On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions
Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the inte...
Saved in:
Published in | Applied and computational harmonic analysis Vol. 70; p. 101620 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-5203 1096-603X |
DOI | 10.1016/j.acha.2023.101620 |
Cover
Loading…
Abstract | Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval [0,1]. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues.
In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a spatio-spectral limiting operator (SSLO) on L2(Rd), which is an alternating product of projection operators associated to given spatial and frequency domains in Rd. If one of the domains is a hypercube, and the other domain is convex body satisfying a symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval [0,1].
To prove our results, we design an orthonormal system of wave packets in L2(Rd) that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for L2[0,1], and we lift the basis to higher dimensions using a tensor product. |
---|---|
AbstractList | Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval [0,1]. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues.
In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a spatio-spectral limiting operator (SSLO) on L2(Rd), which is an alternating product of projection operators associated to given spatial and frequency domains in Rd. If one of the domains is a hypercube, and the other domain is convex body satisfying a symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval [0,1].
To prove our results, we design an orthonormal system of wave packets in L2(Rd) that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for L2[0,1], and we lift the basis to higher dimensions using a tensor product. |
ArticleNumber | 101620 |
Author | Mayeli, Azita Israel, Arie |
Author_xml | – sequence: 1 givenname: Arie surname: Israel fullname: Israel, Arie – sequence: 2 givenname: Azita orcidid: 0000-0002-6367-1704 surname: Mayeli fullname: Mayeli, Azita email: amayeli@gc.cuny.edu |
BookMark | eNp9kMtqwzAQRUVpoUnaH-hKP-BUD9uyoZsS-oJANi20KyHL43iCIxvJCfTvKzdddZHZzGXgDNwzJ5eud0DIHWdLznh-v1sa25qlYEL-HgS7IDPOyjzJmfy8nHIuk0wweU3mIewY4zzNyhn52jg6tkABt-COpjsArTGMHqvDiL2jfUPDYGJMwgB29KajHe5xRLel_QDejL0PFB1tcduCj_AeXIhkuCFXjekC3P7tBfl4fnpfvSbrzcvb6nGdWJmmY1JmltVGKV6YmhdFBqwRmZCZ5EIIUKZQlvNaVVzJOKW1iotKZTU3TKV5VcgFEae_1vcheGj04HFv_LfmTE8u9E5PcvQkR5_kRKj4B1kcp5ouVsTuPPpwQiGWOiJ4HSyCs1Cjj4Z03eM5_AcsIYIz |
CitedBy_id | crossref_primary_10_1007_s00205_024_01979_9 crossref_primary_10_1142_S0219691324500243 crossref_primary_10_1109_TSP_2025_3541872 crossref_primary_10_2140_paa_2024_6_789 crossref_primary_10_1016_j_acha_2024_101734 |
Cites_doi | 10.1016/j.acha.2006.07.002 10.1002/j.1538-7305.1962.tb03279.x 10.1016/0022-247X(80)90241-3 10.1016/j.acha.2021.04.002 10.1002/j.1538-7305.1978.tb02104.x 10.1109/18.243434 10.1016/j.acha.2016.01.006 10.1007/BF02395039 10.4153/CMB-1998-053-8 10.1016/j.acha.2019.05.005 10.1016/j.acha.2013.03.002 10.1016/j.jmaa.2008.01.091 10.1137/16M1085334 10.1002/j.1538-7305.1961.tb03977.x 10.1016/S1090-7807(02)00058-7 10.1007/BF02786820 10.1063/1.5140496 10.1002/j.1538-7305.1961.tb03976.x 10.1002/j.1538-7305.1964.tb01037.x |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.acha.2023.101620 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1096-603X |
ExternalDocumentID | 10_1016_j_acha_2023_101620 S1063520323001070 |
GrantInformation_xml | – fundername: PSC-CUNY grantid: 65654-00 53 funderid: https://doi.org/10.13039/100020891 – fundername: Air Force Office of Scientific Research grantid: FA9550-19-1-0005 funderid: https://doi.org/10.13039/100000181 – fundername: AMS-Simons |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-95c0da7718ad1885e0f2523531222e7a87c11d7b1733339cc712b75d1a0746b83 |
IEDL.DBID | .~1 |
ISSN | 1063-5203 |
IngestDate | Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 03:49:06 EDT 2025 Sat Feb 24 15:49:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prolate spheroidal wave functions Spectral analysis Spatio-spectral limiting operators Wave packets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-95c0da7718ad1885e0f2523531222e7a87c11d7b1733339cc712b75d1a0746b83 |
ORCID | 0000-0002-6367-1704 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1063520323001070 |
ParticipantIDs | crossref_primary_10_1016_j_acha_2023_101620 crossref_citationtrail_10_1016_j_acha_2023_101620 elsevier_sciencedirect_doi_10_1016_j_acha_2023_101620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Applied and computational harmonic analysis |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Osipov (br0250) 2013; 35 Henk, Cifre (br0080) 2008; 343 Figueirinhas (br0060) 2016 Lederman, Singer (br0220) 2020; 49 Robbins (br0260) 1955; 62 Coifman, Meyer (br0030) 1991; 312 Fefferman, Israel (br0050) 2020; vol. 135 Israel (br0100) 2015 Schneider (br0280) 2013 Dziubański, Hernández (br0040) 1998; 41 Slepian, Pollak (br0320) 1961; 40 Landa, Shkolnisky (br0190) 2017; 43 Rodino (br0270) 1993 Landau (br0140) 1975; 28 Bonami, Jaming, Karoui (br0020) 2021; 62 Hörmander (br0090) 2003 Landau (br0150) 1993; 39 Karnik, Romberg, Davenport (br0120) 2021; 55 Landau, Pollak (br0170) 1961; 40 Krantz, Parks (br0110) 2002 Landau (br0130) 1967; 117 Shkolnisky (br0290) 2007; 22 Slepian (br0300) 1964; 43 Lederman (br0160) 2017 Marceca, Romero, Speckbacher (br0240) 2023 Landau, Widom (br0230) 1980; 77 Lederman, Singer (br0210) 2017 Slepian (br0310) 1978; 57 Landa, Shkolnisky (br0200) 2017; 10 Auscher, Weiss, Wickerhauser (br0010) 1993 Landau, Pollak (br0180) 1962; 41 Yang (br0330) 2002; 158 Greengard, Serkh (br0070) 2018 Landau (10.1016/j.acha.2023.101620_br0150) 1993; 39 Landau (10.1016/j.acha.2023.101620_br0130) 1967; 117 Dziubański (10.1016/j.acha.2023.101620_br0040) 1998; 41 Landau (10.1016/j.acha.2023.101620_br0140) 1975; 28 Marceca (10.1016/j.acha.2023.101620_br0240) Osipov (10.1016/j.acha.2023.101620_br0250) 2013; 35 Landa (10.1016/j.acha.2023.101620_br0200) 2017; 10 Robbins (10.1016/j.acha.2023.101620_br0260) 1955; 62 Slepian (10.1016/j.acha.2023.101620_br0300) 1964; 43 Landau (10.1016/j.acha.2023.101620_br0170) 1961; 40 Lederman (10.1016/j.acha.2023.101620_br0210) Figueirinhas (10.1016/j.acha.2023.101620_br0060) Auscher (10.1016/j.acha.2023.101620_br0010) 1993 Landau (10.1016/j.acha.2023.101620_br0180) 1962; 41 Landa (10.1016/j.acha.2023.101620_br0190) 2017; 43 Henk (10.1016/j.acha.2023.101620_br0080) 2008; 343 Slepian (10.1016/j.acha.2023.101620_br0320) 1961; 40 Lederman (10.1016/j.acha.2023.101620_br0220) 2020; 49 Fefferman (10.1016/j.acha.2023.101620_br0050) 2020; vol. 135 Rodino (10.1016/j.acha.2023.101620_br0270) 1993 Bonami (10.1016/j.acha.2023.101620_br0020) 2021; 62 Coifman (10.1016/j.acha.2023.101620_br0030) 1991; 312 Lederman (10.1016/j.acha.2023.101620_br0160) Israel (10.1016/j.acha.2023.101620_br0100) Landau (10.1016/j.acha.2023.101620_br0230) 1980; 77 Slepian (10.1016/j.acha.2023.101620_br0310) 1978; 57 Greengard (10.1016/j.acha.2023.101620_br0070) Karnik (10.1016/j.acha.2023.101620_br0120) 2021; 55 Yang (10.1016/j.acha.2023.101620_br0330) 2002; 158 Shkolnisky (10.1016/j.acha.2023.101620_br0290) 2007; 22 Hörmander (10.1016/j.acha.2023.101620_br0090) 2003 Krantz (10.1016/j.acha.2023.101620_br0110) 2002 Schneider (10.1016/j.acha.2023.101620_br0280) 2013 |
References_xml | – year: 2015 ident: br0100 article-title: The eigenvalue distribution of time-frequency localization operators – volume: 39 start-page: 1152 year: 1993 end-page: 1156 ident: br0150 article-title: On the density of phase-space expansions publication-title: IEEE Trans. Inf. Theory – year: 2002 ident: br0110 article-title: A Primer of Real Analytic Functions – volume: 41 start-page: 1295 year: 1962 end-page: 1336 ident: br0180 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – III: The dimension of the space of essentially time- and band-limited signals publication-title: Bell Syst. Tech. J. – volume: 43 start-page: 381 year: 2017 end-page: 403 ident: br0190 article-title: Approximation scheme for essentially bandlimited and space-concentrated functions on a disk publication-title: Appl. Comput. Harmon. Anal. – year: 2023 ident: br0240 article-title: Eigenvalue estimates for Fourier concentration operators on two domains – year: 1993 ident: br0270 article-title: Linear Partial Differential Operators in Gevrey Spaces – year: 2017 ident: br0160 article-title: Numerical algorithms for the computation of generalized prolate spheroidal functions – volume: 57 start-page: 1371 year: 1978 end-page: 1430 ident: br0310 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case publication-title: Bell Syst. Tech. J. – volume: 28 start-page: 335 year: 1975 end-page: 357 ident: br0140 article-title: On Szegö's eigenvalue distribution theorem and non-Hermitian kernels publication-title: J. Anal. Math. – volume: 41 start-page: 398 year: 1998 end-page: 403 ident: br0040 article-title: Band-limited wavelets with subexponential decay publication-title: Can. Math. Bull. – volume: 55 start-page: 97 year: 2021 end-page: 128 ident: br0120 article-title: Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences publication-title: Appl. Comput. Harmon. Anal. – volume: 49 start-page: 1001 year: 2020 end-page: 1024 ident: br0220 article-title: A representation theory perspective on simultaneous alignment and classification publication-title: Appl. Comput. Harmon. Anal. – volume: 35 start-page: 309 year: 2013 end-page: 340 ident: br0250 article-title: Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions publication-title: Appl. Comput. Harmon. Anal. – volume: 43 start-page: 3009 year: 1964 end-page: 3058 ident: br0300 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – IV: Extensions to many dimensions; generalized prolate spheroidal functions publication-title: Bell Syst. Tech. J. – volume: 62 start-page: 26 year: 1955 end-page: 29 ident: br0260 article-title: A remark on Stirling's formula publication-title: Am. Math. Mon. – volume: 343 start-page: 733 year: 2008 end-page: 742 ident: br0080 article-title: Intrinsic volumes and successive radii publication-title: J. Math. Anal. Appl. – year: 2013 ident: br0280 article-title: Convex Bodies: the Brunn-Minkowski Theory – volume: vol. 135 year: 2020 ident: br0050 article-title: Fitting Smooth Functions to Data publication-title: CBMS Regional Conference Series in Mathematics – volume: 40 start-page: 65 year: 1961 end-page: 84 ident: br0170 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – II publication-title: Bell Syst. Tech. J. – volume: 158 start-page: 43 year: 2002 end-page: 51 ident: br0330 article-title: Two dimensional prolate spheroidal wave functions for MRI publication-title: J. Magn. Res. – year: 2016 ident: br0060 article-title: On the properties of Gevrey and ultra-analytic spaces – volume: 62 year: 2021 ident: br0020 article-title: Non-asymptotic behaviour of the spectrum of the sinc kernel operator and related applications publication-title: J. Math. Phys. – year: 2018 ident: br0070 article-title: On generalized prolate spheroidal functions – year: 2003 ident: br0090 article-title: The Analysis of Linear Partial Differential Operators II – volume: 117 start-page: 37 year: 1967 end-page: 52 ident: br0130 article-title: Necessary density conditions for sampling and interpolation of certain entire functions publication-title: Acta Math. – volume: 10 start-page: 508 year: 2017 end-page: 534 ident: br0200 article-title: Steerable principal components for space-frequency localized images publication-title: SIAM J. Imaging Sci. – year: 2017 ident: br0210 article-title: Continuously heterogeneous hyper-objects in cryo-EM and 3-D movies of many temporal dimensions – volume: 312 start-page: 259 year: 1991 end-page: 261 ident: br0030 article-title: Remarques sur l'analyse de Fourier á fenétre publication-title: C. R. Acad. Sci. Paris – volume: 22 start-page: 235 year: 2007 end-page: 256 ident: br0290 article-title: Prolate spheroidal wave functions on a disc – integration and approximation of two-dimensional bandlimited functions publication-title: Appl. Comput. Harmon. Anal. – volume: 40 start-page: 43 year: 1961 end-page: 64 ident: br0320 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – I publication-title: Bell Syst. Tech. J. – start-page: 237 year: 1993 end-page: 256 ident: br0010 article-title: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets publication-title: Wavelets: A Tutorial in Theory and Applications – volume: 77 start-page: 469 year: 1980 end-page: 481 ident: br0230 article-title: Eigenvalue distribution of time and frequency limiting publication-title: J. Math. Anal. Appl. – volume: 22 start-page: 235 issue: 2 year: 2007 ident: 10.1016/j.acha.2023.101620_br0290 article-title: Prolate spheroidal wave functions on a disc – integration and approximation of two-dimensional bandlimited functions publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.07.002 – volume: 41 start-page: 1295 issue: 4 year: 1962 ident: 10.1016/j.acha.2023.101620_br0180 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – III: The dimension of the space of essentially time- and band-limited signals publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1962.tb03279.x – volume: 77 start-page: 469 issue: 2 year: 1980 ident: 10.1016/j.acha.2023.101620_br0230 article-title: Eigenvalue distribution of time and frequency limiting publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(80)90241-3 – ident: 10.1016/j.acha.2023.101620_br0100 – volume: 55 start-page: 97 issue: 1 year: 2021 ident: 10.1016/j.acha.2023.101620_br0120 article-title: Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2021.04.002 – start-page: 237 year: 1993 ident: 10.1016/j.acha.2023.101620_br0010 article-title: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets – volume: 62 start-page: 26 issue: 1 year: 1955 ident: 10.1016/j.acha.2023.101620_br0260 article-title: A remark on Stirling's formula publication-title: Am. Math. Mon. – year: 1993 ident: 10.1016/j.acha.2023.101620_br0270 – volume: 57 start-page: 1371 issue: 5 year: 1978 ident: 10.1016/j.acha.2023.101620_br0310 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1978.tb02104.x – volume: 39 start-page: 1152 issue: 4 year: 1993 ident: 10.1016/j.acha.2023.101620_br0150 article-title: On the density of phase-space expansions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.243434 – volume: 43 start-page: 381 issue: 3 year: 2017 ident: 10.1016/j.acha.2023.101620_br0190 article-title: Approximation scheme for essentially bandlimited and space-concentrated functions on a disk publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.01.006 – volume: 117 start-page: 37 year: 1967 ident: 10.1016/j.acha.2023.101620_br0130 article-title: Necessary density conditions for sampling and interpolation of certain entire functions publication-title: Acta Math. doi: 10.1007/BF02395039 – volume: 312 start-page: 259 year: 1991 ident: 10.1016/j.acha.2023.101620_br0030 article-title: Remarques sur l'analyse de Fourier á fenétre publication-title: C. R. Acad. Sci. Paris – volume: 41 start-page: 398 year: 1998 ident: 10.1016/j.acha.2023.101620_br0040 article-title: Band-limited wavelets with subexponential decay publication-title: Can. Math. Bull. doi: 10.4153/CMB-1998-053-8 – year: 2003 ident: 10.1016/j.acha.2023.101620_br0090 – ident: 10.1016/j.acha.2023.101620_br0060 – volume: 49 start-page: 1001 issue: 3 year: 2020 ident: 10.1016/j.acha.2023.101620_br0220 article-title: A representation theory perspective on simultaneous alignment and classification publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2019.05.005 – volume: 35 start-page: 309 issue: 2 year: 2013 ident: 10.1016/j.acha.2023.101620_br0250 article-title: Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2013.03.002 – volume: vol. 135 year: 2020 ident: 10.1016/j.acha.2023.101620_br0050 article-title: Fitting Smooth Functions to Data – ident: 10.1016/j.acha.2023.101620_br0070 – volume: 343 start-page: 733 year: 2008 ident: 10.1016/j.acha.2023.101620_br0080 article-title: Intrinsic volumes and successive radii publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.01.091 – year: 2002 ident: 10.1016/j.acha.2023.101620_br0110 – volume: 10 start-page: 508 issue: 2 year: 2017 ident: 10.1016/j.acha.2023.101620_br0200 article-title: Steerable principal components for space-frequency localized images publication-title: SIAM J. Imaging Sci. doi: 10.1137/16M1085334 – volume: 40 start-page: 65 issue: 1 year: 1961 ident: 10.1016/j.acha.2023.101620_br0170 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – II publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1961.tb03977.x – ident: 10.1016/j.acha.2023.101620_br0210 – volume: 158 start-page: 43 year: 2002 ident: 10.1016/j.acha.2023.101620_br0330 article-title: Two dimensional prolate spheroidal wave functions for MRI publication-title: J. Magn. Res. doi: 10.1016/S1090-7807(02)00058-7 – volume: 28 start-page: 335 issue: 1 year: 1975 ident: 10.1016/j.acha.2023.101620_br0140 article-title: On Szegö's eigenvalue distribution theorem and non-Hermitian kernels publication-title: J. Anal. Math. doi: 10.1007/BF02786820 – volume: 62 year: 2021 ident: 10.1016/j.acha.2023.101620_br0020 article-title: Non-asymptotic behaviour of the spectrum of the sinc kernel operator and related applications publication-title: J. Math. Phys. doi: 10.1063/1.5140496 – ident: 10.1016/j.acha.2023.101620_br0160 – year: 2013 ident: 10.1016/j.acha.2023.101620_br0280 – volume: 40 start-page: 43 issue: 1 year: 1961 ident: 10.1016/j.acha.2023.101620_br0320 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – I publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1961.tb03976.x – volume: 43 start-page: 3009 issue: 6 year: 1964 ident: 10.1016/j.acha.2023.101620_br0300 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – IV: Extensions to many dimensions; generalized prolate spheroidal functions publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1964.tb01037.x – ident: 10.1016/j.acha.2023.101620_br0240 |
SSID | ssj0011459 |
Score | 2.4201505 |
Snippet | Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101620 |
SubjectTerms | Prolate spheroidal wave functions Spatio-spectral limiting operators Spectral analysis Wave packets |
Title | On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions |
URI | https://dx.doi.org/10.1016/j.acha.2023.101620 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMGb1PUjadrjGI7p2AR1OE8lTVI2md3Y5tW_3ffSdkyQHeylJCShvL68_B557_cIufHT0ERhCBsp9jKH-anryIwzJ2AsYJmOfW1vdPuDsDtkjyM-qpF2lQuDYZWl7S9surXWZU-zlGZzPpk0X8CZAfTgBgCiwakQ6Lcjex3o9N33OswD4L4tmIaDHRxdJs4UMV5SjZF7yA9sB9b8_utw2jhwOgdkv0SKtFV8zCGpmfyI7G3wB0KrvyZdXR6T96ecQpMaJNhEEm9DNdLilhWt6CyjSxs_7dj0ygUsPsX0JliKzubG3rcv6SSnYxv7AZM_Mbod1PKEDDv3r-2uU1ZOcBQIeeXEXLlaCjh3pPaiiBs388HjhP0GcMAIGQnleVqkngjgiZUSnp8Krj2J5UfSKDgl9XyWmzNCY8A3Mgo0lxJcFROlDACFZmAImOKub86JV4ksUSWtOFa3mCZV_NhHgmJOUMxJIeZzcrueMy9INbaO5tWfSH6pRgJWf8u8i3_OuyS70GJFVOMVqa8WX-YakMcqbVjVapCd1kOvO8B37_mt9wOETtb0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG2Hqk-VPj10qyzixImTEaGitDw6FCQ6RY7tCCoaEND_33PiICpVDM1mx2dFF_v8nXz3HUKPbhroMAhgI0U0I8xNHSIynxGPMY9lKnJVcaM7GAbxmL1O_EkNdapcGBNWaW1_adMLa217WlabreVs1noHZwbQg-MBiAangoPf3jDsVKyOGu2XXjzcXiZQVtRMM-OJEbC5M2WYl5BTQz_kekWHKfv91_m0c-Z0T9CxBYu4XX7PKarp_Awd7VAIQmuw5V1dn6OPtxxDE2vDsWl4vDVWhhnXFrXCiwyvixBqUmRYrmDyuclwgqnwYqmLK_c1nuV4WoR_gPCXCXCHlXmBxt3nUScmtngCkaDnDYl86SjB4egRioahr53MBacTthwgAs1FyCWliqeUe_BEUnLqptxXVJgKJGnoXaJ6vsj1FcIRQBwResoXArwVHaYMMIViYAuY9B1XNxGtVJZIyyxuClzMkyqE7DMxak6MmpNSzU30tJVZlrwae0f71Z9Ifq2OBAz_Hrnrf8o9oIN4NOgn_Zdh7wYdwhtWBjneovpm9a3vAIhs0nu70H4ANp3YAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+eigenvalue+distribution+of+spatio-spectral+limiting+operators+in+higher+dimensions&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Israel%2C+Arie&rft.au=Mayeli%2C+Azita&rft.date=2024-05-01&rft.issn=1063-5203&rft.volume=70&rft.spage=101620&rft_id=info:doi/10.1016%2Fj.acha.2023.101620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2023_101620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |