tran/6409
10.1007/BF01453572
10.1215/00127094-3449994
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jmaa.2018.10.096
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 646
ExternalDocumentID 10_1016_j_jmaa_2018_10_096
S0022247X18309338
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2017R1C1B5076788
  funderid: https://doi.org/10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: 2015R1C1A1A01053719
  funderid: https://doi.org/10.13039/501100003725
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c344t-9a4b9c1b45d3bd749c5925dc1d3b2d309613623867b4fef5a7bce7aa1b56dae23
IEDL.DBID AIKHN
ISSN 0022-247X
IngestDate Thu Sep 26 15:55:19 EDT 2024
Fri Feb 23 02:29:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords q-series
Theta functions
Jacobi forms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-9a4b9c1b45d3bd749c5925dc1d3b2d309613623867b4fef5a7bce7aa1b56dae23
ORCID 0000-0003-3127-4170
OpenAccessLink https://doi.org/10.1016/j.jmaa.2018.10.096
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_jmaa_2018_10_096
elsevier_sciencedirect_doi_10_1016_j_jmaa_2018_10_096
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bringmann, Dousse (br0020) 2016; 368
Andrews, Askey, Roy (br0010) 1999; vol. 71
Göttsche (br0040) 1990; 286
Manschot, Rolon (br0090) 2015; 9
Kim, Kim, Lee (br0070) 2016; 2
Macdonald (br0080) 1962; 58
Wright (br0100) 1971; 22
Kubert, Lang (br0060) 1981; vol. 244
Griffin, Ono, Warnaar (br0050) 2016; 165
Bringmann, Manschot (br0030) 2013; 7
Göttsche (10.1016/j.jmaa.2018.10.096_br0040) 1990; 286
Manschot (10.1016/j.jmaa.2018.10.096_br0090) 2015; 9
Bringmann (10.1016/j.jmaa.2018.10.096_br0030) 2013; 7
Griffin (10.1016/j.jmaa.2018.10.096_br0050) 2016; 165
Andrews (10.1016/j.jmaa.2018.10.096_br0010) 1999; vol. 71
Kim (10.1016/j.jmaa.2018.10.096_br0070) 2016; 2
Kubert (10.1016/j.jmaa.2018.10.096_br0060) 1981; vol. 244
Macdonald (10.1016/j.jmaa.2018.10.096_br0080) 1962; 58
Wright (10.1016/j.jmaa.2018.10.096_br0100) 1971; 22
Bringmann (10.1016/j.jmaa.2018.10.096_br0020) 2016; 368
References_xml – volume: 368
  start-page: 3141
  year: 2016
  end-page: 3155
  ident: br0020
  article-title: On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions
  publication-title: Trans. Amer. Math. Soc.
  contributor:
    fullname: Dousse
– volume: vol. 71
  year: 1999
  ident: br0010
  article-title: Special Functions
  publication-title: Encyclopedia Math. Appl.
  contributor:
    fullname: Roy
– volume: 58
  start-page: 563
  year: 1962
  end-page: 568
  ident: br0080
  article-title: The Poincaré polynomial of a symmetric product
  publication-title: Proc. Camb. Philos. Soc.
  contributor:
    fullname: Macdonald
– volume: 7
  start-page: 497
  year: 2013
  end-page: 513
  ident: br0030
  article-title: Asymptotic formulas for coefficients of inverse theta functions
  publication-title: Commun. Number Theory Phys.
  contributor:
    fullname: Manschot
– volume: 165
  start-page: 1475
  year: 2016
  end-page: 1527
  ident: br0050
  article-title: A framework of Rogers–Ramanujan identities and their arithmetic properties
  publication-title: Duke Math. J.
  contributor:
    fullname: Warnaar
– volume: vol. 244
  year: 1981
  ident: br0060
  article-title: Modular Units
  publication-title: Grundlehren Math. Wiss.
  contributor:
    fullname: Lang
– volume: 9
  start-page: 413
  year: 2015
  end-page: 436
  ident: br0090
  article-title: The asymptotic profile of
  publication-title: Commun. Number Theory Phys.
  contributor:
    fullname: Rolon
– volume: 2
  start-page: 170
  year: 2016
  ident: br0070
  article-title: Little strings and T-duality
  publication-title: J. High Energy Phys.
  contributor:
    fullname: Lee
– volume: 286
  start-page: 193
  year: 1990
  end-page: 207
  ident: br0040
  article-title: The Betti numbers of the Hilbert scheme of points on a smooth projective surface
  publication-title: Math. Ann.
  contributor:
    fullname: Göttsche
– volume: 22
  start-page: 107
  year: 1971
  end-page: 116
  ident: br0100
  article-title: Stacks. II
  publication-title: Q. J. Math.
  contributor:
    fullname: Wright
– volume: 2
  start-page: 170
  year: 2016
  ident: 10.1016/j.jmaa.2018.10.096_br0070
  article-title: Little strings and T-duality
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2016)170
  contributor:
    fullname: Kim
– volume: vol. 71
  year: 1999
  ident: 10.1016/j.jmaa.2018.10.096_br0010
  article-title: Special Functions
  contributor:
    fullname: Andrews
– volume: 22
  start-page: 107
  year: 1971
  ident: 10.1016/j.jmaa.2018.10.096_br0100
  article-title: Stacks. II
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/22.1.107
  contributor:
    fullname: Wright
– volume: 7
  start-page: 497
  issue: 3
  year: 2013
  ident: 10.1016/j.jmaa.2018.10.096_br0030
  article-title: Asymptotic formulas for coefficients of inverse theta functions
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2013.v7.n3.a4
  contributor:
    fullname: Bringmann
– volume: vol. 244
  year: 1981
  ident: 10.1016/j.jmaa.2018.10.096_br0060
  article-title: Modular Units
  contributor:
    fullname: Kubert
– volume: 9
  start-page: 413
  issue: 2
  year: 2015
  ident: 10.1016/j.jmaa.2018.10.096_br0090
  article-title: The asymptotic profile of χy-genera of Hilbert schemes of points on K3 surfaces
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2015.v9.n2.a6
  contributor:
    fullname: Manschot
– volume: 58
  start-page: 563
  year: 1962
  ident: 10.1016/j.jmaa.2018.10.096_br0080
  article-title: The Poincaré polynomial of a symmetric product
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100040573
  contributor:
    fullname: Macdonald
– volume: 368
  start-page: 3141
  issue: 5
  year: 2016
  ident: 10.1016/j.jmaa.2018.10.096_br0020
  article-title: On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/6409
  contributor:
    fullname: Bringmann
– volume: 286
  start-page: 193
  year: 1990
  ident: 10.1016/j.jmaa.2018.10.096_br0040
  article-title: The Betti numbers of the Hilbert scheme of points on a smooth projective surface
  publication-title: Math. Ann.
  doi: 10.1007/BF01453572
  contributor:
    fullname: Göttsche
– volume: 165
  start-page: 1475
  issue: 8
  year: 2016
  ident: 10.1016/j.jmaa.2018.10.096_br0050
  article-title: A framework of Rogers–Ramanujan identities and their arithmetic properties
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-3449994
  contributor:
    fullname: Griffin
SSID ssj0011571
Score 2.3189774
Snippet We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 623
SubjectTerms Jacobi forms
q-series
Theta functions
Title The asymptotic formulas for coefficients and algebraicity of Jacobi forms expressed by infinite product
URI https://dx.doi.org/10.1016/j.jmaa.2018.10.096
Volume 471
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPEV5VB7YUAAndp2MLQIVCgyIR7fIdhxUJJqIphJd-O3c5YFAQgxMiS9yHJ1P91C--wxwiCHLhr4lqA73PYFBxdPOGa-rZRQSXYhW1I18c9sdPIirkRwtwFnTC0Owytr3Vz699Na15KTW5kk-HlOPL8Y2oUZolFSWh4uwhOHID1uw1LscDm6_fiZwqXhDGk4T6t6ZCub18qqJfoiHxwTyIu7-3-LTt5hzsQardbLIetX3rMOCm2zAys0X0-p0E55xn5mezl_zIkMJoxx0hhkx3TCbuZIhgsASTE8SRod6YHmMomLOspRdoT8043LSlLn3EhTrEmbmDA1vTOkoyytK2C14uDi_Pxt49eEJng2EKLxICxNZboRMApMoEVkZ-TKxHId-EtBJLxi7grCrjEhdKnFPrFNacyO7iXZ-sA2tSTZxO8Aclh06VA6zGaxW9KnmNhW4iq8ifJ-v23DUqCzOK46MuAGPvcSk4JgUTDJctg2y0Wr8Y6djdOJ_zNv957w9WMZRVOHG9qFVvM3cASYShenA4vEH76C59B-H153abOg6vHsa4tPLUf8TRurNEw
link.rule.ids 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw_eJNYku93kWMVS-zq10lvY3WwlhT6wKdh_70yTFAXx4C2ZMNkws8yDfPMtwB2mLBN4hqA6rudwTCqOslY7dSXCgOhClKRp5F6_3hry9kiMSvBczMIQrDKP_VlM30TrXFLLrVlbJAnN-GJu43KEm5La8mAHKlgNSFGGSuPprdPd_kxwhXQL0nBSyGdnMpjXZKqIfsgNHgjkRdz9v-WnbzmneQgHebHIGtn3HEHJzo5hv7dlWl2ewDv6manlerpI5yhhVIOusCKmC2bmdsMQQWAJpmYxo0M9sD1GUbpm8zFrYzzUyUZpyeznBhRrY6bXDDdeQuUoW2SUsKcwbL4MnltOfniCY3zOUydUXIfG1VzEvo4lD40IPREbF2-92KeTXjB3-UFdaj62Y4E-MVYq5WpRj5X1_DMoz-Yzew7MYtuhAmmxmsFuRT0q14w5ruLJEN_nqSrcFyaLFhlHRlSAxyYRGTgiA5MMl62CKKwa_fB0hEH8D72Lf-rdwm5r0OtG3dd-5xL28EmYYciuoJx-rOw1FhWpvsk3zRfFzcrZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+asymptotic+formulas+for+coefficients+and+algebraicity+of+Jacobi+forms+expressed+by+infinite+product&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Jin%2C+Seokho&rft.au=Jo%2C+Sihun&rft.date=2019-03-01&rft.issn=0022-247X&rft.volume=471&rft.issue=1-2&rft.spage=623&rft.epage=646&rft_id=info:doi/10.1016%2Fj.jmaa.2018.10.096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmaa_2018_10_096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon