On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions

Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the inte...

Full description

Saved in:
Bibliographic Details
Published inApplied and computational harmonic analysis Vol. 70; p. 101620
Main Authors Israel, Arie, Mayeli, Azita
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN1063-5203
1096-603X
DOI10.1016/j.acha.2023.101620

Cover

Loading…
Abstract Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval [0,1]. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues. In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a spatio-spectral limiting operator (SSLO) on L2(Rd), which is an alternating product of projection operators associated to given spatial and frequency domains in Rd. If one of the domains is a hypercube, and the other domain is convex body satisfying a symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval [0,1]. To prove our results, we design an orthonormal system of wave packets in L2(Rd) that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for L2[0,1], and we lift the basis to higher dimensions using a tensor product.
AbstractList Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval. They are also identified as the eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval [0,1]. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues. In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a spatio-spectral limiting operator (SSLO) on L2(Rd), which is an alternating product of projection operators associated to given spatial and frequency domains in Rd. If one of the domains is a hypercube, and the other domain is convex body satisfying a symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval [0,1]. To prove our results, we design an orthonormal system of wave packets in L2(Rd) that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for L2[0,1], and we lift the basis to higher dimensions using a tensor product.
ArticleNumber 101620
Author Mayeli, Azita
Israel, Arie
Author_xml – sequence: 1
  givenname: Arie
  surname: Israel
  fullname: Israel, Arie
– sequence: 2
  givenname: Azita
  orcidid: 0000-0002-6367-1704
  surname: Mayeli
  fullname: Mayeli, Azita
  email: amayeli@gc.cuny.edu
BookMark eNp9kMtqwzAQRUVpoUnaH-hKP-BUD9uyoZsS-oJANi20KyHL43iCIxvJCfTvKzdddZHZzGXgDNwzJ5eud0DIHWdLznh-v1sa25qlYEL-HgS7IDPOyjzJmfy8nHIuk0wweU3mIewY4zzNyhn52jg6tkABt-COpjsArTGMHqvDiL2jfUPDYGJMwgB29KajHe5xRLel_QDejL0PFB1tcduCj_AeXIhkuCFXjekC3P7tBfl4fnpfvSbrzcvb6nGdWJmmY1JmltVGKV6YmhdFBqwRmZCZ5EIIUKZQlvNaVVzJOKW1iotKZTU3TKV5VcgFEae_1vcheGj04HFv_LfmTE8u9E5PcvQkR5_kRKj4B1kcp5ouVsTuPPpwQiGWOiJ4HSyCs1Cjj4Z03eM5_AcsIYIz
CitedBy_id crossref_primary_10_1007_s00205_024_01979_9
crossref_primary_10_1142_S0219691324500243
crossref_primary_10_1109_TSP_2025_3541872
crossref_primary_10_2140_paa_2024_6_789
crossref_primary_10_1016_j_acha_2024_101734
Cites_doi 10.1016/j.acha.2006.07.002
10.1002/j.1538-7305.1962.tb03279.x
10.1016/0022-247X(80)90241-3
10.1016/j.acha.2021.04.002
10.1002/j.1538-7305.1978.tb02104.x
10.1109/18.243434
10.1016/j.acha.2016.01.006
10.1007/BF02395039
10.4153/CMB-1998-053-8
10.1016/j.acha.2019.05.005
10.1016/j.acha.2013.03.002
10.1016/j.jmaa.2008.01.091
10.1137/16M1085334
10.1002/j.1538-7305.1961.tb03977.x
10.1016/S1090-7807(02)00058-7
10.1007/BF02786820
10.1063/1.5140496
10.1002/j.1538-7305.1961.tb03976.x
10.1002/j.1538-7305.1964.tb01037.x
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.acha.2023.101620
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
ExternalDocumentID 10_1016_j_acha_2023_101620
S1063520323001070
GrantInformation_xml – fundername: PSC-CUNY
  grantid: 65654-00 53
  funderid: https://doi.org/10.13039/100020891
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0005
  funderid: https://doi.org/10.13039/100000181
– fundername: AMS-Simons
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-95c0da7718ad1885e0f2523531222e7a87c11d7b1733339cc712b75d1a0746b83
IEDL.DBID .~1
ISSN 1063-5203
IngestDate Thu Apr 24 23:08:56 EDT 2025
Tue Jul 01 03:49:06 EDT 2025
Sat Feb 24 15:49:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Prolate spheroidal wave functions
Spectral analysis
Spatio-spectral limiting operators
Wave packets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-95c0da7718ad1885e0f2523531222e7a87c11d7b1733339cc712b75d1a0746b83
ORCID 0000-0002-6367-1704
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1063520323001070
ParticipantIDs crossref_primary_10_1016_j_acha_2023_101620
crossref_citationtrail_10_1016_j_acha_2023_101620
elsevier_sciencedirect_doi_10_1016_j_acha_2023_101620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Osipov (br0250) 2013; 35
Henk, Cifre (br0080) 2008; 343
Figueirinhas (br0060) 2016
Lederman, Singer (br0220) 2020; 49
Robbins (br0260) 1955; 62
Coifman, Meyer (br0030) 1991; 312
Fefferman, Israel (br0050) 2020; vol. 135
Israel (br0100) 2015
Schneider (br0280) 2013
Dziubański, Hernández (br0040) 1998; 41
Slepian, Pollak (br0320) 1961; 40
Landa, Shkolnisky (br0190) 2017; 43
Rodino (br0270) 1993
Landau (br0140) 1975; 28
Bonami, Jaming, Karoui (br0020) 2021; 62
Hörmander (br0090) 2003
Landau (br0150) 1993; 39
Karnik, Romberg, Davenport (br0120) 2021; 55
Landau, Pollak (br0170) 1961; 40
Krantz, Parks (br0110) 2002
Landau (br0130) 1967; 117
Shkolnisky (br0290) 2007; 22
Slepian (br0300) 1964; 43
Lederman (br0160) 2017
Marceca, Romero, Speckbacher (br0240) 2023
Landau, Widom (br0230) 1980; 77
Lederman, Singer (br0210) 2017
Slepian (br0310) 1978; 57
Landa, Shkolnisky (br0200) 2017; 10
Auscher, Weiss, Wickerhauser (br0010) 1993
Landau, Pollak (br0180) 1962; 41
Yang (br0330) 2002; 158
Greengard, Serkh (br0070) 2018
Landau (10.1016/j.acha.2023.101620_br0150) 1993; 39
Landau (10.1016/j.acha.2023.101620_br0130) 1967; 117
Dziubański (10.1016/j.acha.2023.101620_br0040) 1998; 41
Landau (10.1016/j.acha.2023.101620_br0140) 1975; 28
Marceca (10.1016/j.acha.2023.101620_br0240)
Osipov (10.1016/j.acha.2023.101620_br0250) 2013; 35
Landa (10.1016/j.acha.2023.101620_br0200) 2017; 10
Robbins (10.1016/j.acha.2023.101620_br0260) 1955; 62
Slepian (10.1016/j.acha.2023.101620_br0300) 1964; 43
Landau (10.1016/j.acha.2023.101620_br0170) 1961; 40
Lederman (10.1016/j.acha.2023.101620_br0210)
Figueirinhas (10.1016/j.acha.2023.101620_br0060)
Auscher (10.1016/j.acha.2023.101620_br0010) 1993
Landau (10.1016/j.acha.2023.101620_br0180) 1962; 41
Landa (10.1016/j.acha.2023.101620_br0190) 2017; 43
Henk (10.1016/j.acha.2023.101620_br0080) 2008; 343
Slepian (10.1016/j.acha.2023.101620_br0320) 1961; 40
Lederman (10.1016/j.acha.2023.101620_br0220) 2020; 49
Fefferman (10.1016/j.acha.2023.101620_br0050) 2020; vol. 135
Rodino (10.1016/j.acha.2023.101620_br0270) 1993
Bonami (10.1016/j.acha.2023.101620_br0020) 2021; 62
Coifman (10.1016/j.acha.2023.101620_br0030) 1991; 312
Lederman (10.1016/j.acha.2023.101620_br0160)
Israel (10.1016/j.acha.2023.101620_br0100)
Landau (10.1016/j.acha.2023.101620_br0230) 1980; 77
Slepian (10.1016/j.acha.2023.101620_br0310) 1978; 57
Greengard (10.1016/j.acha.2023.101620_br0070)
Karnik (10.1016/j.acha.2023.101620_br0120) 2021; 55
Yang (10.1016/j.acha.2023.101620_br0330) 2002; 158
Shkolnisky (10.1016/j.acha.2023.101620_br0290) 2007; 22
Hörmander (10.1016/j.acha.2023.101620_br0090) 2003
Krantz (10.1016/j.acha.2023.101620_br0110) 2002
Schneider (10.1016/j.acha.2023.101620_br0280) 2013
References_xml – year: 2015
  ident: br0100
  article-title: The eigenvalue distribution of time-frequency localization operators
– volume: 39
  start-page: 1152
  year: 1993
  end-page: 1156
  ident: br0150
  article-title: On the density of phase-space expansions
  publication-title: IEEE Trans. Inf. Theory
– year: 2002
  ident: br0110
  article-title: A Primer of Real Analytic Functions
– volume: 41
  start-page: 1295
  year: 1962
  end-page: 1336
  ident: br0180
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – III: The dimension of the space of essentially time- and band-limited signals
  publication-title: Bell Syst. Tech. J.
– volume: 43
  start-page: 381
  year: 2017
  end-page: 403
  ident: br0190
  article-title: Approximation scheme for essentially bandlimited and space-concentrated functions on a disk
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2023
  ident: br0240
  article-title: Eigenvalue estimates for Fourier concentration operators on two domains
– year: 1993
  ident: br0270
  article-title: Linear Partial Differential Operators in Gevrey Spaces
– year: 2017
  ident: br0160
  article-title: Numerical algorithms for the computation of generalized prolate spheroidal functions
– volume: 57
  start-page: 1371
  year: 1978
  end-page: 1430
  ident: br0310
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case
  publication-title: Bell Syst. Tech. J.
– volume: 28
  start-page: 335
  year: 1975
  end-page: 357
  ident: br0140
  article-title: On Szegö's eigenvalue distribution theorem and non-Hermitian kernels
  publication-title: J. Anal. Math.
– volume: 41
  start-page: 398
  year: 1998
  end-page: 403
  ident: br0040
  article-title: Band-limited wavelets with subexponential decay
  publication-title: Can. Math. Bull.
– volume: 55
  start-page: 97
  year: 2021
  end-page: 128
  ident: br0120
  article-title: Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 49
  start-page: 1001
  year: 2020
  end-page: 1024
  ident: br0220
  article-title: A representation theory perspective on simultaneous alignment and classification
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 35
  start-page: 309
  year: 2013
  end-page: 340
  ident: br0250
  article-title: Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 43
  start-page: 3009
  year: 1964
  end-page: 3058
  ident: br0300
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – IV: Extensions to many dimensions; generalized prolate spheroidal functions
  publication-title: Bell Syst. Tech. J.
– volume: 62
  start-page: 26
  year: 1955
  end-page: 29
  ident: br0260
  article-title: A remark on Stirling's formula
  publication-title: Am. Math. Mon.
– volume: 343
  start-page: 733
  year: 2008
  end-page: 742
  ident: br0080
  article-title: Intrinsic volumes and successive radii
  publication-title: J. Math. Anal. Appl.
– year: 2013
  ident: br0280
  article-title: Convex Bodies: the Brunn-Minkowski Theory
– volume: vol. 135
  year: 2020
  ident: br0050
  article-title: Fitting Smooth Functions to Data
  publication-title: CBMS Regional Conference Series in Mathematics
– volume: 40
  start-page: 65
  year: 1961
  end-page: 84
  ident: br0170
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – II
  publication-title: Bell Syst. Tech. J.
– volume: 158
  start-page: 43
  year: 2002
  end-page: 51
  ident: br0330
  article-title: Two dimensional prolate spheroidal wave functions for MRI
  publication-title: J. Magn. Res.
– year: 2016
  ident: br0060
  article-title: On the properties of Gevrey and ultra-analytic spaces
– volume: 62
  year: 2021
  ident: br0020
  article-title: Non-asymptotic behaviour of the spectrum of the sinc kernel operator and related applications
  publication-title: J. Math. Phys.
– year: 2018
  ident: br0070
  article-title: On generalized prolate spheroidal functions
– year: 2003
  ident: br0090
  article-title: The Analysis of Linear Partial Differential Operators II
– volume: 117
  start-page: 37
  year: 1967
  end-page: 52
  ident: br0130
  article-title: Necessary density conditions for sampling and interpolation of certain entire functions
  publication-title: Acta Math.
– volume: 10
  start-page: 508
  year: 2017
  end-page: 534
  ident: br0200
  article-title: Steerable principal components for space-frequency localized images
  publication-title: SIAM J. Imaging Sci.
– year: 2017
  ident: br0210
  article-title: Continuously heterogeneous hyper-objects in cryo-EM and 3-D movies of many temporal dimensions
– volume: 312
  start-page: 259
  year: 1991
  end-page: 261
  ident: br0030
  article-title: Remarques sur l'analyse de Fourier á fenétre
  publication-title: C. R. Acad. Sci. Paris
– volume: 22
  start-page: 235
  year: 2007
  end-page: 256
  ident: br0290
  article-title: Prolate spheroidal wave functions on a disc – integration and approximation of two-dimensional bandlimited functions
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 40
  start-page: 43
  year: 1961
  end-page: 64
  ident: br0320
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – I
  publication-title: Bell Syst. Tech. J.
– start-page: 237
  year: 1993
  end-page: 256
  ident: br0010
  article-title: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets
  publication-title: Wavelets: A Tutorial in Theory and Applications
– volume: 77
  start-page: 469
  year: 1980
  end-page: 481
  ident: br0230
  article-title: Eigenvalue distribution of time and frequency limiting
  publication-title: J. Math. Anal. Appl.
– volume: 22
  start-page: 235
  issue: 2
  year: 2007
  ident: 10.1016/j.acha.2023.101620_br0290
  article-title: Prolate spheroidal wave functions on a disc – integration and approximation of two-dimensional bandlimited functions
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.07.002
– volume: 41
  start-page: 1295
  issue: 4
  year: 1962
  ident: 10.1016/j.acha.2023.101620_br0180
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – III: The dimension of the space of essentially time- and band-limited signals
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1962.tb03279.x
– volume: 77
  start-page: 469
  issue: 2
  year: 1980
  ident: 10.1016/j.acha.2023.101620_br0230
  article-title: Eigenvalue distribution of time and frequency limiting
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(80)90241-3
– ident: 10.1016/j.acha.2023.101620_br0100
– volume: 55
  start-page: 97
  issue: 1
  year: 2021
  ident: 10.1016/j.acha.2023.101620_br0120
  article-title: Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2021.04.002
– start-page: 237
  year: 1993
  ident: 10.1016/j.acha.2023.101620_br0010
  article-title: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets
– volume: 62
  start-page: 26
  issue: 1
  year: 1955
  ident: 10.1016/j.acha.2023.101620_br0260
  article-title: A remark on Stirling's formula
  publication-title: Am. Math. Mon.
– year: 1993
  ident: 10.1016/j.acha.2023.101620_br0270
– volume: 57
  start-page: 1371
  issue: 5
  year: 1978
  ident: 10.1016/j.acha.2023.101620_br0310
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1978.tb02104.x
– volume: 39
  start-page: 1152
  issue: 4
  year: 1993
  ident: 10.1016/j.acha.2023.101620_br0150
  article-title: On the density of phase-space expansions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.243434
– volume: 43
  start-page: 381
  issue: 3
  year: 2017
  ident: 10.1016/j.acha.2023.101620_br0190
  article-title: Approximation scheme for essentially bandlimited and space-concentrated functions on a disk
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.01.006
– volume: 117
  start-page: 37
  year: 1967
  ident: 10.1016/j.acha.2023.101620_br0130
  article-title: Necessary density conditions for sampling and interpolation of certain entire functions
  publication-title: Acta Math.
  doi: 10.1007/BF02395039
– volume: 312
  start-page: 259
  year: 1991
  ident: 10.1016/j.acha.2023.101620_br0030
  article-title: Remarques sur l'analyse de Fourier á fenétre
  publication-title: C. R. Acad. Sci. Paris
– volume: 41
  start-page: 398
  year: 1998
  ident: 10.1016/j.acha.2023.101620_br0040
  article-title: Band-limited wavelets with subexponential decay
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-1998-053-8
– year: 2003
  ident: 10.1016/j.acha.2023.101620_br0090
– ident: 10.1016/j.acha.2023.101620_br0060
– volume: 49
  start-page: 1001
  issue: 3
  year: 2020
  ident: 10.1016/j.acha.2023.101620_br0220
  article-title: A representation theory perspective on simultaneous alignment and classification
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2019.05.005
– volume: 35
  start-page: 309
  issue: 2
  year: 2013
  ident: 10.1016/j.acha.2023.101620_br0250
  article-title: Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2013.03.002
– volume: vol. 135
  year: 2020
  ident: 10.1016/j.acha.2023.101620_br0050
  article-title: Fitting Smooth Functions to Data
– ident: 10.1016/j.acha.2023.101620_br0070
– volume: 343
  start-page: 733
  year: 2008
  ident: 10.1016/j.acha.2023.101620_br0080
  article-title: Intrinsic volumes and successive radii
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.01.091
– year: 2002
  ident: 10.1016/j.acha.2023.101620_br0110
– volume: 10
  start-page: 508
  issue: 2
  year: 2017
  ident: 10.1016/j.acha.2023.101620_br0200
  article-title: Steerable principal components for space-frequency localized images
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1085334
– volume: 40
  start-page: 65
  issue: 1
  year: 1961
  ident: 10.1016/j.acha.2023.101620_br0170
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – II
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1961.tb03977.x
– ident: 10.1016/j.acha.2023.101620_br0210
– volume: 158
  start-page: 43
  year: 2002
  ident: 10.1016/j.acha.2023.101620_br0330
  article-title: Two dimensional prolate spheroidal wave functions for MRI
  publication-title: J. Magn. Res.
  doi: 10.1016/S1090-7807(02)00058-7
– volume: 28
  start-page: 335
  issue: 1
  year: 1975
  ident: 10.1016/j.acha.2023.101620_br0140
  article-title: On Szegö's eigenvalue distribution theorem and non-Hermitian kernels
  publication-title: J. Anal. Math.
  doi: 10.1007/BF02786820
– volume: 62
  year: 2021
  ident: 10.1016/j.acha.2023.101620_br0020
  article-title: Non-asymptotic behaviour of the spectrum of the sinc kernel operator and related applications
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5140496
– ident: 10.1016/j.acha.2023.101620_br0160
– year: 2013
  ident: 10.1016/j.acha.2023.101620_br0280
– volume: 40
  start-page: 43
  issue: 1
  year: 1961
  ident: 10.1016/j.acha.2023.101620_br0320
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – I
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1961.tb03976.x
– volume: 43
  start-page: 3009
  issue: 6
  year: 1964
  ident: 10.1016/j.acha.2023.101620_br0300
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty – IV: Extensions to many dimensions; generalized prolate spheroidal functions
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1964.tb01037.x
– ident: 10.1016/j.acha.2023.101620_br0240
SSID ssj0011459
Score 2.4201505
Snippet Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on R that have the highest concentration within a specific time interval....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101620
SubjectTerms Prolate spheroidal wave functions
Spatio-spectral limiting operators
Spectral analysis
Wave packets
Title On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions
URI https://dx.doi.org/10.1016/j.acha.2023.101620
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMGb1PUjadrjGI7p2AR1OE8lTVI2md3Y5tW_3ffSdkyQHeylJCShvL68_B557_cIufHT0ERhCBsp9jKH-anryIwzJ2AsYJmOfW1vdPuDsDtkjyM-qpF2lQuDYZWl7S9surXWZU-zlGZzPpk0X8CZAfTgBgCiwakQ6Lcjex3o9N33OswD4L4tmIaDHRxdJs4UMV5SjZF7yA9sB9b8_utw2jhwOgdkv0SKtFV8zCGpmfyI7G3wB0KrvyZdXR6T96ecQpMaJNhEEm9DNdLilhWt6CyjSxs_7dj0ygUsPsX0JliKzubG3rcv6SSnYxv7AZM_Mbod1PKEDDv3r-2uU1ZOcBQIeeXEXLlaCjh3pPaiiBs388HjhP0GcMAIGQnleVqkngjgiZUSnp8Krj2J5UfSKDgl9XyWmzNCY8A3Mgo0lxJcFROlDACFZmAImOKub86JV4ksUSWtOFa3mCZV_NhHgmJOUMxJIeZzcrueMy9INbaO5tWfSH6pRgJWf8u8i3_OuyS70GJFVOMVqa8WX-YakMcqbVjVapCd1kOvO8B37_mt9wOETtb0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG2Hqk-VPj10qyzixImTEaGitDw6FCQ6RY7tCCoaEND_33PiICpVDM1mx2dFF_v8nXz3HUKPbhroMAhgI0U0I8xNHSIynxGPMY9lKnJVcaM7GAbxmL1O_EkNdapcGBNWaW1_adMLa217WlabreVs1noHZwbQg-MBiAangoPf3jDsVKyOGu2XXjzcXiZQVtRMM-OJEbC5M2WYl5BTQz_kekWHKfv91_m0c-Z0T9CxBYu4XX7PKarp_Awd7VAIQmuw5V1dn6OPtxxDE2vDsWl4vDVWhhnXFrXCiwyvixBqUmRYrmDyuclwgqnwYqmLK_c1nuV4WoR_gPCXCXCHlXmBxt3nUScmtngCkaDnDYl86SjB4egRioahr53MBacTthwgAs1FyCWliqeUe_BEUnLqptxXVJgKJGnoXaJ6vsj1FcIRQBwResoXArwVHaYMMIViYAuY9B1XNxGtVJZIyyxuClzMkyqE7DMxak6MmpNSzU30tJVZlrwae0f71Z9Ifq2OBAz_Hrnrf8o9oIN4NOgn_Zdh7wYdwhtWBjneovpm9a3vAIhs0nu70H4ANp3YAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+eigenvalue+distribution+of+spatio-spectral+limiting+operators+in+higher+dimensions&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Israel%2C+Arie&rft.au=Mayeli%2C+Azita&rft.date=2024-05-01&rft.issn=1063-5203&rft.volume=70&rft.spage=101620&rft_id=info:doi/10.1016%2Fj.acha.2023.101620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2023_101620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon